

HDC2080 JAJSFI4C - MAY 2018 - REVISED JULY 2021

HDC2080 低消費電力の湿度および温度デジタル・センサ

1 特長

相対湿度範囲:0%~100%

湿度精度:±2% (標準值)、±3% (最大值)

温度精度:±0.2℃ (標準値)、±0.4℃ (最大値)

• スリープ・モード電流:50nA (標準値)、100nA (最大 値)

平均消費電流 (毎秒 1 回の測定)

- 300nA:湿度のみ (11 ビット)

- 550nA:湿度 (11 ビット) + 温度 (11 ビット)

• 温度範囲:

- 動作:-40°C~85°C

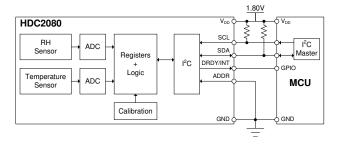
– 機能:-40°C~125°C

• 電源電圧範囲:1.62V~3.6V

自動測定モードを使用可能

• I²C インターフェイスとの互換性

2 アプリケーション


• スマート・サーモスタット

スマート・ホーム・アシスタント

洗濯機/乾燥機

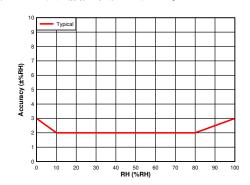
HVAC システム

インクジェット・プリンタ

代表的なアプリケーション

3 概要

HDC2080 デバイスは湿度および温度の統合センサで、 小さな DFN パッケージ、非常に低い消費電力で、高精度 の測定を行います。静電容量式ベースのセンサには、新 しいデジタル機能が内蔵され、加熱素子により結露や水 分を放散します。HDC2080 のデジタル機能には、プログ ラム可能な割り込みスレッショルドが含まれており、マイクロ コントローラが常時システムを監視しなくても、アラートやシ ステムのウェイクアップを行えます。HDC2080 はバッテリ で動作するシステム用に設計されており、プログラム可能 なサンプリング周期、低い消費電力、1.8V 電源電圧のサ ポートといった特長を兼ね備えています。


HDC2080 は、スマート・サーモスタットやスマート・ホー ム・アシスタントなど、広範な環境監視およびモノのインタ ーネット(IoT) アプリケーション向けに、高精度の測定機 能を提供します。プリント基板 (PCB) 面積が重要な設計 では、HDC2080 と完全なソフトウェア互換性がある HDC2010 で、より小さな CSP パッケージ・オプションを 選択できます。

電力バジェットの制約が厳しいアプリケーションでは、 HDC2080 の自動測定モードを使用すると、温度および 湿度の測定を自動的に開始できます。この機能により、 HDC2080 が測定を開始するためにマイクロコントローラを 必要としなくなるため、マイクロコントローラをディープ・スリ ープ・モードに設定できます。

製品情報(1)

部品番号	パッケージ	本体サイズ (公称)	
HDC2080	WSON (6)	3.00mm × 3.00mm	

利用可能なすべてのパッケージについては、このデータシートの 末尾にある注文情報を参照してください。

RH 精度 (T_A = 30℃)

1	able of	Contents	
1 特長	1	8.4 Device Functional Modes	16
2 アプリケーション		8.5 Programming	16
3 概要		8.6 Register Maps	
4 Revision History		9 Application and Implementation	
5 概要 (続き)		9.1 Application Information	
6 Pin Configuration and Functions	4	9.2 Typical Application	
7 Specifications		10 Power Supply Recommendations	
7.1 Absolute Maximum Ratings		11 Layout	
7.2 ESD Ratings		11.1 Layout Guidelines	
7.3 Recommended Operating Conditions		11.2 Layout Example	
7.4 Thermal Information		12 Device and Documentation Support	
7.5 Electrical Characteristics		12.1 Documentation Support	
7.6 Switching Characteristics		12.2 Receiving Notification of Documentation L	Jpdates <mark>35</mark>
7.7 Timing Diagram		12.3 サポート・リソース	
7.8 Typical Characteristics		12.4 Trademarks	
8 Detailed Description		12.5 静電気放電に関する注意事項	35
8.1 Overview		12.6 用語集	35
8.2 Functional Block Diagram	9	13 Mechanical, Packaging, and Orderable	
8.3 Feature Description	9	Information	35
4 Revision History			
Changes from Revision B (May 2019) to Re		July 2021)	Page
 Pemoved CND nin absolute maximum ratio 	na		_

C	nanges from Revision B (May 2019) to Revision C (July 2021)	Page
•	Removed GND pin absolute maximum rating	5
•	Added DRDY/INT pin absolute maximum rating	5
•	Added information from multiple table footnotes to Recommended Operating Conditions table	5
•	Changed temperature accuracy maximum for 5°C < TA < 60°C	
•	Added TEMP _{PSRR} parameter	<mark>6</mark>
•	Changed reference material for Storage and Handling	9
•	Added content to the <i>Heater</i> section	
•	Added 0.5 to make 式 1 –40.5 match more closely to the silicon and added PSRR equation	18
•	Added 0.5 to make 3 4 –40.5 match more closely to the silicon and added PSRR equation	
•	Added 0.5 to make 式 7 –40.5 match more closely to the silicon and added PSRR equation	
•	Added 0.5 to make 式 9 –40.5 match more closely to the silicon and added PSRR equation	
•	Changed reference material in the Storage and Handling section	
•	Added Typical Relative Humidity Accuracy Range Limits graphic	32
С	hanges from Revision A (October 2018) to Revision B (May 2019)	Page
•	Added the pin type for DRDY/INT pin	4
•	Changed description of behavior of TH_STATUS bit when INT_MODE is set to 1	
•	Changed description of behavior of TH_STATUS bit when INT_MODE is set to 0	
•	Changed description of behavior of TL_STATUS bit when INT_MODE is set to 1	
•	Changed description of behavior of TL_STATUS bit when INT_MODE is set to 0	
•	Changed description of behavior of HH STATUS bit when INT MODE is set to 1	
•	Changed description of behavior of HH_STATUS bit when INT_MODE is set to 0	
•	Changed description of behavior of HL_STATUS bit when INT_MODE is set to 1	
•	Changed description of behavior of HL_STATUS bit when INT_MODE is set to 0	
•	Changed the units for Humidity threshold low from: °C to: %RH	
•	Changed the temperature resolution decoding from: 8 bit to: 9 bit	
•	Changed the humidity resolution decoding from: 8 bit to: 9 bit	
•	Changed the measurement configuration "10" bit encoding from: Humidity Only to: NA for field	
	MEAS_CONF[1:0]	28

CI	hanges from Revision * (May 2018) to Revision A (October 2018)	Page
•	Changed header cell in the Read Single Byte table from: Slave address (R) to: Slave address (W)	16
•	Changed header cell in the Read Multi Byte table from: Slave address (R) to: Slave address (W)	16

5 概要 (続き)

HDC2080 は温度と湿度のスレッショルドをプログラム可能なため、デバイスはハードウェア割り込みを送信して、必要なときにマイクロコントローラをウェイクアップできます。さらに、HDC2080 の消費電力が大幅に低減し、自己発熱が最小化され、測定精度が向上します。

HDC2080 は出荷時に、0.2℃の温度精度と2%の相対湿度精度に較正されます。

6 Pin Configuration and Functions

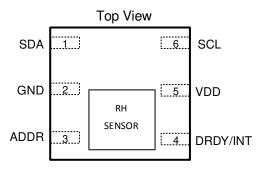


図 6-1. DMB Package 6-Pin PWSON Top View

表 6-1. Pin Functions

PIN		1/0	DESCRIPTION	
NAME	NO.	1/0	DESCRIPTION	
SDA	1	I/O	Serial data line for I ² C, open-drain; requires a pullup resistor to V _{DD}	
GND	2	G	Ground	
ADDR	3	ı	Address select pin – leave unconnected or hardwired to V_{DD} or GND. Unconnected slave address: 1000000 GND: slave address: 1000000 V_{DD} : slave address: 1000001	
DRDY/INT	4	0	Data ready/Interrupt. Push-pull output	
V_{DD}	5	Р	Positive Supply Voltage	
SCL	6	ı	Serial clock line for I ² C, open-drain; requires a pullup resistor to V _{DD}	

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
V _{DD}	Applied Voltage on VDD pin	-0.3	3.9	V
ADDR	Applied Voltage on ADDR pin	-0.3	3.9	V
SCL	Applied Voltage on SCL pin	-0.3	3.9	V
SDA	Applied Voltage on SDA pin	-0.3	3.9	V
DRDY/INT	Applied Voltage on DRDY/INT PIN	-0.3	V _{DD} + 0.3	V
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾		±2000	\/
V _(ESD)	Liectrostatic discriarge	Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	v

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

	PARAMETER	MIN	MAX	UNIT
V _{DD}	Supply voltage	1.62	3.6	V
T _{TEMP}	Temperature Sensor - Operating free-air temperature	-40	125	°C
T _{RH}	Relative Humidity Sensor - Operating free-air temperature ⁽¹⁾	-20	70	°C
T _{HEATER}	Integrated Heater - Operating free-air temperature	-40	85	°C
RH _{OR}	Relative Humidity Sensor (Non-condensing) ⁽¹⁾	0	100	%RH

⁽¹⁾ Prolonged operation outside the recommended temperature operating conditions and/or at >80%RH with temperature in the higher recommended operating range can result in a shift of sensor reading, with slow recovery time. See High Temperature and Humidity Exposure for more details.

7.4 Thermal Information

		HDC2080	
	THERMAL METRIC(1)	WSON (DMB)	UNIT
		6 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	56.4	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	73.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	24.0	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	3.8	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	24.0	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	13.0	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics

 $T_A = 30$ °C, $V_{DD} = 1.8V$, $20\% \le RH \le 80\%$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TY	P MAX	UNIT
POWER (CONSUMPTION				
I _{DD}	Supply Current	RH Measurement ⁽¹⁾	65	50 890	μΑ
I _{DD}	Supply Current	Temperature Measurement ⁽¹⁾	55	730	μΑ
I _{DD}	Supply Current	Sleep Mode	0.0)5 1	μA
I _{DD}	Supply Current	Averaged at 1 sample per second, RH or Temperature only ⁽¹⁾ (2)	0	.3	μΑ
I _{DD}	Supply Current	Averaged at 1 sample per second, RH (11 bit) and Temperature (11 bit) ⁽¹⁾ (2)	0.5	55	μΑ
I _{DD}	Supply Current	Averaged at 1 sample per 2 seconds, RH (11 bit) and Temperature (11 bit) ^{(1) (2)}	0	.3	μА
I _{DD}	Supply Current	Averaged at 1 sample per 10 seconds, RH (11 bit) and Temperature (11 bit) ⁽¹⁾ (2)	0.10)5	μА
I _{DD}	Supply Current	Startup (average on startup time)	8	30	μΑ
I _{HEATER}	Integrated Heater (when enabled)	V _{DD} = 3.3V	9	00	mA
RELATIV	E HUMIDITY SENSOR	·			•
RH _{ACC}	Accuracy ⁽³⁾ (4)	0°C < T _A < 60°C. Non-Condensing.	±	:2 ±3	%RH
RH _{REP}	Repeatability ⁽⁵⁾	14 bit resolution	±0	.1	%RH
RH _{HYS}	Hysteresis ⁽⁶⁾		±	:1	%RH
RH _{HYS}	Response Time ⁽⁷⁾	t _{63%} step ⁽⁸⁾		8	S
RH _{CT}	Conversion-time ⁽⁵⁾	9 bit accuracy	27	'5	μs
RH _{CT}	Conversion-time ⁽⁵⁾	11 bit accuracy	40	00	μs
RH _{CT}	Conversion-time ⁽⁵⁾	14 bit accuracy	66	60	μs
RH _{LTD}	Long-term Drift ⁽⁹⁾		±0.2	25	%RH/yr
TEMPER	ATURE SENSOR				
TEMP _{AC}	Accuracy (5)	5°C < T _A < 60°C	±0	.2 ±0.7	°C
С	Accuracy	10°C < T _A < 35°C	±0	.2 ±0.4	
TEMP _{RE}	Repeatability ⁽⁵⁾	14 bit resolution	±0	.1	°C
TEMP _{CT}	Conversion-time ⁽⁵⁾	9 bit accuracy	22	25	μs
TEMP _{CT}	Conversion-time ⁽⁵⁾	11 bit accuracy	35	50	μs
TEMP _{CT}	Conversion-time ⁽⁵⁾	14 bit accuracy	61	0	μs
TEMP _{PS} RR	Supply Sensitivity on accuracy	V _{DD} = 1.8V to 3.6V	0.0)8	°C/V
SCL, SDA	PINS	·			
V _{IH}	HIGH-level input voltage		0.7 x V _{DD}		V
V _{IL}	LOW-level input voltage			0.3 x V _{DD}	V
V _{OL}	LOW-level output voltage	I _{OL} = 3 mA		0.4	V
V _{HYS}	Hysteresis of Schmitt trigger inputs		0.1 x V _{DD}		V
C _{IN}	Input Capacitance (5)		0.	.5	pF

- (1) Does not include I2C read/write communication or pullup resistor current through SCL and SDA
- (2) Average current consumption while conversion is in progress
- (3) Excludes hysteresis and long-term drift
- (4) Excludes the impact of dust, gas phase solvents and other contaminents such as vapors from packaging materials, adhesives, or taptes, etc.
- (5) This parameter is specified by design and/or characterization and is not tested in production
- (6) The hysteresis value is the difference between the RH measurement in a rising and falling RH environment, at a specific RH point
- (7) Actual response times will vary dependent on system thermal mass and air-flow
- (8) Time for the RH output to change by 63% of the total RH change after a step change in environmental humidity

www.tij.co.jp

Drift due to aging effects at typical conditions (30°C and 20% to 50% RH). This value may be impacted by dust, vaporized solvents, outgassing tapes, adhesives, packaging materials, etc.

7.6 Switching Characteristics

 $T_A = 30^{\circ}$ C and $V_{DD} = 1.80$ V (unless otherwise noted); values are based on statistical analysis of samples tested during initial

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
SCL, SDA	A PINS				•
f _{SCL}	SCL clock frequency (1)		10	400	kHz
t _{LOW}	LOW period of the SCL clock (1)		1.3		μs
t _{HIGH}	High period of the SCL clock (1)		0.6		μs

Guaranteed by design/characterization; not tested in production

7.7 Timing Diagram

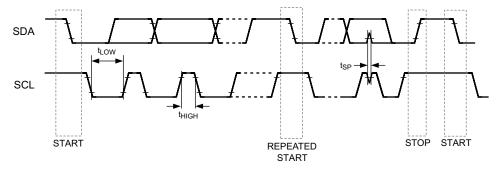
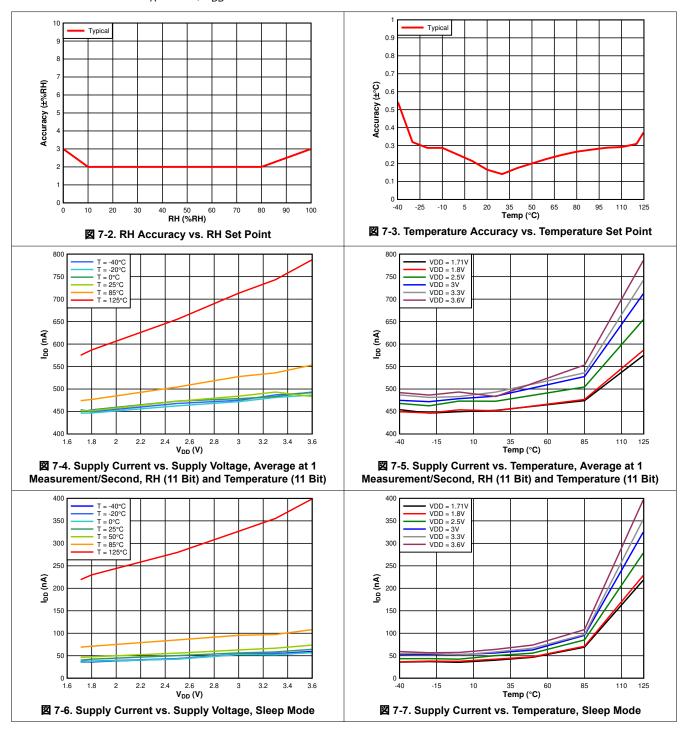



図 7-1. I2C Timing

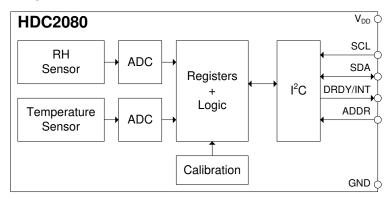
7.8 Typical Characteristics

Unless otherwise noted. $T_A = 30$ °C, $V_{DD} = 1.80$ V.

8 Detailed Description

8.1 Overview

The HDC2080 is a highly integrated digital humidity and temperature sensor that incorporates both humidity-sensing and temperature-sensing elements, an analog-to-digital converter, calibration memory, and an I²C interface that are all contained in a 3.00-mm × 3.00-mm 6-pin WSON package. The HDC2080 provides excellent measurement accuracy with very low power consumption and features programmable resolution for both humidity and temperature:


- Temperature resolution [9, 11, 14]
- Humidity resolution [9, 11, 14]

The conversion time during measurements is dependent upon the configured resolution for humidity and temperature, which can be configured for optimal power consumption.

The HDC2080 device incorporates a state-of-the-art polymer dielectric to provide capacitive-sensing measurements. As with most relative humidity sensors that include this type of technology, the user must meet certain application requirements to ensure optimal device performance for the sensing element. The user must:

- Follow the correct storage and handling procedures during board assembly. See HDC20xx Silicon User's Guide(SNAU250) for these guidelines.
- Protect the sensor from contaminants during board assembly and operation.
- Reduce prolonged exposure to both high temperature and humidity extremes that may impact sensor accuracy.
- Follow the correct layout guidelines for best performance. See Optimizing Placement and Routing for Humidity Sensors (SNAA297) for these guidelines.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Sleep Mode Power Consumption

One key feature of the HDC2080 is the low power consumption of the device, which makes the HDC2080 suitable in battery-powered or energy-harvesting applications. In these applications, the HDC2080 spends most of the time in sleep mode that has a typical current consumption of 50 nA. This minimizes the average power consumption and self-heating.

8.3.2 Measurement Modes: Trigger on Demand vs. Auto Measurement

Two types of measurement modes are available on the HDC2080: Trigger on Demand and Auto Mode.

Trigger on Demand is when each measurement reading are initiated through an I²C command on an as-needed basis. After the measurement is converted, the device remains in sleep mode until another I²C command is received.

Auto Measurement Mode is when the HDC2080 is programmed to perform measurement readings on a periodic basis, thus eliminating the need to initiate a measurement request through an I²C command and improves power consumption. The user can adjust the Soft Reset and Interrupt Configuration register to select one of 7 different

sampling rates (the range spans from 1 sample every 2 minutes to 5 samples/second). In Auto Measurement Mode, the HDC2080 wakes up from sleep to measurement mode based on the selected sampling rate.

8.3.3 Heater

The HDC2080 includes an integrated heating element that can be switched on briefly to prevent or remove any condensation that may build up in high humidity environments. Additionally, the heater can be used to verify functionally of the integrated temperature sensor.

If the dew point of an application is continuously calculated and tracked, and the application firmware is written such that it can detect a potential condensing situation (or a period of it), a software subroutine can be run, as a precautionary measure, to activate the onboard heater as an attempt to remove the condensate. The device shall continue to measure and track the %RH level after the heater is activated. Once the %RH reading goes to zero % (or near it), the heater can be subsequently turned off, allowing the device to cool down. Cooling of the device can takes minutes and temperature measurement shall continue to be performed to ensure the device goes back to normal operating condition before restarting the device for normal service.

Note once the heater activates, the operating temperature of the device shall be limited to below 85°C. The heater has a typical current draw of 90 mA at 3.3-V operation and 55 mA at 1.8-V operation.

It is important to recognize that the integrated heater evaporates condensate that forms on top of the humidity sensor, but does not remove any dissolved contaminants. Any contaminant residue, if present, may impact the accuracy of the humidity sensor.

8.3.4 Interrupt Description

Note

When multiple bits are enabled, the DRDY/INT pin can only reflect the status of one interrupt bit at a time. The DRDY/INT pin DOES NOT function as the logical 'OR' of interrupt bits that have been enabled.

The highest priority is given to TH_ENABLE bit, followed by TL_ENABLE, HH_ENABLE, and HL_ENABLE bits in descending order. Therefore, programming recommendations are provided as below:

- The DRDY/INT will track the HL ENABLE if enabled and all other ENABLE bits are disabled
- The DRDY/INT will track the HH_ENABLE if enabled and the TH_ENABLE and TL_ENABLE are disabled
- The DRDY/INT will track the TL ENABLE if enabled and the TH ENABLE is disabled
- The DRDY/INT will track the TH_ENABLE if enabled and is independent of other ENABLE bit settings

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

8.3.4.1 DRDY

When DRDY_ENABLE is enabled and a humidity and/or temperature conversion is complete, the DRDY_STATUS bit asserts to 1. To enable the DRDY/INT pin of HDC2080, the DRDY/INT_EN bit (0x0E bit[2]) must be set to 1 and the INT_MOD bit should be set to 0. If these bits are not configured, the pin will be left in high impedance. The INT_POL bit of this register defines the interrupt polarity of the DRDY/INT pin. \boxtimes 8-1 and \boxtimes 8-2 display the output behavior of the DRDY/INT pin for both interrupt polarity cases: INT_POL= 0 and INT_POL= 1.

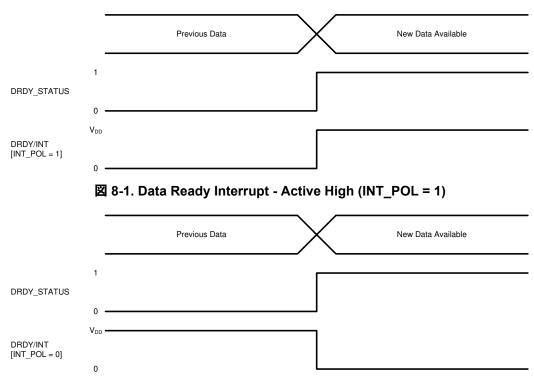


図 8-2. Data Ready Interrupt - Active Low (INT_POL = 0)

8.3.5 INTERRUPT on Threshold

8.3.5.1 Temperature High

When TH_ENABLE is enabled and the temperature is over the programmed threshold level stored in the Temperature Threshold HIGH register, the TH_STATUS bit asserts to 1. The polarity and interrupt mode of the TH_STATUS bit and the DRDY/INT pin can be configured through the INT_POL and INT_MODE bits of Register 0x0E.

The INT MODE bit sets the threshold to either comparator mode or a level sensitive alarm.

When INT_MODE is set to 1, the TH_STATUS bit is based on the current temperature conversion. The polarity of the DRDY/INT pin is set by INT_POL.

When INT_MODE is set to 0, the TH_STATUS bit remains set to 1 until it is read. The polarity of the DRDY/INT pin is set by INT_POL

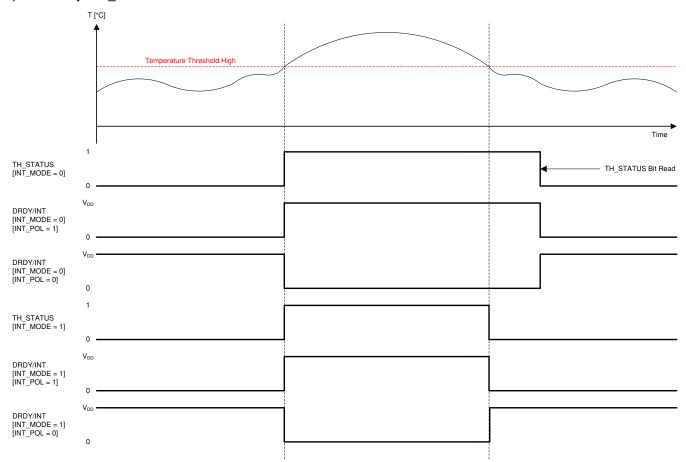


図 8-3. INTERRUPT on Threshold - Temperature High

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

8.3.5.2 Temperature Low

When TL_ENABLE is set and the temperature is under the threshold value program in the Temperature Threshold LOW register, the TL_STATUS bit is set to 1. The TL_STATUS bit and the DRDY/INT pin behave based on the INT POL and INT MODE bits.

The INT MODE bit sets the threshold to either comparator mode or a level sensitive alarm.

When INT_MODE is set to 1, the TL_STATUS bit is based on the current temperature conversion. The polarity of the DRDY/INT pin is set by INT_POL.

When INT_MODE is set to 0, the TL_STATUS bit remains set to 1 until it is read. The polarity of the DRDY/INT pin is set by INT_POL

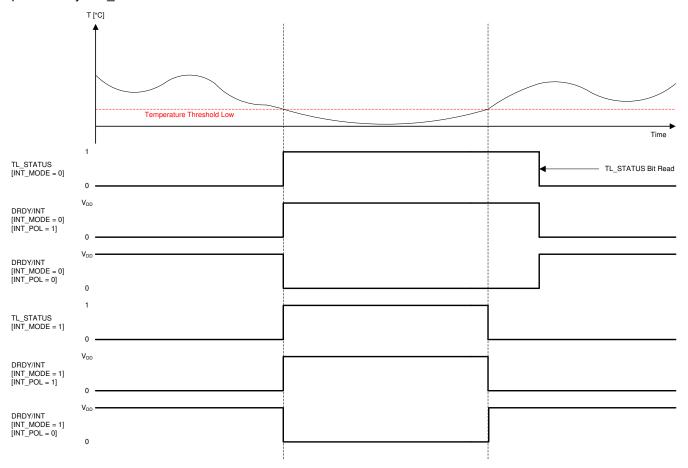


図 8-4. INTERRUPT on Threshold - Temperature Low

8.3.5.3 Humidity High

When HH_ENABLE is set and the humidity is over the threshold value program in the Humidity Threshold HIGH register, the HH_STATUS bit is set to 1. The HH_STATUS bit and the DRDY/INT pin behave based on the INT_POL and INT_MODE bits.

The INT_MODE bit sets the threshold to either comparator mode or a level sensitive alarm.

When INT_MODE is set to 1, the HH_STATUS bit is based on the current relative humidity conversion. The polarity of the DRDY/INT pin is set by INT_POL.

When INT_MODE is set to 0, the HH_STATUS bit remains set to 1 until it is read. The polarity of the DRDY/INT pin is set by INT_POL

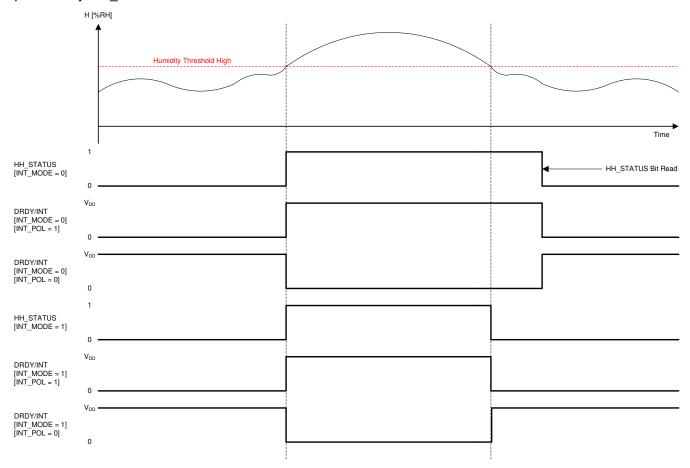


図 8-5. INTERRUPT on Threshold - Humidity High

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

8.3.5.4 Humidity Low

When HL_ENALBE is set and the humidity is over the threshold value program in the Humidity Threshold LOW register the HL_STATUS bit is set to 1. The HL_STATUS bit and the DRDY/INT pin behave based on the INT_POL and INT_MODE bits.

The INT_MODE bit sets the threshold to either comparator mode or a level sensitive alarm.

When INT_MODE is set to 1, the HL_STATUS bit is based on the current relative humidity conversion. The polarity of the DRDY/INT pin is set by INT_POL.

When INT_MODE is set to 0, the HL_STATUS bit remains set to 1 until it is read. The polarity of the DRDY/INT pin is set by INT_POL

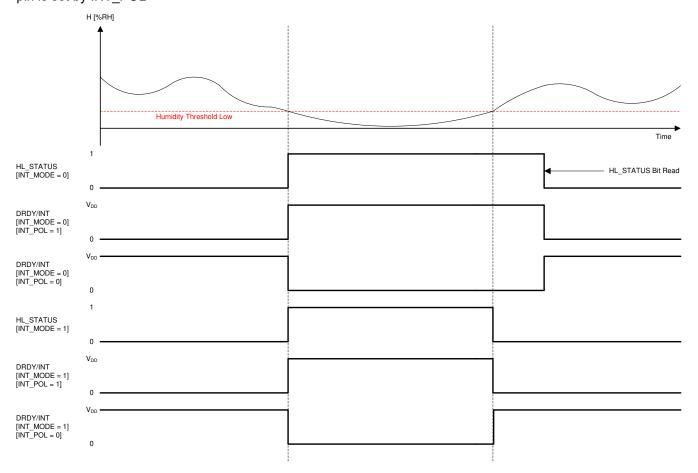


図 8-6. INTERRUPT on Threshold - Humidity Low

8.4 Device Functional Modes

The HDC2080 has two modes of operation: Sleep Mode and Measurement Mode.

8.4.1 Sleep Mode vs. Measurement Mode

After power up, the HDC2080 defaults to Sleep Mode and waits for an I²C instruction to set programmable conversion times, trigger a measurement or conversion, or read or write valid data. When a measurement is triggered, the HDC2080 switches to Measurement Mode that converts temperature or humidity values from integrated sensors through an internal ADC and stores the information in their respective data registers. The DRDY/INT pin can be monitored to verify if data is ready after measurement conversion. The DRDY/INT pin polarity and interrupt mode are set according to the configuration of the Interrupt Enable and DRDY/INT Configuration registers. After completing the conversion, the HDC2080 returns to Sleep Mode.

8.5 Programming

8.5.1 I²C Serial Bus Address Configuration

To communicate with the HDC2080, the master must first address slave devices through a slave address byte. The slave address byte consists of seven address bits and a direction bit that indicates the intent to execute a read or write operation. The HDC2080 features an address pin to allow up to 2 devices to be addressed on a single bus. 表 8-1 describes the pin logic levels used to connect up to two devices. ADDR should be set before any activity on the interface occurs and remain constant while the device is powered up.

表 8-1. HDC2080 I ² C Slave Ad	dress
--	-------

ADDR	ADDRESS (7-BIT ADDRESS)
GND	1000000
VDD	1000001

8.5.2 I²C Interface

The HDC2080 operates only as a slave device on the I^2C bus interface. It is not allowed to have multiple devices on the same I^2C bus with the same address. Connection to the bus is made through the open-drain I/O lines, SDA, and SCL. The SDA and SCL pins feature integrated spike-suppression filters and Schmitt triggers to minimize the effects of input spikes and bus noise. After power-up, the sensor needs at most 3 ms, to be ready to start RH and temperature measurement. After power-up the sensor is in sleep mode until a communication or measurement is performed. All data bytes are transmitted MSB first.

8.5.3 Serial Bus Address

To communicate with the HDC2080, the master must first address slave devices through a slave address byte. The slave address byte consists of seven address bits, and a direction bit that indicates the intent to execute a read or write operation.

8.5.4 Read and Write Operations

Address registers, which hold data pertaining to the status of the device, can be accessed through a pointer mechanism and can be accessed and modified with the following write and read procedures. The register address value is the first byte transferred after the device slave address byte with the R/W bit low. Every write operation to the HDC2080 requires a value for the register address (refer to 表 8-2).

When reading from the HDC2080, the current pointer location is used to determine which register is read by a read operation -- the pointer location points to the last written register address. To change the address for a read operation, a new value must be written to the pointer. This transaction is accomplished by issuing the slave address byte with the R/W bit set to '0', followed by the pointer byte. No additional data is required (refer to 表 8-4).

The master can then generate a START condition and send the slave address byte with the R/W bit set to 1 to initiate the read command. The address register is incremented automatically to enable the multibyte read and write operation (refer to $\frac{1}{8}$ 8-3 and $\frac{1}{8}$ 8-5). Note that register bytes are sent MSB first, followed by the LSB. A write operation in a read-only register such as DEVICE ID, MANUFACTURER ID, or SERIAL ID returns a NACK

after each data byte. A read or write operation to an unused address returns a NACK after the pointer, and a read or write operation with incorrect I²C address returns a NACK after the I²C address.

表 8-2. Write Single Byte

Master	START	Slave address (W)		Address		DATA		STOP
Slave			ACK		ACK		ACK	

表 8-3. Write Multi Byte

Master	START	Slave address (W)		Address		DATA		DATA		STOP
Slave			ACK		ACK		ACK		ACK	

表 8-4. Read Single Byte

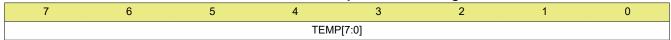
Master	START	Slave address (W)		Address		Start	Slave address (R)			NACK	STOP
Slave			ACK		ACK			ACK	DATA		

表 8-5. Read Multi Byte

Maste	START	Slave address (W)		Address		Start	Slave address (R)			ACK		ACK	 NACK	STOP
Slave			ACK		ACK			ACK	DATA		DATA			

8.6 Register Maps

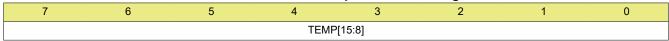
The HDC2080 contains data registers that hold configuration information, temperature and humidity measurement results, and status information.


表 8-6. Register Map

ADDRESS (HEX)	NAME	RESET VALUE	DESCRIPTION
0x00	TEMPERATURE LOW	00000000	Temperature [7:0]
0x01	TEMPERATURE HIGH	00000000	Temperature [15:8]
0x02	0x02 HUMIDITY LOW		Humidity [7:0]
0x03	HUMIDITY HIGH	00000000	Humidity [15:8]
0x04	INTERRUPT/DRDY	00000000	DataReady and interrupt configuration
0x05	TEMPERATURE MAX	00000000	Maximum measured temperature (Not supported in Auto Measurement Mode)
0x06 HUMIDITY MAX		00000000	Maximum measured humidity (Not supported in Auto Measurement Mode)
0x07	0x07 INTERRUPT ENABLE		Interrupt Enable
0x08	0x08 TEMP_OFFSET_ADJUST		Temperature offset adjustment
0x09	HUM_OFFSET_ADJUST	00000000	Humidity offset adjustment
0x0A	TEMP_THR_L	00000000	Temperature Threshold Low
0x0B	TEMP_THR_H	11111111	Temperature Threshold High
0x0C	RH_THR_L	00000000	Humidity threshold Low
0x0D	RH_THR_H	11111111	Humidity threshold High
0x0E	RESET&DRDY/INT CONF	00000000	Soft Reset and Interrupt Configuration
0x0F	MEASUREMENT CONFIGURATION	00000000	Measurement configuration
0xFC	MANUFACTURER ID LOW	01001001	Manufacturer ID Low
0xFD	MANUFACTURER ID HIGH	01010100	Manufacturer ID High
0xFE	DEVICE ID LOW	11010000	Device ID Low
0xFF	DEVICE ID HIGH	00000111	Device ID High

8.6.1 Address 0x00 Temperature LSB

表 8-7. Address 0x00 Temperature LSB Register


表 8-8. Address 0x00 Temperature LSB Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
[7:0]	TEMPERATURE [7:0]	R	00000000	Temperature LSB

8.6.2 Address 0x01 Temperature MSB

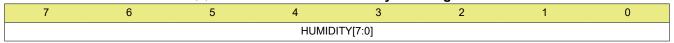
The temperature register is a 16-bit result register in binary format (the 2 LSBs D1 and D0 are always 0). The result of the acquisition is always a 14-bit value, while the resolution is related to one selected in Measurement Configuration register. The temperature must be read LSB first.

表 8-9. Address 0x01 Temperature MSB Register

表 8-10. Address 0x01 Temperature MSB Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
[15:8]	TEMPERATURE [15:8]	R	00000000	Temperature MSB

The temperature can be calculated from the output data with 式 1:

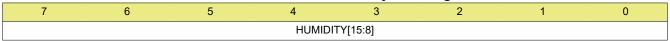

Temperature (°C) =
$$\left(\frac{\text{TEMPERATURE [15:0]}}{2^{16}}\right) \times 165 - 40.5$$
 (1)

For highest accuracy, correction for a slight PSRR sensitivity should be applied to \pm 1 for supplies > 1.8 V which results in \pm 2.

Temperature
$$\left(^{\circ}C\right) = \left(\frac{\text{TEMPERATURE}[15:0]}{2^{16}}\right) \times 165 - \left(40.5 + \text{TEMP}_{PSRR} \times \left(V_{DD} - 1.8 \text{ V}\right)\right)$$
 (2)

8.6.3 Address 0x02 Humidity LSB

表 8-11. Address 0x02 Humidity LSB Register


表 8-12. Address 0x02 Humidity LSB Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
[7:0]	HUMIDITY [7:0]	R	00000000	Humidity LSB

8.6.4 Address 0x03 Humidity MSB

The humidity register is a 16-bit result register in binary format (the 2 LSBs D1 and D0 are always 0). The result of the acquisition is always a 14 bit value, while the resolution is related to one selected in Measurement Configuration register. The humidity measurement must be read LSB first.

表 8-13. Address 0x03 Humidity MSB Register

表 8-14. Address 0x03 Temperature MSB Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
[15:8]	HUMIDITY[15:8]	R	00000000	Humidity MSB

The humidity can be calculated from the output data with 式 3:

Humidity (%RH) =
$$\left(\frac{\text{HUMIDITY [15:0]}}{2^{16}}\right) \times 100$$
 (3)

8.6.5 Address 0x04 Interrupt DRDY

表 8-15. Address 0x04 Interrupt DRDY Register

7	6	5	4	3	2	1	0
DRDY_STATUS	TH_STATUS	TL_STATUS	HH_STATUS	HL_STATUS	RES	RES	RES

表 8-16. Address 0x04 Interrupt DRDY Field Descriptions

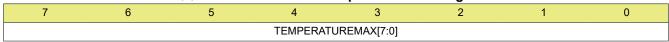
BIT	FIELD	TYPE	RESET	DESCRIPTION
7	DRDY_STATUS	R/W	0	DataReady bit status 0 = Data Not Ready 1 = Data Ready DRDY_STATUS is cleared to 0 when read
6	TH_STATUS	R/W	0	Temperature threshold HIGH Interrupt status 0 = No interrupt 1 = Interrupt TH_STATUS is cleared to 0 when read
5	TL_STATUS	R/W	0	Temperature threshold LOW Interrupt status 0 = No interrupt 1 = Interrupt TL_STATUS is cleared to 0 when read
4	HH_STATUS	R/W	0	Humidity threshold HIGH Interrupt status 0 = No interrupt 1 = Interrupt HH_STATUS is cleared to 0 when read
3	HL_STATUS	R/W	0	Humidity threshold LOW Interrupt status 0 = No interrupt 1 = Interrupt HL_STATUS is cleared to 0 when read
2	RES		0	Reserved
1	RES		0	Reserved
0	RES		0	Reserved

DRDY_STATUS indicates that temperature and/or humidity conversion is terminated. This bit is cleared when the Interrupt/DRDY register is read or the output registers TEMPERATURE_HIGH, TEMPERATURE_LOW, HUMIDITY HIGH and HUMIDITY LOW are read.

The TL_STATUS indicates that the *Temperature Threshold LOW* value is exceeded. The behavior is defined by 0x0E Configuration register value. The bit is cleared when the register Interrupt DRDY is read.

The TH_STATUS indicates that the *Temperature Threshold HIGH* value is exceeded. The behavior is defined by 0x0E Configuration register value. The bit is cleared when the register Interrupt DRDY is read.

The HH_STATUS indicates that the *Humidity Threshold HIGH* value is exceeded. The behavior is defined by 0x0E Configuration register value. The bit is cleared when the register Interrupt DRDY is read.


The HL_STATUS indicates that the *Humidity Threshold LOW* value is exceeded. The behavior is defined by 0x0E Configuration register value. The bit is cleared when the register Interrupt DRDY is read.

DRDY/INT pin behaves like the STATUS bits based on the 0x0E Configuration register value.

8.6.6 Address 0x05 Temperature MAX

This register implements temperature peak detector function. It stores the highest temperature value converted after the power up. Value is reset at power up and/or with soft reset procedure.

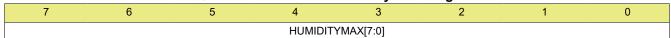
表 8-17. Address 0x05 Temperature MAX Register

表 8-18. Address 0x05 Temperature Max Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
[7:0]	TEMPERATUREMAX[7:0]	R/W		Stores maximum temperature measurement from all I ² C read requests for temperature Not supported in Auto Measurement Mode

The temperature can be calculated from the output data with 式 4:

Temperature Max (°C) =
$$\left(\frac{\text{TEMPERATUREMAX [7:0]}}{2^8}\right) \times 165 - 40.5$$
 (4)


For highest accuracy, correction for a slight PSRR sensitivity should be applied to ± 4 for supplies > 1.8 V which results in ± 5 .

Temperature Max
$$\binom{\circ C}{2} = \left(\frac{\text{TEMPERATUREMAX}[7:0]}{2^8}\right) \times 165 - (40.5 + \text{TEMP}_{PSRR} \times (V_{DD} - 1.8 \text{ V}))$$
 (5)

8.6.7 Address 0x06 Humidity MAX

This register implements humidity peak detector function. It stores the highest humidity value converted after the power up. Value is reset at power up and/or with soft reset procedure.

表 8-19. Address 0x06 Humidity MAX Register

表 8-20. Address 0x06 Humidity MAX Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
[7:0]	HUMIDITYMAX[7:0]	R/W		Stores maximum humidity measurement from all I ² C read requests for humidity Not supported in Auto Measurement Mode

The humidity can be calculated from the output data with \pm 6:

Humidity (%RH) = HUMIDITYMAX[7:0]×
$$\left(\frac{100}{2^8}\right)$$
 (6)

8.6.8 Address 0x07 Interrupt Configuration

表 8-21. Address 0x07 Interrupt Configuration Register

7	6	5	4	3	2	1	0
DRDY_ENABLE	TH_ENABLE	TL_ENABLE	HH_ENABLE	HL_ENABLE	RES	RES	RES

表 8-22. Address 0x07 Interrupt Configuration Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7	DRDY_ENABLE	R/W	0	DataReady Interrupt enable 0 = DataReady Interrupt generator disable 1 = DataReady Interrupt generator enable
6	TH_ENABLE	R/W	0	Temperature threshold HIGH Interrupt enable 0 = Temperature high Interrupt generator disable 1 = Temperature high Interrupt generator enable
5	TL_ENABLE	R/W	0	Temperature threshold LOW Interrupt enable 0 = Temperature low Interrupt generator disable 1 = Temperature low Interrupt generator enable
4	HH_ENABLE	R/W	0	Humidity threshold HIGH Interrupt enable 0 = Humidity high Interrupt generator disable 1 = Humidity high Interrupt generator enable
3	HL_ENABLE	R/W	0	Humidity threshold LOW Interrupt enable 0 = Humidity low Interrupt generator disable 1 = Humidity low Interrupt generator enable
2	RES		0	Reserved
1	RES		0	Reserved
0	RES		0	Reserved

Product Folder Links: HDC2080

8.6.9 Address 0x08 Temperature Offset Adjustment

表 8-23. Address 0x08 Temperature Offset Adjustment Register

7	6 5 4		3	2	1	0			
		TEMP_OFFSET_ADJUST[7:0]							

表 8-24. Address 0x08 Temperature Offset Adjustment Field Descriptions

_					· · · · · · · · · · · · · · · · · · ·
	BIT	FIELD	TYPE	RESET	DESCRIPTION
	[7:0]	TEMP_OFFSET_ADJUST [7:0]	R/W	00000000	Temperature offset adjustment. Added to the converted Temperature value

The temperature can be adjusted adding the following values that are enable settings the equivalents bits:

7	6	5	4	3	2	1	0	
–20.62°C	+10.32°C	+5.16°C	+2.58°C	+1.28°C	+0.64°C	+0.32°C	+0.16°C	

The value is added to the converted temperature value for offset adjustment as shown in 🗵 8-7

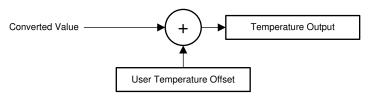


図 8-7. Temperature Output Calculation

The resulting temperature offset is a summation of the register bits that have been enabled (that is, programmed to 1). Some examples:

- 1. Programming TEMP_OFFSET_ADJUST to 00000001 adjusts the reported temperature by +0.16°C.
- 2. Programming TEMP OFFSET ADJUST to 00000111 adjusts the reported temperature by +1.12°C.
- 3. Programming TEMP_OFFSET_ADJUST to 00001101 adjusts the reported temperature by +2.08°C.
- 4. Programming TEMP_OFFSET_ADJUST to 11111111 adjusts the reported temperature by -0.16°C.
- 5. Programming TEMP_OFFSET_ADJUST to 11111001 adjusts the reported temperature by -1.12°C.
- 6. Programming TEMP OFFSET ADJUST to 11110011 adjusts the reported temperature by -2.08°C.

8.6.10 Address 0x09 Humidity Offset Adjustment

表 8-25. Address 0x09 Humidity Offset Adjustment Register

7	6	5	4	3	2	1	0
HUM_OFFSET_ADJUST [7:0]							

表 8-26. Address 0x09 Humidity Offset Adjustment Field Descriptions

_					· · · · · · · · · · · · · · · · · · ·
	BIT	FIELD	TYPE	RESET	DESCRIPTION
	[7:0]	HUM_OFFSET_ADJUST [7:0]	R/W	00000000	Humidity offset adjustment. Added to the converted Humidity value

The humidity can be adjusted adding the following values that are enable settings the equivalents bits:

7	6	5	4	3	2	1	0	
–25%RH	+12.5%RH	+6.3%RH	+3.1%RH	+1.6%RH	+0.8%RH	+0.4%RH	+0.2%RH	

The value is added to the converted temperature value for offset adjustment as shown in 🗵 8-8

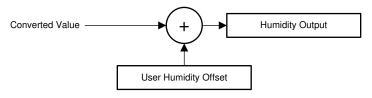


図 8-8. Humidity Output Calculation

The resulting humidity offset is a summation of the register bits that have been enabled (i.e. programmed to 1). Some examples:

- 1. Programming HUM_OFFSET_ADJUST to 00000001 adjusts the reported humidity by +0.20%RH.
- 2. Programming HUM OFFSET ADJUST to 00000101 adjusts the reported humidity by +1.00%RH.
- 3. Programming HUM OFFSET ADJUST to 00001010 adjusts the reported humidity by +2.00%RH.
- 4. Programming HUM_OFFSET_ADJUST to 11111111 adjusts the reported humidity by -0.10%RH.
- 5. Programming HUM OFFSET ADJUST to 11111011 adjusts the reported humidity by -0.90%RH.
- 6. Programming HUM OFFSET ADJUST to 11110101 adjusts the reported humidity by -2.10%RH.

8.6.11 Address 0x0A Temperature Threshold LOW

表 8-27. Address 0x0A Temperature Threshold LOW Register

7	6	5	4	3	2	1	0
TEMP_THRES_LOW[7:0]							

表 8-28. Address 0x0A Temperature Threshold LOW Field Descriptions

		•		• • • • • • • • • • • • • • • • • • •
BIT	FIELD	TYPE	RESET	DESCRIPTION
[7:0]	TEMP_THRES_LOW[7:0]	R/W	00000000	Temperature threshold LOW value

The Temperature Threshold LOW can be calculated from the output data with \pm 7:

Temperature threshold low (°C) =
$$\left(\frac{\text{TEMP_THRES_LOW [7:0]}}{2^8}\right) \times 165 - 40.5$$
 (7)

For highest accuracy, correction for a slight PSRR sensitivity should be applied to 式 7 for supplies > 1.8 V which results in 式 8.

$$\text{Temperature threshold low} \left(^{\circ}\text{C} \right) = \left(\frac{(\text{TEMP_THRES_LOW[7:0]})}{2^{8}} \right) \times 165 - \left(40.5 + \text{TEMP}_{PSRR} \times \left(V_{DD} - 1.8 \text{ V} \right) \right)$$

8.6.12 Address 0x0B Temperature Threshold HIGH

表 8-29. Address 0x0B Temperature Threshold HIGH Register

7	6	5	4	3	2	1	0
			TEMP_THR	ES_HIGH[7:0]			

表 8-30. Address 0x0B Temperature Threshold HIGH Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
[7:0]	TEMP_THRES_HIGH[7:0]	R/W	11111111	Temperature threshold HIGH value

The Temperature Threshold HIGH can be calculated from the output data with 式 9:

Temperature threshold high (°C) =
$$\left(\frac{\text{TEMP_THRES_HIGH [7:0]}}{2^8}\right) \times 165 - 40.5$$
 (9)

For highest accuracy, correction for a slight PSRR sensitivity should be applied to ± 9 for supplies > 1.8 V which results in ± 10 .

$$\text{Temperature threshold high } \left(^{\circ}\text{C} \right) = \left(\frac{\left(\text{TEMP_THRES_HIGH[7:0]} \right)}{2^{8}} \right) \times 165 - \left(40.5 + \text{TEMP}_{PSRR} \times \left(\text{V}_{DD} - 1.8 \, \text{V} \right) \right) \tag{10}$$

8.6.13 Address 0x0C Humidity Threshold LOW

表 8-31. Address 0x0C Humidity Threshold LOW Register

7	6	5	4	3	2	1	0
			HUMI_THR	ES_LOW[7:0]			

表 8-32. Address 0x0C Humidity Threshold LOW Field Descriptions

			•	•
BIT	FIELD	TYPE	RESET	DESCRIPTION
[7:0]	HUMI_THRES_LOW[7:0]	R/W	00000000	Humidity threshold LOW value

The Humidity Threshold LOW can be calculated from the output data with 式 11:

Humidity threshold low (%RH) =
$$\left(\frac{\text{HUMI_THRES_LOW[7:0]}}{2^8}\right) \times 100$$
 (11)

8.6.14 Address 0x0D Humidity Threshold HIGH

表 8-33. Address 0x0D Humidity Threshold HIGH Register

7	6	5	4	3	2	1	0
	<u> </u>	-	HUMI_THRE	ES_HIGH[7:0]	<u>- </u>		<u> </u>

表 8-34. Address 0x0D Humidity Threshold HIGH Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
[7:0]	HUMI_THRES_HIGH[7:0]	R/W	11111111	Humidity threshold HIGH value

The Humidity Threshold HIGH can be calculated from the output data with 式 12:

Humidity threshold high (%RH) =
$$\left(\frac{\text{HUMI_THRES_HIGH [7:0]}}{2^8}\right) \times 100$$
 (12)

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

8.6.15 Address 0x0E Reset and DRDY/INT Configuration Register

表 8-35. Address 0x0E Configuration Register

7	6	5	4	3	2	1	0
SOFT_RES	AMM[2]	AMM[1]	AMM[0]	HEAT_EN	DRDY/INT_EN	INT_POL	INT_MODE

表 8-36. Address 0x0E Configuration Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7	SOFT_RES	R/W	0	0 = Normal Operation mode, this bit is self-clear 1 = Soft Reset EEPROM value reload and registers reset
[6:4]	AMM[2:0]	R/W	000	Auto Measurement Mode (AMM) 000 = Disabled. Initiate measurement via I ² C 001 = 1/120Hz (1 samples every 2 minutes) 010 = 1/60Hz (1 samples every minute) 011 = 0.1Hz (1 samples every 10 seconds) 100 = 0.2 Hz (1 samples every 5 second) 101 = 1Hz (1 samples every second) 110 = 2Hz (2 samples every second) 111 = 5Hz (5 samples every second)
3	HEAT_EN	R/W	0	0 = Heater off 1 = Heater on
2	DRDY/INT_EN	R/W	0	DRDY/INT_EN pin configuration 0 = High Z 1 = Enable
1	INT_POL	R/W	0	Interrupt polarity 0 = Active Low 1 = Active High
0	INT_MODE	R/W	0	Interrupt mode 0 = Level sensitive 1 = Comparator mode

8.6.16 Address 0x0F Measurement Configuration

表 8-37. Address 0x0F Measurement Configuration Register

7	6	5	4	3	2	1	0
TRES[1]	TRES[0]	HRES[1]	HRES[0]	RES	MEAS_CONF[1	MEAS_CONF[0]	MEAS_TRIG

表 8-38. Address 0x0F Measurement Configuration Field Descriptions

	1		1	omigaration ricia Besonptions
BIT	FIELD	TYPE	RESET	DESCRIPTION
7:6	TRES[1:0]	R/W	00	Temperature resolution 00: 14 bit 01: 11 bit 10: 9 bit 11: NA
5:4	HRES[1:0]	R/W	00	Humidity resolution 00: 14 bit 01: 11 bit 10: 9 bit 11: NA
3	RES	R/W	0	Reserved
2:1	MEAS_CONF[1:0]	R/W	00	Measurement configuration 00: Humidity + Temperature 01: Temperature only 10: NA 11: NA
0	MEAS_TRIG	R/W	0	Measurement trigger 0: no action 1: Start measurement Self-clearing bit when measurement completed

8.6.17 Manufacturer ID Low

表 8-39. Manufacturer ID Low Register

表 8-40. Address 0xFC Manufacturer ID Low Field Descriptions

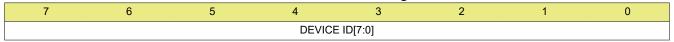
BIT	FIELD	TYPE	RESET	DESCRIPTION
[7:0]	MANUFACTURER ID [7:0]	R	01001001	Manufacturer ID LOW value

8.6.18 Manufacturer ID High

Submit Document Feedback

These registers contain a factory-programmable identification value that identifies this device as being manufactured by Texas Instruments. These registers distinguish this device from other devices that are on the same I^2C bus. The manufacturer ID reads 0x4954

表 8-41. Manufacturer ID High Register

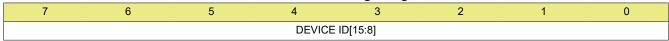

表 8-42. Address 0xFD Manufacturer ID High Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
[7:0]	MANUFACTURER ID [15:8]	R	01010100	Manufacturer ID HIGH value

Product Folder Links: HDC2080

8.6.19 Device ID Low

表 8-43. Device ID Low Register


表 8-44. Address 0xFE Device ID Low Field Descriptions

BIT	FIELD	TYPE RESET		DESCRIPTION
[7:0]	DEVICE ID [7:0]	R	11010000	Device ID LOW value

8.6.20 Device ID High

These registers contain a factory-programmable identification value that identifies this device as a HDC2080. These registers distinguish this device from other devices that are on the same I^2C bus. The Device ID for the HDC2080 is 0x07D0

表 8-45. Device ID High Register

表 8-46. Address 0xFF Device ID High Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
[7:0]	DEVICE ID [15:8]	R	00000111	Device ID HIGH value

9 Application and Implementation

Note

以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。また、お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

9.1 Application Information

An HVAC system thermostat control is based on environmental sensors and a microcontroller. The microcontroller acquires data from humidity and temperature sensors and controls the heating and cooling system. The collected data are then shown on a display that can be easily controlled by the microcontroller. Based on data from the humidity and temperature sensor, the heating and cooling system then maintains the environment at the customer-defined preferred conditions.

9.2 Typical Application

In a battery-powered HVAC system thermostat, one of the key parameters in the selection of components is the power consumption. The HDC2080, with 550 nA of current consumption (the average consumption over 1s for RH and Temperature measurements), in conjunction with a MSP430, represents one way an engineer can obtain low power consumption and extend battery life. A system block diagram of a battery-powered thermostat is shown in \boxtimes 9-1.

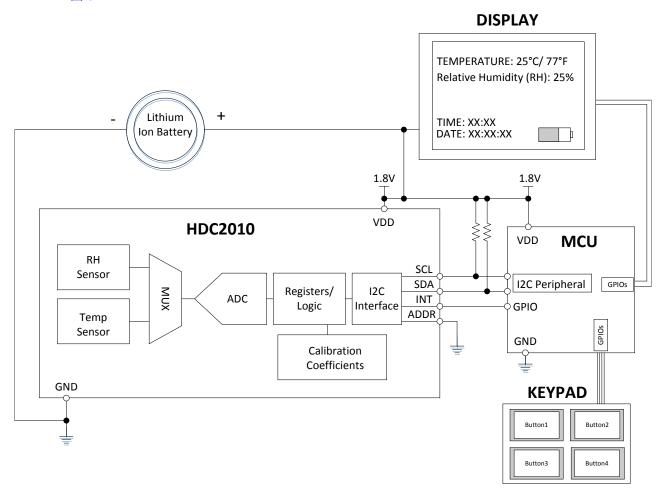


図 9-1. Typical Application Schematic HVAC

9.2.1 Design Requirements

To improve measurement accuracy, TI recommends to isolate he HDC2080 from all heat sources in the form of active circuitry, batteries, displays and resistive elements. If design space is a constraint, cutouts surrounding the device or the inclusion of small trenches can help minimize heat transfer from PCB heat sources to the HDC2080. To avoid self-heating the HDC2080, TI recommends to configure the device for a maximum sample rate of 1 Hz (1sps).

9.2.2 Detailed Design Procedure

When a circuit board layout is created from the schematic shown in \boxtimes 9-1, a small circuit board is possible. The accuracy of a RH and temperature measurement depends on the sensor accuracy and the setup of the sensing system. The HDC2080 samples relative humidity and temperature in its immediate environment, it is therefore important that the local conditions at the sensor match the monitored environment. Use one or more openings in the physical cover of the thermostat to obtain a good airflow even in static conditions. Refer to the layout (\boxtimes 11-2) for a PCB layout which minimizes the thermal mass of the PCB in the region of the HDC2080, which can improve measurement response time and accuracy.

9.2.3 Application Curve

These results were acquired at T_A = 30°C using a humidity chamber that sweeps RH%. The sweep profile used was 20% > 30% > 40% > 50% > 60% > 70% > 60% > 50% > 40% > 30% > 20%. Each RH% set point was held for 20 minutes.

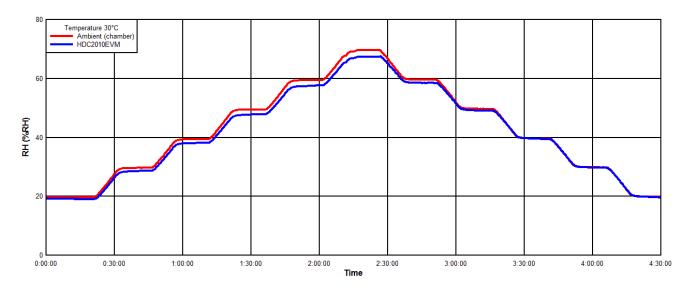


図 9-2. RH% Readings of Chamber and HDC2080 vs. Time

10 Power Supply Recommendations

The HDC2080 requires a voltage supply within 1.62 V and 3.60 V. TI recommends a multilayer ceramic bypass X7R capacitor of 0.1 μ F between the VDD and GND pins.

11 Layout

11.1 Layout Guidelines

The HDC2080's relative humidity-sensing element is located on the top side of the package.

11.1.1 Guidelines for HDC2080 Storage and PCB Assembly

11.1.1.1 Storage and Handling

As with all humidity sensors, the HDC2080 must follow special guidelines regarding handling and storage that are not common with standard semiconductor devices. Long exposure to UV and visible light, or exposure to chemical vapors for prolonged periods, should be avoided as it may affect RH% accuracy. Additionally, the device should be protected from out-gassed solvent vapors produced during manufacturing, transport, operation, and package materials (that is, adhesive tapes, stickers, bubble foils). For further detailed information, see HDC20xx Silicon User's Guide(SNAU250)

11.1.1.2 Soldering Reflow

For PCB assembly, standard reflow soldering ovens may be used. The HDC2080 uses the standard soldering profile IPC/JEDEC J-STD-020 with peak temperatures at 260°C. When soldering the HDC2080, it is mandatory to use *no-clean* solder paste, and the paste must not be exposed to water or solvent rinses during assembly because these contaminants may affect sensor accuracy. After reflow, it is expected that the sensor will generally output a shift in relative humidity, which will reduce over time as the sensor is exposed to typical indoor ambient conditions. These conditions include 30-40% RH at room temperature during a duration of several days. Following this re-hydration procedure allows the polymer to correctly settle after reflow and return to the calibrated RH accuracy.

11.1.1.3 Rework

TI recommends to limit the HDC2080 to a single IR reflow with no rework, but a second reflow may be possible if the following guidelines are met:

- The exposed polymer (humidity sensor) is kept clean and undamaged.
- The no-clean solder paste is used and the process is not exposed to any liquids, such as water or solvents.
- The Peak soldering temperature does not exceed 260°C.

11.1.1.4 High Temperature and Humidity Exposure

Long exposure outside the recommended operating conditions may temporarily offset the RH output. To maintain the highest accuracy, the recommended humidity operating range is 20 to 80% RH (non-condensing) over 0 to 70°C. Prolonged operation beyond these ranges, particularly high RH and high temperature, may shift the sensor reading with a slow recovery time.

When the sensor is exposed to wider humidity and temperature conditions for a short period, \boxtimes 11-1 shows the typical relative humidity accuracy across combinations of temperature and relative humidity.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

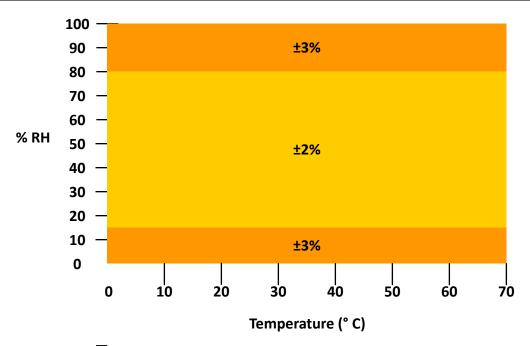


図 11-1. Typical Relative Humidity Accuracy Range Limits

11.1.1.5 Bake/Re-Hydration Procedure

Prolonged exposure to extreme conditions or harsh contaminants may impact sensor performance. In the case that permanent offset is observed from contaminants, the following procedure is suggested, which may recover or reduce the error observed in sensor performance:

- 1. Baking: 100°C, at less than 5%RH, for 5 to 10 hours
- 2. Re-hydration: Between 20°C to 30°C, 60%RH to 75%RH, for 6 to 12 hours

11.2 Layout Example

The only component next to the device is the supply bypass capacitor. The relative humidity is dependent on the temperature, so the HDC2080 should be positioned away from hot spots present on the board, such as a battery, display or microcontroller. Slots around the device can be used to reduce the thermal mass for a quicker response to environmental changes. The DAP may be soldered to a floating pad on the board, but the board pad should NOT be connected to GND

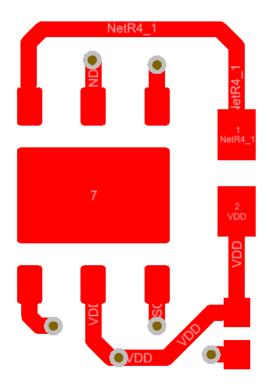


図 11-2. HDC2080 PCB Layout Example

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following:

- Texas Instruments, Humidity Sensor: Storage and Handling Guidelines. (SNIA025)
- Texas Instruments, Optimizing Placement and Routing for Humidity Sensors application report (SNAA297)

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 サポート・リソース

TI E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。

12.4 Trademarks

TI E2E™ is a trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

12.5 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい ESD 対策をとらないと、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

12.6 用語集

TI 用語集 この用語集には、用語や略語の一覧および定義が記載されています。

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 9-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
HDC2080DMBR	Active	Production	WSON (DMB) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	3C
HDC2080DMBR.A	Active	Production	WSON (DMB) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	3C

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

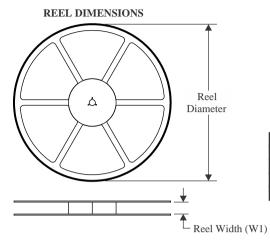
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

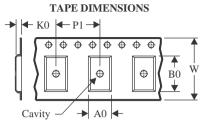
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

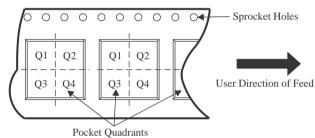
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

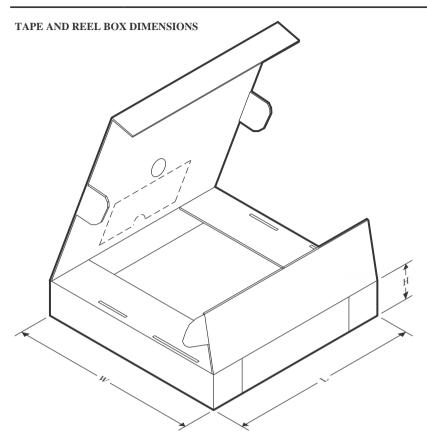
PACKAGE MATERIALS INFORMATION

www.ti.com 20-Feb-2024


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

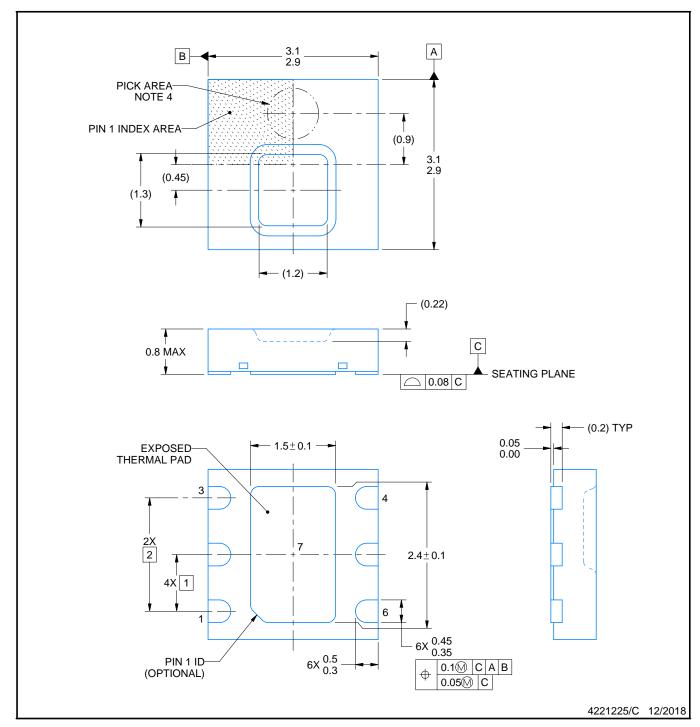
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
HDC2080DMBR	WSON	DMB	6	3000	330.0	15.4	3.3	3.3	1.1	8.0	12.0	Q2

PACKAGE MATERIALS INFORMATION

www.ti.com 20-Feb-2024

*All dimensions are nominal

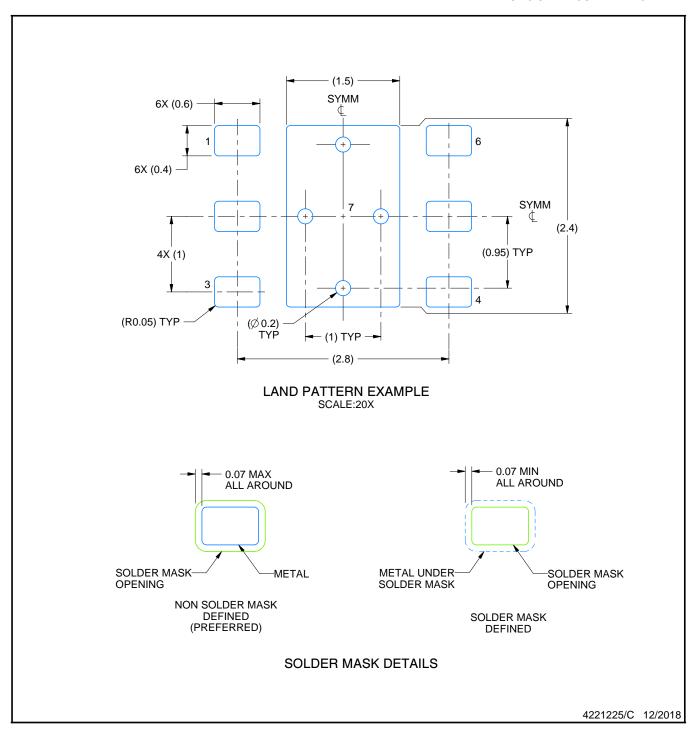
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
HDC2080DMBR	WSON	DMB	6	3000	335.0	335.0	32.0	


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.


 2. This drawing is subject to change without notice.

 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

- 4. Pick and place nozzle Ø 0.9 mm or smaller recommended.

PLASTIC SMALL OUTLINE - NO LEAD



NOTES: (continued)

- 5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 6. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日:2025 年 10 月