DRV81004-Q1

DRV81004-Q1:4 チャネル、40V、700mQ、包括的に保護されたローサイドド ライバ

1 特長

- 車載アプリケーション向けに AEC-Q100 認証済み
 - 温度グレード 1:-40℃~+125℃、T_Δ
- 機能安全対応
 - 機能安全システムの設計に役立つ資料を利用可 能
- アナログ電源電圧:3V~40V
 - クランク機能:最小 3V
 - LV124 車載規格をサポート
- デジタル電源電圧:3V~5.5V
 - 3.3V および 5V マイクロコントローラと互換
- ドレイン ソース間のクランプ電圧:最小 42V
- R_{DS(ON)}: 12V、25℃時の代表値 **700m**Ω
- 電流:すべてのチャネルがオンの場合、85℃時に出力 ごとに 470mA
- ・ マッピング機能を備えた 2個の並列入力
- **リンプ ホーム** モードでのフェイルセーフ起動
 - nSLEEP および IN ピンの使用
- 低消費電流のスリープ モード
 - nSLEEP ピンを使用して T₁ ≤ 85°C に対して 2.7µA 未満
- 制御および診断用の 16 ビット SPI インターフェイス
 - デイジー チェーン機能
 - 8 ビット SPI デバイスと互換
- 各種保護機能をサポート-
 - バッテリ逆接続保護内蔵
 - グランドおよびバッテリ短絡保護
 - 低電圧条件での安定した動作
 - 過電流ラッチオフ
 - 過熱警告
 - サーマル シャットダウン ラッチオフ
 - 過電圧保護
 - バッテリ喪失およびグランド喪失時の保護
 - 静電気放電 (ESD) 保護
- 各種**診断機能**をサポート -
 - SPI レジスタを介した診断情報
 - オン状態での過負荷検出
 - オフ状態でのオープン負荷検出
 - 入力および出力ステータス モニタ

2 アプリケーション

- ゾーン制御モジュール (ZCM)
- 車載用ボディコントロール モジュール (BCM)
- HVAC 制御
- オートモーティブ ライティング
- ・ ガソリン / ディーゼル エンジン
- 車両制御ユニット(VCU)
- プログラマブル ロジック コントローラ (PLC)
- 空気弁
- 汎用リレードライバ

3 概要

DRV81004-Q1 は、保護および診断機能を内蔵した 4 チ ャネルローサイドドライバです。本デバイスは、車載およ び産業用アプリケーションのリレーを制御するために特に 設計されています。

負荷と本デバイスの制御と診断のために、デイジー チェ ーン機能付きの SPI (Serial Peripheral Interface) を利 用しています。マッピング機能を持つ2つの入力ピンを利 用して、出力を直接 PWM 制御できます。本デバイスは、 フェイルセーフ起動のためのリンプ ホーム モードをサポ ートしています。

DRV81004-Q1 の各ローサイド スイッチのオン抵抗は **700m** Ω です。4 つのチャネルのすべてが同時にオンのと き、本デバイスは出力ごとに 470mA の電流をサポートで きます。各出力に関連するクランプ回路は、誘導性負荷を オフにする際に蓄積されるエネルギーを消散します。


DRV81004-Q1 は、低電圧、過電圧、短絡、開放負荷検 出などの各種保護機能をサポートしています。保護および 診断機能を内蔵し、高度に統合された DRV81004-Q1 は、車載用ボディおよびパワートレイン アプリケーション や、産業用リレー制御アプリケーションに最適です。

製品情報

TO THE									
部品番号	パッケージ(1)	パッケージ サ イズ ⁽²⁾	本体サイズ (公称)						
DRV81004QPWPR Q1	HTSSOP (14)	5.0mm × 6.4mm	4.9mm × 3.9mm						

- (1) 詳細については、セクション 10 を参照してください。
- (2) パッケージ サイズ (長さ×幅) は公称値であり、該当する場合はピ ンも含まれます。

目次

1 特長	1	6.2 機能ブロック図	15
2 アプリケーション	1	6.3 機能説明	16
3 概要	1	7 アプリケーションと実装	40
4 ピン構成および機能		7.1 アプリケーション情報	
5 仕様		7.2 レイアウト	
5.1 絶対最大定格		8 デバイスおよびドキュメントのサポート	
5.2 ESD 定格		8.1ドキュメントの更新通知を受け取る方法	43
5.3 推奨動作条件		8.2 サポート・リソース	
5.4 熱に関する情報		8.3 商標	
5.5 電気的特性		8.4 静電気放電に関する注意事項	
5.6 代表的特性		8.5 用語集	
6 詳細説明		9 改訂履歷	
6.1 概要		10 メカニカル、パッケージ、および注文情報	
• • • • • • • • • • • • • • • • • • • •		TO THE TAX	

4 ピン構成および機能

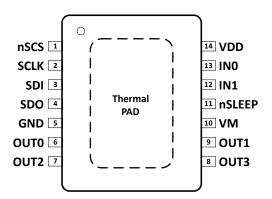


図 4-1. 14 ピン HTSSOP (PWP) 上面図

表 4-1. ピンの機能

	ピン	タイプ	HIL THY				
名称	番号	917	概要				
VM	10	Р	出力段と保護回路のアナログ電源電圧				
VDD	14	Р	SPI デジタル電源電圧				
GND	5	G	グランド ピン				
nSCS	1	ı	シリアル チップ選択。このピンを Low にするとシリアル インターフェイス通信が有効になります。 VDD に統合プルアップ。				
SCLK	2	ı	シリアル クロック入力。シリアル データは、このピンの対応する立ち上がりおよび立ち下がりエッジ でシフト アウトおよびキャプチャされます。 GND に統合プルダウン。				
SDI	3	I	シリアル データ入力。データは、SCLK ピンの立ち下がりエッジでキャプチャされます。GND に 統合プルダウン。				
SDO	4	0	シリアル データ出力。データは、SCLK ピンの立ち上がりエッジでシフト アウトされます。				
nSLEEP	11	I	ロジック High にすると、アイドルモードがアクティブになります。 GND に統合プルダウン。				
IN0	13	ı	デフォルトでチャネル 2 に接続し、リンプホームモードで使用しています。 GND に統合プルダウン。				
IN1	12	I	デフォルトでチャネル 3 に接続し、リンプホームモードで使用しています。 GND に統合プルダウン				
OUT0	6	0	ローサイド FET のドレイン (チャネル 0)				
OUT2	7	0	ローサイド FET のドレイン (チャネル 2)				
OUT3	8	0	ローサイド FET のドレイン (チャネル 3)				
OUT1	9	0	ローサイド FET のドレイン (チャネル 1)				
PAD	-	-	露出パッド。冷却および EMC のため、露出したパッドを PCB グランドに接続します。				

I =入力、O =出力、I/O =入力または出力、G =グランド、P =電源。

Copyright © 2025 Texas Instruments Incorporated

4

5 仕様

5.1 絶対最大定格

T」=- 40°C ~ 150°C、すべてのグランドを基準とした電圧、ピンに流れ込む正電流 (特に記述のない限り)

		最小値	最大値	単位
V _M	アナログ電源電圧	-0.3	42	V
V _{DD}	デジタル電源電圧	-0.3	5.75	V
V_{M_LD}	ロードダンプ保護の電源電圧		42	V
V _{M_SC}	短絡保護の電源電圧	0	28	V
-V _{M_REV}	逆極性電圧、T _J (0) = 25 °C、t≤2 最小値、R _L = 70Ω をすべてのチャネ ルで実現	-	18	V
I _{VM}	VM ピンを流れる電流、t≤2 最小値	-10	10	mA
ΙΙ _L Ι	負荷電流、シングルチャネル	-	I _{L_OCP0}	Α
V _{DS}	パワー FET の電圧	-0.3	42	V
E _{AS}	最大エネルギー消費の単一パルス、T _J (0) = 25 °C、I _L (0) = 2*I _{L_EAR}	-	50	mJ
E _{AS}	最大エネルギー消費の単一パルス、T _J (0) = 150 °C、I _L (0) = 400mA	-	25	mJ
E _{AR}	反復パルスの最大エネルギー散逸 - I_{L_EAR} , 2*10 6 cycles、 $T_J(0)$ = 85 °C、 $I_L(0)$ = I_{L_EAR}	-	10	mJ
VI	INO、IN1、nSCS、SCLK、SDI の各ピンの電圧	-0.3	5.75	V
V _{nSLEEP}	nSLEEP ピンの電圧	-0.3	42	V
V _{SDO}	SDO ピンの電圧	-0.3	V _{DD} + 0.3	V
T _A	周囲温度	-40	125	°C
TJ	接合部温度	-40	150	°C
T _{stg}	保存温度	-55	150	°C

- 短絡保護機能は、28V を超える短絡インダクタンス< 1µH をサポートしていません
- μ ードダンプは、 t_{ON} = 400ms、 t_{ON}/t_{OFF} = 10%、100 パルスに制限されています。
- 逆極性の場合、すべてのチャネルで T_J (0) = 25 °C、t≤2 最小値、R_L = 70 Ω です。デバイスは JEDEC JESD51-2、-5、-7 に従って自然対流の FR4 2s2p 基板に実装されています。製品 (Chip + パッケージ) は、2 つの 内銅層 (2 * 70 µ m Cu、2 * 35 µ m Cu) を持つ 76.2 * 114.3 * 1.5mm 基板上でシミュレーションされました。該当する場合、露出パッドの下のサーマルビアアレイが最初の内側の銅層に接触しています。
- 最大エネルギー消費を得るために、パルス形状は誘導性スイッチオフを表します。I_L(t) = I_L(0) x (1 t / t_{pulse}); 0 < t < t_{pulse}。
- 「絶対最大定格」の範囲外の動作は、デバイスの永続的な損傷の原因となる可能性があります。「絶対最大定格」は、これらの条件において、または「推奨動作条件」に示された値を超える他のいかなる条件でも、本製品が正しく動作することを意味するものではありません。「絶対最大定格」の範囲内であっても「推奨動作条件」の範囲外で使用すると、デバイスが完全に機能しない可能性があり、デバイスの信頼性、機能、性能に影響を及ぼし、デバイスの寿命を縮める可能性があります。
- 故障状態は、「通常の動作範囲外」と見なされます。

5.2 ESD 定格

				値	単位
V _{ESD} 静電放電	人体モデル (HBM)、AEC Q100-002 ⁽¹⁾ 準拠		±4000		
	静電放電		その他のピン	±2000	V
		荷電デバイス モデル (CDM)、	コーナー ピン (1、7、8、14)	±750	
		AECQ100-011 準拠	その他のピン	±500	

(1) AEC Q100-002 は、ANSI/ESDA/JEDEC JS-001 仕様に従ってHBM ストレス試験を実施することを示しています。

5.3 推奨動作条件

自由空気での動作温度範囲内 (特に記述のない限り)

		最小値	公称值	最大値	単位
V _{M_NOR}	通常動作の電源電圧範囲	4	-	40	V
V _{M_LOW}	より低い電源電圧範囲で動作するため、パラメータ偏差も 可能	3	-	4	V
V_{DD}	ロジック電源電圧	3	-	5.5	V
Vı	制御および SPI 入力 (nSLEEP、IN0、IN1、nSCS、SCLK、SDI)	0	-	5.5	V
T _A	周囲温度	-40	-	125	°C
TJ	接合部温度	-40	•	150	°C

5.4 熱に関する情報

	熱評価基準 — — — — — — — — — — — — — — — — — — —		単位
			一 型
$R_{\theta JA}$	接合部から周囲への熱抵抗	43	°C/W
R _{θJC(top)}	接合部からケース (上面) への熱抵抗	44.5	°C/W
R _{0JB}	接合部から基板への熱抵抗	21	°C/W
Ψ ЈТ	接合部から上面への特性パラメータ	3.6	°C/W
Ψ ЈВ	接合部から基板への特性パラメータ	20.9	°C/W
R _{θJC(bot)}	接合部からケース (底面) への熱抵抗	10.1	°C/W

- 従来および最新の熱評価基準の詳細については、『半導体および IC パッケージの熱評価基準』アプリケーション レポートを参照してください。
- °C/W = 摂氏温度/ワット。
- これらの値は、JEDEC により定義された 2S2P システム (JEDEC 定義の 1S0P システムによる θ JC 値を除く) に基づいており、周囲環境とアプリケーションによって変化します。消費電力は 2W、周囲温度は 70℃と仮定しています。 詳細については、以下の EIA/JEDEC 規格を参照してください。
 - 『JESD51-2、IC の熱テスト手法の環境条件 自然対流 (静止空気)』
 - 『JESD51-3、リード付き表面実装パッケージ用の有効熱伝導率の低いテスト基板』
 - 『JESD51-7、リード付き表面実装パッケージ用の有効熱伝導率の高いテスト基板』
 - 『JESD51-9、エリア アレイ表面実装パッケージの熱測定用のテスト基板』

資料に関するフィードバック (ご意見やお問い合わせ) を送信

5.5 電気的特性

 V_{DD} = 3 V \sim 5.5 V, V_M = 4 V \sim 40 V, T_J = -40 °C \sim +150 °C (特に記述のない限り)

標準値: V_{DD} = 5V、 V_{M} = 13.5V、 T_{J} = 25 °C

	パラメータ	テスト条件	:	最小値	標準値	最大値	単位
電源電圧 (V	(_M , V _{DD})						
V _{M_OP}	VM 最小動作電圧	ENx = 1b, UVRVM = 1b \sim 50 Ω	V _{DS} ≤ 1V、R _L =			4	٧
V _{DD_OP}	VDD 動作電圧	f _{SCLK} = 5MHz		3		5.5	V
V _{MDIFF}	V _M とV _{DD} の電圧差				200		mV
1	コリープェードのマよっド帝妬母法	nSLEEP、INO、IN1 はフロ	T _J ≤ 85 °C		0.7	2	^
I _{VM_SLEEP}	スリープモードのアナログ電源電流	ーティング、nSCS = VDD	T _J = 150°C		1	4	μA
L	フループエードでのロジルク配布電法	nSLEEP、INO、IN1 はフロ	T _J ≤ 85 °C		0.2	0.7	μA
I _{VDD_SLEEP}	スリープモードでのロジック電源電流	ーティング、nSCS = VDD	T _J = 150°C		0.4	3	μΑ
1	スリープ モードでの全体消費電流	nSLEEP、INO、IN1 はフロ	T _J ≤ 85 °C		0.9	2.7	μΑ
ISLEEP	スケーク モード この主体付貨 电加	ーティング、nSCS = VDD	T _J = 150°C		1.4	7	μΑ
		nSLEEP = 論理 High、			0.9	1.5	mA
I _{VM_IDLE}	アイドルモードでのアナログ電源電流	$\begin{split} &\text{IN0. IN1 } \textit{7}\text{DP-F}\textit{T}\textit{Y}\textit{J}\text{ ,} \\ &f_{\text{SCLK}} = 0 \text{ MHz, ACT} = \\ &0\text{b, ENx} = 0\text{b, IOLx} = 0\text{b, } \\ &\text{nSCS} = \text{VDD} \end{split}$	COR モード、 V _M ≤ V _{DD} - 1 V		0.12	0.2	mA
		nSLEEP = 論理 High、			0.02	0.1	
I _{VDD_IDLE}	アイドルモードのロジック電源電流	IN0、IN1 フローティング、 f _{SCLK} = 0 MHz、ACT = 0b、ENx = 0b、nSCS = VDD	COR モード、 V _M ≤ V _{DD} - 1 V		0.8	1.4	mA
I _{IDLE}	アイドルモードでの総消費電流	nSLEEP = 論理 High、 INO、IN1 フローティング、 f _{SCLK} = 0 MHz、ACT = 0b、ENx = 0b、IOLx = 0b、 nSCS = VDD			0.92	1.6	mA
		nSLEEP = 論理 High、			1.3	2	mA
I _{VM_ACT}	アクティブモードでのアナログ電源電流	$\begin{split} &\text{IN0. IN1 } \textit{7} \text{P} - \textit{F} \textit{1} \textit{Y} \textit{J} \text{,} \\ &\text{f}_{\text{SCLK}} = 0 \text{ MHz. ACT} = \\ &\text{1b. IOLx} = 0 \text{b. nSCS} = \\ &\text{VDD} \end{split}$	COR モード、 V _M ≤ V _{DD} - 1 V		0.1	0.2	mA
		nSLEEP = 論理 High、			0.05	0.2	mA
I _{VDD_ACT}	アクティブモードでのロジック電源電流	INO、IN1 はフローティング、 f _{SCLK} = 0 MHz、ACT = 1b、nSCS = VDD	COR モード、 V _M ≤ V _{DD} - 1 V		1.25	2	mA
I _{ACT}	アクティブモードでの総消費電流	nSLEEP = 論理 High、 IN0、IN1 フローティング、 f _{SCLK} = 0 MHz、ACT = 1b、IOLx = 0b、nSCS = VDD			1.35	2.2	mA
t _{S2I}	スリープからアイドルまでの遅延				200	300	μs
t _{l2S}	アイドルからスリープまでの遅延				100	150	μs
t _{I2A}	アイドルからアクティブまでの遅延				100	150	μs
t _{A2I}	アクティブからアイドルまでの遅延				100	150	μs

 V_{DD} = 3 V \sim 5.5 V, V_M = 4 V \sim 40 V, T_J = -40 °C \sim +150 °C (特に記述のない限り)

標準値: V_{DD} = 5V、 V_{M} = 13.5V、 T_{J} = 25 °C

	パラメータ	テスト条件		最小値	標準値	最大値	単位
t _{S2LH}	スリープからリンプホームまでの遅延				300 + t _{ON}	450 + t _{ON}	μs
t _{LH2S}	リンプホームからスリープまでの遅延				200 + t _{OFF}	300 + t _{OFF}	μs
t _{LH2A}	リンプホームからアクティブまでの遅延				50	100	μs
t _{A2LH}	アクティブからリンプホームまでの遅延				60	100	μs
t _{A2S}	アクティブからスリープまでの遅延				50	100	μs
制御およひ	、SPI 入力 (nSLEEP、IN0、IN1、nSCS、S	CLK, SDI)					
V _{IL}	入力ロジック Low 電圧			0		0.8	V
V _{IH}	入力論理 High 電圧 (nSLEEP、IN0、IN1)			2		5.5	V
V _{IH_SPI}	入力ロジック High 電圧 (nSCS、 SCLK、SDI)			2		V_{DD}	V
I _{IL}	入力ロジック Low 電流 (nSCS を除くすべてのピン)	V _I = 0.8 V		8	12	16	μΑ
I _{IH}	入力ロジック High 電流 (nSCS を除くすべてのピン)	V ₁ = 2 V		20	30	40	μΑ
I _{IL_nSCS}	nSCS 入力ロジック Low 電流	V _{nSCS} = 0.8 V, V _{DD} = 5V		20	60	90	μA
I _{IH_nSCS}	nSCS 入力ロジック High 電流	V _{nSCS} = 2 V, V _{DD} = 5V		7	45	60	μA
プッシュプ	ル出力 (SDO)					I	
V _{SDO_L}	出力ロジック Low 電圧	I _{SDO} = -1.5mA		0		0.4	V
V _{SDO_H}	ロジック High 出力電圧	I _{SDO} = 1.5mA		V _{DD} - 0.4		V_{DD}	V
I _{SDO_OFF}	SDO トライステートリーク電流	V _{nSCS} = V _{DD} , V _{SDO} = 0V ±	たは V _{DD}	-0.5		0.5	μA
電力段							
D		T _J = 25°C		0.4	0.7	0.9	
R _{DS(ON)}	ON 抵抗	T _J = 150 °C, I _L = I _{L_EAR} = 2	20 mA	0.5	1	1.4	Ω
	公称負荷電流 (すべてのチャネルがア	T _A = 85 °C, T _J ≤ 150 °C			470	500	mA
I _{L_NOM}	クティブ)	T _A = 105 °C \ T _J ≤ 150 °C			370	500	mA
I _{L_EAR}	最大エネルギー消費の負荷電流 - 反復 (すべてのチャネルがアクティブ)	T _A = 85 °C, T _J ≤ 150 °C			220		mA
E _{AR}	最大エネルギー消費反復パルス-2* I _{L_EAR} (2 チャネルを並列接続)	$T_{J(0)}$ = 85 °C、 $I_{L(0)}$ = 2* I_{L_EA} ル、影響を受けるチャネルで				15	mJ
V _{DS_OP}	バッテリ電圧低下時の電力段の電圧降 下	$R_L = 50\Omega$ 、 $V_M = 4V$ で供給			0.05	0.25	V
V _{DS_CL}	ドレイン・ソース間出力のクランプ電圧	I _L = 20mA		42	46	50	V
l. 055	出力リーク電流 (各チャネル)		T _J ≤ 85 °C		0.15	0.3	μΑ
I _{L_OFF}	四刀ソーン 电伽 (台ノヤ个///)	ング、V _{DS} = 28V、ENx = 0b	T _J = 150°C		0.5	2	μΑ
t _{DLY_ON}	ターンオン遅延 (INx ピンまたはビットから V_{OUT} = 90% V_{M} まで)	$R_L = 50Ω$ 、 $V_M = 13.5V$ 、 Y^D はリンプホームモード	'ティブモードまた	2	5.5	9	μs

Copyright © 2025 Texas Instruments Incorporated

8

 V_{DD} = 3 V \sim 5.5 V, V_M = 4 V \sim 40 V, T_J = -40 °C \sim +150 °C (特に記述のない限り)

標準値: V_{DD} = 5V、 V_{M} = 13.5V、 T_{J} = 25 °C

	パラメータ	テスト条件	最小値	標準値	最大値	単位
t _{DLY_OFF}	ターンオフ遅延 (INx ピンまたはビットから V_{OUT} = 10% V_{M} まで)	$R_L = 50\Omega$, $V_M = 13.5V$, $PPTT$ T T T T T T T T T	3	6	11	μs
t _{ON}	ターンオン時間 (INx ピンまたはビットから V_{OUT} = 10% V_{M} まで)	$R_L = 50\Omega$, $V_M = 13.5V$, $PPTT$ T T T T T T T T T	10	16	22	μs
t _{OFF}	ターンオフ時間 (INx ピンまたはビットから V_{OUT} = 90% V_{M} まで)	$R_L = 50\Omega$, $V_M = 13.5V$, $PPTT$ T T T T T T T T T	13	17	24	μs
t _{ON} - t _{OFF}	ターンオンlオフマッチング	$R_L = 50\Omega$, $V_M = 13.5V$, $PPTT$ T T T T T T T T T	-10	0	10	μs
SR _{ON}	ターンオンスルーレート、 V_{DS} = 70% \sim 30% V_{M}	$R_L = 50\Omega$, $V_M = 13.5V$, $PPTAT = FFTAT = $	0.8	1.2	1.6	V/µs
SR _{OFF}	ターンオフスルーレート、 V_{DS} = 30% \sim 70% V_{M}	$R_L = 50\Omega$, $V_M = 13.5V$, $PPTT$ T T T T T T T T T	0.8	1.2	1.6	V/µs
t _{SYNC}	内部基準周波数同期時間			7	10	μs
PROTECTI	ON		1			
V _{M_UVLO_F}	VM 低電圧シャットダウン (立ち下がり)	ENx =オン、 V_{DS} ≤1 $V\sim UVRVM$ = 1 b 、 R_L = 50Ω	2.64	2.73	2.82	V
V _{M_UVLO_R}	VM 低電圧シャットダウン (立ち上がり)		2.77	2.86	2.95	V
V _{DD_UVLO}	VDD 低電圧シャットダウン	V _{SDI} = V _{SCLK} = V _{nSCS} = 0V、SDO を Low から Hi-Z に	2.5	2.6	2.7	V
V _{DD_HYS}	VDD 低電圧シャットダウン ヒステリシス		100	120	160	mV
		T _J = -40°C	1.4	1.65	2.1	А
I _{L_OCP0}	過電流保護スレッショルド、OCP = 0b	T _J = 25°C	1.3	1.55	1.9	Α
I _{L_OCP0}		T _J = 150°C	1.1	1.35	1.7	Α
		T _J = -40°C	0.7	0.9	1.2	Α
I _{L_OCP1}	過電流保護スレッショルド、OCP = 0b	T _J = 25°C	0.65	0.85	1.05	Α
		T _J = 150°C	0.6	0.75	11 22 24 10 1.6 1.6 10 2.82 2.95 2.7 160 2.1 1.9 1.7	Α
		T _J = -40°C	1.9	2.25	3	Α
I _{L_OCP0}	過電流保護スレッショルド、OCP = 1b	T _J = 25°C	1.8	2.1	2.7	Α
		T _J = 150°C	1.4	1.8	2.3	Α
		T _J = -40°C	1.3	1.55	2	Α
I _{L_OCP1}	過電流保護スレッショルド、OCP = 1b	T _J = 25°C	1.2	1.45	1.8	Α
		T _J = 150°C	1.1	1.3	1.6	А
t _{OCPIN}	過電流スレッショルドの切り替え遅延時間		80	170	260	μs
t _{OFF_OCP}	過電流シャットダウン遅延時間		1.5	3.5	6	μs
T _{OTW}	過熱警告		120	140	160	°C
T _{HYS_OTW}	過熱警告 ヒステリシス			12		°C
T _{TSD}	サーマル シャットダウン温度		150	175	200	°C
V _{M_AZ}	過電圧保護	I _{VM} = 10mA、スリープモード	44	48	50	V

 V_{DD} = 3 V \sim 5.5 V, V_{M} = 4 V \sim 40 V, T_{J} = -40 °C \sim +150 °C (特に記述のない限り)

標準値: V_{DD} = 5V、 V_{M} = 13.5V、 T_{J} = 25 °C

	パラメータ	テスト条件		最小値	標準値	最大値	単位
V ·	逆極性時のドレイン - ソースダイオード	I ₁ = -10mA、スリープモード	T _J = 25°C		670		mV
V _{DS_REV}	世極性時のドレイン・ノースタイオード	TOTIIA	T _J = 150°C		530		mV
t _{RETRY0_LH}	リンプホームモードでの再起動時間			7	10	13	ms
t _{RETRY1_LH}	リンプホームモードでの再起動時間			14	20	26	ms
t _{RETRY2_LH}	リンプホームモードでの再起動時間			28	40	52	ms
t _{RETRY3_LH}	リンプホームモードでの再起動時間			56	80	104	ms
t _{OSM}	出力ステータスモニタコンパレータのセ トリング時間					20	μs
V _{DS_OL}	出力ステータス監視スレッショルド電圧			3	3.3	3.6	V
I _{OL}	出力診断電流	V_{DS} = 3.3V, V_{M} = 5V \sim 18	V	20	75	110	μΑ
I _{OL}	出力診断電流	V _{DS} = 3.3V , V _M = 13.5V		60	75	85	μA
R _{OL}	開放負荷等価抵抗	V_{M} = 5V \sim 40V		45		190	kΩ

5.5.1 SPI のタイミング要件

• 製造時テストは適用されず、設計により保証されています

	パラメータ	テスト条件	最小値	公称值	最大値	単位
t _{nSCS_lead}	イネーブルリード時間 (nSCS 立ち下がりから SCLK 立ち上がりまで)		200			ns
t _{nSCS_lag}	イネーブル遅延時間 (SCLK 立ち下がりから nSCS 立ち上がりまで)		200			ns
t _{nSCS_td}	転送遅延時間 (nSCS 立ち上がりから立ち下がり nSCS まで)		250			ns
t _{SDO_en}	出力イネーブル時間 (nSCS 立ち下がりから SDO 有効まで)	C _L = 20 pF、SDO ピン			200	ns
t _{SDO_dis}	出力ディスエーブル時間 (nSCS 立ち上がりから SDO ハイインピーダンスまで)	C _L = 20 pF、SDO ピン			200	ns
f _{SCLK}	シリアル クロック周波数				5	MHz
t _{SCLK_P}	シリアルクロック周期		200			ns
t _{SCLK_H}	シリアルクロックロジック High 時間		75			ns
t _{SCLK_L}	シリアルクロックロジック Low 時間		75			ns
t _{SDI_su}	データセットアップ時間 (SCLK 立ち下がりまでの必要な SDI 時間)		20			ns
t _{SDI_h}	データホールド時間 (SCLK から SDI に立ち下がり)		20			ns
t _{SDO_v}	容量性負荷での出力データの有効時間	C _L = 20 pF、SDO ピン			100	ns

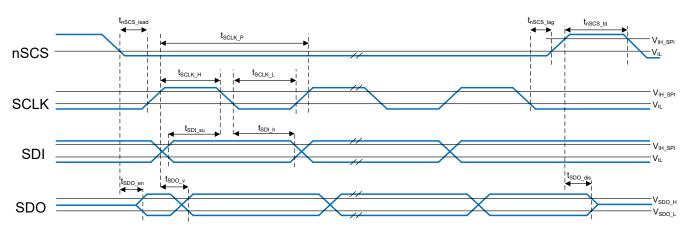


図 5-1. SPI タイミング図

5.6 代表的特性

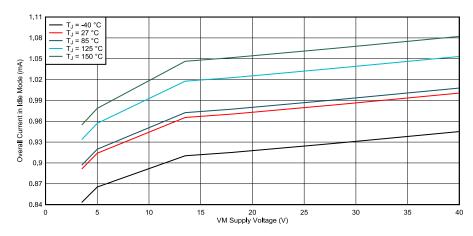


図 5-2. アイドルモード消費電流、VDD = 5.5V

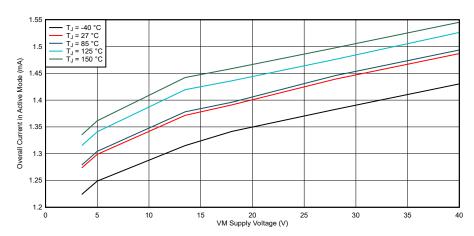


図 5-3. アクティブ モードの電源電流、VDD = 5.5V

11

5.6 代表的特性 (続き)

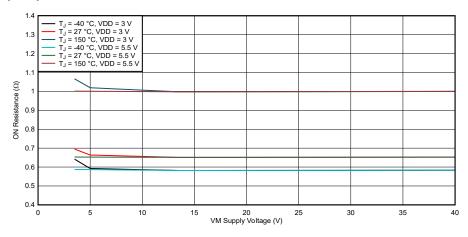


図 5-4. スイッチ オン抵抗

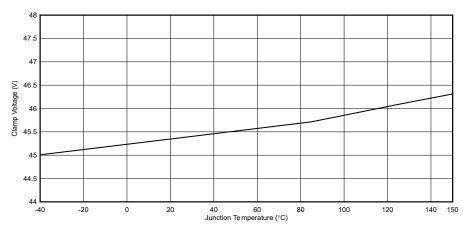


図 5-5. ドレイン - ソース間クランプ電圧、VM = 13.5V、VDD = 5V

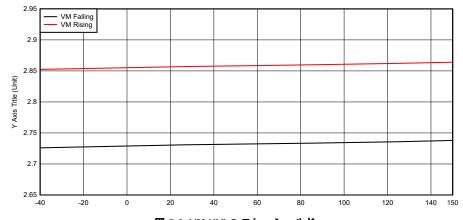


図 5-6. VM UVLO スレッショルド

5.6 代表的特性 (続き)

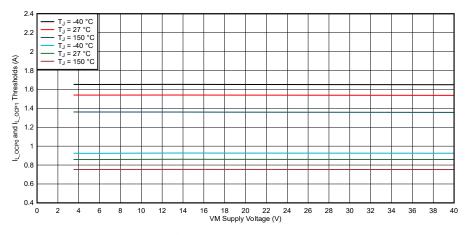


図 5-7. 過電流保護スレッショルド、VDD = 5.5V、OCP = 0b

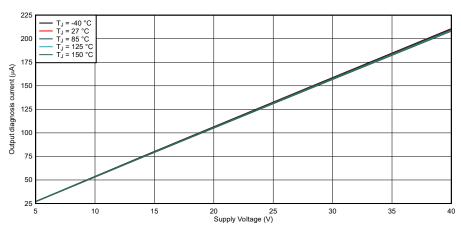


図 5-8. 出力診断電流

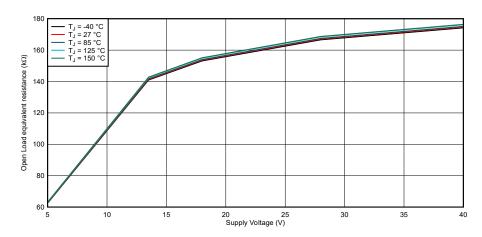


図 5-9. 開放負荷等価抵抗

13

6 詳細説明

6.1 概要

DRV81004-Q1 は、保護および診断機能を内蔵した 4 チャネル ローサイドドライバです。出力段には 4 つの N チャネルパワー MOSFET ローサイドスイッチが内蔵されています (標準 $R_{DS(ON)}$ (T_J = 25 °C が 700m Ω の場合)。 DRV81004-Q1 は、低電源電圧で動作するように設計されています。バッテリ電圧が低い状態に維持できます ($V_M \ge 3V$)。

16 ビットの SPI インターフェイスは、デバイスと負荷の制御および診断に使用されます。 SPI インターフェイスはデイジーチェーンをサポートしており、同じマイコンピンを使用して複数のデバイス (8 ビット SPI も搭載したデバイス) を 1 つの SPI チェーンで接続できます。 SPI 機能は、デジタル電源が存在するときのみ利用できます。

DRV81004-Q1 には 2 つの出力に接続された 2 つの入力ピンがあります。 nSLEEP ピンがロジック Low のとき、デジタル電源電圧が利用可能かどうかとは独立に、入力ピンを使用してチャネル 2 および 3 をアクティブにできます。入力マッピング機能を使用すると、入力ピンを別の出力に接続したり、同じ入力ピンにさらに多くの出力を割り当てることができます。この場合、1 つの入力信号でより多くのチャネルを制御できます。

リンプホームモードでは、入力ピンはチャネル 2 および 3 に直接配線されます。 nSLEEP ピンがロジック Low のときは、 デジタル電源電圧の存在とは独立に、入力ピンを使用して 2 つのチャネルをアクティブにできます。

このデバイスは、開放負荷(オフ状態)と短絡検出により負荷を診断できます。開放負荷検出では、SPIを介して内部電流源をアクティブにできます。各出力段は短絡から保護されています。過電流場合、過電流検出スレッショルドに達すると、影響を受けるチャネルはオフになり、SPIで再アクティブ化できます。

リンプホームモード動作では、ロジック HIGH に設定された入力ピンに接続されているチャネルは、出力再起動時間が経過した後、自動的に再起動します。温度センサは、デバイスを過熱から保護するため、各チャネルで利用できます。

パラメータ 記号 値 アナログ電源電圧 V_{M} $3.0 V \sim 40 V$ $3.0V \sim 5.5V$ デジタル電源電圧 V_{DD} V_{MAZ} 42V 最小の過電圧保護 T」= 150°C 時の最大オン抵抗 1.4 Ω R_{DS(ON)} 470mA 公称負荷電流($T_A = 85$ °C、すべてのチャネル) I_{L NOM} 最大エネルギー消費-繰り返し E_{AR} $10mJ @ I_{L EAR} = 220mA$ ドレイン ソース間のクランプ電圧 42V V_{DS CL} 2.1A または 3A 過負荷スイッチオフの最大スレッショルド I_L OVL0 2.7µA T」≤85°Cでの最大総静止電流 I_{SLEEP} 最大 SPI クロック周波数 f_{SCLK} 5MHz

表 6-1. 製品概要

6.2 機能ブロック図

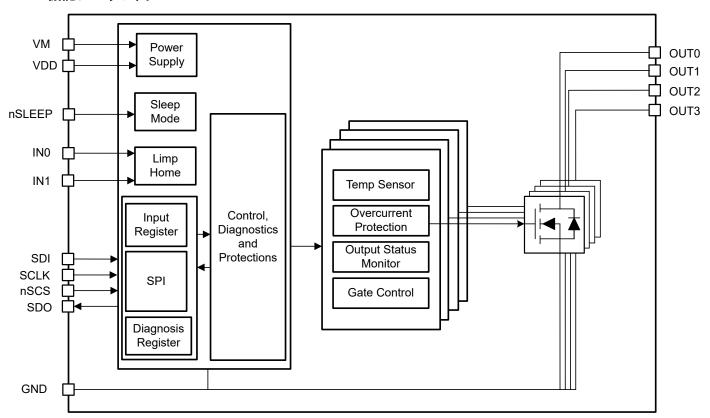


図 6-1. 機能ブロック図

6.3 機能説明

6.3.1 コントロールピン

このデバイスには 3 本のピン (IN0、IN1、nSLEEP) があり、SPI を使用せずにデバイスを直接制御できます。

6.3.1.1 入力ピン:

DRV81004-Q1 には 2 つの入力ピンがあります。各入力ピンはデフォルトで 1 つのチャネル (INO からチャネル 2、IN1 からチャネル 3) に接続されています。入力マッピングレジスタ MAPO および MAP1 は、各入力ピンに追加または異なるチャネルを接続するようにプログラムできます (図 6-2 を参照)。チャネルを駆動する信号は、EN レジスタステータス (INO と IN1) の間の OR 結合です (入力マッピングレジスタのステータスに応じて)。

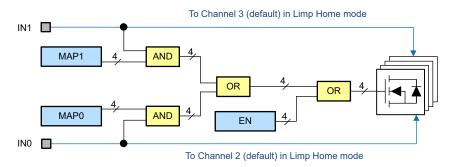


図 6-2. 入力マッピング

入力ピンのロジックレベルは、入力ステータスモニタレジスタ (INST) を使用して監視できます。入力ステータスモニタは、DRV81004-Q1 がリンプホームモードのときも動作します。どちらかの入力ピンがロジック High に設定され、nSLEEP ピンがロジック Low に設定されると、デバイスはリンプホームモードに切り替わり、デフォルトで入力ピンに割り当てられたチャネルをアクティブにします。

6.3.1.2 nSLEEP ピン

nSLEEP ピンを使用して、デバイスを論理 Low に設定し、すべての入力ピンも論理 Low に設定すると、スリープモード に移行します。 nSLEEP ピンがロジック Low に設定されている場合、本デバイスはリンプホーム・モードに移行します。

適切なモード遷移を保証するには、nSLEEP ピンを少なくとも t_{l2S} (ロジック High からロジック Low に遷移) または t_{S2I} (ロジック Low からロジック High に遷移) の間設定する必要があります。

nSLEEP ピンを論理 Low に設定すると、次のようになります。

- SPI 内のすべてのレジスタはデフォルト値にリセットされます。
- V_{DD} および V_{M} 低電圧検出回路は無効化され、消費電流を低減します (両方の入力がロジック Low に設定されている場合)。
- 両方の入力ピンがロジック Low に設定されている場合、SPI 通信は許可されません (nSCS ピンがロジック Low に設定されているときも、SDO ピンが高インピーダンスのままです)。

6.3.2 電源

DRV81004-Q1 は、次の 2 つの電源電圧で供給されます。

- V_M (ロジックにも使用されるアナログ電源電圧)
- V_{DD} (デジタル電源電圧)

 V_M 電源をバッテリフィードに接続し、 V_{DD} 電源と組み合わせて電力段の駆動回路に使用します。 V_M 電圧が V_{DD} 電圧を下回る状況 (たとえば、最小 3V までのクランキングイベント時) では、 V_{DD} 電源電圧には、低電圧検出回路があります。

- V_M と V_{DD} の両方の電源電圧が低電圧なため、電源段と SPI 通信のアクティブ化を防止できます(SPI レジスタはリセットされます)
- V_{DD} 電源が低電圧になると、SPI 通信は禁止されます。SPI 読み出し/書き込みレジスタはデフォルト値にリセットされます。
- V_M 電源の低電圧が印加されると、DRV81008 -Q1 が V_{DD} 電源からデバイス電流を強制的にドレインします。

図 6-3 に、電源ピン V_M と V_{DD} の間の相互作用、出力ステージドライバ、および SDO 電源ラインの基本的な概念図を示します。

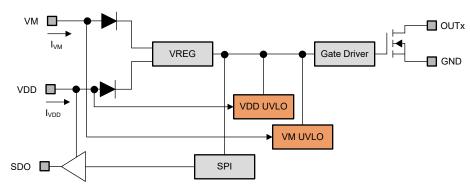


図 6-3. 内部電源アーキテクチャ

 $3V \le V_M \le V_{DD} - V_{MDIFF}$ の場合、DRV81004-Q1 はクランキング動作範囲 (COR) で動作します。この状態では、VM ピンから減少すると同時に、VDD ピンからの消費電流が増加します。合計消費電流は指定された制限内に維持されます。

図 6-4 に、デバイスが COR を出入りする VM ピンの電圧レベルを示します。 COR との間の遷移中、I_{VM} と I_{VDD} は、通常動作と COR 動作用に定義された値の間で変化します。両方の電流の合計は、セクション 6.3.2 に規定されている制限範囲内にとどまります。

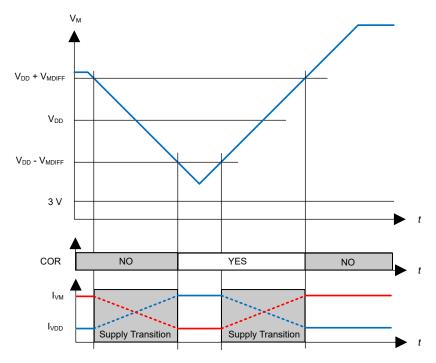


図 6-4. クランキング動作範囲

When $V_{M_UVLO} \leq V_{M} \leq V_{M_OP}$ の場合、以前にオフになっていたチャネルをオンに切り替えることができない場合があります。すでにオンになっているすべてのチャネルは、SPI または IN ピンを使用してオフになっていない限り状態を維持します。 V_{M} および V_{DD} 電源電圧の異なるチャネル動作の概要を表 6-2 表 6-3 および表 6-4 に示します (これらの表は、電源投入が成功した後に有効です)。

表 6-2. V_M と V_{DD} の機能としてのチャネル制御

	$V_{DD} \le V_{DD_UVLO}$	V _{DD} > V _{DD_UVLO}
V _M ≤ 3V	チャネルを制御できません	チャネルのオン/オフ切り替え (SPI 制御) (R _{DS(on)} 偏差可能)
$3V < V_{M} \le V_{M_OP}$	チャネルは SPI で制御できません	チャネルのオン/オフ切り替え (SPI 制御) (R _{DS(on)} 偏差可能)
V _M > V _{M_OP}	チャネルは SPI で制御できません	チャネルのオンとオフを切り替えることができます

表 6-3. リンプホームモードを V_M および V_{DD} の関数として使用

	$V_{DD} \le V_{DD_UVLO}$	$V_{DD} > V_{DD_UVLO}$
V _M ≤ 3V	該当なし	利用可能 (R _{DS(ON)} 偏差も可能)
$3V < V_{M} \le V_{M_OP}$	利用可能 (R _{DS(ON)} 偏差も可能)	利用可能 (R _{DS(ON)} 偏差も可能)
$V_M > V_{M_OP}$	使用可能	使用可能

表 6-4. SPI レジスタと SPI 通信を、V_M と V_{DD} の機能として使用

	$V_{DD} \le V_{DD_UVLO}$	$V_{DD} > V_{DD_UVLO}$
SPI レジスタ	リセット	使用可能
SPI 通信	使用不可 (f _{SCLK} = 0MHz)	可能 (f _{SCLK} = 5MHz)

資料に関するフィードバック(ご意見やお問い合わせ)を送信

Copyright © 2025 Texas Instruments Incorporated

English Data Sheet: SLVSH58

6.3.2.1 動作モード

DRV81004-Q1 は次の動作モードをサポートしています。

- スリープ モード
- アイドル モード
- アクティブ モード
- リンプ ホーム モード

動作モード間の遷移は、以下のレベルと状態に応じて決定されます。

- nSLEEP ピンでのロジックレベル
- INx ピンでのロジックレベル
- ENx ビットの状態
- ACT ビットの状態

状態遷移の可能性を含む状態遷移図を図 6-5 に示します。DRV81004-Q1 の動作および一部のパラメータは、デバイスの動作モードによって変化する可能性があります。また、低電圧検出回路により、同じ動作モードでいくつかの変化が見られます。

図 6-5. 動作モードの状態図

DRV81004-Q1 の動作モードは、次の式で観測できます。

- 出力チャネルのステータス
- SPI レジスタのステータス
- VDD ピンでの消費電流 (I_{VDD})
- VM ピンでの消費電流 (I_{VM})

負荷をオンにするためのデフォルトの動作モードはアクティブモードです。デバイスがアクティブモードではなく、1 つ以上の出力の切り替え要求が (SPI または入力ピン経由) 来る場合、nSLEEP ピンのステータスに従って、アクティブモードまたはリンプホームモードに切り替わります。

チャネルのターンオン時間は、DRV81004-Q1 がアクティブモードまたはリンプホームモードの場合、パラメータ t_{ON} により定義されます。それ以外の場合は、2 つの電源モードのいずれかに到達するために必要な遷移時間を追加する必要があります (\boxtimes 6-6 を参照)。

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

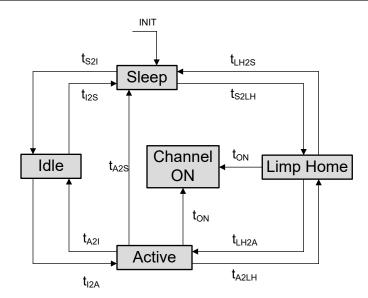


図 6-6. モード遷移タイミング

表 6-5 に、デバイスの動作モード、 V_M と V_{DD} 電源電圧、および最も重要な機能 (チャネル制御、SPI 通信、SPI レジスタ) の状態の関係を示します。

	2X 0-3. 3/// L	I. AM 42 & O. ADI) BUCORK (ノノノハコンハマン1成月日	
動作モード	機能	V_{M} UVLO, $V_{DD} \le V_{DD_UVLO}$	V _M UVLO, V _{DD} >	V _M は UVLO ではな い、V _{DD} ≤ V _{DD_UVLO}	V _M は UVLO ではな い、V _{DD} > V _{DD_UVLO}
	チャネル数	該当なし	該当なし	該当なし	該当なし
スリープ	SPI 通信	該当なし	該当なし	該当なし	該当なし
	SPI レジスタ	リセット	リセット	リセット	リセット
	チャネル数	該当なし	該当なし	該当なし	該当なし
アイドル	SPI 通信	該当なし	あり	該当なし	あり
	SPI レジスタ	リセット	あり	リセット	あり
	チャネル数	該当なし	あり	あり、ピン内のみ	あり
アクティブ	SPI 通信	該当なし	あり	該当なし	あり
	SPI レジスタ	リセット	あり	リセット	あり
	チャネル数	該当なし	あり、ピン内のみ	あり、ピン内のみ	あり、ピン内のみ
リンプ ホーム モード	SPI 通信	該当なし	はい、読み取り専用	該当なし	はい、読み取り専用
	SPI レジスタ	リセット	はい、読み取り専用	リセット	はい、読み取り専用

表 6-5. 動作モード、VM および Vnn 電圧との関係でのデバイスの機能

6.3.2.1.1 パワーアップ

いずれかの電源電圧 (V_M または $_{V\,DD}$) がデバイスに印加され、INx または $_{NX}$ または $_{NX}$ を主回るか、または $_{NX}$ が $_{NX}$ いるとき、パワーアップ条件が満たされます。 $_{NX}$ がスレッショルド $_{NX}$ が $_{NX}$ を上回るか、または $_{NX}$ が $_{NX}$ が $_{NX}$ と可能を 上回ると、内部パワーオン信号が設定されます。

6.3.2.1.2 スリープモード

DRV81004-Q1 がスリープ モードにあるときは、電源電圧とは無関係にすべての出力がオフになり、SPI レジスタがリセットされます。消費電流は最小限です。

Product Folder Links: DRV81004-Q1

6.3.2.1.3 アイドル モード

アイドルモードでは、デバイスの消費電流はパラメータ I_{VDD_IDLE} と I_{VM_IDLE} で与えられた制限、またはデバイス全体のパラメータ I_{IDLE} に達することができます。

- このモードでは、内部電圧レギュレータは動作しています。
- 診断機能は使用できません。
- 電源電圧とは無関係に出力チャネルがオフになります。
- V_{DD} が利用可能な場合、SPI レジスタは動作しており、SPI 通信が可能です。

6.3.2.1.4 アクティブ モード

アクティブ モードは、リンプホーム状態が設定されておらず、一部またはすべての負荷を駆動する必要がある場合の DRV81004-Q1 の通常動作モードです。セクション 6.3.2 に示すように、 V_{DD} および V_{M} の電圧レベルは動作に影響を 及ぼします。デバイスの消費電流は、 I_{VDD} ACT と I_{VM} ACT (デバイス全体の I_{ACT}) で規定されています。

nSLEEP ピンがロジック High に設定され、入力ピンのいずれかがロジック High に設定されるか、または 1 つの ENx ビットが 1b に設定されると、デバイスはアクティブモードに移行します。

- ACT ビットが 0b に設定されている場合、すべての入力ピンがロジック Low に設定され、ENx ビットが 0b に設定されると、デバイスはすぐにアイドルモードに戻ります。
- ACT が 1b に設定されている場合、デバイスは入力ピンや ENx ビットのステータスとは無関係にアクティブモードに維持されます。
- すべての入力ピンがロジック Low に設定されていると、V_{DD} 電源の低電圧状態により、デバイスはアイドルモードに移行します。

レジスタ MAP0 と MAP1 の両方が 00h に設定されていても、入力ピン INx の 1 つがロジック High に設定されている場合、デバイスはアクティブ モードに移行します。

6.3.2.1.5 リンプホーム モード

nSLEEP ピンがロジック Low で、入力ピンの 1 つがロジック High に設定されているとき、DRV81004-Q1 はリンプホーム モードに移行し、このピンに接続されているチャネルをオンにします。SPI 通信は可能ですが、読み出し専用モード (SPI レジスタは読み取り可能ですが、書き込みはできません) でのみ可能です。

- UVRVM を 1b に設定します
- MODE ビットを 01b (リンプホームモード) に設定します
- リンプホームモードに移行した後、最初の SPI コマンドでは、TER ビットが 1b に設定されます。その後は正常に動作します。
- OLOFF ビットを 0b に設定します
- ERRx ビットは正常に動作します
- OSMx ビットは、読み取りと通常動作が可能です
- 他のすべてのレジスタはデフォルト値に設定され、デバイスがリンプホームモードである限りはプログラムできません

リンプホーム時にチャネル 2 および 3 をオンにするために必要な電源電圧条件の詳細については、表 6-3 を参照してください。他のすべてのチャネルはオフです。

アクティブからリンプホームモード、またはリンプホームからアクティブモードへの遷移中に SPI コマンドが送信されると、SPI 応答が未定義になる場合があります。

6.3.2.1.6 リセット条件

次の3つの条件のいずれかが、SPI レジスタをデフォルト値にリセットします。

- V_{DD} は、低電圧スレッショルド V_{DD} UVLO を下回ってはなりません
- nSLEEP ピンをロジック Low に設定
- リセットコマンド (RST を 1b に設定) が実行されます
 - ERRx ビットは、RESET コマンドによってクリアされません (機能安全の場合)。

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

特に、すべてのチャネルがオフになり (ロジック High に設定された入力ピンがない場合)、入力マッピングの構成がリセットされます。

English Data Sheet: SLVSH58

6.3.3 電力段

DRV81004-Q1 は、4 チャネルのローサイドリレースイッチです。 N チャネル MOSFET を採用して電力段を形成しています。 オン抵抗 $R_{DS(ON)}$ は、電源電圧と接合部温度 T_J に依存します。

6.3.3.1 スイッチング抵抗性負荷

抵抗性の負荷をスイッチングする場合、以下のスイッチング時間とスルーレートを考慮する必要があります。

デフォルトのスルーレート: $1.2V/\mu s$ 。構成レジスタ 2 の SR ビットを使用して、スルーレートを $3V/\mu$ s に増やすことができます。

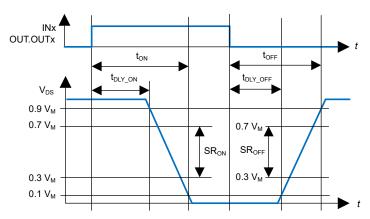


図 6-7. 抵抗性負荷の切り換え

6.3.3.2 誘導性出力クランプ

誘導性負荷をオフにすると、インダクタンスが継続的に電流を駆動しようとしているため、パワースイッチの両端の電圧は Vps cl まで上昇します。デバイスの損傷を防止するために電圧クランプが必要です。

図 6-8 に、出力クランプの図を示します。最大許容負荷インダクタンスは制限されます。クランプ構造により、すべてのモード (スリープ、アイドル、アクティブ、リンプホーム) でデバイスが保護されます。

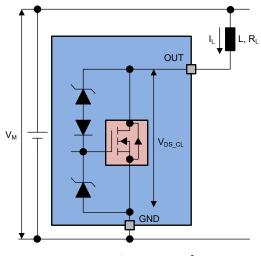


図 6-8. 出力クランプ

6.3.3.3 最大負荷インダクタンス

誘導性負荷の消磁中、磁気エネルギーは DRV81004-Q1 で消費されます。式 1 に、ローサイドスイッチのエネルギーを計算する方法を示します。

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

$$E = V_{DS_CL} \times \left[\frac{V_M - V_{DS_CL}}{R_L} \times \ln \left(1 - \frac{R_L \times I_L}{V_M - V_{DS_CL}} \right) + I_L \right] \times \frac{L}{R_L}$$
(1)

熱に変換される最大エネルギーは、部品の熱設計によって制限されます。セクション 5.1 に示す E_{AR} 値は、出力に接続されているインダクタンスが同時に消磁されたとき、すべてのチャネルが同じエネルギーを消費できると仮定しています。

6.3.3.4 並列でのチャネル スイッチング

チャネルが並列に接続された場合には、2 つのチャネルが非同期にオフになることがあり、そのため、最後にオフになるチャネルに追加の熱ストレスが発生します。この状態を回避するため、SPI レジスタで、2 つの隣接チャネルの並列動作を(PAR ビットを使用して)構成することができます。このモードで動作している場合、過負荷または過熱状態に反応した最も速いチャネルは、他のチャネルも非アクティブになります。2 つの並列チャネルが処理できる誘導性エネルギーは、1 つのチャネルエネルギーの2倍未満です。以下の2 つのチャネルは互いに同期できます。

- チャネル 0 およびチャネル 2→PAR0 を 1b に設定
- チャネル 1 およびチャネル 3→PAR1 を 1b に設定

この同期ビットは、チャネルが過電流状態または過熱状態にどのように反応するかにのみ影響します。同期したチャネルは、マイコンによって同時にオン/オフする必要があります。

資料に関するフィードバック(ご意見やお問い合わせ)を送信

6.3.4 保護および診断機能

DRV81004-Q1 は、複数の保護機能をサポートしており、以降のセクションで詳細に説明します。SPI インターフェイスは、デバイスと負荷状態に関する診断情報を提供します。各チャネル診断情報は、他のチャネルから独立しています。1つのチャネルのエラー状態は、デバイスの他のチャネルの診断に影響を与えません (並列に動作するように構成されていない限り、詳細については、セクション 6.3.3.4 を参照してください)。

1 つのチャネルで過電流または過熱が発生すると、診断ビット ERRx がそれに応じて設定されます。セクション 6.3.4.2 とセクション 6.3.4.3 で説明されているように、チャネルはオフになるため、CLRx ビットを 1b に設定して再度アクティブにする必要があります。

6.3.4.1 V_M の低電圧

 V_{M_UVLO} と V_{M_OP} の間には、低電圧機構がトリガされます。デバイスが動作しており、電源電圧が低電圧スレッショルド V_{M_UVLO} を下回ると、ロジックはビット UVRVM を 1b に設定します。電源電圧 V_{M} が最小電圧動作スレッショルド V_{M_OP} を上回るとすぐに、最初の標準診断読み出しの後で、ビット UVRVM は 0b に設定されます。 VM の低電圧状態は、セクション 6.3.2 で説明されているように、チャネルのステータスに影響します。 低電圧動作を、図 6-9 に示します。

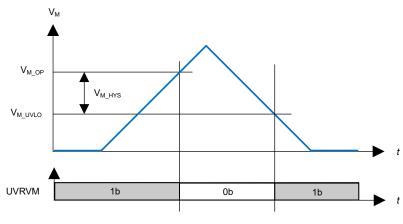


図 6-9. V_M 低電圧

6.3.4.2 過電流保護

DRV81004-Q1 は、過電流または負荷短絡時に保護されます。2 つの過電流スレッショルドがあります (図 6-10 を参照)。

- チャネルスイッチオンと t_{OCPIN} の間の I_{L OCPO}
- t_{OCPIN}の後に I_{L_OCP1}

 I_{L_OCP0} および I_{L_OCP1} の値は、OCP ビットに応じます。チャネルが $2*t_{SYNC}$ を超える時間オフになるたびに、過負荷電流スレッショルドは I_{L_OCP0} に戻ります。

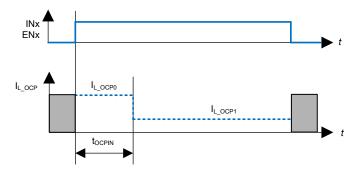


図 6-10. 過電流スレッショルド

25

負荷電流が I_{L_OCP0} または I_{L_OCP1} を上回っている場合、 t_{OFF_OCP} の時間の後、過負荷チャネルがオフになり、診断ビット ERRx が設定されます。対応する CLRx ビットを 1b に設定することで、保護ラッチをクリアした後でチャネルをオンにできます。このビットは、チャネルをデラッチした後で内部で 0b にセットされます。詳細については、図 6-11 を参照してください。

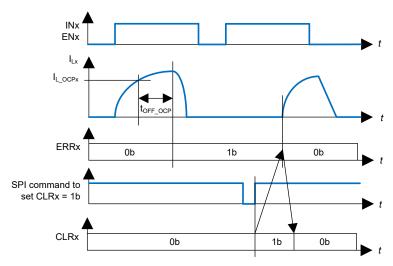


図 6-11. 過電流時にラッチオフする

6.3.4.3 過熱保護機能

各チャネルに温度センサが内蔵されているため、過熱したチャネルがオフになり、デバイスの損傷を防止します。対応する診断ビット ERRx が設定されます (過負荷保護と組み合わせて)。対応する CLRx ビットを 1b に設定することで、保護ラッチをクリアした後でチャネルをオンにできます。このビットは、チャネルをデラッチした後で内部で 0b にセットされます。

6.3.4.4 過熱警告

ダイ温度が過熱警告トリップポイント (T_{OTW}) を超えると、構成レジスタ 2 に OTW ビットが設定されます。デバイスの機能は継続され、追加動作が実行されることはありません。

ダイ温度が過熱警告のヒステリシス ポイント (T_{HYS OTW})を下回ると、OTW ビットは自動的にクリアされます。

6.3.4.5 リンプ ホーム モードでの過熱および過電流保護

DRV81004-Q1 がリンプホームモードのときは、入力ピンを使用してチャネル 2 と 3 をオンにできます。過電流、短絡、または過熱の場合は、チャネルがオフになります。入力ピンがロジック High のままの場合、チャネルは次のタイミングで再起動します。

- 10ms (最初の8回の再試行)
- 20ms (8 回の再試行後)
- 40ms (8 回の再試行後)
- 80ms (入力ピンがロジック High のままで、エラーが存在している限り)

入力ピンが **2*** t_{SYNC} を超えてロジック Low に設定されると、再起動タイマはリセットされます。 リンプホームモードで、次のチャネルがアクティブになると、タイマーは再び **10ms** から開始されます。 詳しくは、図 **6-12** を参照してください。 過電流スレッショルドは、セクション **6.3.4.2** を参照してください。

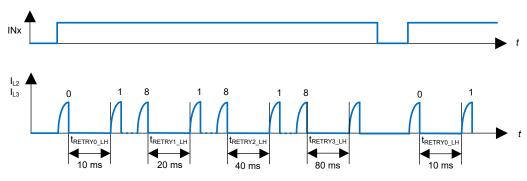


図 6-12. リンプホームでタイマーを再起動します

6.3.4.6 逆極性保護

逆極性またはバッテリ逆接続状況では、各 MOSFET のボディダイオードによって消費電力が発生します。ロジックおよび電源ピンの各 ESD ダイオードは、合計消費電力に寄与します。チャネルを流れる逆電流は、接続された負荷によって制限する必要があります。デジタル電源の VDD および入力ピンを流れる電流も制限する必要があります (セクション 5.1 を参照)。

注

逆極性時には、温度保護や電流制限などの保護メカニズムはアクティブになりません。

6.3.4.7 過電圧保護

 V_{M_SC} と V_{M_LD} の間の電源電圧の場合、出力 MOSFET は引き続き動作し、入力ピンまたは EN ビットに追従します。 セクション 6.3.3.2 に示すように、誘導性負荷の出力クランプに加えて、ロジックおよびすべてのチャネルの過電圧保護の ためにクランプ機構があり、VM ピンと GND ピンの間の電圧 (V_{M_AZ}) を監視できます。

6.3.4.8 出力ステータス モニタ

デバイスは、各チャネルの V_{DS} を V_{DS_OL} と比較し、対応する OSMx ビットを設定します。これらのビットは、OSM レジスタが読み取られるたびに更新されます。

• $V_{DS} < V_{DS OI} \rightarrow OSMx = 1b$

パワー・イッチと並列に接続された診断電流 I_{OL} は、IOLx ビットをプログラムすることで有効にできます。この IOLx ビットは、オフ検出時のオープン負荷に使用できます。各チャネルには専用の診断電流源があります。診断現在の I_{OL} が有効になっている場合、またはチャネルの状態が変化した場合 (オン \rightarrow オフまたはオフ \rightarrow オン)、信頼性の高い診断を行うために t_{OSM} を待つ必要があります。 I_{OL} 電流源をイネーブルにすると、デバイスの消費電流が増加します。開放負荷が検出された場合でも、そのチャネルはオフにラッチされません。

タイミングの概要については、図 6-13 を参照してください (IOLx の値は、負荷に正しく接続された通常動作のチャネルを指しています)。

27

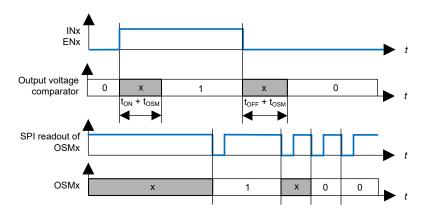


図 6-13. 出力ステータス モニタ タイミング

出力ステータス監視診断は、 $V_M = V_{MNOR}$ および $V_{DD} \ge V_{DDUVLO}$ のときに利用できます。

出力ステータスモニタは、出力で電圧レベルをリアルタイムでチェックするため、オープンロードインオフ診断の場合、OSM レジスタの読み取りをチャネルのオフ状態と同期させる必要があります。

図 6-14 に、出力ステータスモニタをコンセプトレベルで実装する方法を示します。

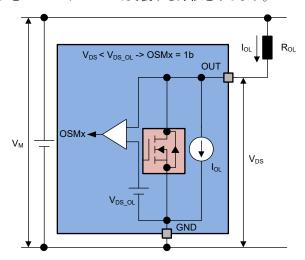


図 6-14. 出力ステータス モニタ

標準診断では、ビット OLOFF は、オフ状態のすべてのチャネルにおいて、対応する電流源 I_{OL} アクティブになっているすべてのチャネルにおいて、すべての OSMx ビットの OR 組み合わせを表します。

DISOL ビットが 1b の場合、すべての I_{OL} 電流ソースをディスエーブルにすることで、開放負荷検出がディセーブルになります。

資料に関するフィードバック(ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

English Data Sheet: SLVSH58

6.3.5 SPI 通信

SPI インターフェイスは、全二重同期シリアルフォロワインターフェイスで、次の 4 つのラインを使用します。SDO、SDI、SCLK、nSCS。データは、SCLK で与えられるレートでライン SDI および SDO により転送されます。nSCS の立ち下がりエッジはアクセスの開始を示します。データは、SCLK の立ち下がりエッジでライン SDI でサンプリングされ、SCLK の立ち上がりエッジでライン SDO 上にシフトアウトされます。各アクセスは、nSCS の立ち上がりエッジで終了する必要があります。

モジュロ 8/16 カウンタにより、最初の 16 ビットの後に 8 ビットの倍数が転送された場合のみデータが取得されます。それ以外の場合は、TER ビットがアサートされます。このようにインターフェイスは 16 ビットと 8 ビットの SPI デバイスのデイジーチェーン機能を実現します。

6.3.5.1 SPI 信号の説明

6.3.5.1.1 チップ セレクト (nSCS)

マイコンは、nSCS ピンを使用して DRV81004-Q1 を選択します。ピンがロジック Low 状態のときは常に、データ転送を 実行できます。 nSCS ピンがロジック HIGH 状態である場合、 SCLK ピンと SDI ピンのすべての信号が無視され、 SDO が高インピーダンス状態に強制されます。

6.3.5.1.1.1 ロジック High からロジック Low への遷移

- 要求された情報はシフトレジスタに転送されます。
- SDO は、送信エラーフラグ (TER) とピン SDI の信号レベルの間のロジックまたは組み合わせに応じて、ハイインピー ダンス状態からロジック High またはロジック Low 状態に変化します。これにより、デイジー・チェーン構成でも、送信 の障害を検出できます。
- デバイスがスリープモードの場合、SDO ピンはハイインピーダンス状態のままで、SPI 転送は行われません。

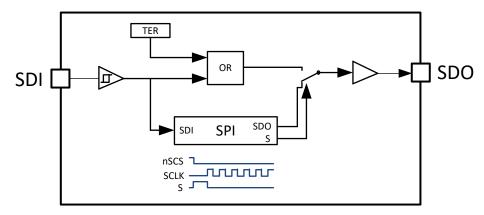


図 6-15. TER ビットの組み合わせロジック

6.3.5.1.1.2 ロジック Low からロジック High への遷移

- コマンドのデコードは、nSCS の立ち下がりエッジの後、最初の 16 SCLK パルスの後で、8 つの SCLK 信号のちょう ど倍数 (1、2、3、...) が検出されたときのみ実行されます。送信に障害が発生した場合、送信エラービット (TER) がセットされ、コマンドは無視されます。
- シフトレジスタのデータは、アドレス指定されたレジスタに転送されます。

6.3.5.1.2 シリアル クロック (SCLK)

この入力ピンは、内部シフトレジスタにクロックを供給します。シリアル入力 (SDI) は、SCLK の立ち下がりエッジでデータをシフトレジスタに転送し、シリアル出力 (SDO) は診断情報をシリアルクロックの立ち上がりエッジでシフトアウトします。チップセレクト nSCS が遷移を行うときは常に、SCLK ピンはロジック Low 状態にすることが重要です。そうでない場合、コマンドが受け付けられない場合があります。

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

6.3.5.1.3 シリアル入力 (SDI)

シリアル入力データビットは、最上位ビットが先頭のこのピンのシフトインです。SDI 情報は、SCLK の立ち下がりエッジで読み込まれます。入力データは、制御ビットとそれに続くデータビットの2つの部分で構成されます。

6.3.5.1.4 シリアル出力 (SDO)

データは、最上位ビットを先頭にして、このピンでシリアルにシフトされます。SDO は、nSCS ピンがロジック Low 状態になるまでハイインピーダンス状態になります。新しいデータは、SCLK の立ち上がりエッジに続いて SDO ピンに現れます。

6.3.5.2 デイジー チェーン機能

DRV81004-Q1 の SPI にはデイジーチェーン機能があります。この設定では、複数のデバイスが同じ nSCS 信号 MCSN によってアクティブ化されます。チェーンを構築するために、あるデバイスの SDI ラインは、別のデバイスの SDO ラインに接続されます。チェーンの端は、マスタデバイスの出力と入力、それぞれ M-SDO および M-SDI に接続されます。コマンダデバイスは、チェーン内の各デバイスの SCLK ラインに接続されたクロック M-SCLK を提供します。

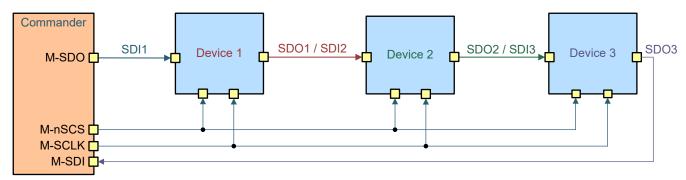


図 6-16. デイジー チェーン構成

各デバイスの SPI ブロックには 1 つのシフトレジスタがあり、SDI ラインからの各ビットが各 SCLK でシフトします。このビットのシフトアウトは SDO ピンで発生します。16 SCLK サイクル後、1 つのデバイスのデータ転送が完了します。

シングルチップ構成では、nSCS ラインがロジック High になって、デバイスが転送されたデータをアクノリッジする必要があります。デイジーチェーン構成では、デバイス 1 でシフトアウトされたデータがデバイス 2 にシフトインされています。3 つのデバイスをデイジーチェーンで使用する場合、デバイスを介して 8 ビットの倍数をシフトする必要があります (8 ビット SPI を搭載したデバイスの数と 16 ビット SPI を搭載しているデバイスの数に依存)。その後、M-nSCS ラインを論理 High にする必要があります。

6.3.5.3 SPI プロトコル

SPI 通信中の SDI と SDO の内容との関係を図 6-17 に示します。 SDI ラインはマイクロコントローラから送信されるフレームを表し、 SDO ラインは DRV81004-Q1 から提供された回答です。

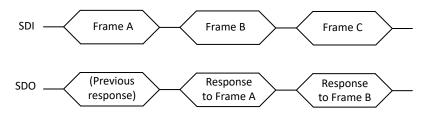


図 6-17. SPI 通信中の SDI と SDO の関係

SPI プロトコルは、マイクロコントローラによってトリガされる次の送信でのみ、コマンド・フレームへの回答を提供します。 DRV81004-Q1 に実装されている最大のコマンドとフレームは、以前に何が起こったか知らないうちにデコードできます

が、前の送信でマイコンが何を送信して、DRV81004-Q1 の応答フレームを完全にデコードすることを検討することをお勧めします。レジスタの内容を読み書きするコマンドのシーケンスは、以下のようになります。

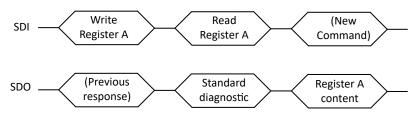


図 6-18. レジスタの内容をマイクロコントローラに送り返します

マイクロコントローラに返されるフレームが前の受信フレームと直接関係しないという、次の3つの特殊な状況があります。

- 前のフレームの間に送信エラーが発生した場合 (たとえば、クロックパルスは 8 の倍数ではなく、最小 16 ビット)、以下に示します。
- DRV81004-Q1 のロジック電源が、パワーオンリセット状態から復帰した場合、またはソフトウェアリセット後に、以下に 示すようになります。
- コマンド構文エラーの場合
 - 書き込みコマンドは、10b ではなく 11b で開始されます
 - 読み出しコマンドは、01b ではなく 00b から開始します
 - 予約済みまたは使用されていないレジスタに対して、読み取りまたは書き込みコマンドを実行します

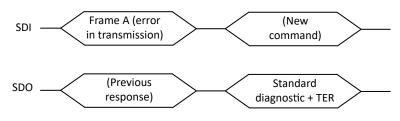


図 6-19. 送信エラー後の応答

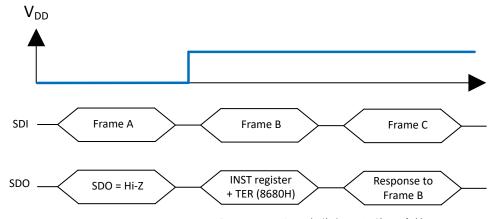


図 6-20. VDD でのパワーオンリセットから復帰した後の応答

31

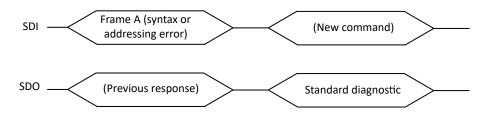


図 6-21. コマンド構文エラー後の応答

DRV81004-Q1 が次の送信時に送り返す回答も含め、考えられるすべての SPI コマンドの概要を以下に示します。

表 6-6. SPI コマンドの概要

要求された操作	SDI ピンに送信されるフレーム	次のコマンドで SDO ピンから受信したフレーム
標準診断を確認	0xxxxxxxxxxxxx01b (xxxxxxxxxxxxb = 未使用)	Odddddddddddddd (標準診断)
8 ビットレジスタを書き込みます	10ppppqqrrrrrrrb、ここで ppppb = レジスタアドレス ADDR0、qqb = レジスタアドレス ADDR1、rrrrrrrrb = 新しいレジスタ内容	Odddddddddddddd (標準診断)
8 ビットレジスタを読み出します	01ppppqqxxxxxx10b、ここで、ppppb = レジスタ アドレス ADDR0、qqb = レジスタアドレス ADDR1、xxxxxxxb = 未使用	10ppppqqrrrrrrb、ここで、ppppb = レジスタア ドレス ADDR0c、qqb = レジスタアドレス ADDR1、rrrrrrrb = レジスタ内容

「p」= ADDR0 フィールドのアドレスビット、「q」= ADDR1 フィールドのアドレスビット、「r」= レジスタ内容、「d」= 診断ビット

6.3.5.4 SPI レジスタ

レジスタバンクの構造は次のとおりです -

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	デフォルト
R = 0 W = 1			ADI	DR0		ADI	DR1				デー	タ				XXXXH

以降のセクションに記載されていないアドレスを持つレジスタは、すべて予約済みと見なす必要があります。これらのレジスタに対して実行される読み取り操作は、標準診断を返します。列のデフォルトは、リセット後のレジスタ (8 ビット) の内容を示します。

構成レジスタ2のロックビットを使用して、意図しない SPI 書き込みによるレジスタ設定をロックできます。

- 設定をロックして、レジスタへのさらなる書き込み (LOCK ビットと CLRx ビットへの書き込みを除く) を無視するには、 110b を書き込みます。 ロックされていない状態で、110b 以外のどんなシーケンスを書き込んでも何の影響も及ぼしません。
- 011b を書き込むと、すべてのレジスタのロックを解除しますロックされている状態で、011b 以外のどんなシーケンスを書き込んでも何の影響も及ぼしません。

6.3.5.4.1 標準診断レジスタ

表 6-7. 標準診断レジスタ

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	デフォルト
0	UVRVM	0	モ	ード	TER	0	OLOFF	0	0	0	0	ERR3	ERR2	ERR1	ERR0	5800h

表 6-8. 標準診断レジスタの説明

フィールド	ビット	タイプ	概要
UVRVM	14	R	 VM 低電圧監視 Ob:VM で低電圧状態は検出されていません 1b (デフォルト):最後の標準診断の読み出し以降に、少なくとも 1 つの VM 低電圧状態が発生しました
モード	12-11	R	動作監視モード
TER	10	R	送信エラー Ob:以前の送信は成功しました (16 + n * 8 クロックを受信し、n = 0、1、2) 1b (デフォルト):前回の送信に失敗しました。リセット後の最初のフレームは、TER が 1b に設定され、INST レジスタが作動します。2 つ目のフレームは標準診断で、TER は 0b に設定されています (前の送信で障害がなかった場合)。
OLOFF	8	R	オフ診断で負荷を開放します Ob (デフォルト): すべてのチャネルがオフ状態 (IOLx ビットが 1b に設定されている) では、V _{DS} > V DS_OL です 1b:1 つ以上のチャネルがオフ状態 (IOLx ビットが 1b に設定されているで)、V _{DS} < V _{DS_OL} が規定されています。オン状態のチャネルは考慮されません。

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

表 6-8. 標準診断レジスタの説明 (続き)

ERRx	3-0	R	過負荷/過熱チャネル×の診断
			0b (デフォルト) : 障害は検出されませんでした
			1b:過熱または過負荷です

資料に関するフィードバック(ご意見やお問い合わせ)を送信

Product Folder Links: DRV81004-Q1

6.3.5.4.2 出力制御レジスタ

表 6-9. 出力制御レジスタ

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	デフォルト
R = 0	R = 1		00	00		00 RSVD						EN3	EN2	EN1	EN0	00h
W = 1	W = 0		00	00		U	U		No	VD		EINS	EINZ	EIN I	LINU	0011

表 6-10. 出力制御レジスタの説明

フィールド	ビット	タイプ	概要
RSVD	7-4	RW	予約済み。読み取りデフォルト: 0b 、書き込みは無視されます。
ENx	3-0		出力 x 制御レジスタ Ob (デフォルト): 出力 x はオフです 1b: 出力はオンです

6.3.5.4.3 入力 0 マッピング レジスタ

表 6-11. 入力 0 マッピング レジスタ

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	デフォルト
R=	R=															
0 W =	W =	0001				00	0		RS	VD		MAP03	MAP02	MAP01	MAP00	04h
1	0															

表 6-12. 入力 0 マッピング レジスタの説明

フィールド	ビット	タイプ	概要			
RSVD	7-4	RW	予約済み。読み取りデフォルト: 0b 、書き込みは無視されます。			
MAP0x	3-0	RW	入力ピン 0 マッピング レジスタ 0b (デフォルト):出力 x は入力ピン 0 に接続されていません 1b:出力は入力ピンに接続されています。 注:チャネル 2 には、デフォルトで対応するビットが 1b に設定されています			

6.3.5.4.4 入力1 マッピング レジスタ

表 6-13. 入力 1 マッピング レジスタ

	20 1017(33 1 1 7 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	デフォルト
R=	R=															
0	1	0001			01		RSVD				MAP13	MAP12	MAP11	MAP10	08h	
W =	W =															
1	0															

表 6-14. 入力 1 マッピング レジスタの説明

フィールド	ビット	タイプ	概要
MAP1x	7-4	RW	予約済み。読み取りデフォルト: 0b、書き込みは無視されます。

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

表 6-14. 入力 1 マッピング レジスタの説明 (続き)

MAP1x	3-0	RW	入力ピン 1 マッピング レジスタ
			0b (デフォルト): 出力 x は入力ピン 1 に接続されていません
			1b:出力は入力ピンに接続されています。
			注:チャネル 3 には、デフォルトで対応するビットが 1b に設定されています

Copyright © 2025 Texas Instruments Incorporated

English Data Sheet: SLVSH58

6.3.5.4.5 入力ステータス モニタ レジスタ

これは、ロジックのリセット後に送信される最初のレジスタです

0

表 6-15. 入力ステータス モニタ レジスタ

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	デフォルト
0	1		0001		10		TER		ı	RSVD			INST1	INST0	00h	

表 6-16. 入力 1 マッピング レジスタの説明

フィールド	ビット	タイプ	概要
TER	7	R	0b:以前の送信は成功しました (16 + n * 8 クロックを受信し、n = 0、1、2) 1b (デフォルト):前回の送信に失敗しました
RSVD	6-2	R	予約済み
INST1	1	R	0b (デフォルト): 入力ピンはロジック Low に設定されます 1b:入力ピンはロジック High に設定されています
INST0	0	R	0b (デフォルト): 入力ピンはロジック Low に設定されます 1b: 入力ピンはロジック High に設定されています

6.3.5.4.6 開放負荷電流制御レジスタ

表 6-17. 開放負荷電流制御レジスタ

1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	デフォルト
	- 1	R = 1 W = 0		00)10		00	0		RS	SVD		IOL3	IOL2	IOL1	IOL0	00h

表 6-18. 開放負荷電流制御レジスタの説明

フィールド	ビット	タイプ	概要
RSVD	7-4	RW	予約済み。読み取りデフォルト: 0b、書き込みは無視されます。
IOLx	3-0		0b (デフォルト): IOL 電流ソースがイネーブルではありません 1b: IOL 電流ソースをイネーブル

6.3.5.4.7 出力ステータス モニタ レジスタ

表 6-19. 出力ステータス モニタ レジスタ

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	デフォルト
0	1		00	10		0	1		RS'	V D		OSM3	OSM2	OSM1	OSM0	00h

表 6-20. 出力ステータス モニタ レジスタの説明

フィールド	ビット	タイプ	概要
RSVD	7-4	R	予約済み。読み取りデフォルト: 0b、書き込みは無視されます。
OSMx	3-0		0b (デフォルト): V _{DS} > V _{DS_OL} 1b: V _{DS} < V _{DS_OL}

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

37

6.3.5.4.8 構成レジスタ

表 6-21. 構成レジスタ

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	デフォルト
R = 0 W = 1	R = 1 W = 0		00)11		00)	ACT	RST	DISOL	ОСР	RS	VD	PAR1	PAR0	00h

表 6-22. 構成レジスタの説明

			P4 - == 110000
フィールド	ビット	タイプ	概要
ACT	7	RW	0b (デフォルト):通常動作、またはデバイスがアクティブ・モードを終了 1b:デバイスはアクティブ モードに入ります。
RST	6	RW	Ob (デフォルト):通常動作 1b:実行リセットコマンド(セルフクリア)
DISOL	5	RW	0b (デフォルト): 開放負荷検出はイネーブルです 1b: 開放負荷検出はディスエーブルです
OCP	4	RW	0b (デフォルト): 過電流保護電流プロファイル 1 1b: 過電流保護電流プロファイル 2
RSVD	3-2	RW	予約済み。読み取りデフォルト: 0b、書き込みは無視されます。
PAR1	1	RW	0b (デフォルト):通常動作 1b:チャネル 1 と 3 は、過負荷と過熱に同期しています
PAR0	0	RW	0b (デフォルト):通常動作 1b:チャネル 0 と 2 は、過負荷と過熱に同期しています

6.3.5.4.9 出力クリア ラッチ レジスタ

表 6-23. 出力クリア ラッチ レジスタ

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	デフォルト
	R = 1 W = 0		00)11		01	1		RS	VD		CLR3	CLR2	CLR1	CLR0	00h

表 6-24. 出力クリア ラッチ レジスタの説明

フィールド	ビット	タイプ	概要
RSVD	7-4	RW	予約済み。読み取りデフォルト: 0b、書き込みは無視されます。
CLRx	3-0		0b (デフォルト):通常動作 1b:選択した出力のエラーラッチをクリアします

やお問い合わせ) を送信 Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *DRV81004-Q1*

6.3.5.4.10 設定レジスタ 2

表 6-25. 設定レジスタ 2

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	デフォルト
R = 0 W = 1	R = 1 W = 0		10)10		00)	!	LOCK[2	2:0]	RS	SVD	OTW	RSVD	SR	60h

表 6-26. 構成レジスタの説明

			P-4 = 110000
フィールド	ビット	タイプ	概要
LOCK[2:0]	7-5	RW	設定をロックして、レジスタへのさらなる書き込み (LOCK ビットと CLRx ビットへの書き込みを除く)を無視するには、110b を書き込みます。ロックされていない状態で、110b 以外のどんなシーケンスを書き込んでも何の影響も及ぼしません。 すべてのレジスタのロックを解除するには、このレジスタに 011b を書き込みます。 ロックされている状態で、011b 以外のどんなシーケンスを書き込んでも何の影響も及ぼしません。
RSVD	4-3、1	R	予約済み。
OTW	2	R	過熱警告
SR	0	RW	出力スルー レートをセット

39

Product Folder Links: DRV81004-Q1

7アプリケーションと実装

注

以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

7.1 アプリケーション情報

DRV81004-Q1 は主に、車載用および産業用アプリケーションでリレーの駆動に使用されます。

7.1.1 代表的なアプリケーション

DRV81004-Q1 の代表的なアプリケーション回路図を、図 7-1 に示します。

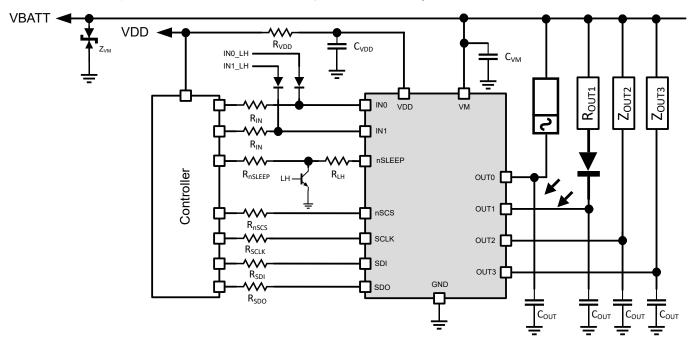


図 7-1. アプリケーション回路図

資料に関するフィードバック(ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

English Data Sheet: SLVSH58

7.1.2 推奨外付け部品

表 7-1 に、DRV81004-Q1 の推奨外付け部品を示します。

表 7-1. 推奨外付け部品

値	目的			
4.7kΩ	過電圧および逆極性時のマイコンの保護。グランド喪失時に出力チャネルがオフ になることも保証します。			
470 Ω	過電圧および逆極性時のマイコンの保護			
100 Ω	ロジック電源電圧フィルタリング			
100nF	ロジック電源電圧フィルタリング			
68nF	バッテリ電圧のフィルタリング			
TVS3300	過電圧時のデバイスの保護			
10nF	デバイスを ESD および BCI から保護します			
	4.7kΩ 470 Ω 100 Ω 100nF 68nF TVS3300			

7.1.3 アプリケーションのプロット

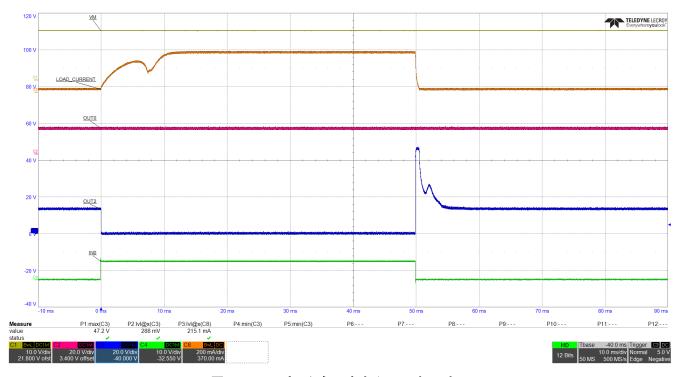


図 7-2. INO ピンからの出力ターンオン/オフ

41

Product Folder Links: DRV81004-Q1

7.2 レイアウト

7.2.1 レイアウトのガイドライン

- VM 定格の低 ESR セラミック 68nF コンデンサを使用して、VM ピンを GND にバイパスする必要があります。
- このコンデンサは、幅の広いパターン、または GND ピンに接続したグランドプレーンを使用して、VM ピンの近くに配置する必要があります。
- 低 ESR セラミック コンデンサを使用して、VDD ピンをグランドにバイパスします。 6.3V 定格の 100nF を推奨します。 このバイパス コンデンサはピンにできるだけ近付けて配置します。
- 一般に、電源ピンとデカップリングコンデンサの間のインダクタンスを防ぐ必要があります。
- INO、IN1、nSLEEP、nSCS、SCLK、SDI、SDO、VDD の各ピンと、マイコンの対応するピンの間に直列抵抗を接続します。 ゲイン抵抗の標準値については、セクション 6.3 で説明します。
- サーマルパッドは、システムグランドに接続する必要があります。
 - システム / 基板全体には、破損していない大きな単一のグランド プレーンを使用することを推奨します。 グランド プレーンは PCB の下層に作成できます。
 - インピーダンスとインダクタンスを最小化するには、ビアを経由して下層のグランドプレーンに接続する前に、グランドピンからのパターンをできる限り短く、幅広くする必要があります。
 - インピーダンスを低減するために、複数のビアを推奨します。
 - 熱の拡散を改善するために、デバイスの周囲のスペースを大きく、特に下層に確保してください。
 - サーマル パッドを単一または複数の内部グランド プレーンに接続することでも、熱の拡散と熱抵抗の低減に役立ちます。

7.2.2 パッケージ フットプリントの互換性

DRV81004-Q1 の PWP0014L パッケージは、図 7-3 および図 7-4 に示すように、業界で使用されている他の SO-14 パッケージとフットプリント互換です。

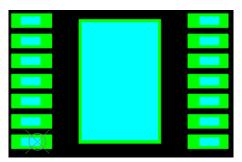


図 7-3. SO-14 PCB パッドの PWP0014L、水色: PWP0014L リード、緑: その他の SO-14 PCB パッド

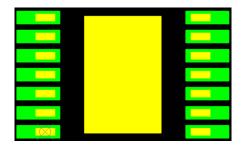


図 7-4. PWP0014L PCB パッドの SO-14、黄: その他の SO-14 リード、緑: TI PWP0014L PCB パッド

かせ) を送信 Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *DRV81004-Q1*

8 デバイスおよびドキュメントのサポート

テキサス・インスツルメンツでは、幅広い開発ツールを提供しています。デバイスの性能の評価、コードの生成、ソリューションの開発を行うためのツールとソフトウェアを以下で紹介します。

8.1 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。

8.2 サポート・リソース

テキサス・インスツルメンツ E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。

8.3 商標

テキサス・インスツルメンツ E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。

8.4 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

8.5 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

9 改訂履歴

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Changes from Revision A (December 2024) to Revision B (January 2025)	Page
- AECQ100 準拠と機能安全性能に関する注を追加。	1
• EC 表の VDS_OL の最小値および最大値の制限値を、前述の 2.9V/3.7V から 3V および 3.6V に更新。	<mark>7</mark>
• ROL と VM、および IOL と VM の代表的な動作プロットを追加。	11
Changes from Revision * (November 2024) to Revision A (December 2024)	Page
• デバイスのステータスを「量産データ」に更新。	1

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

43

10 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、指定のデバイスに使用できる最新のデータです。このデータは、予告なく、このドキュメントを改訂せずに変更される場合があります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

Copyright © 2025 Texas Instruments Incorporated

English Data Sheet: SLVSH58

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated www.ti.com 21-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
DRV81004QPWPRQ1	Active	Production	HTSSOP (PWP) 14	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	81004Q1
DRV81004QPWPRQ1.A	Active	Production	HTSSOP (PWP) 14	3000 LARGE T&R	-	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	81004Q1

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

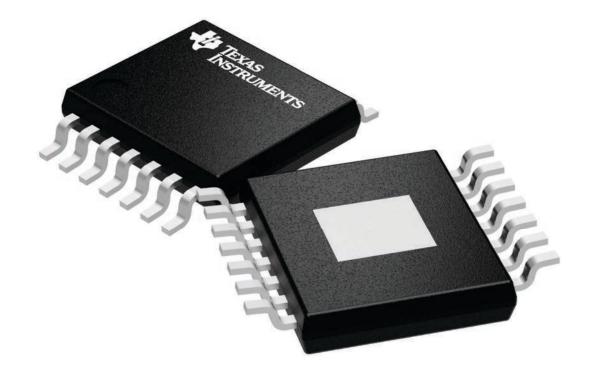
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

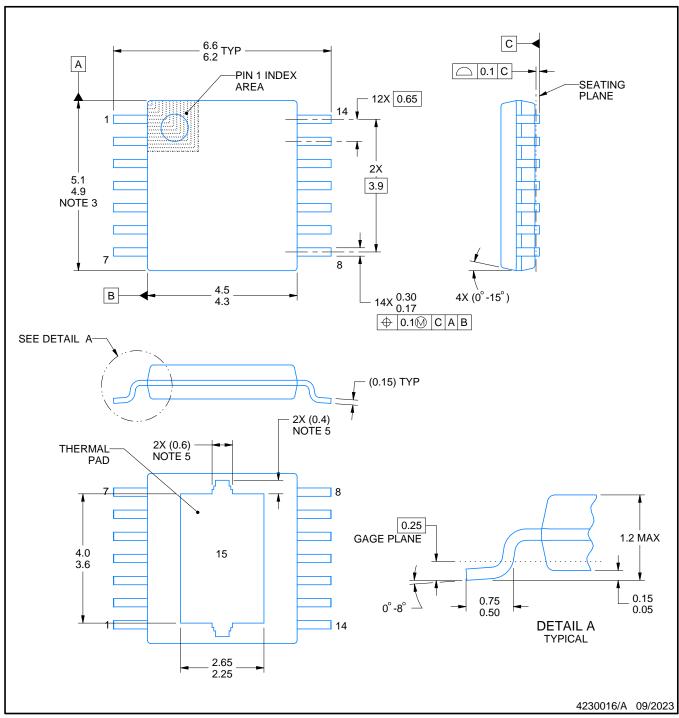
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

4.4 x 5.0, 0.65 mm pitch

PLASTIC SMALL OUTLINE


This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

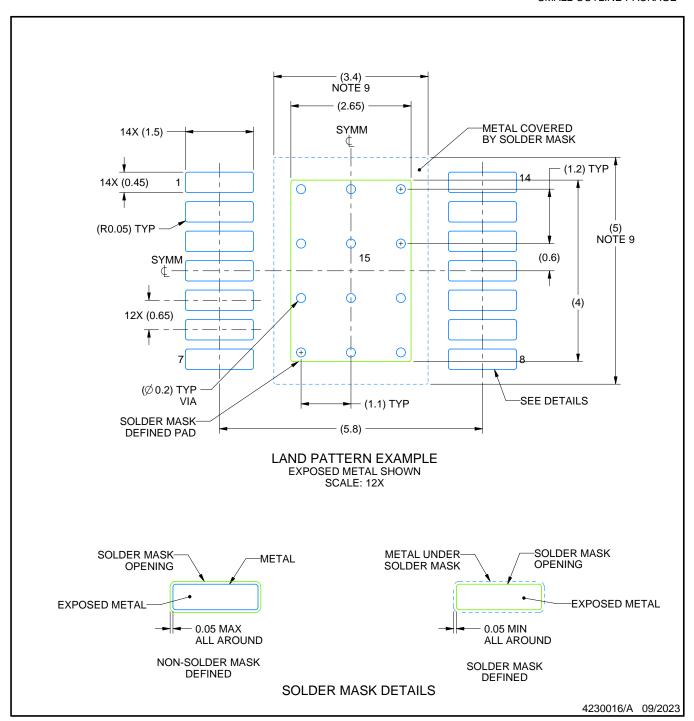
INSTRUMENTS www.ti.com

PowerPAD[™] TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

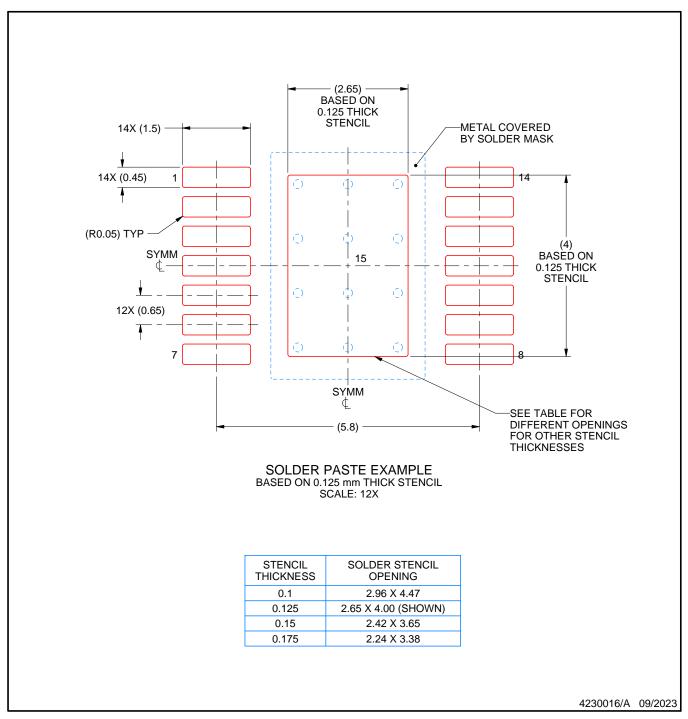
PowerPAD is a trademark of Texas Instruments.


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.
- 5. Features may differ or may not be present.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.
- 10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated