INA750x 強化 PWM 除去機能および 35A EZShunt™ テクノロジー搭載、-4V~ 110V、双方向、超高精度、電流センス アンプ # 1 特長 - シャント抵抗内蔵の高精度ソリューション - 25℃で ±35A の連続電流 - 125℃で ±25A の連続電流 - シャント抵抗:800μΩ - シャントインダクタンス:2.5nH - 広い同相電圧範囲:-4V~+110V - スイッチング コモン モード電圧で動作するシステム向 けに最適化された強化型 PWM 除去 - 最大 125kHz のスイッチング周波数をサポート - 非常に優れた CMRR - 160dB Ø DC CMRR - 50kHz で 114dB の AC CMRR - 高い測定精度 - システム ゲイン誤差 (最大値) - バージョン A:±0.35%、±35ppm/℃のドリフト - バージョン B:±1%、±100ppm/℃のドリフト - オフセット電圧 (最大値) - バージョン A:±15mA、±315µA/℃のドリフト - バージョン B:±125mA、±625µA/℃のドリフト - 外付けの分圧抵抗回路でゲインを調整可能: - -40mV/A \sim 800mV/A - 160℃の T」のオープンドレイン温度アラート - パッケージ オプション: VQFN-14 # 2 アプリケーション - モータードライブ - ソレノイドとアクチュエータ - 射出成形機 - コードレス電動工具 - 医療用コードレス機器 - ドローンのプロペラ速度制御 代表的なアプリケーション #### 3 概要 INA750x は、 $800\mu\Omega$ のシャント抵抗を内蔵した電圧出 力、電流センスアンプです。INA750xは、電源電圧にか かわらず、-4V~+110Vの同相電圧範囲で双方向の電流 を監視するように設計されています。 可変ゲイン オプショ ンは、システムのダイナミックレンジの最適化に役立ちま す。ケルビン接続シャント抵抗とゼロドリフトのチョップア ンプを内蔵しているため、較正と等価の測定精度、 ±35ppm/℃という非常に小さい温度ドリフト係数、センシン グ抵抗に最適化されたレイアウトが実現されています。 INA750x の設計には、強化された PWM 除去回路が組 み込まれており、大きな (dv/dt) 同相過渡によるじょう乱を 抑制し、スイッチング システムにおいてリアルタイムで連続 的な電流測定が可能です。この連続測定は、モータドラ イブ アプリケーションにおけるインラインの電流測定や、ソ レノイドのバルブ制御アプリケーションなどに不可欠なもの です。 このデバイスは 2.7V~5.5V の単一電源で動作し、消費 電流は最大 4.25mA です。どのバージョンも、拡張動作 温度範囲 (-40℃~+125℃) で動作が規定され、14 ピン VQFN パッケージで供給されます。 ## パッケージ情報(1) | 部品番号 | パッケージ | パッケージ サイズ ⁽²⁾ | |-----------------|----------------|--------------------------| | INA750A、INA750B | REM (VQFN -14) | 4.0mm × 5.0mm | - (1) 利用可能なすべてのパッケージについては、データシートの末尾 にある注文情報を参照してください。 - パッケージ サイズ (長さ×幅) は公称値で、該当する場合はピンも 含まれます。 最大連続電流と周囲温度との関係 # **Table of Contents** | 1 特長 | 1 | 7 Application and Implementation | 20 | |--------------------------------------|---|---|------------------| | 2 アプリケーション | | 7.1 Application Information | 20 | | 3 概要 | | 7.2 Signal Filtering | <mark>23</mark> | | 4 Pin Configuration and Functions | | 7.3 Typical Application | <mark>25</mark> | | 5 Specifications | | 7.4 Power Supply Recommendations | 30 | | 5.1 Absolute Maximum Ratings | | 7.5 Layout | 30 | | 5.2 ESD Ratings | | 8 Device and Documentation Support | 33 | | 5.3 Recommended Operating Conditions | | 8.1 Documentation Support | 33 | | 5.4 Thermal Information | | 8.2ドキュメントの更新通知を受け取る方法 | 33 | | 5.5 Electrical Characteristics | 5 | 8.3 サポート・リソース | 33 | | 5.6 Typical Characteristics | | 8.4 Trademarks | 33 | | 6 Detailed Description | | 8.5 静電気放電に関する注意事項 | 3 <mark>3</mark> | | 6.1 Overview | | 8.6 用語集 | | | 6.2 Functional Block Diagram | | 9 Revision History | | | 6.3 Feature Description | | 10 Mechanical, Packaging, and Orderable | | | 6.4 Device Functional Modes | | Information | 33 | # 4 Pin Configuration and Functions 図 4-1. INA750x REM Package VQFN Top View 表 4-1. Pin Functions | PIN NAME NO. | | I/O | DESCRIPTION | | |--------------|------|-------------------------------------|--|--| | | | _ 1/0 | DESCRIPTION | | | ALERT | 13 | Analog Out | Open drain temperature alert | | | FB | 11 | Analog Input | Gain adjustment feedback; connect to resistor divider to adjust device gain. | | | GND | 5 | Analog | Ground | | | IN- | 8 | Analog Input | Voltage input from load side of shunt resistor | | | IN+ | 1 | Analog Input | Voltage input from supply side of shunt resistor | | | IS- | 7 | Analog Input | Connect to load | | | IS+ | 14 | Analog Input | Connect to supply | | | NC | 2 | _ | Connect to IN+ (pin 1). | | | NC | 4, 6 | _ | Connect to ground or leave unconnected. | | | NC | 9 | _ | Connect to IN– (pin 8). | | | OUT | 10 | Analog Output | Output voltage | | | REF | 12 | Analog Input | Reference voltage, 0 V to VS | | | VS | 3 | Analog Power supply, 2.7 V to 5.5 V | | | # 5 Specifications # 5.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | |---|--|-----------|----------|------| | Supply voltage (V _s) | | | 6 | V | | Analog Inputs, V _{IN+} , V _{IN-} ⁽²⁾ | Differential (V _{IN+}) - (V _{IN-}) | -12 | 12 | V | | Analog inputs, V _{IN+} , V _{IN-} | Common - mode | GND – 20 | 120 | V | | Analog input (REF) | Analog input (REF) | GND – 0.3 | Vs + 0.3 | V | | Analog input (FB) | Analog input (FB) | GND – 0.3 | Vs + 0.3 | V | | Analog output (OUT) | Analog output (OUT) | GND – 0.3 | Vs + 0.3 | V | | Digital output (ALERT) | Temperature Alert Output | GND – 0.3 | Vs + 0.3 | V | | T _A | Operating Temperature | -55 | 150 | °C | | T _J | Junction temperature | | 150 | °C | | T _{stg} | Storage temperature | -65 | 150 | °C | ⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. # 5.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|---------------|---|-------|------| | | Electrostatic | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾ | ±2000 | \/ | | V _(ESD) | discharge | Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002, all pins ⁽²⁾ | ±1000 | | ⁽¹⁾ JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process. # **5.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM MAX | UNIT | |--------------------|-------------------------|-----|---------|------| | V _{CM} | Common-mode input range | -4 | 110 | V | | Vs | Operating supply range | 2.7 | 5.5 | V | | I _{SENSE} | Continuous Current | -25 | 25 | Α | | V_{REF} | Reference voltage range | 0 | Vs | V | | V _{FB} | Feed-back voltage range | 0 | Vs | V | | T _A | Ambient temperature | -40 | 125 | °C | #### 5.4 Thermal Information | | | INA750x | | |------------------------|---|------------|------| | THERMAL METRIC(1) | | REM (VQFN) | UNIT | | | | 14 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 38.3 | °C/W | | R ₀ JC(top) | Junction-to-case (top) thermal resistance | 46.5 | °C/W | | R _{0JB} | Junction-to-board thermal resistance ⁽²⁾ | 13.9 | °C/W | | Ψ_{JT} | Junction-to-top characterization parameter ⁽²⁾ | 2.2 | °C/W | | Ψ_{JB} | Junction-to-board characterization parameter ⁽²⁾ | 13.9 | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note. 資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2025 Texas Instruments Incorporated Product Folder Links: INA750B ⁽²⁾ V_{IN+} and V_{IN-} are the voltages at the IN+ and IN- pins, respectively. ²⁾ JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process. (2) Thermal metrics are relative to the internal die and are conservative relative to the heating that occur from the package leadframe shunt. For more details on heating, see the Safe Operating Area section. ## 5.5 Electrical Characteristics at T_A = 25 °C, V_S = 5V, I_{SENSE} = IS+ = 0A, V_{CM} = V_{IN-} = 48V, V_{FB} = V_{OUT} (Adjustable Gain = 1), and V_{REF} = V_S / 2 (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------------|--|--|-------|---------|--------|--------------------| | INPUT | | | | | | | | V _{CM} | Common-mode input range | V _{IN+} = -4V to 110V, I _{SENSE} = 0A,
T _A = -40°C to +125°C | -4 | | 110 | V | | CMRR | RR Common-mode rejection ratio | V _{IN+} = -4V to 110V, I _{SENSE} = 0A,
T _A = -40°C to +125°C, INA750A | | ±12.5 | ±40 | μΑ/V | | Civilata | | V _{IN+} = -4V to 110V, I _{SENSE} = 0A,
T _A = -40°C to +125°C, INA750B | | ±400 | ±650 | μ-, ν | | CMRR | Common-mode rejection ratio | f = 50kHz | | ±28 | | mA/V | | | Input referred offset current error | I _{SENSE} = 0A, INA750A | | ±2.5 | ±15 | mA | | l _{os} | input referred offset current error | I _{SENSE} = 0A, INA750B | | ±32 | ±125 | ША | | dl _{os} /dT | Input referred offset current error drift | I _{SENSE} = 0A,
T _A = -40°C to +125°C, INA750A | | ±0.063 | ±0.4 | mA/°C | | ui _{os} /u i | impacted onset current endr unit | I _{SENSE} = 0A,
T _A = -40°C to +125°C, INA750B | | ±0.125 | ±0.65 | IIIA/ C | | PSRR | Power supply rejection ratio | V _S = 2.7V to 5.5V, VREF = 1V,
I _{SENSE} = 0A, INA750A | | ±0.125 | ±2.5 | mA/V | | TORK | Tower supply rejection ratio | V _S = 2.7V to 5.5V, VREF = 1V,
I _{SENSE} = 0A, INA750B | | ±1.25 | ±12.5 | 111 <i>7</i> -1/V | | I _B | Total input bias current | $I_{B+}+I_{B-}$, $I_{SENSE}=0A$ | 45 | 66 | 90 | μΑ | | I _{FB} | Feed-back current | I _{SENSE} = 0A | | ±2 | | nA | | 'FB | | $I_{SENSE} = 0A, T_A = -40^{\circ}C \text{ to } +125^{\circ}C$ | | | ±6 | ПА | | INTEGRA | ATED SHUNT RESISTOR | | | | | | | R _{SHUNT} | Internal Kelvin shunt resistance | IN+ to IN-, T _A = 25 °C | | 8.0 | | mΩ | | | Pin to pin package resistance | IS+ to IS-, T _A = 25 °C | 0.800 | 960 | 1.200 | mΩ | | | Pin to pin package inductance | IS+ to IS-, T _A = 25 °C | | 2.5 | | nΗ | | I _{SENSE} | Maximum Continuous Current | $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$ | | | ±25 | Α | | | Shunt short time overload | I _{SENSE} = 55A for 5 seconds | | ± 0.01 | | % | | | Shunt temperature cycle | -65°C to 150°C, 500 cycles | | ± 0.05 | | % | | | Shunt resistance to solder heat | 260°C solder, 10
seconds | | ± 0.1 | | % | | | Shunt high temperature exposure | 1000 hours, T _A = 150°C | | ± 0.015 | | % | | OUTPUT | | | | | | | | G | Gain | INA750A , INA750B | | 40 | | mV/A | | | | GND + 50mV \leq V _{OUT} \leq V _S - 200mV,
T _A = 25°C, I _{SENSE} = ±25A, INA750A | | ±0.05 | ±0.35 | - % | | G | System Gain Error (shunt + amplifier) | GND + 50mV \leq V _{OUT} \leq V _S - 200mV,
T _A = 25°C, I _{SENSE} = ±5A, INA750A | | ±0.05 | ±0.35 | | | ~ | | (1) GND + 50mV \leq V _{OUT} \leq V _S - 200mV,
T _A = 25°C, I _{SENSE} = ±25A, INA750B | | ±0.3 | ±1 | | | | | GND + 50mV \leq V _{OUT} \leq V _S - 200mV,
T _A = 25°C, I _{SENSE} = ±5A, INA750B | | ±0.1 | ±0.625 | | | G | System Gain Error Drift (shunt + | $T_A = -40$ °C to +125°C, INA750A | | ±0.5 | ±35 | ppm/°C | | | amplifier) | $T_A = -40$ °C to +125°C, INA750B | | ±10 | ±100 | PP:11// U | | | Power Coefficient Gain non-Linearity Error | (2)GND + 10mV ≤ V _{OUT} ≤ V _S – 200mV | | 6 | | ppm/A ² | at T_A = 25 °C, V_S = 5V, I_{SENSE} = IS+ = 0A, V_{CM} = V_{IN-} = 48V, V_{FB} = V_{OUT} (Adjustable Gain = 1), and V_{REF} = V_S / 2 (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN TYP | MAX | UNIT | |----------------------|--|---|-----------------------|-----------------------|--------| | RVRR | Reference voltage rejection ratio (input - referred) | V _{REF} = 0.5V to 4.5V | ±1.15 | ±6.25 | mA/V | | | Maximum Capacitive Load | No sustained oscillation | 0.5 | | nF | | VOLTAG | EOUTPUT | | | | | | | Swing to V _S Power Supply Rail | R_L = 10k Ω to GND, V_{REF} = V_S ,
Adjustable Gain = 4,
T_A = -40°C to +125°C | V _S – 0.05 | V _S - 0.1 | V | | | Swing to Ground | R_L = 10k Ω to GND, V_{REF} = GND,
Adjustable Gain = 4,
T_A = -40°C to +125°C | V _{GND} + 5 | V _{GND} + 10 | mV | | | Swing to Ground | R_L = 10k Ω to GND, V_{REF} = GND,
T_A = -40°C to +125°C | V _{GND} + 1 | V _{GND} + 5 | mV | | FREQUE | NCY RESPONSE | | | | | | BW | Bandwidth (current sense amplifier only) | -3dB Bandwidth, V _{FB} = V _{OUT} | 1 | | MHz | | DVV | | -3dB Bandwidth, Adjustable Gain = 4 | 0.5 | | MHz | | | Propagation delay ⁽³⁾ | V _{IN+} , V _{IN-} = 48V, Adjustable Gain = 1,
V _{REF} = 150mV, Load Step = 0A to 20A,
Output settles to 1% | 0.250 | | μs | | | Total Settling time (current in to out) | V _{IN+} , V _{IN-} = 48V, Adjustable Gain = 1,
V _{REF} = 150mV, Load Step = 0A to 20A,
Output settles to 1% | 5 | | μs | | SR | Slew Rate | V _{FB} = V _{OUT} | 1.8 | | V/µs | | SK | Siew Rate | Adjustable Gain = 4 | 1.5 | | V/µs | | NOISE | | | | | | | | Current Noise Density | | 75 | | μΑ/√Hz | | POWER | SUPPLY | | | | | | I. | Quiescent current | | 3.5 | 4.25 | mA | | I _Q | Quiescent current | $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$ | | 4.5 | mA | | TEMPER | ATURE | | | | | | T _{Alert} | Thermal Alert Threshold | $R_{pull-up} = 10k\Omega$, | 160 | | °C | | VLO _{Alert} | Thermal Alert Low-level output voltage | $R_{\text{pull-up}} = 10 \text{k}\Omega,$ | | 200 | mV | | | | | | | | ⁽¹⁾ This is inclusive of Power Coefficient Gain Non-linearity Error I_{SENSE} = ± 5A to ± 25A, V_{OUT} = V_{REF} ± 1V Propagation delay is difference of time between 10% of load step to 10% of final output settling value # **5.6 Typical Characteristics** at T_A = 25°C, V_S = 5V, I_{SENSE} = IS+ = 0A, V_{CM} = 48V, V_{FB} = V_{OUT} , and V_{REF} = V_S / 2 (unless otherwise noted) at T_A = 25°C, V_S = 5V, I_{SENSE} = IS+ = 0A, V_{CM} = 48V, V_{FB} = V_{OUT} , and V_{REF} = V_S / 2 (unless otherwise noted) at T_A = 25°C, V_S = 5V, I_{SENSE} = IS+ = 0A, V_{CM} = 48V, V_{FB} = V_{OUT} , and V_{REF} = V_S / 2 (unless otherwise noted) at $T_A = 25$ °C, $V_S = 5$ V, $I_{SENSE} = IS + = 0$ A, $V_{CM} = 48$ V, $V_{FB} = V_{OUT}$, and $V_{REF} = V_S / 2$ (unless otherwise noted) at $T_A = 25$ °C, $V_S = 5$ V, $I_{SENSE} = IS + = 0$ A, $V_{CM} = 48$ V, $V_{FB} = V_{OUT}$, and $V_{REF} = V_S / 2$ (unless otherwise noted) # **6 Detailed Description** ## 6.1 Overview The INA750x features a precision current sensing solution with 800μΩ current-sensing EZShunt™ technology resistor and supports common-mode voltages up to 110V. The internal amplifier features a precision zero-drift topology with excellent common-mode rejection ratio (CMRR) and enhanced pulse-width modulation (PWM) rejection. Enhanced PWM rejection reduces the effect of common-mode transients on the output signal that are associated with PWM signals in switching systems. High-precision measurements are enabled by matching the shunt resistor value and the current-sensing amplifier gain across temperature, thus providing a highly-accurate, system-calibrated method for measuring current. Flexibility of adjustable gain with two external resistors allows for the optimization of the desired full-scale output voltage based on the target current range expected in the application. # 6.2 Functional Block Diagram # **6.3 Feature Description** ## 6.3.1 Integrated Shunt Resistor The INA750x features an integrated EZShunt™ technology current-sensing resistor that provides accurate measurements over the entire specified temperature range of –40°C to +125°C. The integrated current-sensing resistor provides measurement stability over temperature, and simplifies printed circuit board (PCB) layout and board constraint difficulties common in high-precision measurements. The onboard current-sensing resistor is designed as a 4-wire (or Kelvin) connected resistor that enables accurate measurements through a force-sense connection. Internally connected amplifier input pins (IN– and IN+) to the sense pins of the shunt resistor eliminates many instances of parasitic impedance commonly found in typical very-low sensing-resistor level measurements. The INA750x is system-calibrated to make sure that the current-sensing resistor and current-sensing amplifier are both precisely matched to one another. The inpackage integrated sensing resistor must be used with the internal current-sensing amplifier to achieve the optimized system gain specification. The INA750x has approximately $1m\Omega$ of package resistance. Of this total package resistance, $800\mu\Omega$ resistance from the Kelvin-connected current-sensing resistor is used by the amplifier. The power dissipation requirements of the system and package are based on the total $1m\Omega$ package resistance between the IS+ and IS- pins. 図 6-1. IS+ to IS- Package Resistance vs Temperature ## 6.3.2 Safe Operating Area The heat dissipated across the package when current flows through the device ultimately determines the maximum current that can be safely handled by the package. The current consumption of the silicon is relatively low, leaving the total package resistance to carry the high load current as the primary contributor to the total power dissipation of the package. The maximum safe-operating current level shown in \boxtimes 6-2 is set to make sure that the heat dissipated across the package is limited so that no damage occurs to the resistor or the package, or that the internal junction temperature of the silicon does not exceed a 165°C limit. External factors, such as ambient temperature, external air flow, and PCB layout, contribute to how effectively the device dissipates heat. The internal heat is developed as a result of the current flowing through the total package resistance of $1m\Omega$. **図 6-2. Maximum Continuous Current vs Ambient Temperature** #### 6.3.3 Short-Circuit Duration The INA750x features a physical shunt resistance that is able to withstand current levels higher than the continuous handling limit of 25A without sustaining damage to the current-sensing resistor or the current-sensing amplifier, if the excursions are brief. \boxtimes 6-3 shows the short-circuit duration curve for the INA750x. 図 6-3. Maximum Pulse Current vs Pulse Duration (Single Event) #### 6.3.4 Temperature Drift Correction System calibration is common for many industrial applications to eliminate initial component and system-level errors that can be present. A system-level calibration reduces the initial accuracy requirement for many of the individual components because the errors associated with these components are effectively eliminated through the calibration procedure. This calibration enables precise measurements at the temperature in which the system is calibrated. As the system temperature changes because of external ambient changes or self heating, measurement errors are reintroduced. Without accurate temperature compensation used in addition to the initial adjustment, the calibration procedure is not effective. The user must account for temperature-induced changes. The built-in programmed temperature compensation in the INA750x (including both the integrated current-sensing resistor and current-sensing amplifier) keep the device measurement accurate, even when the temperature changes throughout the specified temperature range of the device. #### 6.3.5 Enhanced PWM Rejection Operation The enhanced PWM rejection feature of the INA750x provides increased attenuation of large common-mode $\Delta V/\Delta t$ transients. Large $\Delta V/\Delta t$ common-mode transients associated with PWM signals are employed in applications such as motor or solenoid drive and switching power supplies. The disturbances that can occur at the output of a current sense amplifier from common-mode transients causes erroneous measurements and impose limitations when the output is valid. The INA750x is designed with high common-mode rejection techniques to reduce large $\Delta V/\Delta t$ transients before the system is disturbed. As a result, this makes system design simple
with INA750x . The high AC CMRR, in conjunction with signal bandwidth, allows the INA750x to minimize output disturbances and ringing during common-mode transitions when compared against traditional current-sensing amplifiers. \boxtimes 6-4 shows the INA750x PWM enhancement performance. 図 6-4. Enhanced PWM Rejection Performance #### 6.4 Device Functional Modes ## 6.4.1 Adjusting the Output With the Reference Pin The INA750x output is configurable to allow for unidirectional or bidirectional operation. ☑ 6-5 shows a circuit for setting output with an external reference. 図 6-5. Adjusting the Output The output voltage is set by applying a voltage from an external reference at REF. The reference input is connected to internal gain network. The external resistor network of R_{FB1} and R_{FB2} , connected to OUT, FB and REF pins, set up adjustable gain as explained in Adjustable Gain Set Using External Resistors. Output is set accurately at the voltage provided by external reference as shown in \pm 1 when the resistor R_{FB2} is connected to the same voltage as REF pin. The voltage at REF pin can range between supply Vs and GND. For symmetric bidirectional current sensing REF is set at mid-supply which sets out at mid-supply as well. $$V_{OUT} = G \times (I_{SHUNT}) + V_{REF} \tag{1}$$ #### 6.4.1.1 Reference Pin Connections for Unidirectional Current Measurements Unidirectional operation allows current measurements through a resistive shunt in one direction. For unidirectional operation, connect the device reference pin to the negative rail (see the Ground Referenced Output section) or positive rail, V_S . The required differential input polarity depends on the output voltage setting. The amplifier output moves away from the referenced rail proportional to the current passing through the internal shunt resistor. #### 6.4.1.2 Ground Referenced Output When using the INA750x in unidirectional mode with a ground-referenced output, both REF input and resistor R_{FB2} are connected to ground. \boxtimes 6-6 shows how this configuration takes the output to ground when there is 0A flowing across the internal shunt. 図 6-6. Ground-Referenced Output #### 6.4.1.3 Reference Pin Connections for Bidirectional Current Measurements Bidirectional operation allows the INA750x to measure currents through a resistive shunt in two directions. For this case, set the output voltage anywhere within the reference input limits. A common configuration is to set the reference inputs at half-scale for equal range in both directions. However, the reference input can be set to a voltage other than half-scale when the bidirectional current is nonsymmetrical. #### 6.4.1.4 Output Set to Mid-Supply Voltage \boxtimes 6-7 shows two equal resistors R₁ and R₂ connected between VS and the GND pins divide the supply at half, and by connecting REF pin to the divided supply, output is set to mid-supply voltage. The mid-point of these resistors is buffered using external operational amplifier to avoid loading of resistors resulting in error. The output is set to middle of the supply when there is no differential input voltage or 0A current in shunt resistor. This method creates a ratiometric offset to the supply voltage, where the output voltage remains at VS / 2 when 0A of current flows through internal shunt resistor. 図 6-7. Mid-Supply Voltage Output ## 6.4.2 Adjustable Gain Set Using External Resistors The INA750x features adjustable gain with two external resistor network. The default gain is 40mV/A, and with added external adjustable gain resistor network, total gain (G) can range up to 800mV/A. 🗵 6-8 shows two external resistors R_{FB1} and R_{FB2} configured for added external gain. 式 2 can be used for calculating external adjustable gain and 式 3 shows the total gain of the system with external adjustable gain. The REF pin and one end of resistor R_{FB2} is connected to external reference based on needed voltage at OUT pin as described in Adjusting the Output With the Reference Pin. 図 6-8. Adjustable Gain Setting With External Resistor Divider Adjustable Gain = $$\left(1 + \frac{R_{FB1}}{R_{FB2}}\right)$$ (2) $$G = 40 \frac{\text{mA}}{\text{V}} \times \left(1 + \frac{\text{R}_{\text{FB1}}}{\text{R}_{\text{FB2}}}\right) \tag{3}$$ The FB pin in INA750x has associated bias current, which can add to error when large values of adjustable gain resistor, R_{FB1} , is used. Alternatively, very low values of adjustable gain resistors load the output of the sense amplifier limiting the capability of the sense amplifier to get close to the supply rail. Keeping the sum of external resistors R_{FB1} and R_{FB2} between $10k\Omega$ and $40k\Omega$ is recommended when external adjustable gain is higher than 1. \pm 6-1 shows recommended values of external gain resistors for the most common gains. | External Adjustable Gain | R _{FB1} | R _{FB2} | Total Gain (G) | |--------------------------|------------------|------------------|----------------| | 1 | 0Ω (short) | Open | 40mV/A | | 2 | 20kΩ | 20kΩ | 80mV/A | | 4 | 30kΩ | 10kΩ | 160mV/A | | 5 | 20kΩ | 5kΩ | 200mV/A | #### 6.4.2.1 Adjustable Unity Gain 図 6-9 shows adjustable gain set to unity gain or 1. In this configuration OUT is connected to FB without any external resistor. This unity gain sets INA750x to default minimum gain of 40mV/A. 式 3 can be used to calculate the total gain of the system. The REF pin is connected to external reference based on needed output voltage setting as described in Adjusting the Output With the Reference Pin. 図 6-9. Adjustable Unity Gain Setting #### 6.4.3 Thermal Alert Function The INA750x has thermal Alert function that provides an alert when internal shunt temperature reaches 160° C. The power dissipation as a result of internal shunt current causes the temperature to rise inside the package. Extended time at temperature higher than 150° C can cause permanent shift in device specification. Thermal alert function can be used to keep the temperature of INA750x below 150° C. \boxtimes 6-10 shows a circuit where R_{pullup} resistor is tied between open-drain Alert pin and the supply pin. When temperature of the INA750x reaches 160° C, the open-drain FET pulls Alert pin to the ground asserting thermal alert. 図 6-10. Thermal Alert Function # 7 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. ## 7.1 Application Information The INA750x measures the voltage developed as current flows across the integrated current shunt. The device provides a reference pin to configure operation as either unidirectional or bidirectional output swing. When using the INA750x for inline motor current sense or measuring current in an H-bridge, the device is commonly configured for bidirectional operation. ## 7.1.1 Calculating Total Error The INA750x electrical specifications セクション 5.5 include typical individual errors terms (such as gain error, offset error, and nonlinearity error). Total error, including all of these individual error components, is not specified in the table. To accurately calculate the expected error of the device, the user must first know the device operating conditions. This section discusses the individual error sources and how the device total error value can be calculated from the combination of these errors for specific conditions. Three examples are provided in Total Error Example 1, Total Error Example 2, and Total Error Example 3 that detail how different operating conditions can affect the total error calculations. Typical and maximum calculations are shown as well to provide the user more information on how much error variance is present from device to device. #### 7.1.1.1 Error Sources The typical error sources that have the largest effect on the total error of the device are gain error, nonlinearity, common-mode rejection ratio, and input offset error. For the INA750x, an additional error source (referred to as the *reference voltage rejection ratio*) is also included in the total error value. #### 7.1.1.2 Reference Voltage Rejection Ratio Error Reference voltage rejection ratio refers to the amount of error induced by applying a reference voltage to the INA750x that deviates from the mid-point of the device supply voltage. ## 7.1.1.3 External Adjustable Gain Error The INA750x features external adjustable gain with two external resistors as described in Adjustable Gain Set Using External Resistors. The tolerance of these external resistors contribute to the total gain error of the system. These resistors are recommended to be of same kind so that temperature drift of these resistor track closely. 3 4 can be used for calculating total error contributed by two external gain resistors. $$Error_{G_R} = \sqrt{2} * (Resistor_{Tolerance} + Resistor_{drift} \times \Delta T)$$ (4) ## 7.1.1.4 Total Error Example 1 # 表 7-1. Total Error Calculation: Example 1 | | | • • • • • • • • • • • • • • • • • • • | | |---|--------------------|---|-----------| | TERM | SYMBOL | EQUATION ⁽¹⁾ | MAX VALUE | | Initial input offset with
Temp drift | I _{OS_T} | $I_{OS} + \frac{dI_{OS}}{dT} \times \Delta T$ | 15mA | | Added input offset because of common-mode voltage | I _{OS_CM} | CMRR × (V _{CM} - 48 V) | 0μΑ | 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2025 Texas Instruments Incorporated 表 7-1. Total Error Calculation: Example 1 (続き) | TERM | SYMBOL | EQUATION ⁽¹⁾ | MAX VALUE | |---|-----------------------
--|-----------| | Added input offset because of reference voltage | I _{OS_REF} | $RVRR \times \left \left(\frac{V_S}{2} - V_{REF} \right) \right $ | ОμΑ | | Total input offset Current | I _{OS_Total} | $\sqrt{\left(I_{OS_T}\right)^2 + \left(I_{OS_CM}\right)^2 + \left(I_{OS_REF}\right)^2}$ | 15mA | | Error from input offset | Error _{los} | $\frac{I_{OS_Total}}{I_{Sense}} \times 100$ | 0.1% | | Gain error with Gain drift | Error _G | $G_{Error} + G_{Error_drift} \times \Delta T$ | 0.35% | | Error due to Gain
Nonlinearity | Error _{Lin} | $G_{Lin_Error} \times I^{2*}100\%$ | 0.135% | | Total error | _ | $\sqrt{\left(Error_{IOS}\right)^2 + \left(Error_G + Error_{Lin}\right)^2}$ | 0.495% | ⁽¹⁾ The data for $\frac{1}{80}$ 7-1 is taken with the INA750x , V_S = 5V, V_{CM} = 48V, V_{REF} = V_S / 2, T = 25°C, External Unity Gain (G =40mV/A) and I_{SENSE} = 15A. ## 7.1.1.5 Total Error Example 2 表 7-2. Total Error Calculation: Example 2 | 表 7-2. Total Error Calculation: Example 2 | | | | | | | |---|-----------------------|--|-----------|--|--|--| | TERM | SYMBOL | EQUATION ⁽¹⁾ | MAX VALUE | | | | | Initial input offset with
Temp drift | I _{OS_T} | $I_{OS} + \frac{dI_{OS}}{dT} \times \Delta T$ | 55mA | | | | | Added input offset because of common-mode voltage | I _{OS_CM} | CMRR × (V _{CM} - 48V) | 1.4mA | | | | | Added input offset because of reference voltage | los_ref | $RVRR \times \left \left(\frac{V_S}{2} - V_{REF} \right) \right $ | 15mA | | | | | Total input offset Current | I _{OS_Total} | $\sqrt{\left(I_{OS_T}\right)^2 + \left(I_{OS_CM}\right)^2 + \left(I_{OS_REF}\right)^2}$ | 57.2mA | | | | | Error from input offset | Error _{los} | $\frac{I_{OS_Total}}{I_{Sense}} \times 100$ | 0.381% | | | | | Gain error with Gain drift | Error _G | $G_{Error} + G_{Error_drift} \times \Delta T$ | 0.7% | | | | | Error due to Gain
Nonlinearity | Error _{Lin} | $G_{Lin_Error} \times I^{2*}100\%$ | 0.135% | | | | | Total error | _ | $\sqrt{\left(Error_{IOS}\right)^2 + \left(Error_G + Error_{Lin}\right)^2}$ | 0.918% | | | | ⁽¹⁾ The data for $\frac{1}{8}$ 7-2 is taken with the INA750x , V_S = 5V, V_{CM} = 12V, V_{REF} = 0V, T = 125°C, External Unity Gain (G = 40mV/A) and I_{SENSE} = 15A. #### 7.1.1.6 Total Error Example 3 表 7-3. Total Error Calculation: Example 3 | St. of form End of outstanding Examples | | | | | | | |---|-----------------------|--|-----------|--|--|--| | TERM | SYMBOL | EQUATION ⁽¹⁾ | MAX VALUE | | | | | Initial input offset with
Temp drift | I _{OS_T} | $I_{OS} + \frac{dI_{OS}}{dT} \times \Delta T$ | 55mA | | | | | Added input offset because of common-mode voltage | I _{OS_CM} | CMRR × (V _{CM} - 48V) | 1.4mA | | | | | Added input offset because of reference voltage | los_ref | $RVRR \times \left \left(\frac{V_S}{2} - V_{REF} \right) \right $ | 15.6mA | | | | | Total input offset Current | I _{OS_Total} | $\sqrt{\left(I_{OS_T}\right)^2 + \left(I_{OS_CM}\right)^2 + \left(I_{OS_REF}\right)^2}$ | 57.2mA | | | | Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 21 表 7-3. Total Error Calculation: Example 3 (続き) | TERM | SYMBOL | EQUATION ⁽¹⁾ | MAX VALUE | |---|----------------------|--|-----------| | Error from input offset | Error _{los} | $\frac{I_{OS_Total}}{I_{Sense}} \times 100$ | 0.381% | | Gain error with Gain drift | Error _G | $G_{Error} + G_{Error_drift} \times \Delta T$ | 0.7% | | Error due to Gain
Nonlinearity | Error _{Lin} | $G_{Lin_Error} \times I^{2*}100\%$ | 0.135% | | External Gain Resistor
Error + Drift | Error _{G_R} | 式4 | 0.707% | | Total error | _ | $\sqrt{\left(Error_{IOS}\right)^2 + \left(Error_{G_R}\right)^2 + \left(Error_{G} + Error_{Lin}\right)^2}$ | 1.16% | ⁽¹⁾ The data for 表 7-3 is taken with the INA750x , V_S = 5V, V_{CM} = 12V, V_{REF} = 0V, T = 125°C, External Gain = 4 (Total Gain = 160mV/A), External Resistor Tolerance = 0.25%, External Resistor Drift = 25ppm/°C and I_{SENSE} = 15A. #### 7.1.1.7 Total Error Curves INA750A and INA750B Total Error Curve plots are generated using Total Error Examples for Adjustable Gain of 1 (unity gain). 図 7-1. INA750A Total Error vs Input Current V_{CM} = 48V, V_{S} = 5V, V_{REF} = 2.5V, Adjustable Gain = 1 図 7-2. INA750B Total Error vs Input Current ## 7.2 Signal Filtering Note that the integrated sensing element has inductance like all low-ohmic shunt resistors. Shunt inductance can lead to shunt voltage overshoots and AC gain peaking, which is undesirable if system requires linear and accurate current measurements when sensing small signal frequencies beyond 100kHz or when system can not tolerate overshoot from fast current step responses such as when comparators are tracking for fast overcurrent events. \boxtimes 7-3 shows INA750x shunt impedance vs frequency. ☑ 7-3. Shunt Impedance vs Frequency Typically, inductance from low-Ohmic shunt resistors can be negated by adding a differential filter that creates a pole to flatten zero introduced from inductance. For the INA750x an internal short is provided from Kelvin sense connections to amplifier input to optimize noise, performance and quality. Thus, input resistance on these connections is very low and to apply an input filter, a capacitance between IN+ and IN- that is greater than 22μF is required. The filter capacitor must be placed as close as possible to IN+ and IN- pins. \boxtimes 7-4 shows gain response vs frequency with and without input filter capacitor. 図 7-4. INA750x Gain vs Frequency Before and After Adding 22µF Input Capacitor Another option to negate the shunt inductance is to introduce the zero in transfer function at the adjustable gain-setting output buffer with a circuit configuration referred to as a RISO Dual Feedback. This operational amplifier network provides a zero to cancel out shunt inductance without sacrificing overall bandwidth nor output impedance. Z 7-5 shows RISO Dual Feedback circuit configuration 図 7-5. INA750x With RISO-Dual-Feedback Based upon measured bandwidth and output impedance, 表 7-4 shows values for circuit components that can be used to achieve the circuit with the desired gain. Resistor tolerances under 2% is recommended. $ext{ ext{ iny 7-6}}$ and $ext{ iny 7-7}$ show the load step responses with and without RISO Dual Feedback circuit with the component values in $ext{ iny 7-4}$. 表 7-4. INA750x RISO Dual Feedback Values | Adjustable Gain | Total Gain (mV/A) | R _{FB1} | R _{FB2} | R _{ISO} | C _F | Min C _L | |-----------------|-------------------|------------------|------------------|------------------|----------------|--------------------| | 1 | 40 | 19.1kΩ | Open | 200Ω | 3nF | 3nF | | 2 | 80 | 19.1kΩ | 19.1kΩ | 0Ω (Short) | 50pF | Open | | 3 | 120 | 19.1kΩ | 9.76kΩ | 0Ω (Short) | 50pF | Open | 表 7-4. INA750x RISO Dual Feedback Values (続き) | Adjustable Gain | Total Gain (mV/A) | R _{FB1} | R _{FB2} | R _{ISO} | C _F | Min C _L | |-----------------|-------------------|------------------|------------------|------------------|----------------|--------------------| | 4 | 160 | 19.1kΩ | 6.26kΩ | 0Ω (Short) | 50pF | Open | | 5 | 200 | 19.1kΩ | 4.7kΩ | 0Ω (Short) | 50pF | Open | Adjustable Gain = 1, V_{CM} = 20V, V_{S} = 5V, V_{REF} = 0.2V # 図 7-6. INA750x Load Step Responses Before and After RISO Dual Feedback for Adjustable Gain of 1 Adjustable Gain = 4, V_{CM} = 20V, V_{S} = 5V, V_{REF} = 0.2V # 図 7-7. INA750x Load Step Responses Before and After RISO Dual Feedback for Adjustable Gain of 4 # 7.3 Typical Application The INA750x offers advantages for multiple applications including the following: - High common-mode range and excellent CMRR enables direct inline sensing - Precision low-inductive, low-drift shunt eliminates the need for overtemperature system calibration Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 25 - · Ultra-low offset and drift eliminates the necessity of calibration - · Wide supply range enables a direct interface with most microprocessors # 7.3.1 High-Side, High-Drive, Solenoid Current-Sense Application Challenges exist in solenoid drive current sensing that are similar to those in motor inline current sensing. In certain topologies, the current-sensing amplifier is exposed to the full-scale PWM voltage between ground and supply. The INA750x is an excellent choice for this type of application. The $800\mu\Omega$ integrated shunt with a total system accuracy of 0.35% with a total system drift of $35\text{ppm/}^{\circ}\text{C}$ provides system accuracy across temperature eliminating the need for system calibration at muliple temperatures. 図 7-8. Solenoid Drive Application Circuit # 7.3.1.1 Design Requirements For this application, the INA750x measures current in the driver circuit of a 12V, 1A hydraulic valve. 表 7-5. Design Parameters | DESIGN PARAMETER | EXAMPLE VALUE | |-----------------------|---------------| | Common-mode voltage | 12V | | Maximum sense current | 1A | | Power-supply voltage | 5V | #### 7.3.1.2 Detailed Design Procedure To demonstrate the performance of the device, the INA750x, with total gain of 200mV/A, is selected for this design and powered from a 5V supply. Using the information in $\frac{1}{2}$ $\frac{1.3}{2}$ 6.4.1.3, the reference point is set to midscale by splitting the supply at mid point and connecting the REF. ## 7.3.1.3 Application Curve ☑ 7-9. Solenoid Drive Current Sense Input and Output Signals #### 7.3.2 Speaker Enhancements and Diagnostics Using Current Sense Amplifier CLASS-D audio
amplifiers in conjunction with the INA750x provide accurate speaker load current. Speaker load current is used to determine speaker diagnostics, and can further be expanded to measure key speaker parameters, such as speaker coil resistance and speaker real-time ambient temperature. 27 図 7-10. Current Sensing in a CLASS-D Subsystem #### 7.3.2.1 Design Requirements 表 7-6. Design Parameters | DESIGN PARAMETER | EXAMPLE VALUE | |----------------------|---------------| | Common-mode voltage | 60V | | Power-supply voltage | 3.3V | | Peak current | ±15A | | Frequency sweep | 20Hz to 20kHz | #### 7.3.2.2 Detailed Design Procedure For this application, the INA750x measures current flowing through the speaker from the CLASS-D amplifier. The integrated shunt of $800\mu\Omega$ with an inductance of only 2.5nH is an excellent choice for current sensing in speaker applications where low inductance is required. The low-inductive shunt enables accurate current sensing across frequencies over the audio range of 20Hz to 20kHz. The INA750x is setup to support bidirectional currents with the reference set to mid-supply as shown in to 6.4.1.4. When the power supply to the INA750x is set at 3.3V and there is no current flowing in the speaker, the output of INA750x is at 1.65V. When operating with a gain of 80mV/A with peak-to-peak current of ±15A, the output of the INA750x swings from 0.45V to 2.85 V. In this application the output can be directly connected to an ADC input that has a full scale range of 3.3V. The INA750x can measure the impedance of the speaker and accurately measure the resonance frequency and peak impedance at resonance frequency. The INA750x can accurately track changes in the impedance in real-time. 29 #### 7.3.2.3 Application Curves \boxtimes 7-11 shows the typical example output response of a speaker with 4Ω impedance measurement from 20Hz to 20kHz. 図 7-11. Speaker Impedance Measurement ## 7.4 Power Supply Recommendations The INA750x makes accurate measurements beyond the connected power-supply voltage (VS) because the inputs (IN+ and IN-) operate anywhere between -4V and +110V, independent of VS. For example, the VS power supply equals 5V and the common-mode voltage of the measured shunt can be as high as 110V. Although the common-mode voltage of the input can be beyond the supply voltage, the output voltage range of the INA750x is constrained to the supply voltage. Place the power-supply bypass capacitor as close as possible to the supply and ground pins. The recommended value of this bypass capacitor is $0.1\mu F$. Additional decoupling capacitance can be added to compensate for noisy or high-impedance power supplies. If the INA750x output is set to mid-supply, then take extreme care to minimize noise on the power supply. #### 7.5 Layout #### 7.5.1 Layout Guidelines • This device is specified for current handling of up to 25A over the entire –40°C to +125°C temperature range using a 2oz copper pour for the input power plane, as well as no external airflow passing over the device. www.ti.com/ja-jp - The primary current-handling limitation for this device is how much heat is dissipated inside the package. Efforts to improve heat transfer out of the package and into the surrounding environment improve the ability of the device to handle currents of up to 25A over a wider temperature range. - Heat transfer improvements primarily involve larger copper power traces and planes with increased copper thickness (2oz.), as well as providing airflow to pass over the device. Thermal vias help spread the current and power dissipated over multiple board layers. The INA750x evaluation module (EVM) features a 2oz copper pour for the planes, and is capable of supporting 25A at temperatures up to 125°C. - The bypass capacitor must be placed close to device ground and supply pins, but can be moved farther out if needed to avoid cutting thermal planes. The recommended value of this bypass capacitor is 0.1µF. Additional decoupling capacitance can be added to compensate for noisy or high-impedance power supplies. 31 ## 7.5.2 Layout Example 図 7-12. INA750x Layout Example # 8 Device and Documentation Support ## 8.1 Documentation Support #### 8.1.1 Related Documentation For related documentation, see the following: Texas Instruments, INA75xEVM, EVM User's Guide # 8.2 ドキュメントの更新通知を受け取る方法 ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。 ## 8.3 サポート・リソース テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。 #### 8.4 Trademarks EZShunt[™] and テキサス・インスツルメンツ E2E[™] are trademarks of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 ## 8.5 静電気放電に関する注意事項 この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。 ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。 ## 8.6 用語集 テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。 # 9 Revision History | DATE | REVISION | NOTE | |---------------|----------|-----------------| | December 2024 | * | Initial release | # 10 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most-current data available for the designated devices. This data is subject to change without notice and without revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane. Product Folder Links: INA750B Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 33 www.ti.com 23-May-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|--------|---------------|-----------------|-----------------------|------|-------------------------------|----------------------------|--------------|------------------| | | | | | | | (4) | (5) | | | | INA750BIREMR | Active | Production | VQFN (REM) 14 | 5000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | INA
750B | | INA750BIREMR.B | Active | Production | VQFN (REM) 14 | 5000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | INA
750B | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. PLASTIC QUAD FLATPACK - NO LEAD #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If any vias are
implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) ^{6.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. # 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated