

📕 Order

Now

DS90C187

JAJSG74C - FEBRUARY 2012 - REVISED SEPTEMBER 2018

DS90C187 低消費電力、1.8Vのデュアル・ピクセルFPD-Link (LVDS)シ リアライザ

1 特長

- 185MHzでの標準消費電力100mW(SIDOモード)
- QXGAおよびWQXGAクラスのディスプレイを駆 動
- 3つの動作モード

TEXAS

INSTRUMENTS

- シングル・ピクセル・イン、シングル・ピクセル・アウト (SISO):最高105MHz
- シングル・ピクセル・イン、デュアル・ピクセル・アウト (SIDO): 最高 185MHz
- デュアル・ピクセル・イン、デュアル・ピクセル・アウト (DIDO): 105MHz
- 24ビットRGBおよび48ビットRGBをサポート
- (オプション)低消費電力モードで18ビットRGB および36ビットRGBをサポート
- 3D+C、4D+C、6D+C、6D+2C、8D+C、8D+2C のLVDS構成をサポート
- FPD-Linkデシリアライザと互換
- 単一の1.8V電源で動作
- 1.8V LVCMOSと直接接続
- スリープ・モードでの消費電力1mW未満
- 拡散スペクトラム・クロック互換
- 小型の7mm×7mm×0.9mm、92ピン、2列のVQFN パッケージ
- 2 アプリケーション
- カメラ監視システム(CMS)
- 車載用ヘッド・ユニット
- スマート・ミラー
- クラスタ

代表的なアプリケーション

3 概要

DS90C187は、携帯用のバッテリ駆動型の低消費電力シ リアライザで、ホストGPUとディスプレイ間のRGBインター フェイスのサイズを低減できます。

DS90C187シリアライザは、ホストとフラット・パネル・ディス プレイとの間で60Hz、QXGA (2048x1536)までの解像度 のデュアル・ピクセル・データ転送をサポートするよう設計 されています。トランスミッタは48ビットまで(24ビット・カ ラーのデュアル・ピクセル)の1.8V LVCMOSデータを、2 チャネルの4データ+クロック(4D+C)、縮小幅インターフェ イスのLVDS互換データ・ストリームに変換します。

DS90C187は、3モードの動作をサポートしています。

- シングル・ピクセル・イン/シングル・ピクセル・アウト・ モードでは、60HzでSXGA+ (1400×1050)までのディ スプレイを駆動できます。このモードでは、デバイスは1 バンクの24ビットRGBデータを、1チャネルの4D+C LVDSデータ・ストリームに変換します。
- シングル・ピクセル・イン/デュアル・ピクセル・アウト・ モードでは、60HzでWUXGA+ (1920×1440)までの ディスプレイを駆動できます。この構成で、デバイスは シングルからデュアルへのピクセル変換を行い、1バン クの24ビットRGBデータを、2チャネルでピクセル・ク ロック速度が半分の4D+C LVDSストリームに変換しま す。

製品情報⁽¹⁾

2000 10 10					
型番	パッケージ	本体サイズ(公称)			
DS90C187	VQFN-MR (92)	7.00mm×7.00mm			

(1) 利用可能なすべてのパッケージについては、このデータシートの末 尾にある注文情報を参照してください。

代表的なアプリケーション

JAJSG74C - FEBRUARY 2012 - REVISED SEPTEMBER 2018

目次

9

1	特長	
2	アプ	リケーション1
3	概要	F 1
4	改訂	'履歴2
5	概要	「(続き)3
6	Pin	Configuration and Functions 4
7	Spe	cifications6
	7.1	Absolute Maximum Ratings6
	7.2	ESD Ratings 6
	7.3	Recommended Operating Conditions 6
	7.4	Thermal Information 6
	7.5	Electrical Characteristics
	7.6	Recommended Input Characteristics
	7.7	Switching Characteristics 8
	7.8	AC Timing Diagrams9
	7.9	Typical Characteristics 12
8	Deta	ailed Description 13
	8.1	Overview 13
	8.2	Functional Block Diagrams 13

4 改訂履歴

2

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Revision B (April 2013) から Revision C に変更

「製品情報」表、「製品比較」表、「ESD定格」表、「機能説明」セクション、「デバイスの機能モード」セクション、「アプリケーショ ンと実装」セクション、「電源に関する推奨事項」セクション、「レイアウト」セクション、「デバイスおよびドキュメントのサポート」セ クション、「メカニカル、パッケージ、および注文情報」セクションを追加......1

Revision A (April 2013) から Revision B に変更

ナショナル セミコンダクターのデータシートのレイアウトをTIフォーマットに変更......1

8.3 Device Functional Modes..... 16

equence	. 27
y Filtering	. 27
	28
elines	. 28
ıple	. 29
・ュメントのサポート	. 30
サポート	. 30
更新通知を受け取る方法	. 30
ソース	. 30

8.4 Programming...... 18 Application and Implementation 25 10 Power Supply Recommendations 27 10.1 Power Up Se 10.2 Power Suppl 11 Layout..... 11.1 Layout Guide 11.2 Layout Exam 12 デバイスおよびドキ 12.1 ドキュメントの 12.2 ドキュメントの 12.3 コミュニティ・リ 12.4 商標...... 30

12.5 静電気放電に関する注意事項 30

i i	Texas
. A	INSTRUMENTS

www.tij.co.jp

Page

Page

5 概要(続き)

デュアル・ピクセル・イン/デュアル・ピクセル・アウト・モードでは、60HzでQXGA 2048x1536、または30HzでQSXGA 2560x2048までのディスプレイを駆動できます。このモードでは、デバイスは2チャネルの24ビットRGBデータを、2チャネル の4D+C LVDSストリームに変換します。すべてのモードについて、デバイスは18bppおよび24bppカラーをサポートしま す。

DS90C187は、小型の92ピン2列VQFNパッケージで供給され、単一の1.8V電源で動作し、消費電力は最小限です。

6 Pin Configuration and Functions

DS90C187 Pin Descriptions — Serializer

NAME	PIN NO.	I/O	DESCRIPTION
1.8-V LVCMOS VID	EO INPUTS		
INA_[27:21] INA_[17:9] NA_[8:0]	B19-B13, B9-B1, B40-B32	I	Channel A Data Inputs Typically consists of 8 Red, 8 Green, 8 Blue and a general purpose or L/R control bit. Includes pull down.
INB_[27:21] INB_[17:14], INB_[13:9] INB_[8:0	A23-A17, A10-A7, A5-A1, A50-A42	I	Channel B Data Inputs Typically consists of 8 Red, 8 Green, 8 Blue and a general purpose or L/R control bit. Includes pull down.
HS (INA_18), VS (INA_19), DE (INA_20)	B10, B11 B12	I	Video Control Signal Inputs - HS = Horizontal Sync, VS = Vertical SYNC, and DE = Data Enable
IN_CLK	A6	I	Pixel Input Clock Includes pull down.
1.8-V LVCMOS CO	NTROL INPUTS		
MODE0, MODE1	B20, A25	I	Mode Control Input (MODE0) 00 = Single In / Single Out 01 = Single In / Dual Out 10 = Dual In / Dual Out 11 = Reserved Includes pull down.
RFB	A24	Ι	Rising / Falling Clock Edge Select Input - 0 = Falling Edge, 1 = Rising Edge Includes pull down.
PDB	A40	I	Power Down (Sleep) Control Input - 0 = Sleep (Power Down mode), 1 = device active (enabled) Includes pull down.
18B	A29	I	18 bit / 24 bit Control Input - 0 = 24 bit mode, 1 = 18 bit mode Includes pull down.
VODSEL	A41	I	VOD Level Select Input - 0 = Low swing, 1 = Normal swing Includes pull down.
N/C	A39	Ι	no connect pin — leave open
RSVD	A11, A12, A16	Ι	Reserved - Tie to Ground.
LVDS OUTPUTS	1		
OA_C+ OA_C-	B28, A35	0	Channel A LVDS Output Clock — Expects 100 Ω DC load.
OA_[3:0]+, OA_[3:0]-	B27, B29-B31 A34, A36-A38	0	Channel A LVDS Output Data — Expects 100 Ω DC load.
OB_C+, OB_C-	B23, A30	0	Channel B LVDS Output Clock — Expects 100 Ω DC load.
OB_[3:0]+, OB_[3:0]-	B21, B24-B26 A28, A16-A33	0	Channel B LVDS Output Data — Expects 100 Ω DC load.
POWER AND GRO	UND		
V _{DDTX}	B22	Р	Power supply for LVDS Drivers, 1.8V.
V _{DD}	A14, A26, A51	Р	Power supply pin for core, 1.8V.
V _{DDP}	A13	Р	Power supply pin for PLL, 1.8V.
GND	A15, A27, A52	G	Ground pins.
DAP	DAP	G	Connect DAP to Ground plane.

7 Specifications

7.1 Absolute Maximum Ratings

See $^{(1)}$

	MIN	MAX	UNIT
Supply Voltage (V _{CC})	-0.3	2.5	V
LVCMOS Input Voltage	-0.3	VDD + 0.3	V
LVDS Driver Output Voltage	-0.3	3.6	V
LVDS Output Short-Circuit Duration	Con	tinuous	
Junction Temperature		150	°C
Storage Temperature (T _{stg})	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±8000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 $^{\rm (2)}$	±1250	V
		Machine model	±250	

 JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. [Following sentence optional; see the wiki.] Manufacturing with less than 500-V HBM is possible with the necessary precautions. [Following sentence optional; see the wiki.] Pins listed as ±XXX V may actually have higher performance.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. [Following sentence optional; see the wiki.] Manufacturing with less than 250-V CDM is possible with the necessary precautions. [Following sentence optional; see the wiki.] Pins listed as ±YYY V may actually have higher performance.

7.3 Recommended Operating Conditions

	MIN	NOM	MAX	UNIT
Supply Voltage	1.71	1.80	1.89	V
Operating Free Air Temperature (T _{A)}	-10	+25	+70	°C
Differential Load Impedance	80	100	120	Ω
Supply Noise Voltage			<90	mV _{p-p}

7.4 Thermal Information

		DS90C187		
	THERMAL METRIC ⁽¹⁾	NLA (VQFN-MR)	UNIT	
		92 PINS		
$R_{ ext{ heta}JA}$	Junction-to-ambient thermal resistance ⁽²⁾	35.1	°C/W	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance		°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance		°C/W	
ΤιΨ	Junction-to-top characterization parameter		°C/W	
ΨЈВ	Junction-to-board characterization parameter		°C/W	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance		°C/W	

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

(2) Above +22°C

7.5 Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
LVCMOS DC SPECIFICATIONS					

Electrical Characteristics (continued)

Over recommended operating supply and temperature ranges unless otherwise specified.

	PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
VIH	High Level Input Voltage			0.65V _{DD}		V _{DD}	V
VIL	Low Level Input Voltage			GND		$0.35V_{DD}$	V
I _{IN}	Input Current	$V_{IN} = 0V \text{ or } V_{DD} = 1$.71 V to 1.89 V	-10	±1	+10	μA
LVDS DR	IVER DC SPECIFICATIONS						
V		R _L = 100Ω	$VODSEL=V_IH$	160 (320)	300 (600)	450 (900)	mV (mV _{P-P})
VOD	Differential Output Voltage	図 3	$VODSEL = V_{IL}$	110 (220)	180 (360)	300 (600)	mV (mV _{P-P})
ΔV_{OD}	Change in V _{OD} between Complimentary Output States	R _L = 100Ω ⊠ 3				50	mV
V _{OS}	Offset Voltage	R _L = 100Ω ⊠ 3		0.8	0.9	1.0	V
ΔV_{OS}	Change in V _{OS} between Complimentary Output States	R _L = 100Ω 図 3				50	mV
I _{OS}	Output Short Circuit Current	V _{OUT} = GND, VODS	SEL = V _{DD}	-45	-35	-25	mA
SUPPLY	CURRENT						
IDDT1	_	Checkerboard pattern, $R_L = 100 \Omega$, $18B = V_{IL}$, VODSEL = V_{IH} ,	f = 105 MHz, MODE[1:0] = 00 (SISO)		60	85	mA
IDDT2	Serializer Worst Case Supply Current (includes load current)		f = 185 MHz, MODE[1:0] = 01 (SIDO)		95	140	mA
IDDT3		V _{DD} = 1.89 V, ⊠ 1	f = 105 MHz, MODE[1:0] = 10 (DIDO)		100	150	mA
		MODE[1:0] = 01 (SIDO), f = 150 MHz, R _L = 100 Ω, PRBS-7 Pattern 🖾 12	$18B = V_{IL},$ VODSEL = V _{IL} , VDD = 1.8		55		mA
	Socializer Supply Current DDDS 7		$18B = V_{IL},$ VODSEL = V _{IH} , VDD = 1.8		75		mA
יושטו	Serializer Supply Current PRBS-7		$\begin{array}{l} 18\text{B}=\text{V}_{\text{IH}},\\ \text{VODSEL}=\text{V}_{\text{IL}},\\ \text{VDD}=1.8 \end{array}$		49		mA
			$\begin{array}{l} 18B = V_{IH}, \\ VODSEL = V_{IH}, \\ VDD = 1.8 \end{array}$		65		mA
			$\begin{array}{l} 18B = V_{IL}, \\ VODSEL = V_{IL}, \\ VDD = 1.8 \end{array}$		53		mA
	Serializer Supply Current 16	MODE[1:0] = 01 (SIDO), f = 150 MHz,	$\begin{array}{l} 18B = V_{IL},\\ VODSEL = V_{IH},\\ VDD = 1.8 \end{array}$		71		mA
טועט	Grayscale	R _L = 100 Ω, 16 Grayscale Pattern	$18B = V_{IH},$ VODSEL = $V_{IL},$ VDD = 1.8		48		mA
			$18B = V_{IH},$ VODSEL = V _{IH} , VDD = 1.8		63		mA
IDDZ	Power Down Supply Current	PDB = GND			18	200	μA

7.6 Recommended Input Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

	PARAMETER		MIN	TYP	MAX	UNIT
тсіт	IN_CLK Transition Time	MODE[1:0] = 00 or 10	1	Т	4	ns
		MODE[1:0] = 01	1		2	ns
TCIP	IN_CLK Period 図 6	MODE[1:0] = 00 or 10	9.53	Т	40	ns
		MODE[1:0] = 01	5.40	Т	20	ns
TCIH	IN_CLK High Time	See 🛛 6	0.35T	0.5T	0.65T	ns
TCIL	IN_CLK Low Time	See 🛛 6	0.35T	0.5T	0.65T	ns
TXIT	INA_x & INB_x Transition Time	See 🛛 5	1.5		0.3T	ns

7.7 Switching Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

PARAMETER		MIN	TYP	MAX	UNIT	
TSTC	INn_x Setup to IN_CLK	See 🛛 6	0			ns
THTC	INn_x Hold from IN_CLK	See 🛛 6	2.5			ns
LLHT	LLHT LVDS Low-to-High Transition Time			0.18	0.5	ns
LHLT	LVDS High-to-Low Transition Time			0.18	0.5	ns
		MODE[1:0] = 00, or 10	1/7	TCIP		ns
IDII		MODE[1:0] = 01	2/7	TCIP		ns
TPPOS0	Transmitter Output Pulse Positions Normalized for Bit 0	See 🛛 9		1		UI
TPPOS1	Transmitter Output Pulse Positions Normalized for Bit 1	See 🛛 9		2		UI
TPPOS2	Transmitter Output Pulse Positions Normalized for Bit 2	See 🛛 9		3		UI
TPPOS3	Transmitter Output Pulse Positions Normalized for Bit 3	See 🗵 9		4		UI
TPPOS4	Transmitter Output Pulse Positions Normalized for Bit 4	See 🛛 9		5		UI
TPPOS5	Transmitter Output Pulse Positions Normalized for Bit 5	See 🛛 9		6		UI
TPPOS6	Transmitter Output Pulse Positions Normalized for Bit 6	See 🗵 9		7		UI
ΔTPPOS	Variation in Transmitter Pulse Position (Bit 6 — Bit 0)	See 🗵 9		±0.06		UI
TCCS	TCCS LVDS Channel to Channel Skew			110		ps
TJCC	Jitter Cycle-to-Cycle	MODE0, MODE1 = 0, f = 105 MHz, (1)		0.028	0.035	UI
TPLLS	Phase Lock Loop Set (Enable Time)	⊠ 7			1	ms
TPDD	Powerdown Delay	図 8 (2)			100	ns
TSD	Latency Delay	MODE0 = 0, MODE1 = 1 or 0 ⊠ 10 (1)	2*T	CIP + 10.54	2*TCIP + 13.96	ns
TLAT	Latency Delay for Single Pixel In / Dual Pixel Out Mode	MODE0 = 1, MODE1 = 0 ⊠ 10 (1)	9*T	CIP + 4.19	9*TCIP + 6.36	ns

(1) Parameter is ensured by characterization and is not tested at final test.

(2) Parameter is ensured by design and is not tested at final test.

7.8 AC Timing Diagrams

- A. The worst case test pattern produces a maximum toggling of digital circuits, LVDS I/O and LVCMOS/ I/O.

I. Checker Board Test Pattern

- A. The worst case test pattern produces a maximum toggling of digital circuits, LVDS I/O and LVCMOS/ I/O.
- B. Recommended pin to signal mapping for 18 bits per pixel, customer may choose to define differently. The 16 grayscale test pattern tests device power consumption for a "typical" LCD display pattern. The test pattern approximates signal switching needed to produce groups of 16 vertical stripes across the display.
- C. Z shows a falling edge data strobe (IN_CLK).

図 2. "16 Gray Scale" Test Pattern (Falling Edge Clock shown)

AC Timing Diagrams (continued)

図 3. DS90C187 (Transmitter) LVDS Output Load

☑ 4. LVDS Output Transition Times

図 5. LVCMOS Input Transition Times

図 6. LVCMOS Input Setup/Hold and Clock High/Low Times (Falling Edge Strobe)

Texas Instruments

DS90C187 JAJSG74C – FEBRUARY 2012 – REVISED SEPTEMBER 2018

www.tij.co.jp

7.9 Typical Characteristics

8 Detailed Description

8.1 Overview

DS90C187 converts a wide parallel LVCMOS input bus into banks of FPD-Link LVDS data. The device can be configured to support RGB-888 (24-bit color) or RGB-666 (18 bit color) in three main configurations: single pixel in / single pixel out; single pixel out; dual pixel out; dual pixel in / dual pixel out. The DS90C187 has several power saving features including: selectable VOD, 18 bit / 24 bit mode select, and a power down pin control.

8.2 Functional Block Diagrams

Functional Block Diagrams (continued)

DS90C187 JAJSG74C – FEBRUARY 2012 – REVISED SEPTEMBER 2018

Functional Block Diagrams (continued)

8.3 Device Functional Modes

8.3.1 Device Configuration

The MODE0 and MODE1 pins are used to configure the DS90C187 into the three main operation modes as shown in the table below.

MODE1	MODE0	CONFIGURATION
0	0	Single Pixel Input, Single Pixel Output (SISO)
0	1	Single Pixel Input, Dual Pixel Output (SIDO)
1	0	Dual Pixel Input, Dual Pixel Output (DIDO)
1	1	RESERVED

表 1. Mode Configurations

8.3.2 Single Pixel Input / Single Pixel Output

When MODE0 and MODE1 are both set to low, data from INA_[27:0], HS, VS and DE is serialized and driven out on OA_[3:0]+/- with OA_C+/-. If 18B_MODE is LOW, then OA_3+/- is powered down and the corresponding LVCMOS input signals are ignored.

In this configuration IN_CLK can range from 25 MHz to 105 MHz, resulting in a total maximum payload of 700 Mbps (28 bits * 25MHz) to 2.94 Gbps (28 bits * 105 MHz). Each LVDS driver will operate at a speed of 7 bits per input clock cycle, resulting in a serial line rate of 175 Mbps to 735 Mbps. OA_C+/- will operate at the same rate as IN_CLK with a duty cycle ratio of 57:43.

8.3.3 Single Pixel Input / Dual Pixel Output

When MODE0 is HIGH and MODE1 is LOW, data from INA_[27:0], HS, VS and DE is serialized and driven out on OA_[3:0]+/- and OB_[3:0]+/- with OA_C+/- and OB_C+/-. If 18B_MODE is LOW, then OA_3+/- and OB_3+/are powered down and the corresponding LVCMOS input signals are ignored. The input LVCMOS data is split into odd and even pixels starting with the odd (first) pixel outputs OA_[3:0]+/- and then the even (second) pixel outputs OB_[3:0]+/-. The splitting of the data signals starts with DE (data enable) transitioning from logic LOW to HIGH indicating active data (see \boxtimes 10). **The number of clock cycles during blanking must be an EVEN number.** This configuration will allow the user to interface with two FPD-Link receivers or other dual pixel inputs.

In this configuration IN_CLK can range from 50 MHz to 185 MHz, resulting in a total maximum payload of 1.4 Gbps (28 bits * 50 MHz) to 5.18 Gbps (28 bits * 185 MHz). Each LVDS driver will operate at a speed of 7 bits per 2 input clock cycles, resulting in a serial line rate of 175 Mbps to 647.5 Mbps. OA_C+/- and OA_B+/- will operate at ½ the rate as IN_CLK with a duty cycle ratio of 57:43.

- 1. Disable the clock and data.
- 2. Toggle PDB to Low and then High.
- 3. After PDB settles reset the data pattern and enable the clock and data.

8.3.4 Dual Pixel Input / Dual Pixel Output

When MODE0 is LOW and MODE1 is set to HIGH, data from INA_[27:0], HS, VS and DE is serialized and driven out on OA_[3:0]+/- with OA_C+/-, while data from INB_[27:0], HS, VS and DE is serializer and driven out on OB_[3:0]+/- with OB_C+/-. If 18B_MODE is LOW, then OA_3+/- and OB_3+/- is powered down and the corresponding LVCMOS input signals are ignored.

In this configuration IN_CLK can range from 25 MHz to 105 MHz, resulting in a total maximum payload of 1.325 Gbps (53 bits * 25 MHz) to 5.565 Gbps (53 bits * 105 MHz). Each LVDS driver will operate at a speed of 7 bits per input clock cycle, resulting in a serial line rate of 175 Mbps to 735 Mbps. OA_C+/- and OB_C+/- will operate at the same rate as IN_CLK with a duty cycle ratio of 57:43.

8.3.5 Pixel Clock Edge Select (RFB)

The RFB pin determines the edge that the input LVCMOS data is latched on. If RFB is HIGH, input data is latched on the RISING EDGE of the pixel clock (IN_CLK). If RFB is LOW, the input data is latched on the FALLING EDGE of the pixel clock. Note: This can be set independently of receiver's output clock strobe.

www<u>.tij.co.jp</u>

表 2. Pixel Clock Edge

RFB	Result
0	FALLING edge
1	RISING edge

8.3.6 Power Management

The DS90C187 has several features to assist with managing power consumption. The device can be configured through the MODE0 and MODE1 control pins to enable only the required number of LVDS drivers for each application. The 18B_MODE pin allows the DS90C187 to power down the unused LVDS driver(s) for RGB-666 (18 bit color) applications for an additional level of power management. If no clock is applied to the IN_CLK pin, the DS90C187 will enter a low power state. To place the DS90C187 in its lowest power state, the device can be powered down by driving the PDB pin to LOW.

8.3.7 Sleep Mode (PDB)

The DS90C187 provides a power down feature. When the device has been powered down, current draw through the supply pins is minimized and the PLL is shut down. The LVDS drivers are also powered down with their outputs pulled to GND through $100-\Omega$ resistors (not tri-stated).

表 3. Power I	Down Select
--------------	-------------

PDB	Result
0	SLEEP Mode (default)
1	ACTIVE (enabled)

8.3.8 LVDS Outputs

The DS90C187's LVDS drivers are compatible with ANSI/TIA/EIA-644-A LVDS receivers. The LVDS drivers can output a power saving low V_{OD} , or a high V_{OD} to enable longer trace and cable lengths by configuring the VODSEL pin.

VODSEL	Result
0	±220 mV (440 mVpp)
1	±340 mV (680 mVpp)

Any unused LVDS outputs that are not powered down or put into TRI-STATE® due to the MODE0, MODE1, or 18B pins should be externally terminated differentially with a 100 ohm resistor. For example, when driving a timing controller (TCON) that only requires an 8D + C LVDS interface, rather than 8D + 2C, the unused clock line should be terminated near the package of the DS90C187. For more information regarding the output state of unused LVDS drivers, refer to the next section, 18 bit / 24 bit Color Mode (18B). For more information regarding the electrical characteristics of the LVDS outputs, refer to the LVDS DC Characteristics and LVDS Switching Specifications.

8.3.9 18 bit / 24 bit Color Mode (18B)

The 18B pin can be used to further save power by powering down the 4th LVDS driver in each used bank when the application requires only 18 bit color or 3D+C LVDS. Set the 18B pin to logic HIGH to TRI-STATE® OA_3+/- and OB_3+/- (if the device is configured for dual pixel output). For 24 bit color applications this pin should be set to logic LOW. Note that the power down function takes priority over the TRI-STATE® function. So if the device is configured for 18 bit color Single Pixel In/Single Pixel Out, LVDS channel OB_3+/- will be powered down and not TRI-STATE®. If an LVDS driver is powered down, each output terminal is pulled low by a 100 ohm resistor to ground.

表 5. Color DepthCo	nfigurations
--------------------	--------------

18B	Result
0	24bpp, LVDS 4D+C or 8D+2C
1	18bpp, LVDS 3D+C or 6D+2C

8.3.10 LVCMOS Inputs

The DS90C187 has two banks of 24 data inputs, one set of video control signal (HS, VS and DE) inputs and several device configuration LVCMOS pins. All LVCMOS input pins are designed for 1.8 V LVCMOS logic. All LVCMOS inputs, including clock, data and configuration pins, have an internal pull down resistor to set a default state. If any inputs are unused, they can be left as no connect (NC) or connected to ground.

8.4 Programming

8.4.1 LVDS Interface / TFT Color Data Recommended Mapping

Different color mapping options exist. Check with the color mapping of the Deserializer / TCON device that is used to ensure compatible mapping for the application. The DS90C187 supports three modes of operation for single and dual pixel applications supporting either 24bpp or 18bpp color depths.

Programming (continued)

In the Dual Pixel / 24bpp mode, eight LVDS data lines are provided along with two LVDS clock lines (8D+2C). The Deserializer may utilize one or two clock lines. The 53 bit interface typically assigns 24 bits to RGB for the odd pixel, 24 bits to RGB for the even pixel, 3 bits for the video control signals (HS, VS and DE), 1 bit for odd pixel and 1 bit for even pixel which can be ignored or used for general purpose data, control or L/R signaling.

A reduced width input interface is also supported with a Single-to-Dual Pixel conversion where the data is presented at double rate (same clock edge, 2X speed, see) and the DE transition is used to flag the first pixel. Also note in both 8D+2C configurations, the three video control signals are sent over **both** the A and B outputs. The DES / TCON may recover one set, or both depending upon its implementation. The Dual Pixel / 24bpp 8D+2C LVDS Interface Mapping is shown in .

A Dual Pixel / 18bpp mode is also supported. In this configuration OA3 and OB3 LVDS output channels are placed in TRI-STATE® to save power. Their respective inputs are ignored. (215)

In the Single Pixel / 24bpp mode, four LVDS data lines are provided along with a LVDS clock line (4D+C). The 28 bit interface typically assigns 24 bits to RGB color data, 3 bits to video control (HS, VS and DE) and one spare bit can be ignored, used for L/R signaling or function as a general purpose bit. The Single Pixel / 24bpp 4D+C LVDS Interface Mapping is shown in .

A Single Pixel / 18bpp mode is also supported. In this configuration the OA3 LVDS output channel is placed in TRI-STATE® to save power. Its respective inputs are ignored. (217)

図 14. Dual Pixel / 24bpp LVDS Mapping

Programming (continued)

図 15. Dual Pixel / 18bpp LVDS Mapping

図 16. Single Pixel / 24bpp LVDS Mapping

Programming (continued)

8.4.1.1 Color Mapping Information

A defacto color mapping is shown next. Different color mapping options exist. Check with the color mapping of the Deserializer / TCON device that is used to ensure compatible mapping for the application.

DS90C187 Input	Color Mapping	Note
INA_22	R7	MSB
INA_21	R6	
INA_5	R5	
INA_4	R4	
INA_3	R3	
INA_2	R2	
INA_1	R1	
INA_0	R0	LSB
INA_24	G7	MSB
INA_23	G6	
INA_11	G5	
INA_10	G4	
INA_9	G3	
INA_8	G2	
INA_7	G1	
INA_6	G0	LSB
INA_26	B7	MSB
INA_25	B6	
INA_17	B5	
INA_16	B4	
INA_15	B3	
INA_14	B2	
INA_13	B1	
INA_12	B0	
DE	DE	Data Enable*
VS	VS	Vertical Sync
HS	HS	Horizontal Sync
INA_27	GP	General Purpose

表 6. Single Pixel Input / 24bpp / MSB on CH3

表 7. Single Pixel Input / 24bpp / LSB on CH3

DS90C187 Input	Color Mapping	Note
INA_5	R7	MSB
INA_4	R6	
INA_3	R5	
INA_2	R4	
INA_1	R3	
INA_0	R2	
INA_22	R1	
INA_21	R0	LSB
INA_11	G7	MSB
INA_10	G6	
INA_9	G5	

表 7. Single Pixel Input / 24bpp / LSB on CH3 (continued)

DS90C187 Input	Color Mapping	Note
INA_8	G4	
INA_7	G3	
INA_6	G2	
INA_24	G1	
INA_23	G0	LSB
INA_17	B7	MSB
INA_16	B6	
INA_15	B5	
INA_14	B4	
INA_13	B3	
INA_12	B2	
INA_26	B1	
INA_25	B0	
DE	DE	Data Enable*
VS	VS	Vertical Sync
HS	HS	Horizontal Sync
INA_27	GP	General Purpose

表 8. Single Pixel Input / 18bpp

DS90C187 Input	Color Mapping	Note
INA_5	R5	MSB
INA_4	R4	
INA_3	R3	
INA_2	R2	
INA_1	R1	
INA_0	R0	LSB
INA_11	G5	MSB
INA_10	G4	
INA_9	G3	
INA_8	G2	
INA_7	G1	
INA_6	G0	LSB
INA_17	B5	MSB
INA_16	B4	
INA_15	B3	
INA_14	B2	
INA_13	B1	
INA_12	B0	
DE	DE	Data Enable*
VS	VS	Vertical Sync
HS	HS	Horizontal Sync

表 9. Dual Pixel	Input / 24bpp
-----------------	---------------

DS90C187 Input	Color Mapping	Note
INA_22	O_R7	MSB
INA_21	O_R6	

DS90C187 Input Color Mapping Note INA_5 O_R5 INA INA_4 O_R4 Innot into into into into into into into			,
INA_5 O_R5 INA_4 O_R4 INA_3 O_R3 INA_2 O_R2 INA_1 O_R1 INA_20 O_R0 LSB INA_23 O_G6 INA_11 O_G5 INA_11 O_G5 INA_11 O_G6 INA_11 O_G6 INA_11 O_G6 INA_10 O_G4 INA INA_6 O_G2 INA INA_6 O_G0 LSB INA_6 O_G0 LSB INA_26 O_B6 INA INA_15 O_B1 INA INA_16 O_B4 INA INA_13 O_B1 INA INA_14 O_B2 INA INB_22 E_R7 INA INB_3 E_R3 INA INB_4 E_R4 INA INB_2 E_R6 INA INB_10 E_G6 INA INB_10 E_G6 INA	DS90C187 Input	Color Mapping	Note
INA_4 O_R4 INA_3 O_R3 INA_2 O_R2 INA_1 O_R1 INA_0 O_R0 INA_23 O_G6 INA_11 O_G5 INA_11 O_G6 INA_11 O_G6 INA_10 O_G4 INA_9 O_G3 INA_6 O_G0 INA_7 O_G1 INA_6 O_G0 INA_6 O_G0 INA_25 O_B6 INA_16 O_B2 INA_11 O_B2 INA_12 O_B1 INA_13 O_B1 INA_14 O_B2 INA_12 O_B0 INB_21 E_R6 INB_21 E_R1 INB_10 E_R1 INB_11 E_G1 INB_23 E_G6 INB_11 E_G1 INB_11 E_G1 INB_11 E_G1 INB_11 E_G1 INB_15	INA_5	O_R5	
INA_3 O_R3 INA_2 O_R2 INA_1 O_R1 INA_0 O_R0 LSB INA_24 O_G7 MSB INA_23 O_G6 INA_11 O_G5 INA_11 O_G5 INA_10 O_G4 InA_14 INA_9 O_G3 InA_15 INA_6 O_G0 LSB INA_25 O_B6 INA_16 INA_16 O_B2 INA_16 INA_16 O_B2 INA_14 INA_12 O_B0 INA INA_12 O_B0 INA INA_13 O_B1 INA INA_12 O_B0 INA INA_13 O_B1 INA INB_21 E_R6 INA INB_3 E_R1 INA INB_1 E_R1 INA INB_2 E_R2 INA INB_1 E_G1 INA INB_1 E_G1 INA INB_10	INA_4	O_R4	
NA_2 O_R2 INA_1 O_R1 INA_0 O_R0 LSB INA_24 O_G7 MSB INA_23 O_G6 Inmatrix INA_11 O_G5 Inmatrix INA_10 O_G4 Inmatrix INA_9 O_G3 Inmatrix INA_6 O_G0 LSB INA_26 O_B7 MSB INA_25 O_B6 Inmatrix INA_17 O_B5 Inmatrix INA_16 O_B4 Inmatrix INA_15 O_B3 Inmatrix INA_14 O_B2 Inmatrix INA_12 O_B0 Inmatrix INB_21 E_R6 Inmatrix INB_5 E_R3 Inmatrix INB_10 E_R0 Inmatrix INB_11 E_G3 Inmatrix INB_11 E_G3 Inmatrix INB_11 E_G3 Inmatrix INB_11 E_G3 Inmatrix INB_12 <td>INA_3</td> <td>O_R3</td> <td></td>	INA_3	O_R3	
INA_1 O_R1 INA_0 O_R0 LSB INA_24 O_G7 MSB INA_23 O_G6 INA INA_11 O_G5 INA INA_9 O_G3 INA INA_6 O_G0 LSB INA_6 O_G0 LSB INA_26 O_B7 MSB INA_25 O_B6 INA INA_17 O_B5 INA INA_16 O_B4 INA INA_16 O_B4 INA INA_16 O_B4 INA INA_16 O_B1 INA INA_12 O_B0 INA INB_22 E_R7 INA INB_5 E_R3 INA INB_1 E_R1 INA INB_1 E_R1 INA INB_10 E_G3 INA INB_7 E_G1 INA INB_6 E_B7 INA INB_10 E_G3 INA	INA_2	0_R2	
INA_0 O_R0 LSB INA_24 O_G7 MSB INA_23 O_G6 Inna INA_11 O_G5 Inna INA_10 O_G4 Inna INA_9 O_G3 Inna INA_7 O_G1 Inna INA_6 O_G0 LSB INA_26 O_B7 MSB INA_16 O_B4 Inna INA_15 O_B3 Inna INA_14 O_B2 Inna INA_13 O_B1 Inna INA_14 O_B2 Inna INA_13 O_B1 Inna INB_21 E_R6 Inna INB_21 E_R6 Inna INB_3 E_R3 Inna INB_1 E_R1 Inna INB_1 E_G6 Inna INB_10 E_G6 Inna INB_10 E_G4 Inna INB_10 E_G1 Inna INB_10 E_G1	INA_1	O_R1	
INA_24 O_G7 MSB INA_23 O_G6 Interpretation INA_11 O_G5 Interpretation INA_10 O_G4 Interpretation INA_10 O_G3 Interpretation INA_9 O_G3 Interpretation INA_7 O_G1 Interpretation INA_6 O_G0 LSB INA_26 O_B7 MSB INA_25 O_B6 Interpretation INA_11 O_B5 Interpretation INA_12 O_B4 Interpretation INA_13 O_B1 Interpretation INB_22 E_R7 Interpretation INB_4 E_R4 Interpretation INB_1 E_R1 Interpretation INB_2 E_R2 Interpretation INB_11 E_G6 Interpretation INB_12 E_G1 Interpretation INB_13 E_G2 Interpretation INB_14 E_B5 Interpretation INB_17 E	INA_0	O_R0	LSB
INA_23 O_G6 INA_11 O_G5 INA_10 O_G4 INA_9 O_G3 INA_8 O_G2 INA_7 O_G1 INA_6 O_G0 INA_6 O_G0 INA_26 O_B7 INA_25 O_B6 INA_17 O_B5 INA_16 O_B4 INA_17 O_B2 INA_13 O_B1 INA_12 O_B0 INB_21 E_R6 INB_21 E_R6 INB_3 E_R3 INB_4 E_R1 INB_1 E_R1 INB_2 E_R1 INB_1 E_G5 INB_11 E_G4 INB_11 E_G4 INB_11 E_G5 INB_11 E_G1 INB_11 E_G5 INB_11 E_G4 INB_11 E_G4 INB_11 E_G3 INB_11 E_G4 INB_11	INA_24	O_G7	MSB
INA_11 O_G5 INA_10 O_G4 INA_9 O_G3 INA_8 O_G2 INA_7 O_G1 INA_6 O_G0 LSB INA_26 O_B7 MSB INA_25 O_B6 Invalue INA_17 O_B5 Invalue INA_16 O_B4 Invalue INA_15 O_B2 Invalue INA_16 O_B2 Invalue INA_13 O_B1 Invalue INA_12 O_B0 Invalue INB_22 E_R7 Invalue INB_4 E_R6 Invalue INB_1 E_R1 Invalue INB_2 E_R2 Invalue INB_1 E_G3 Invalue INB_11 E_G4 Invalue INB_12 E_G3 Invalue INB_11 E_G3 Invalue INB_11 E_G4 Invalue INB_12 E_G1 Invalue INB_	INA_23	O_G6	
INA_10 O_G4 INA_9 O_G3 INA_8 O_G2 INA_7 O_G1 INA_6 O_G0 LSB INA_26 O_B7 MSB INA_25 O_B6 Invalue INA_17 O_B5 Invalue INA_16 O_B4 Invalue INA_16 O_B4 Invalue INA_15 O_B3 Invalue INA_13 O_B1 Invalue INA_12 O_B0 Invalue INB_21 E_R6 Invalue INB_3 E_R3 Invalue INB_1 E_R1 Invalue INB_1 E_G6 Invalue INB_11 E_G5 Invalue INB_11 E_G4 Invalue INB_12 E_B6 Invalue	INA_11	O_G5	
INA_9 0_G3 INA_8 0_G2 INA_7 0_G1 INA_6 0_G0 LSB INA_26 0_B7 MSB INA_25 0_B6 INA_10 INA_16 0_B4 INA_11 INA_15 0_B3 INA_11 INA_14 0_B2 INA_11 INA_12 0_B0 INA_11 INA_12 0_B0 INA_11 INB_22 E_R7 INB_1 INB_21 E_R6 INE INB_3 E_R3 INA INB_4 E_R1 INE INB_1 E_R1 INE INB_1 E_G6 INE INB_11 E_G5 INE INB_10 E_G4 INI INB_5 E_G1 INI INB_6 E_G2 INI INB_6 E_G3 INI INB_2 E_B6 INI INB_17 E_B5 INI INB_6	INA_10	O_G4	
INA_8 O_G2 INA_7 O_G1 INA_6 O_G0 LSB INA_26 O_B7 MSB INA_25 O_B6 INA_17 INA_17 O_B5 INA_17 INA_16 O_B4 INA_17 INA_15 O_B3 INA_14 INA_13 O_B1 INA_12 INA_12 O_B0 INB_22 INB_21 E_R6 INA_13 INB_22 E_R7 INB_1 INB_3 E_R3 INA_14 INB_4 E_R4 INB_1 INB_4 E_R4 INB_1 INB_1 E_R1 ING INB_1 E_G6 ING INB_11 E_G5 ING INB_10 E_G4 ING INB_7 E_G1 INB INB_8 E_G2 ING INB_7 E_G1 ING INB_26 E_B7 ING INB_16 E_B4 ING	INA_9	O_G3	
INA_7 O_G1 INA INA_6 O_G0 LSB INA_26 O_B7 MSB INA_25 O_B6 INA INA_17 O_B5 INA INA_16 O_B4 INA INA_15 O_B3 INA INA_14 O_B2 INA INA_13 O_B1 INA INA_12 O_B0 INA INB_22 E_R7 INB INB_1 E_R6 INA INB_2 E_R7 INA INB_4 E_R4 INA INB_3 E_R3 INA INB_1 E_R1 INA INB_1 E_G6 INA INB_11 E_G5 INA INB_11 E_G6 INA INB_11 E_G1 INA INB_11 E_G1 INA INB_12 E_B1 INA INB_13 E_B1 INA INB_14 E_B2 INA <td>INA_8</td> <td>0_G2</td> <td></td>	INA_8	0_G2	
INA_6 O_GO LSB INA_26 O_B7 MSB INA_25 O_B6 INA INA_17 O_B5 INA INA_16 O_B4 INA INA_15 O_B3 INA INA_14 O_B2 INA INA_13 O_B1 INA INA_12 O_B0 INA INB_22 E_R7 INB INB_21 E_R6 INA INB_3 E_R3 INA INB_4 E_R1 INA INB_1 E_R1 INA INB_1 E_G6 INA INB_23 E_G6 INA INB_11 E_G5 INA INB_11 E_G5 INA INB_11 E_G6 INA INB_11 E_G1 INA INB_12 E_B1 INA INB_13 E_B3 INA INB_14 E_B2 INA INB_13 E_B0 INA<	INA_7	O_G1	
INA_26 O_B7 MSB INA_25 O_B6	INA_6	O_G0	LSB
INA_25 O_B6 INA_17 O_B5 INA_16 O_B4 INA_15 O_B3 INA_14 O_B2 INA_13 O_B1 INA_12 O_B0 INB_22 E_R7 INB_21 E_R6 INB_5 E_R5 INB_4 E_R3 INB_2 E_R7 INB_3 E_R2 INB_1 E_R1 INB_24 E_G6 INB_1 E_R1 INB_2 E_G6 INB_11 E_G5 INB_23 E_G6 INB_11 E_G5 INB_11 E_G5 INB_11 E_G5 INB_12 E_G1 INB_3 E_G2 INB_7 E_G1 INB_6 E_B7 INB_25 E_B6 INB_17 E_B5 INB_16 E_B4 INB_15 E_B3 INB_14 E_B2 INB_13	INA_26	O_B7	MSB
INA_17 O_B5 INA_16 O_B4 INA_15 O_B3 INA_14 O_B2 INA_13 O_B1 INA_12 O_B0 INB_22 E_R7 INB_21 E_R6 INB_5 E_R5 INB_4 E_R4 INB_3 E_R3 INB_1 E_R1 INB_1 E_R1 INB_2 E_R0 INB_1 E_R1 INB_1 E_G6 INB_23 E_G6 INB_11 E_G5 INB_23 E_G6 INB_11 E_G5 INB_11 E_G5 INB_11 E_G5 INB_11 E_G6 INB_12 E_G1 INB_5 E_G2 INB_7 E_G1 INB_6 E_B7 INB_16 E_B4 INB_17 E_B5 INB_16 E_B1 INB_13 E_B1 INB_14	INA_25	O_B6	
INA_16 O_B4 INA_15 O_B3 INA_14 O_B2 INA_13 O_B1 INA_12 O_B0 INB_22 E_R7 INB_21 E_R6 INB_5 E_R5 INB_4 E_R4 INB_3 E_R3 INB_1 E_R1 INB_0 E_R0 INB_1 E_R1 INB_23 E_G6 INB_11 E_G5 INB_23 E_G6 INB_11 E_G5 INB_12 E_B1 INB_5 E_B1 INB_6 E_B7 INB_16 E_B4 INB_15 E_B3 INB_14 E_B2 INB_13 E_B1 INB_14 E_B0 DE	INA_17	O_B5	
INA_15 O_B3 INA_14 O_B2 INA_13 O_B1 INA_12 O_B0 INB_22 E_R7 INB_21 E_R6 INB_5 E_R5 INB_4 E_R4 INB_3 E_R3 INB_4 E_R4 INB_3 E_R7 INB_4 E_R4 INB_3 E_R3 INB_1 E_R1 INB_1 E_G7 INB_23 E_G6 INB_24 E_G7 INB_23 E_G6 INB_11 E_G5 INB_11 E_G5 INB_10 E_G3 INB_8 E_G2 INB_7 E_G1 INB_6 E_B7 INB_16 E_B4 INB_17 E_B5 INB_18 E_B1 INB_13 E_B1 INB_14 E_B2 INB_13 E_B0 DE Data Enable*	INA 16	O B4	
INA_14 O_B2 INA_13 O_B1 INA_12 O_B0 INB_22 E_R7 INB_21 E_R6 INB_5 E_R5 INB_4 E_R4 INB_2 E_R7 INB_4 E_R4 INB_3 E_R3 INB_1 E_R1 INB_0 E_R0 INB_23 E_G6 INB_24 E_G7 INB_23 E_G6 INB_11 E_G5 INB_11 E_G5 INB_10 E_G3 INB_11 E_G5 INB_10 E_G1 INB_26 E_B7 INB_7 E_G1 INB_26 E_B7 INB_17 E_B5 INB_16 E_B3 INB_15 E_B3 INB_14 E_B2 INB_13 E_B1 INB_12 E_B0 DE Data Enable*	INA 15	0 B3	
INA_13 O_B1 INA_12 O_B0 INB_22 E_R7 INB_21 E_R6 INB_5 E_R5 INB_4 E_R4 INB_3 E_R2 INB_1 E_R1 INB_2 E_R7 INB_3 E_R3 INB_1 E_R1 INB_23 E_G6 INB_24 E_G7 INB_23 E_G6 INB_11 E_G5 INB_11 E_G5 INB_11 E_G5 INB_11 E_G5 INB_11 E_G5 INB_12 E_G1 INB_8 E_G2 INB_7 E_G1 INB_6 E_B7 INB_25 E_B6 INB_17 E_B5 INB_16 E_B3 INB_14 E_B2 INB_13 E_B1 INB_12 E_B0 DE Data Enable*	INA 14	0 B2	
INA_12 O_B0 INB_22 E_R7 INB_21 E_R6 INB_5 E_R5 INB_4 E_R4 INB_3 E_R2 INB_1 E_R1 INB_24 E_G7 INB_23 E_G6 INB_24 E_G7 INB_23 E_G6 INB_11 E_G5 INB_11 E_G5 INB_11 E_G5 INB_11 E_G6 INB_11 E_G5 INB_11 E_G5 INB_11 E_G5 INB_11 E_G5 INB_11 E_G5 INB_11 E_G1 INB_11 E_G1 INB_11 E_G1 INB_12 E_B6 INB_13 E_B1 INB_14 E_B2 INB_13 E_B1 INB_12 DE DE Data Enable*	INA 13	0 B1	
INB_22 E_R7 INB_21 E_R6 INB_5 E_R5 INB_4 E_R4 INB_3 E_R3 INB_1 E_R1 INB_0 E_R0 INB_24 E_G7 INB_23 E_G6 INB_11 E_G5 INB_12 E_G6 INB_11 E_G5 INB_11 E_G5 INB_11 E_G4 INB_9 E_G3 INB_7 E_G1 INB_7 E_G1 INB_25 E_B6 INB_17 E_B5 INB_16 E_B4 INB_15 E_B3 INB_14 E_B2 INB_13 E_B1 INB_12 E_B0 DE Data Enable*	INA 12	0_D1	
INB_21 E_R6 INB_5 E_R5 INB_4 E_R4 INB_3 E_R3 INB_1 E_R1 INB_0 E_R0 INB_24 E_G7 INB_23 E_G6 INB_11 E_G7 INB_23 E_G6 INB_11 E_G5 INB_10 E_G4 INB_9 E_G3 INB_7 E_G1 INB_6 E_B7 INB_25 E_B6 INB_17 E_B5 INB_18 E_G2 INB_19 E_B1 INB_26 E_B7 INB_16 E_B4 INB_15 E_B3 INB_14 E_B2 INB_13 E_B1 INB_12 E_B0 DE Data Enable*	INB 22	F R7	
INB_1 E_R0 INB_5 E_R1 INB_3 E_R2 INB_1 E_R1 INB_0 E_R0 INB_24 E_G7 INB_23 E_G6 INB_11 E_G5 INB_11 E_G5 INB_23 E_G6 INB_10 E_G4 INB_9 E_G3 INB_7 E_G1 INB_6 E_G0 INB_25 E_B6 INB_17 E_B5 INB_16 E_B4 INB_17 E_B5 INB_16 E_B4 INB_15 E_B3 INB_14 E_B2 INB_13 E_B1 INB_12 E_B0 DE Data Enable*	INB_21	E_R6	
INB_0 E_R0 INB_4 E_R4 INB_3 E_R3 INB_1 E_R2 INB_1 E_R1 INB_0 E_R0 INB_24 E_G7 INB_23 E_G6 INB_11 E_G5 INB_11 E_G5 INB_11 E_G4 INB_9 E_G3 INB_8 E_G2 INB_6 E_B0 INB_25 E_B6 INB_17 E_B5 INB_16 E_B4 INB_15 E_B3 INB_14 E_B2 INB_13 E_B1 INB_12 E_B0 DE Data Enable*	INB_5	E_R5	
INB_1 E_R3 INB_2 E_R2 INB_1 E_R1 INB_0 E_R0 INB_24 E_G7 INB_23 E_G6 INB_11 E_G5 INB_10 E_G4 INB_9 E_G3 INB_8 E_G2 INB_6 E_G0 INB_25 E_B6 INB_17 E_B6 INB_18 E_G1 INB_26 E_B7 INB_17 E_B6 INB_16 E_B4 INB_16 E_B4 INB_15 E_B3 INB_14 E_B2 INB_13 E_B1 INB_12 E_B0 DE Data Enable*	INB_4	E_R4	
INB_3 E_INS INB_2 E_R2 INB_1 E_R1 INB_0 E_R0 INB_24 E_G7 INB_23 E_G6 INB_11 E_G5 INB_10 E_G4 INB_9 E_G3 INB_7 E_G1 INB_6 E_G0 INB_25 E_B6 INB_17 E_B5 INB_16 E_B4 INB_15 E_B3 INB_14 E_B2 INB_13 E_B1 INB_12 E_B0 DE Data Enable*	INB_4	E_R3	
INB_1 E_R1 INB_0 E_R0 INB_24 E_G7 INB_23 E_G6 INB_11 E_G5 INB_10 E_G4 INB_8 E_G2 INB_7 E_G1 INB_26 E_B7 INB_25 E_B6 INB_17 E_B5 INB_18 E_B2 INB_16 E_B4 INB_15 E_B3 INB_14 E_B2 INB_13 E_B1 INB_12 E_B0 DE Data Enable*	INB 2	E_R3	
INB_1 E_R1 INB_0 E_R0 INB_24 E_G7 INB_11 E_G5 INB_10 E_G4 INB_9 E_G2 INB_7 E_G1 INB_26 E_B7 INB_25 E_B6 INB_17 E_B5 INB_18 E_B7 INB_17 E_B8 INB_18 E_B1 INB_14 E_B2 INB_13 E_B1 INB_12 E_B0 DE Data Enable*	IND_2		
INB_0 E_R0 INB_24 E_G7 INB_23 E_G6 INB_11 E_G5 INB_10 E_G4 INB_9 E_G3 INB_7 E_G1 INB_66 E_B7 INB_25 E_B6 INB_17 E_B5 INB_16 E_B4 INB_15 E_B3 INB_14 E_B2 INB_13 E_B1 INB_12 E_B0 DE Data Enable*			
INB_24 E_G7 INB_23 E_G6 INB_11 E_G5 INB_10 E_G4 INB_9 E_G3 INB_8 E_G2 INB_7 E_G1 INB_6 E_G0 INB_25 E_B7 INB_17 E_B5 INB_16 E_B4 INB_15 E_B3 INB_14 E_B2 INB_13 E_B1 INB_12 E_B0 DE Data Enable*		E_RU	
INB_11 E_G5 INB_10 E_G4 INB_9 E_G3 INB_8 E_G2 INB_7 E_G1 INB_6 E_B7 INB_25 E_B6 INB_17 E_B5 INB_16 E_B4 INB_17 E_B5 INB_16 E_B4 INB_15 E_B3 INB_14 E_B2 INB_13 E_B1 INB_12 E_B0 DE Data Enable*	IND_24	E_07	
INB_11 E_G5 INB_10 E_G4 INB_9 E_G3 INB_8 E_G2 INB_7 E_G1 INB_6 E_G0 INB_26 E_B7 INB_17 E_B6 INB_17 E_B5 INB_16 E_B3 INB_15 E_B3 INB_13 E_B1 INB_12 E_B0 DE DE Data Enable*	IND_23	E_G6	
INB_10 E_G4 INB_9 E_G3 INB_8 E_G2 INB_7 E_G1 INB_6 E_G0 INB_26 E_B7 INB_17 E_B5 INB_16 E_B3 INB_15 E_B3 INB_13 E_B1 INB_12 E_B0 DE DE Data Enable*	INB_11	E_G5	
INB_9 E_G3 INB_8 E_G2 INB_7 E_G1 INB_6 E_G0 INB_26 E_B7 INB_25 E_B6 INB_17 E_B5 INB_16 E_B3 INB_15 E_B3 INB_13 E_B1 INB_12 E_B0 DE DE Data Enable*	INB_10	E_G4	
INB_8 E_G2 INB_7 E_G1 INB_6 E_G0 INB_26 E_B7 INB_25 E_B6 INB_17 E_B5 INB_16 E_B3 INB_15 E_B2 INB_13 E_B1 INB_12 E_B0 DE DE Data Enable*	INB_9	E_G3	
INB_7 E_G1 INB_6 E_G0 INB_26 E_B7 INB_25 E_B6 INB_17 E_B5 INB_16 E_B3 INB_14 E_B2 INB_13 E_B1 INB_12 E_B0 DE DE Data Enable*	INB_8	E_G2	
INB_6 E_G0 INB_26 E_B7 INB_25 E_B6 INB_17 E_B5 INB_16 E_B4 INB_15 E_B3 INB_14 E_B2 INB_13 E_B1 INB_12 E_B0 DE DE Data Enable*	INB_7	E_G1	
INB_26 E_B7 INB_25 E_B6 INB_17 E_B5 INB_16 E_B4 INB_15 E_B3 INB_13 E_B1 INB_12 E_B0 DE DE Data Enable*	INB_6	E_G0	
INB_25 E_B6 INB_17 E_B5 INB_16 E_B4 INB_15 E_B3 INB_14 E_B2 INB_13 E_B1 INB_12 E_B0 DE DE Data Enable*	INB_26	E_B7	
INB_17 E_B5 INB_16 E_B4 INB_15 E_B3 INB_14 E_B2 INB_13 E_B1 INB_12 E_B0 DE DE Data Enable*	INB_25	E_B6	
INB_16 E_B4 INB_15 E_B3 INB_14 E_B2 INB_13 E_B1 INB_12 E_B0 DE DE Data Enable*	INB_17	E_B5	
INB_15 E_B3 INB_14 E_B2 INB_13 E_B1 INB_12 E_B0 DE DE Data Enable*	INB_16	E_B4	
INB_14 E_B2 INB_13 E_B1 INB_12 E_B0 DE DE Data Enable*	INB_15	E_B3	
INB_13 E_B1 INB_12 E_B0 DE DE Data Enable*	INB_14	E_B2	
INB_12 E_B0 DE DE Data Enable*	INB_13	E_B1	
DE DE Data Enable*	INB_12	E_B0	
	DE	DE	Data Enable*

表 9. Dual Pixel Input / 24bpp (continued)

DS90C187 Input	Color Mapping	Note
VS	VS	Vertical Sync
HS	HS	Horizontal Sync
INA_27	GP	General Purpose
INB_27	GP	General Purpose

表 9. Dual Pixel Input / 24bpp (continued)

9 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The DS90C187 is a Low Power Bridge for automotive application that reduces the size of the RGB interface between the host GPU and the Display. It is designed to support single pixel data transmission between Host and Flat Panel Display up to QXGA (2048x1536) at 60 Hz resolutions. The transmitter converts up to 24 bits (Single Pixel 24 bit color) of 1.8-V LVCMOS data into two channels of 4 data + clock (4D+C) reduced width interface LVDS compatible data streams.

9.2 Typical Application

図 18. Single Pixel In Dual Pixel Out (SIDO) Mode

9.2.1 Design Requirements

The DS90C187 is used to convert 24-bit color to two channels of LVDS datastreams.

表 10. Design Parameters

DESIGN PARAMETER	VALUE
Supply	1.8V
Display Driven	SXGA+, WUXGA+
Pixel Depth	24 bits

9.2.2 Detailed Design Procedure

9.2.2.1 LVDS Interconnect Guidelines

Refer to the AN-1108 Channel-Link PCB and Interconnect Design-In Guidelines (SNLA008) and Transmission Line RAPIDESIGNER Operation and Applications Guide (SNLA035) for full details.

- Use 100-Ω coupled differential pairs
- Use differential connectors when above 500 Mbps
- Minimize skew within the pair
- Use the S/2S/3S rule in spacings
 - S = space between the pairs
 - 2S = space between pairs
 - 3S = space to LVCMOS signals
- Place ground vias next to signal vias when changing between layers
- When a signal changes reference planes, place a bypass cap and vias between the new and old reference plane

For more tips and detailed suggestions regarding high speed board layout principles, see the LVDS Owner's Manual at http://www.ti.com/lvds

9.2.3 Application Curves

10 Power Supply Recommendations

10.1 Power Up Sequence

The V_{DD} power supply pins do not require a specific power on sequence and can be powered on in any order. However, the PDB pin should only be set to logic HIGH once the power sent to all supply pins is stable. Active data inputs should not be applied to the DS90C187 until all of the input power pins have been powered on, settled to the recommended operating voltage and the PDB pin has be set to logic HIGH.

The user experience can be impacted by the way a system powers up and powers down an LCD screen. The following sequence is recommended:

Power up sequence (DS90C187 PDB input initially LOW):

- 1. Ramp up LCD power (maybe 0.5ms to 10ms) but keep backlight turned off.
- 2. Toggle DS90C187 power down pin to PDB = V_{DD} .
- 3. Enable clock and wait for additional 0-200ms to ensure display noise won't occur.
- 4. Enable video source output; start sending black video data.
- 5. Send >1ms of black video data; this allows the DS90C187 to be phase locked, and the display to show black data first.
- 6. Start sending true image data.
- 7. Enable backlight.

Power Down sequence (DS90C187 PDB input initially HIGH):

- 1. Disable LCD backlight; wait for the minimum time specified in the LCD data sheet for the backlight to go low.
- 2. Video source output data switch from active video data to black image data (all visible pixel turn black); drive this for >2 frame times.
- 3. Set DS90C187 power down pin to PDB = GND.
- 4. Disable the video output of the video source.
- 5. Remove power from the LCD panel for lowest system power.

The DS90C187 is highly sensitive to the VDD input. Even small levels on the VDD pin prior to full power up should be avoided. The user should additionally take care to not drive or pull up the CMOS inputs to the device prior to device power up so as to ensure proper power on behavior.

10.2 Power Supply Filtering

The DS90C187 has several power supply pins at 1.8 V. It is important that these pins all be connected and properly bypassed. Bypassing should consist of at least one 0.1 μ F capacitor placed on each pin, with an additional 4.7 μ F - 22 μ F capacitor placed on the PLL supply pin (VDDP). 0.01 μ F capacitors are typically recommended for each pin. Additional filtering including ferrite beads may be necessary for noisy systems. It is recommended to place a 0 ohm resistor at the bypass capacitors that connect to each power pin to allow for additional filtering if needed. A large bulk capacitor is recommended at the point of power entry. This is typically in the 50 μ F — 100 μ F range.

11 Layout

11.1 Layout Guidelines

Circuit board layout and stack-up for the LVDS devices should be designed to provide low-noise power feed to the device. Good layout practice will also separate high frequency or high-level inputs and outputs to minimize unwanted stray noise pickup, feedback and interference. Power system performance may be greatly improved by using thin dielectrics (2 to 4 mils) for power / ground sandwiches. This arrangement provides plane capacitance for the PCB power system with low-inductance parasitics, which has proven especially effective at high frequencies, and makes the value and placement of external bypass capacitors less critical. This practice is easier to implement in dense pcbs with many layers and may not be practical in simpler boards. External bypass capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the range of 0.01 uF to 0.1 uF. Tantalum capacitors may be in the 2.2 uF to 10 uF range. Voltage rating of the tantalum capacitors should be at least 5X the power supply voltage being used.

Surface mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per supply pin, locate the smaller value closer to the pin. It is recommended to connect power and ground pins directly to the power and ground planes with bypass capacitors connected to the plane with vias on both ends of the capacitor.

A small body size X7R chip capacitor, such as 0603, is recommended for external bypass. Its small body size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of these external bypass capacitors, usually in the range of 20-30 MHz. To provide effective bypassing, multiple capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing the impedance at high frequency. Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power pin pairs. In some cases, an external filter many be used to provide clean power to sensitive circuits such as PLLs.

Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the LVDS lines to prevent coupling from the LVCMOS lines to the LVDS lines. Closely coupled differential lines of 100 Ohms are typically recommended for LVDS interconnect. The closely coupled lines help to ensure that coupled noise will appear as common mode and thus is rejected by the receivers. The tightly coupled lines will also radiate less.

For more information on the VQFN package, refer to the AN-1187 Leadless Leadframe Package (LLP) application note (SNOA401).

11.2 Layout Example

図 21. Layout Example

TEXAS INSTRUMENTS

www.tij.co.jp

12 デバイスおよびドキュメントのサポート

12.1 ドキュメントのサポート

12.1.1 関連資料

関連資料については、以下を参照してください。

- *『LVDS*オーナー・マニュアル』(SNLA187)
- 『AN-1108 チャネル・リンクPCBと相互接続デザイン・インのガイドライン』(SNLA008)
- 『転送ラインRAPIDESIGNER操作およびアプリケーション・ガイド』(SNLA035)
- 『AN-1187 リードレス・リードフレーム・パッケージ(LLP)』(SNOA401)

12.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。右上の隅にある「通 知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の 詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

12.3 コミュニティ・リソース

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™オンライン・コミュニティ *TIのE2E(Engineer-to-Engineer)コミュニティ。*エンジニア間の共同作 業を促進するために開設されたものです。e2e.ti.comでは、他のエンジニアに質問し、知識を共有 し、アイディアを検討して、問題解決に役立てることができます。

設計サポート TIの設計サポート 役に立つE2Eフォーラムや、設計サポート・ツールをすばやく見つけることが できます。技術サポート用の連絡先情報も参照できます。

12.4 商標

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.5 静電気放電に関する注意事項

すべての集積回路は、適切なESD保護方法を用いて、取扱いと保存を行うようにして下さい。

静電気放電はわずかな性能の低下から完全なデバイスの故障に至るまで、様々な損傷を与えます。高精度の集積回路は、損傷に対して敏感であり、極めてわずかなパラメータの変化により、デバイスに規定された仕様に適合しなくなる場合があります。

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、そのデバイスに ついて利用可能な最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もありま す。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
DS90C187LF/NOPB	Active	Production	VQFN-MR (NLA) 92	1000 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-10 to 70	90C187LF
DS90C187LF/NOPB.A	Active	Production	VQFN-MR (NLA) 92	1000 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-10 to 70	90C187LF
DS90C187LFE/NOPB	Active	Production	VQFN-MR (NLA) 92	250 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-10 to 70	90C187LF
DS90C187LFE/NOPB.A	Active	Production	VQFN-MR (NLA) 92	250 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-10 to 70	90C187LF
DS90C187LFE/NOPBG4.A	Active	Production	VQFN-MR (NLA) 92	250 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-10 to 70	90C187LF
DS90C187LFX/NOPB	Active	Production	VQFN-MR (NLA) 92	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-10 to 70	90C187LF
DS90C187LFX/NOPB.A	Active	Production	VQFN-MR (NLA) 92	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-10 to 70	90C187LF

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

23-May-2025

Texas

*All dimensions are nominal

STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DS90C187LF/NOPB	VQFN- MR	NLA	92	1000	330.0	16.4	7.3	7.3	1.3	12.0	16.0	Q1
DS90C187LFE/NOPB	VQFN- MR	NLA	92	250	178.0	16.4	7.3	7.3	1.3	12.0	16.0	Q1
DS90C187LFX/NOPB	VQFN- MR	NLA	92	2500	330.0	16.4	7.3	7.3	1.3	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

27-Sep-2024

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DS90C187LF/NOPB	VQFN-MR	NLA	92	1000	356.0	356.0	36.0
DS90C187LFE/NOPB	VQFN-MR	NLA	92	250	208.0	191.0	35.0
DS90C187LFX/NOPB	VQFN-MR	NLA	92	2500	356.0	356.0	36.0

MECHANICAL DATA

NLA0092A

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みま す)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある 「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証 も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様 のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様の アプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任 を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツル メンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらの リソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権の ライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、 費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは 一切の責任を拒否します。

テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ ースを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありませ ん。

お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated