INSTRUMENTS JAJSWG1A - MAY 2025 - REVISED OCTOBER 2025

DP83826Ax 決定論的、低レイテンシ、低消費電力、10/100Mbps の産業用イ サネット PHY

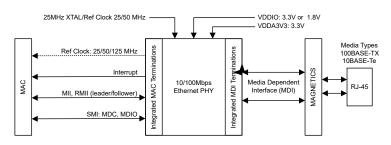
1 特長

- 小さく決定論的なレイテンシ
 - TX レイテンシ:40ns、RX レイテンシ:170ns
 - 電源サイクル間の決定論的レイテンシ < ±2ns
 - XIとTX CLK の位相差が一定 < ±2ns
- 堅牢かつ小型のシステム実装
 - EMC を強化するための回路を内蔵
 - IEC 61000-4-2 ESD: ±8kV 接触、±15kV 気中 基
 - IEC 61000-4-4 EFT: 5kHz、100kHz 基準 A で ±4kV
 - CISPR 22 伝導エミッション Class B
 - CISPR 22 放射エミッション Class B
 - 高速リンクドロップ < 10µs
 - ケーブルの到達範囲:150m 以上
 - 電圧モードラインドライバ
 - MAC インターフェイスの終端を内蔵
 - 許容電圧:±10%
- 1 つのデバイスで2 つのピン モードを選択可能
 - 追加機能を持つ ENHANCED モード
 - 一般的なイーサネットピン配置用の BASIC モード
- 低消費電力 < 160mW
- MAC インターフェイス: MII、RMII
- プログラム可能な省エネルギー モード
 - アクティブ スリープ
 - ディープ パワー ダウン
 - Energy Efficient Ethernet (EEE) IEEE 802.3az
 - Wake-on-LAN (WoL)
- 診断ツール:ケーブル診断、内蔵自己テスト(BIST)、 ループバック モード
- 3.3V の単一電源
- I/O 電圧: 1.8V または 3.3V
- RMII バックツー バックリピーター モード
- DP83826AE の動作温度範囲:-40℃ ~ 105℃
- DP83826AI の動作温度範囲:-40℃ ~ 85℃
- IEEE 802.3 準拠:10BASE-Te、100BASE-TX
- EtherCAT® 準拠

2 アプリケーション

- ファクトリ・オートメーション、ロボットおよびモーション制
- モーター・ドライブ
- グリッド・インフラ
- ビル・オートメーション
- 産業用イーサネット・フィールドバス

3 説明


DP83826Ax は、小さく決定論的なレイテンシ、低消費電 カ、10BASE-Te および 100BASE-TX イーサネット プロト コルのサポートにより、リアルタイム産業用イーサネット シ ステムの厳格な要件を満たすことができます。このデバイ スは、高速なリンクアップ時間を達成するためのハードウェ アブートストラップ、高速リンクドロップ検出モード、システ ム内の他のモジュールをクロック同期させるための専用基 準クロック出力 (CLKOUT) を備えています。

一般的なイーサネットピン配置を使用する BASIC 標準イ ーサネット モードと、追加機能とハードウェア ブートストラ ップ構成によって標準イーサネットと複数の産業用イーサ ネット フィールドバス アプリケーションをサポートする ENHANCED イーサネット モードという 2 つのモードに構 成できます。

デバイス ファミリ情報

7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					
部品番号 (1)	パッケージ	本体サイズ (公称)	属性		
DP83826AE/I	VQFN (32)	5.00mm × 5.00mm	最小のレイテンシ、 一般的なピン配置		
DP83825I	WQFN (24)	3.00mm × 3.00mm	小さなサイズ、最適 化されたソリューショ ン コスト		
DP83822HF/IF/H/I	VQFN (32)	5.00mm × 5.00mm	広い温度範囲、ファ イバー、RGMII の サポート		

利用可能なすべてのパッケージについては、データシートの末尾 にある注文情報を参照してください。

アプリケーション概略図

目次

1 特長	1
2 アプリケーション	
3 説明	
4 モード比較表	
5ピン構成および機能 (ENHANCED モード)	4
6 ピン構成および機能 (BASIC モード)	
7 仕様	
7.1 絶対最大定格	
7.2 ESD 定格	
7.3 推奨動作条件	11
7.4 熱に関する情報	13
7.5 電気的特性	14
7.6 タイミング要件	
7.7 タイミング図	
7.8 代表的特性	
8 詳細説明	
8.1 概要	26
8.2 機能ブロック図	

8.3 機能說明	21
8.4 プログラミング	51
8.5 レジスタ マップ	55
9 アプリケーションと実装	101
9.1 アプリケーション情報	101
9.2 代表的なアプリケーション	101
9.3 電源に関する推奨事項	105
9.4 レイアウト	106
10 デバイスおよびドキュメントのサポート	109
10.1 関連資料	109
10.2ドキュメントの更新通知を受け取る方法	
10.3 サポートリソース	109
10.4 商標	109
10.5 静電気放電に関する注意事項	109
10.6 用語集	
11 改訂履歴	109
12 メカニカル、パッケージ、および注文情報	

4モード比較表

DP83826Ax は、ストラップして、ENHANCED モードまたは BASIC モードで動作させることができます。ENHANCED モードでは、DP83826Ax は標準イーサネット アプリケーションに加えて、リアルタイム イーサネット アプリケーションもサポートできます。BASIC モードでは、DP83826Ax は標準イーサネット アプリケーションをサポートできます。さらに、BASIC モードでは、DP83826Ax のピン配置は、多くのアプリケーションで使用される一般的な PHY ピン配置と一致しています。

表 4-1. ENHANCED モードまたは BASIC モードの選択

ENHANCED モード	BASIC モード
ModeSelect (ピン 1) を未接続のままにするか、プルアップ抵抗を介して VDDIO に接続します	ModeSelect (ピン 1) を GND に短絡

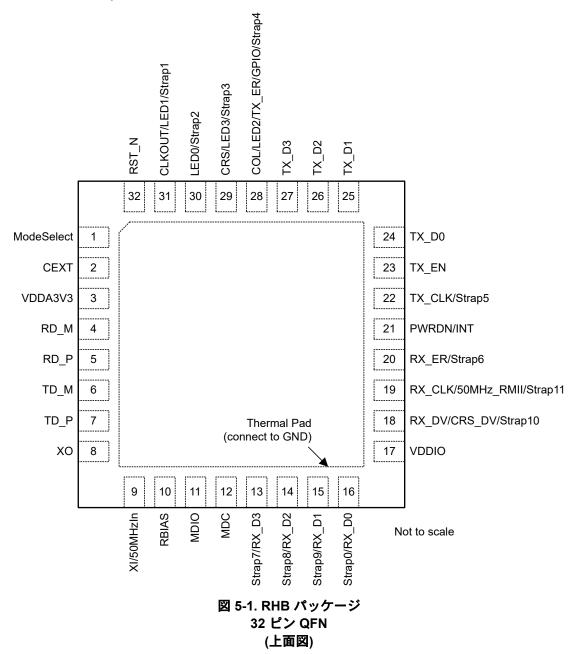
表 4-2. ENHANCED モードと BASIC モードにおけるピン マッピングの相違

ピン番号	ENHANCED モード	BASIC モード
31	CLKOUT/LED1	LED1/TX_ER
21	PWRDN/INT	INT

表 4-3. ENHANCED モードと BASIC モードにおけるハードウェア ブートストラップの相違

ハードウェア ブートストラップ	ENHANCED モード ⁽³⁾	BASIC モード
高速リンクドロップのイネーブルおよびディスエーブル(1)	あり	なし (常にイネーブル)
高速リンクドロップ検出メカニズム	ストラップ制御可能	ストラップ制御可能
Auto-MDIX イネーブル / ディスエーブル ⁽¹⁾	あり	いいえ
MDI/MDIX の強制選択 ⁽¹⁾	あり	いいえ
RMII 双方向反復モード構成 ⁽²⁾	あり	いいえ
MII または RMII の選択	あり	あり
速度の選択 (10M または 100M)	なし	あり
MII 絶縁イネーブルおよびディスエーブル	なし	あり
オートネゴシエーション イネーブルおよびディスエーブル	あり	あり
使用可能な PHY アドレス数	8	8
半二重または全二重の選択	なし	あり
LED1 の代わりの CLKOUT	あり	いいえ
奇数ニブル検出	ストラップ制御可能	デフォルトでディスエーブル

- (1) これらのピン ブートストラップにより、ENHANCED モード DP83826Ax は、リアルタイム イーサネット アプリケーションの厳しい要件を満たすことができます。
- (2) このピン ブートストラップにより、ENHANCED モード DP83826Ax は、RMII リピータとして機能できます。
- (3) ENHANCED モードには、BASIC モードのすべての動作モードが含まれています。違いは、これらの動作モードでは、ENHANCED モードでレ ジスタ設定が必要となることです。


注

イーサネット関連の略語 (頭字語) 標準リストについては、『イーサネット製品関連頭字語の中国語と英語の定義』を参照してください。

5 ピン構成および機能 (ENHANCED モード)

ENHANCED モードは、DP83826Ax がスタートアップ時に構成できる 2 つのモードのうちの 1 つです。このモードでは、DP83826Ax は標準イーサネット アプリケーションに加えて、リアルタイム イーサネット アプリケーションもサポートできます。 DP83826Ax を ENHANCED モードに構成するには、ModeSelect (ピン 1) を未接続のままにするか、抵抗で VDDIO にプルアップします。

4

Product Folder Links: DP83826AE DP83826AI

表 5-1. ピン機能 (ENHANCED モード)

ピン		2(4)	SC 0-1. C / MARC (ENTIANOLD E 17)	
名称	なし	タイプ ⁽¹⁾	説明 	
ModeSelect	1	リセット: l、PU アク ティブ: l、PU	このピンは、DP83826Ax の次の動作モードを選択します:BASIC モードまたは ENHANCED モード。ENHANCED モードの場合、このピンは NC のままにするか、抵抗で VDDIO にプルアップします。BASIC モードでは、このピンは GND に短絡させる必要があります。	
CEXT	2	A	外部コンデンサ: CEXT ピンは、2nF のコンデンサを通して GND に接続します。	
VDDA3V3	3	電源	入力アナログ電源:3.3V デカップリング コンデンサの要件については、データシートの「 <i>電源に関する推奨事項</i> 」セクションを参照してください。	
RD_M	4	Α	差動受信入力 (物理メディア依存:PMD):これらの差動入力は、10BASE-Te または 100BASE-TX	
RD_P	5	A	固有の信号モードを受け入れるように自動的に構成されます。	
TD_M	6	A	差動送信出力 (PMD) :これらの差動出力は、PHY に選択されている構成に基づいて、10BASE-Te	
TD_P	7	A	または 100BASE-TX のいずれかの信号モードに構成されます。	
хо	8	А	水晶振動子出力:基準クロック出力。XOピンは水晶振動子の場合にのみ使用されます。CMOSレベル発振器をXIに接続する場合、このピンをフローティングのままにします。	
XI/50MHzIn	9	А	水晶振動子または発振器の入力クロック: MII モード、RMII リーダー モード: 25MHz ± 50ppm の水晶振動子または発振器クロック。 RMII フォロワ モード: 50MHz ± 50ppm の CMOS レベル発振器クロック。	
RBIAS	10	A	RBIAS (バイアス抵抗) 値 6.49kΩ (グランドに 1% の精度で接続)。	
MDIO	11	リセット:I、PU アク ティブ:I/O、PU	管理データ I/O:管理ステーションまたは PHY から出力される可能性がある双方向管理データ信号。このピンには、10kΩ への内部プルアップ抵抗が搭載されています。必要に応じて、外部プルアップ抵抗を追加できます。	
MDC	12	リセット: l、PD アク ティブ: l、PD	管理データ クロック: MDIO シリアル管理入力 / 出力データへの同期クロック。このクロックは、MAC の送信クロックおよび受信クロックと非同期にすることができます。 最大クロック レートは 25MHz です。 最小クロック レートはありません。	
RX_D3	13	リセット: I、PD アク ティブ: O Strap7		
RX_D2	14	リセット:I、PD アク ティブ:O Strap8	受信データ:ケーブルで受信されたシンボルは、RX_CLK の立ち上がりエッジに同期してデコードされ、これらのピンに表示されます。RX_DV がアサートされている場合、有効なデータが含まれていま	
RX_D1	15	リセット:I、PD アク ティブ:O Strap9	す。MII モードでは、ニブル (RX_D[3:0]) を受信します。RMII モードでは、2 ビットの RX_D[1:0] を受信します。	
RX_D0	16	リセット:I、PD アク ティブ:O Strap0		
VDDIO	17	電源	I/O 電源電圧:3.3V または 1.8V。 デカップリング コンデンサの要件については、 データシートの「電源デカップリングに関する推奨事項」 セクションを参照してください。	
RX_DV/ CRS_DV	18	リセット: I、PD アク ティブ: O Strap10	受信データ有効:このピンは、MII モードの場合は RX_D[3:0]、RMII モードの場合は RX_D[1:0] に 有効なデータが存在することを示します。MII モードでは、このピンは RX_DV として機能します。 RMII モードでは、このピンは CRS_DV として機能し、RMII キャリアと受信データの有効な通知を組み合わせます。このピンは、RMII モードの RX_DV に構成し、RMII 反復モードを有効化できます。	
RX_CLK/ 50MHz_RMII	19	リセット:I、PD アク ティブ:O Strap11	MII 受信クロック: MII 受信クロックは、速度 100bps の 25MHz 基準クロックおよび受信データ ストリームから取得される速度 10Mbps の 2.5MHz 基準クロックを供給します。 RMII リーダー モードでは、これにより 50MHz 基準クロックを供給します。 RMII フォロワ モードでは、このピンは使われず、入力、プルダウンのままになります。	

表 5-1. ピン機能 (ENHANCED モード) (続き)

ピン			5-1. ピン機能 (ENHANCED セート) (続さ)
名称	なし	- タイプ ⁽¹⁾	説明
RX_ER	20	リセット: I、PD アク ティブ: O Strap6	受信エラー:このピンは、MII モードおよび RMII モードの両方で受信パケット内にエラー シンボルが 検出されたことを示します。 MII モードでは、RX_CLK の立ち上がりエッジに同期して、RX_ER が High にアサートされます。 RMII モードでは、基準クロックの立ち上がりエッジに同期して、RX_ER が High にアサートされま す。受信エラー (アイドル中のエラーを含む) が発生するたびに、RX_ER が High にアサートされま す。
PWRDN/INT	21	リセット:I、PU <i>ア</i> ク ティブ:I/O、PU	パワーダウン (デフォルト)、割り込み:このピンのデフォルトの機能はパワーダウンです。このピンを割り込みとして構成するには、レジスタアクセスが必要です。パワーダウン機能では、このピンにアクティブ Low 信号が印加されると、デバイスはパワーダウン モードに移行します。このピンが割り込みピンとして構成されている場合に割り込み状態が発生すると、このピンが Low にアサートされます。このピンには、弱い内部プルアップ抵抗 (9.5kΩ) のオープンドレイン出力があります。一部のアプリケーションでは、外部 PU 抵抗が必要となります。
TX_CLK	22	リセット: I、PD アク ティブ: O Strap5	MII 送信クロック: MII 送信クロックは、速度 100Mbps の 25MHz 基準クロックおよび速度 10Mbps の 2.5MHz 基準クロックを提供します。 MII モードでは、このクロックの位相は入力クロックを基準として一定となることに注意してください。 RMII モードでは使用されません。
TX_EN	23	リセット:I、PD アク ティブ:I、PD	送信イネーブル: TX_EN は、TX_CLK の立ち上がりエッジに示されます。 TX_EN は、MII モードでは TX_D[3:0]、RMII モードでは TX_D[1:0] に有効なデータ入力が存在することを示します。 TX_EN はアクティブ High 信号です。
TX_D0	24	リセット:I、PD アク ティブ:I、PD	¥
TX_D1	25	リセット:I、PD アク ティブ:I、PD	送信データ: MII モードでは、MAC から受信された送信データ ニブルは TX_CLK の立ち上がりエッジに同期します。
TX_D2	26	リセット:I、PD アク ティブ:I、PD	RMII モードでは、MAC から受信された TX_D[1:0] は基準クロックの立ち上がりエッジに同期します。
TX_D3	27	リセット:I、PD アク ティブ:I、PD	
COL/LED2/ TX_ER/GPIO	28	リセット:I、PD アク ティブ:O Strap4	衝突検出 (デフォルト): MII モードでは、ピンが衝突検出 (COL) として動作している場合、全二重モードではこのピンは常に Low になります。半二重モードでは、送信メディアと受信メディアの両方がアイドル状態でない場合にのみ、COL が High にアサートされます。このピンは、レジスタ構成によって、2番目の追加 LED ドライバ (LED2)、MII TX_ER 信号、または 汎用 I/O (GPIO) として構成することもできます。 RMII モードでは、このピンはデフォルトで LED2 として機能します。
CRS/LED3	29	リセット: I、PD アク ティブ: O Strap3	搬送波検知 (デフォルト): MII モードでは、受信メディアまたは送信メディアがアイドルでない場合、このピンが High にアサートされます。搬送波検知および受信データは有効です。レジスタ構成により、このピンを3番目のLED (LED3) として構成できます。 RMII モードでは、このピンはデフォルトで LED3 として構成されます。
LED0	30	リセット:I、PD アク ティブ:O Strap2	LED0:この LED は、リンクのステータスに加えて、送受信アクティビティを示します。リンクが正常な場合は LED が点灯します。トランスミッタまたはレシーバがアクティブになると、LED が点滅します。 ピンの外部プルアップまたはプルダウンに基づいて、LED 極性は自動検出 (アクティブ Low / アクティブ High) されます。

表 5-1. ピン機能 (ENHANCED モード) (続き)

ピン		タイプ(1)	DO XE
名称	なし	9170	説明
CLKOUT/ LED1	31	リセット: I、PU アク ティブ: O Strap1	このピンは、パワーオンリセット (POR) 後のデフォルト出力として、XI からの 25MHz 基準クロックを供給します。出力はリセットの影響を受けないため、他のシステムに影響を及ぼすことなく、アプリケーションは PHY をリセットできます。出力クロックは、ディープ パワー ダウンによってのみオフになります。 ピンは、ストラップまたはレジスタ構成によって、LED1 として動作するように構成できます。ストラップは、パワーアップ時にのみラッチされ、ピンのリセット時にはラッチされません。リンクが 100Mbps の場合は LED が点灯します。リンクが 10Mbps の場合、またはリンクがない場合は、LED は消灯したままになります。 ピンの外部プルアップまたはプルダウンに基づいて、LED 極性は自動検出 (アクティブ Low / アクティブ High) されます。
RST_N	32	リセット: l、PU アク ティブ: l、PU	リセット Low:RST_N ピンはアクティブ Low リセット入力です。このピンを 25µs 以上 Low にアサートすると、リセット プロセスが強制的に開始されます。 リセットが開始されると、ストラップ ピンが再スキャンされ、PHY のすべての内部レジスタがデフォルト値にリセットされます。

(1) I = 入力、O = 出力、I/O = 入力 / 出力、A = アナログ、PU または PD = 内部プルアップまたはプルダウン: ハードウェア ブートストラップ構成

6 ピン構成および機能 (BASIC モード)

BASIC モードは、DP83826Ax がスタートアップ時に構成できる 2 つのモードのうちの 1 つです。このモードでは、DP83826Ax はすべての標準イーサネット アプリケーションをサポートでき、現在多くのアプリケーションで使用されている一般的なピン配置構成に一致します。DP83826Ax を BASIC モードに構成するには、ModeSelect (ピン 1) を GND に 短絡します。

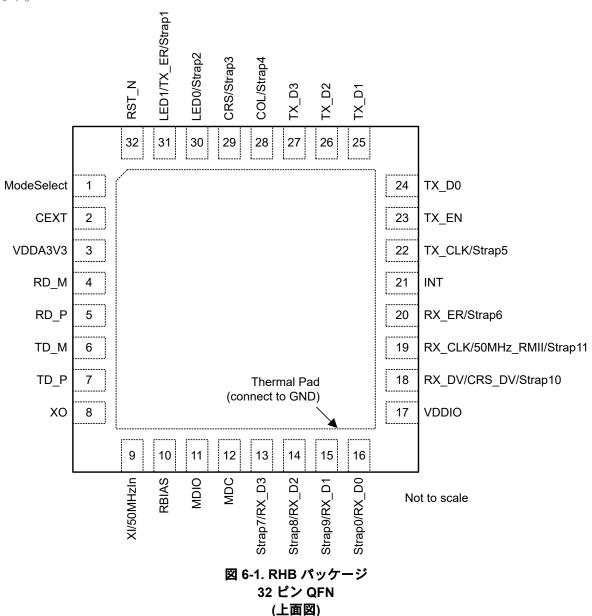


表 6-1. ピン機能 (BASIC モード)

ピン		タイプ ⁽¹⁾	3X DI
名称	なし		説明
ModeSelect	1	リセット: l、PU アク ティブ: l、PU	このピンは、次の動作モードを選択します:BASIC モードまたは ENHANCED モード。DP83826Ax を BASIC モードに構成するには、このピンを GND に短絡する必要があります。 ENHANCED モードの場合、このピンは NC のままにするか、抵抗で VDDIO にプルアップします。
CEXT	2	A	外部コンデンサ: CEXT ピンは、2nF のコンデンサを通して GND に接続します。

表 6-1. ピン機能 (BASIC モード) (続き)

ピン		タイプ ⁽¹⁾	3X BH
名称	なし	9170	説明
VDDA3V3	3	電源	入力アナログ電源:3.3V デカップリング コンデンサの要件については、データシートの「電源に関する推奨事項」セクションを参照してください。
RD_M	4	Α	差動受信入力 (PMD) :これらの差動入力は、10BASE-Te または 100BASE-TX 固有の信号モード
RD_P	5	A	を受け入れるように自動的に構成されます。
TD_M	6	Α	差動送信出力 (PMD) :これらの差動出力は、PHY に選択されている構成に基づいて、10BASE-Te
TD_P	7	A	または 100BASE-TX のいずれかの信号モードに構成されます。
хо	8	А	水晶振動子出力:基準クロック出力。XO ピンは水晶振動子の場合にのみ使用されます。CMOS レベル発振器を XI に接続する場合、このピンをフローティングのままにします。
XI/50MHzIn	9	А	水晶振動子または発振器の入力クロック: MII モードまたは RMII リーダー モード:25MHz ± 50ppm の水晶振動子または発振器クロック。 RMII フォロワ モード:50MHz ± 50ppm の CMOS レベル発振器クロック。
RBIAS	10	Α	バイアス抵抗:R _{BIAS} 値 6.49kΩ (グランドに 1% の精度で接続)。
MDIO	11	リセット:I、PU アクティブ:I/O、PU	管理データ I/O:管理ステーションまたは PHY から出力される可能性がある双方向管理データ信号。このピンには、10kΩ への内部プルアップ抵抗が搭載されています。必要に応じて、外部プルアップ抵抗を追加できます。
MDC	12	リセット: I、PD アク ティブ: I、PD	管理データ クロック: MDIO シリアル管理入力 / 出力データへの同期クロック。このクロックは、MAC の送信クロックおよび受信クロックと非同期にすることができます。 最大クロック レートは 25MHz です。 最小クロック レートはありません。
RX_D3	13	リセット:I、PU アク ティブ:O Strap7	
RX_D2	14	リセット:I、PD アク ティブ:O Strap8	受信データ:ケーブルで受信されたシンボルは、RX_CLK の立ち上がりエッジに同期してデコードされ、これらのピンに表示されます。RX DV がアサートされている場合、有効なデータが含まれていま
RX_D1	15	リセット:I、PD アク ティブ:O Strap9	す。MII モードでは、ニブル (RX_D[3:0]) を受信します。RMII モードでは、2 ビットの RX_D[1:0] を 受信します。
RX_D0	16	リセット:I、PU アク ティブ:O Strap0	
VDDIO	17	電源	I/O 電源電圧:3.3V または 1.8V。 デカップリング コンデンサの要件については、 データシートの「電源に関する推奨事項」 セクションを参照してください。
RX_DV/ CRS_DV	18	リセット: I、PD アク ティブ: O Strap10	受信データ有効:このピンは、MII モードの場合は RX_D[3:0]、RMII モードの場合は RX_D[1:0] に 有効なデータが存在することを示します。MII モードでは、このピンは RX_DV として機能します。 RMII モードでは、このピンは CRS_DV として機能し、RMII キャリアと受信データの有効な通知を組み合わせます。
RX_CLK/ 50MHz_RMII	19	リセット:I、PD アク ティブ:O Strap11	MII 受信クロック: MII 受信クロックは、速度 100Mbps の 25MHz 基準クロックおよび受信データストリームから取得される速度 10Mbps の 2.5MHz 基準クロックを供給します。 RMII リーダー モードでは、これにより 50MHz 基準クロックを供給します。RMII フォロワ モードでは、このピンは使われず、入力 / PD のままになります。
RX_ER	20	リセット:I、PD アク ティブ:O Strap6	受信エラー:このピンは、MII モードおよび RMII モードの両方で受信パケット内にエラー シンボルが 検出されたことを示します。MII モードでは、RX_CLK の立ち上がりエッジに同期して、RX_ER が High にアサートされます。RMII モードでは、基準クロックの立ち上がりエッジに同期して、RX_ER が High にアサートされます。受信エラー (アイドル中のエラーを含む) が発生するたびに、RX_ER が High にアサートされます。
INT	21	リセット:I、PU。アク ティブ:O、PU	割り込み:割り込み状態が発生すると、このピンは Low にアサートされます。このピンには、弱い内部 プルアップ抵抗 (9.5kΩ) のオープンドレイン出力があります。一部のアプリケーションでは、外部 PU 抵抗が必要となります。

表 6-1. ピン機能 (BASIC モード) (続き)

ピン		هـــه(۱)	AV 117	
名称	なし	- タイプ ⁽¹⁾	説明	
TX_CLK	22	リセット:I、PD アク ティブ:O Strap5	MII 送信クロック: MII 送信クロックは、速度 100Mbps の 25MHz 基準クロックおよび速度 10Mbps の 2.5MHz 基準クロックを提供します。 MII モードでは、このクロックの位相は基準クロックを基準として一定となることに注意してください。 このような一定位相を必要とするアプリケーションで、この機能を使用できます。 RMII モードでは使用されません。	
TX_EN	23	リセット:I、PD アク ティブ:I、PD	送信イネーブル:TX_EN は、TX_CLK の立ち上がりエッジに示されます。TX_EN は、MII モードでは TX_D[3:0]、RMII モードでは TX_D[1:0] に有効なデータ入力が存在することを示します。TX_EN はアクティブ High 信号です。	
TX_D0	24	リセット: l、PD アク ティブ: l、PD	- 送信データ:	
TX_D1	25	リセット: I、PD アク ティブ: I、PD	MII モードでは、MAC から受信された送信データ ニブルは TX_CLK の立ち上がりエッジに同期します。	
TX_D2	26	リセット: l、PD アク ティブ: l、PD	RMII モードでは、MAC から受信された TX_D[1:0] は基準クロックの立ち上がりエッジに同期します。	
TX_D3	27	リセット: l、PD アク ティブ: l、PD		
COL	28	リセット:I、PD アク ティブ:O Strap4	衝突検出: MII モード:全二重モードでは、このピンは常に Low です。半二重モードでは、送信メディアと受信メディアの両方がアイドル状態でない場合にのみ、このピン が High にアサートされます。 RMII モードでは、このピンは使用されません。	
CRS	29	リセット:I、PD アク ティブ:O Strap3	搬送波検知: MII モードでは、受信メディアまたは送信メディアがアイドルでない場合、このピンが High にアサートされます。 搬送波検知または受信データは有効です。RMII モードでは、このピンは使用されません。	
LED0	30	リセット:I、PU アク ティブ:O Strap2	LED0:この LED は、リンクのステータスに加えて、送受信アクティビティを示します。リンクが正常な場合は LED が点灯します。トランスミッタまたはレシーバがアクティブになると、LED が点滅します。 LED 極性はアクティブ Low に固定されます。ストラップ目的で外部プルダウンを必要とする場合、 LED とストラップの両方を正しく動作させるために、ストラップと LED の直列抵抗の両方を調整する必要があります。詳細については、LED セクションを参照してください。	
LED1/TX_ER	31	リセット:I、PU アク ティブ:O Strap1	LED1:このピンは、デフォルトで LED1 として機能します。リンクが 100Mbps の場合は LED が点灯します。リンクが 10Mbps の場合、またはリンクがない場合は、LED は消灯したままになります。レジスタ設定により、このピンを TX_ER に構成できます。 LED 極性はアクティブ Low に固定されます。ストラップ目的で外部プルダウンを必要とする場合、LED とストラップの両方を正しく動作させるために、ストラップと LED の直列抵抗の両方を調整する必要があります。詳細については、LED セクションを参照してください。	
RST_N	32	リセット:I、PU アク ティブ:I、PU	リセット Low:RST_N ピンはアクティブ Low リセット入力です。このピンを 25µs 以上 Low にアサートすると、リセット プロセスが強制的に開始されます。 リセットが開始されると、ストラップ ピンが再スキャンされ、PHY のすべての内部レジスタがデフォルト値にリセットされます。	

(1) I =入力、O =出力、I/O =入力 I出力、A =アナログ、PU または PD =内部プルアップまたはプルダウン: ハードウェア ブートストラップ構成

7 仕様

7.1 絶対最大定格

外気温度範囲内での動作 (特に記述のない限り) (1) (2)

パ	ラメータ	最小値	最大值	単位
アナログ電源電圧	VDDA3V3	-0.3	4	V
IO 電源	3.3V ±10% での VDDIO	-0.3	4	V
电源	1.8V ±10% での VDDIO	-0.3	2.3	V
MDI ピン	TX_P, TX_M, RX_P, RX_M	-0.6	4	V
MAC インターフェイス (MII、RMII) ピン	TX_CLK, TX_D[3:0], TX_EN, TX_ER, RX_CLK, RX_D[3:0], RX_ER, RX_DV, CRS, COL	-0.3	VDDIO(ma x) + 0.3	V
シリアル マネージメント インターフェイス ピン	MDIO, MDC	-0.3	VDDIO(ma x) + 0.3	V
水晶振動子 / 発振器ピン	XI' XO	-0.3	VDDIO(ma x) + 0.3	V
リセットピン	RST_N	-0.3	VDDIO(ma x) + 0.3	V
接合部温度	T _J		125	°C
保管温度	Tstg	-65	150	°C

- (1) 「絶対最大定格」外での動作は、デバイスに恒久的な損傷を引き起こす可能性があります。絶対最大定格は、これらの条件において、または「推 奨動作条件」に示された値を超える他のいかなる条件でも、本製品が正しく動作することを意味するものではありません。「絶対最大定格」の範囲 内であっても「推奨動作条件」の範囲外で使用すると、デバイスが完全に機能しない可能性があり、デバイスの信頼性、機能、性能に影響を及ぼ し、デバイスの寿命を縮める可能性があります。
- (2) VDDIO(max) は、「推奨動作条件」の表に記載されている VDDIO の最大値を参照します

7.2 ESD 定格

パラメータ	パラメータ 定義		単位
静電気放電 (HBM)	人体モデル (HBM)、ANSI/ESDA/JEDEC JS-001 準拠 ⁽¹⁾ MDI (Media Dependent Interface) ピン	±5	kV
	人体モデル (HBM)、ANSI/ESDA/JEDEC JS-001 準拠 ⁽¹⁾ MDI ピンを除くすべてのピン	±2	kV
ESD (CDM) デバイス帯電モデル (CDM)、JEDEC 仕様 JESD22-C101 準拠 (2)、すべてのピン		±750	V

- (1) JEDEC のドキュメント JEP155 に、500V HBM では標準の ESD 管理プロセスで安全な製造が可能であると規定されています。必要な予防措置をとれば、HBM の ESD 耐圧が 500V 未満でも製造可能です。±5kV または ±4kV と記載されたピンは、実際にはそれよりも高い性能を持つ場合があります。
- (2) JEDEC のドキュメント JEP157 に、250V CDM では標準の ESD 管理プロセスで安全な製造が可能であると規定されています。必要な予防措置をとれば、CDM ESD 耐圧が 250V 未満でも製造可能です。±750V と記載されているピンは、実際にはそれよりも高い性能を持つ場合があります。

7.3 推奨動作条件

自由気流での動作温度範囲内 (特に記述のない限り)

			最小値	標準値	最大値	単位
VDDA3V 3	アナログ電源電圧		3	3.3	3.6	V
VDDIO IO EM	IO 電源	3.3V ±10% での VDDIO	3	3.3	3.6	V
VDDIO	10 电你	1.8V ±10% での VDDIO	1.62	1.8	1.98	V

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

11

7.3 推奨動作条件 (続き)

自由気流での動作温度範囲内 (特に記述のない限り)

			最小値	標準値	最大値	単位
	TX_EN、TX_D[3:0]、TX_CLK、 RX_D[3:0]、RX_DV、RX_ER、MDIO、 MDC、COL/LED2、CRS、CLKOUT/ LED1、INT/PWDN、RESET、TX_ER 1.8V ±10% での VDDIO	1.62	1.8	1.98	٧	
	XI 発振器入力		1.62	1.8	1.98	V
V _{IO}	LED0		1.62	1.8	1.98	V
VIO	TX_EN, TX_D[3:0], TX_CLK, RX_D[3:0], RX_DV, RX_ER, MDIO, MDC, COL/LED2, CRS, CLKOUT/ LED1, INT/PWDN, RESET, TX_ER	3.3V ±10% での VDDIO	3.0	3.3	3.6	٧
	XI 発振器入力		3.0	3.3	3.6	V
	LED0		3.0	3.3	3.6	V
т.	動作時周囲温度	DP83826AI	-40	25	85	°C
I'A	T _A 動作時周囲温度	DP83826AE	-40	25	105	°C

7.4 熱に関する情報

		デバイス	
	熱評価基準 ⁽¹⁾	RHB (VQFN)	単位
		32 ピン	
$R_{\theta JA}$	接合部から周囲への熱抵抗	52	°C/W
$R_{\theta JC(top)}$	接合部からケース (上面) への熱抵抗	42	°C/W
R _{0JC(bot)}	接合部からケース (底面) への熱抵抗	11.9	°C/W
$R_{\theta JB}$	接合部から基板への熱抵抗	31.5	°C/W
Ψ_{JT}	接合部から上面への特性パラメータ	2.1	°C/W
Ψ_{JB}	接合部から基板への特性パラメータ	31.4	°C/W

⁽¹⁾ 従来および最新の熱評価基準の詳細については、『半導体および IC パッケージの熱評価基準』アプリケーション レポートを参照してください。

7.5 電気的特性

自由気流での動作温度範囲内 (VDDA3V3 = 3.3V) (特に記述のない限り)(1)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
IEEE Tx 3	準拠 (100BaseTx)		-			
V _{OD}	差動出力電圧		950		1050	mV
IEEE Tx 3	準拠 (10BaseTe)					
V _{OD}	出力差動電圧 ⁽²⁾		1.54	1.75	1.96	V
消費電力の	の基準値 (アクティブ モード、50% のトラフィック	ウ、パケット サイズ:1518、ランダム コンテンツ、	150m のケー	ブル)	<u>'</u>	
	MII (100BaseTx)			45	53	mA
	MII (10BaseTe)			35	46	mA
I _{(VDDA3V3}	RMIIリーダー (100BaseTx)			45	53	mA
=3V3)	RMIIリーダー (10BaseTe)			35	46	mA
	RMII フォロワ (100BaseTx)			45	53	mA
	RMII フォロワ (10BaseTe)			35	46	mA
	MII (100BaseTx)			8	14	mA
	MII (10BaseTe)			5	12	mA
I _{(VDDIO=3}	RMIIリーダー (100BaseTx)			9	14	mA
V3)	RMIIリーダー (10BaseTe)			9	12	mA
	RMII フォロワ (100BaseTx)			7	8.5	mA
	RMII フォロワ (10BaseTe)			5	6	mA
	MII (100BaseTx)			5	7	mA
	MII (10BaseTe)			3	6	mA
I _{(VDDIO=1}	RMIIリーダー (100BaseTx)			5	7	mA
V8)	RMIIリーダー (10BaseTe)			5	6	mA
	RMII フォロワ (100BaseTx)			3	6	mA
	RMII フォロワ (10BaseTe)			2	4	mA
消費電力	(アクティブ モードの最も厳しい条件、100% の)トラフィック、パケット サイズ:1518、ランダムコ	ンテンツ、 15 0	m のケーフ	*/レ)	
	MII (100BaseTx)			44	55	mA
	MII (10BaseTe)			35	48	mA
I _{(VDDA3V3}	RMIIリーダー (100BaseTx)			44	55	mA
=3V3)	RMIIリーダー (10BaseTe)			35	48	mA
	RMII フォロワ (100BaseTx)			44	55	mA
	RMII フォロワ (10BaseTe)			35	48	mA
	MII (100BaseTx)			11	15	mA
	MII (10BaseTe)			5	12	mA
I _{(VDDIO=3}	RMIIリーダー (100BaseTx)			10	15	mA
V3)	RMII リーダー (10BaseTe)			9	12	mA
	RMII フォロワ (100BaseTx)			7	12	mA
	RMII フォロワ (10BaseTe)			5	10	mA

7.5 電気的特性 (続き)

自由気流での動作温度範囲内 (VDDA3V3 = 3.3V) (特に記述のない限り)(1)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
	MII (100BaseTx)			6	9	mA
	MII (10BaseTe)			2	6	mA
I _{(VDDIO=1}	RMIIリーダー (100BaseTx)			6	9	mA
V8)	RMIIリーダー (10BaseTe)			5	7	mA
	RMII フォロワ (100BaseTx)			4	8	mA
	RMII フォロワ (10BaseTe)			2	6	mA
消費電力	(低消費電力モード)					
I _{(AVDD3V3} =3V3)	100 BaseTx EEE モード	EEE モードの 100 BaseTx リンク (LPI オン)		15		mA
	IEEE パワーダウン				11	mA
I _{(AVDD3V3} =3V3)	アクティブ スリープ				18	mA
-3 (3)	リセット				12.5	mA
I _{(VDDIO=3} V3)	100 BaseTx EEE モード	EEE モードの 100 BaseTx リンク (LPI オン)		6		mA
	IEEE パワーダウン				10.5	mA
I _{(VDDIO=3} V3)	アクティブ スリープ				10.5	mA
	リセット				10.5	mA
I _{(VDDIO=1} V8)	100 BaseTx EEE モード	EEE モードの 100 BaseTx リンク (LPI オン)		4		mA
_	IEEE パワーダウン				5.5	mA
I _{(VDDIO=1} V8)	アクティブ スリープ				5.5	mA
vo)	リセット				5.5	mA
ブートストラ	ラップ DC 特性 (2 レベル)			-		
V _{IH_3v3}	High レベルのブートストラップ スレッショルド:3V3		1.3			V
V _{IL_3v3}	Low レベルのブートストラップ スレッショルド: 3V3				0.6	V
V _{IH_1v8}	High レベルのブートストラップ スレッショルド: 1V8		1.3			V
V _{IL_1v8}	Low レベルのブートストラップ スレッショルド: 1V8				0.6	V
水晶発振	器					
	外部負荷容量			15	30	pF
Ю					Т	
V _{IH_3V3}	High レベル入力電圧	VDDIO = 3.3V ±10%	1.7			V
V _{IL_3V3}	Low レベル入力電圧	VDDIO = 3.3V ±10%			8.0	V
V _{OH_3V3}	High レベル出力電圧	I _{OH} = -2mA, VDDIO = 3.3V ±10%	2.4			V
V _{OL_3V3}	Low レベル出力電圧	I _{OL} = 2mA, VDDIO = 3.3V ±10%			0.4	V
V _{IH_1V8}	High レベル入力電圧	VDDIO = 1.8V ±10%	0.65 x VDDIO			V
V _{IL_1V8}	Low レベル入力電圧	VDDIO = 1.8V ±10%			0.35 x VDDIO	V
V _{OH_1V8}	High レベル出力電圧	I _{OH} = -2mA、VDDIO = 1.8V ±10%	VDDIO – 0.45			V
V _{OL_1V8}	Low レベル出力電圧	I _{OL} = 2mA, VDDIO = 1.8V ±10%			0.45	V

7.5 電気的特性 (続き)

自由気流での動作温度範囲内 (VDDA3V3 = 3.3V) (特に記述のない限り)(1)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
I _{IH}	古工力能达	T_A = -40°C \sim 85°C, VIN=VDDIO			15	μΑ
'IH	高入力電流	T_A = -40°C \sim 105°C, VIN=VDDIO			25	μΑ
	7. 十.Low 垂泣	T_A = -40°C \sim 85°C, VIN=GND			15	μΑ
I _{IL}	入力 Low 電流	T_A = -40°C \sim 105°C, VIN=GND			25	μA
	15795 1川上京原次	$T_A = -40$ °C ~ 85 °C	-15		15	μA
I _{OZH}	トライステート出力高電流	$T_A = -40^{\circ}C \sim 105^{\circ}C$	-25		25	μA
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	$T_A = -40$ °C ~ 85 °C	-15		15	μA
I _{OZL}	トライステート出力低電流	$T_A = -40^{\circ}C \sim 105^{\circ}C$	-25		25	μA
R _{PD}	内部プルダウン抵抗		7.5	10	12.5	kΩ
R _{PU}	内蔵プルアップ抵抗		7.5	10	12.5	kΩ
C _{IN}	入力容量	XIピン		1		pF
CIN	八刀谷里	入力ピン		5		pF
C	出力容量	XOピン		1		pF
C _{OUT}	山刀谷里	出力ピン		5		pF
V _{CM-OSC}	XI 入力発振器クロックの同相電圧	VDDIO = 1.8V		0.9		V
V CM-OSC	へ ノヘノナ 1水 4分フ ロック・リーハ 作 电圧	VDDIO = 3.3V		1.65		V
R _{series}	内蔵 MAC 直列終端抵抗	RX_D[3:0], RX_ER, RX_DV, RX_CLK, TX_CLK		50		Ω

⁽¹⁾ 製造試験、特性評価、設計によって検証済み

⁽²⁾ レジスタ 0x030E に 0x4A40 を書き込む必要があります。

7.6 タイミング要件

(1)

	パラメータ	最小値	公称值	最大値	単位
パワーア	ップ タイミング				
T1	電圧ランプ期間 (VDDIO の 0%~100%)	0.5		50	ms
T2	VDDA3V3 の後に VDDIO、または VDDIO の後に VDDA3V3 の順に供給 ^{(2) (4)}	0		200	ms
T3	電圧ランプ期間 (VDDA3V3 の 0%~100%)	0.5		50	ms
T4	POR リリース時間 / 電源投入から SMI レディまで:レジスタ アクセスの MDC プリアンブルまでの、電源投入後安定化時間			50	ms
T5	電源投入から FLP まで		1500		ms
V _{PED}	電源立ち上げの前の VDDA3V3、VDDIO のペデスタル電圧			0.3	V
リセットタ	デング				
T1	リセット パルス幅:リセット可能な最小リセット パルス幅 (デバウンシング コンデンサなし)	25			μs
T2	リセットから SMI レディまで:レジスタ アクセスの MDC プリアンブルまでの、リセット後安定化時間			2	ms
Т3	リセットから FLP まで		1500		ms
	リセットから 100M 信号まで (ストラップ モード)		0.5		ms
	リセットから RMII リーダー クロックまで		0.2		ms
高速リング	プパルスタイミング				
T1	クロック パルスからクロック パルスまでの期間	111	125	139	μs
T2	クロック パルスからデータ パルスまでの期間	55.5	62.5	69.5	μs
T3	クロック / データのパルス幅		104		ns
T4	FLP バーストから FLP バーストまでの期間	8	16	24	ms
T5	FLP バースト幅		2		ms
	バースト内のパルス幅	17		33	パルス
リンク アッ	プ タイミング				
	ストラップを使って有効化された高速リンクドロップ、150m ケーブル			10	μs
	モード 1 (信号 / エネルギー喪失表示) を使用した高速リンクドロップ時間			10	μs
	モード 2 (低信号対雑音比スレッショルド) を使用した高速リンクドロップ時間(5)			10	μs
	モード 3 (MLT3 エラー カウント) を使用した高速リンクドロップ時間 ⁽⁵⁾			10	μs
	モード 4 (RX エラー数) を使用した高速リンクドロップ時間			10	μs
	モード 5 (デスクランブラ リンクドロップ) を使用した高速リンクドロップ時間 (5)			11	μs
100M EE	E のタイミング				
	スリープ時間		210		μs
	静穏時間		20		ms
	ウェーク時間 (Tw_sys_tx)		36		μs
	リフレッシュ時間		200		μs
100M MI	受信タイミング				
T1	RX_CLK High/Low 時間	16	20	24	ns
T2	RX_CLK 立ち上がりからの RX_D[3:0]、RX_ER、RX_DV の遅延	20		28	ns
100M MI	送信タイミング				
T1	TX_CLK High/Low 時間	16	20	24	ns
T2	TX_CLK までの TX_D[3:0]、TX_ER、TX_EN のセットアップ	10			ns
Т3	TX_CLK からの TX_D[3:0]、TX_ER、TX_EN のホールド	0			ns

7.6 タイミング要件 (続き)

(1)

	パラメータ	最小値	公称值	最大値	単位
10M MII	受信タイミング				
T1	RX_CLK High/Low 時間 ⁽³⁾	160	200	240	ns
T2	RX_CLK 立ち上がりからの RX_D[3:0]、RX_ER、RX_DV の遅延 ⁽³⁾	100		300	ns
10M MII	送信タイミング			'	
T1	TX_CLK High/Low 時間	190	200	210	ns
T2	TX_CLK までの TX_D[3:0]、TX_ER、TX_EN のセットアップ	25			ns
Т3	TX_CLK からの TX_D[3:0]、TX_ER、TX_EN のホールド	0			ns
10/100N	M RMII リーダー タイミング				
	RMII リーダー クロック周期		20		ns
	RMII リーダー クロック デューティ サイクル	35		65	%
10/100N	M RMII フォロワ タイミング				
Т2	基準クロックの立ち上がりまでの TX_D[1:0]、TX_ER、TX_EN のセットアップ RMII 送信タイミングを参照してください。	4			ns
Г3	基準クロックの立ち上がりからの TX_D[1:0]、TX_ER、TX_EN のホールド RMII 送信タイミングを参照してください。	2			ns
Γ4	基準クロックの立ち上がりからの RX_D[1:0]、RX_ER、CRS_DV の遅延 RMII 受信タイミングを参照してください。	4		14	ns
SMI タイ	ミング				
Γ1	MDC から MDIO (出力) までの遅延時間	0		13	ns
Γ2	MDC に対する MDIO (入力) のセットアップ時間	10			ns
Т3	MDC に対する MDIO (入力) のホールド時間	10			ns
T4	MDC 周波数		2.5	24	MHz
出力クロ	ック タイミング (50M RMII リーダー クロック)				
	周波数 (PPM)			50	ppm
	ジッタ (長期 500 サイクル)			450	ps
	立ち上がり/立ち下がり時間			5	ns
	デューティサイクル	40		60	%
出力クロ	ック タイミング (25M クロック出力)	-			
	周波数 (PPM)			50	ppm
	デューティサイクル	35		65	%
	立ち上がり時間			4000	ps
	立ち下がり時間			5000	ps
	ジッタ (長期:500 サイクル)			300	ps
	周波数		25		MHz
25MHz	入力クロック許容誤差				
	周波数許容誤差	-50		50	ppm
	立ち上がり/立ち下がり時間			5	ns
	ジッタ許容誤差 (RMS)			50	ps
	1kHz での入力位相ノイズ			-98	dBc/Hz
	10kHz での入力位相ノイズ			-113	dBc/Hz
	100kHz での入力位相ノイズ			-113	dBc/Hz
	1MHz での入力位相ノイズ			-113	dBc/Hz

Copyright © 2025 Texas Instruments Incorporated

English Data Sheet: SNLS783

18

Product Folder Links: DP83826AE DP83826AI

7.6 タイミング要件 (続き)

(1

	パラメータ	最小値	公称值 最大值	単位
	10MHz での入力位相ノイズ		-113	dBc/Hz
	デューティサイクル	40	60	%
50MHz	入力クロック許容誤差			l
	周波数許容誤差	-50	50	ppm
	立ち上がり/立ち下がり時間		5	ns
	ジッタ許容誤差 (RMS)		50	ps
	1kHz での入力位相ノイズ		-87	dBc/Hz
	10kHz での入力位相ノイズ		-107	dBc/Hz
	100kHz での入力位相ノイズ		-107	dBc/Hz
	1MHz での入力位相ノイズ	,	-107	dBc/Hz
	10MHz での入力位相ノイズ	,	-107	dBc/Hz
	デューティサイクル	40	60	%
レイテン	シタイミング			1
	MII 100M Tx (MII から MDI まで):TX_CLK の立ち上がりエッジ (TX_EN アサート時) から MDI の SSD シンボルまで、高速 RX_DV 有効、100m ケーブル	38	40	ns
	MII 100 Rx (MDI から MII まで): MDI の SSD シンボルから RX_CLK の立ち上がりエッジ (RX_DV アサート時) まで、高速 RX_DV 有効、100m ケーブル	166	170	ns
	MII 10M Tx (MII から MDI まで): TX_CLK の立ち上がりエッジ (TX_EN アサート時) から MDI の SSD シンボルまで		540	ns
	RMII フォロワ 100M Tx (RMII から MDI まで): RMII フォロワの XI クロックの立ち上がりエッジ (TX_EN アサート時) から MDI の SSD シンボルまで、高速RX_DV 有効、100m ケーブル	88	96	ns
	RMII リーダー 100M Tx (RMII から MDI まで): RMII リーダーのクロックの立ち上がりエッジ (TX_EN アサート時) から MDI の SSD シンボルまで、高速RX_DV 有効、100m ケーブル	88	96	ns
	RMII フォロワ 10M Tx (RMII から MDI まで): RMII フォロワの XI クロックの立ち上がりエッジ (TX_EN アサート時) から MDI の SSD シンボルまで		1360	ns
	RMII リーダー 10M Tx (RMII から MDI まで):RMII リーダーのクロックの立ち上がりエッジ (TX_EN アサート時) から MDI の SSD シンボルまで		1360	ns
	MII 10M Rx (MDI から MII まで): MDI の SSD シンボルから RX_CLK の立ち上がりエッジ (RX_DV アサート時) まで、高速 RX_DV 有効、100m ケーブル		1640	ns
	RMII フォロワ 100M Rx (MDI から RMII まで): MDI の SSD シンボルから RMII フォロワの XI クロックの立ち上がりエッジ (CRS_DV アサート時) まで、高速 RX_DV 有効、100m ケーブル	268	288	ns
	RMII リーダー 100M Rx (MDI から RMII まで): MDI の SSD シンボルから RMII リーダーのリーダー クロックの立ち上がりエッジ (CRS_DV アサート時) まで	252	270	ns
	RMII フォロワ 10M (MDI から RMII まで): MDI の SSD シンボルから RMII フォロワの XI クロックの立ち上がりエッジ (CRS_DV アサート時) まで (10M)	2110	2152	ns
	RMII リーダー 10M (MDI から RMII まで): MDI の SSD シンボルから RMII リーダーのリーダー クロックの立ち上がりエッジ (CRS_DV アサート時) まで (10M)	2110	2152	ns
	MII:XIとTXCLKの間の位相差(複数回のリセット、パワー サイクルを挟んで)	0	2 4	ns

- (1) 製造試験、特性評価、設計によって保証されています。
- (2) 電源の立ち上げ開始時にクロックが利用可能である必要があります。クロックが遅れた場合、POR 完了後に追加の RESET_N が必要です。クロックの安定化と POR 完了の 100µs 後にリセットを開始できます。
- (3) 最初のニブルのデータを受信中に、PHY はソースをローカル クロックから再生クロックに切り替え、RX_CLK をストレッチして、RX_CLK から RX_DV までの遅延に影響を及ぼします。
- (4) VDDIO 電源と AVDD 電源は、同時に立ち上げることも、どちらかの立ち上げを (遅延の最大値まで) 遅らせることもできます。

(5) Rx_Error カウントまたは信号 / エネルギー損失表示を有効化して、最大限度を満たします。

7.7 タイミング図

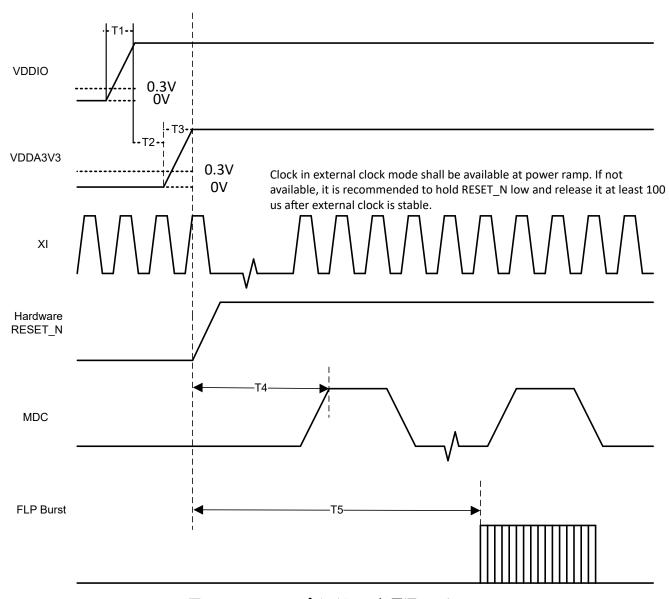
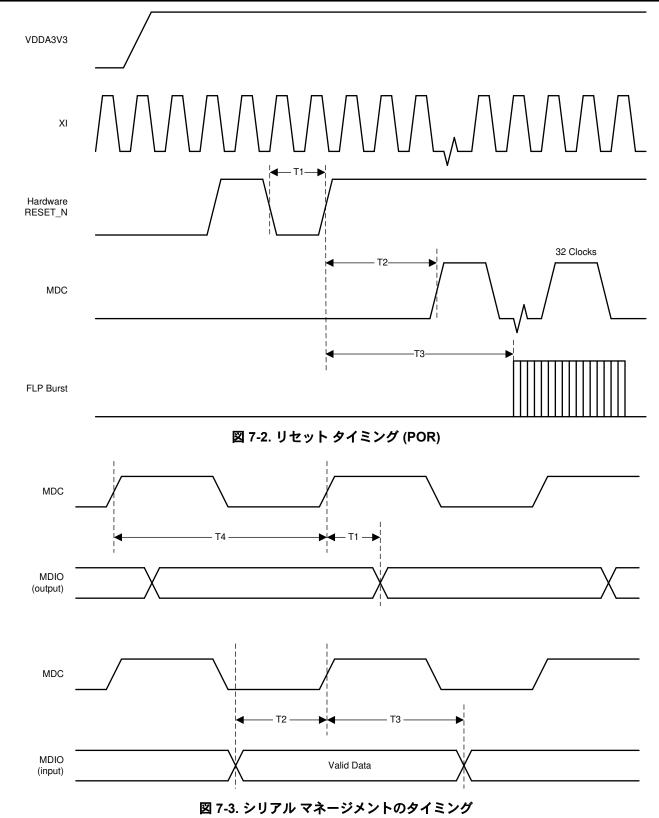



図 7-1. パワーアップ タイミング (電源シーケンス)

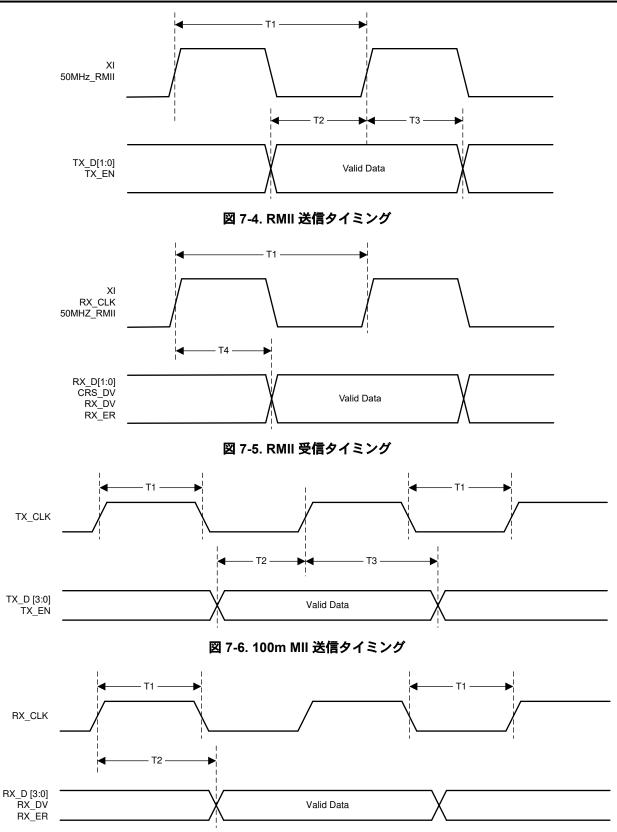


図 7-7. 100m MII 受信タイミング

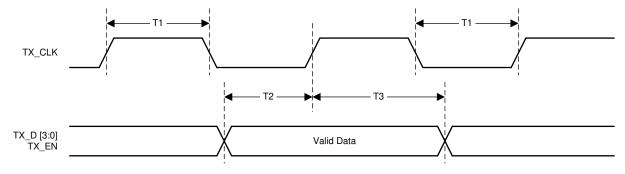


図 7-8. 10M MII 送信タイミング

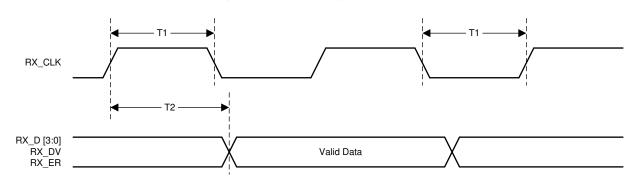


図 7-9. 10m MII 受信タイミング

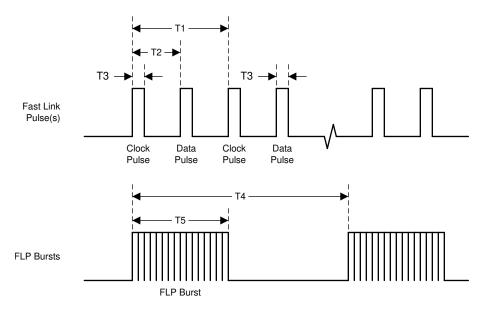


図 7-10. 高速リンク パルス タイミング

23

図 7-11. 100BASE-TX 送信レイテンシ タイミング

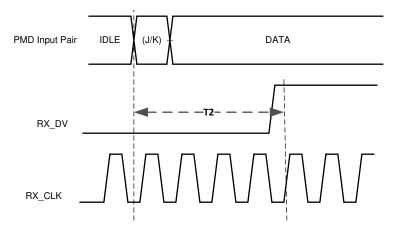
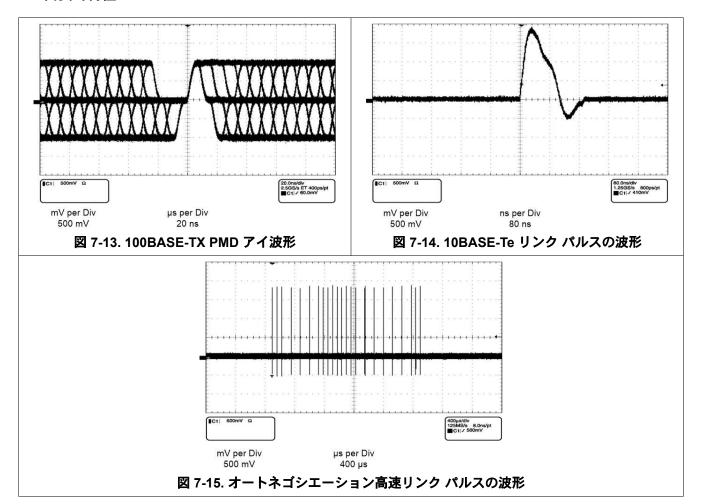



図 7-12. 100BASE-TX 受信レイテンシ タイミング

7.8 代表的特性

8 詳細説明

8.1 概要

DP83826Ax は、IEEE802.3 10BASE-Te および 100BASE-TX 規格に準拠したシングル ポートの物理層トランシーバです。DP83826Ax は、厳格な産業用フィールドバス アプリケーションのニーズを満たすように設計されており、非常に低いレイテンシ、レイテンシの確定的な変動 (リセット、電源サイクル全体)、XI と TX_CLK 間の固定位相、低消費電力、高速リンク アップを実現するハードウェア ブートストラップを使用した構成を提供します。このデバイスは、MAC (媒体アクセス制御) に直接接続するための標準の MII および RMII (リーダー モードおよびフォロワ モード) をサポートしています。このデバイス専用の CLKOUT ピンを使用して、システム上の他のモジュールをクロック駆動できます。さらに、PWRDN ピンはパワーオン リセット (POR) から DP83826Ax のリンク アップを制御し、DP83826Ax の非同期パワーアップおよびホスト SoC (システム オン チップ) または FPGA (フィールド プログラマブル ゲート アレイ) コントローラの設計に有用です。

デバイスは 3.3V 単一電源で動作し、LDO を内蔵しているので、内部ブロックに必要な電圧レールを供給できます。デバイスは 3.3V または 1.8V の I/O 電圧インターフェイスに対応できるため、DP83826Ax は単一電源 PHY として動作できます。 DP83826Ax 内の自動電源構成により、追加の構成設定を必要とせずに、VDDIO 電源を自由に組み合わせて使用できます。

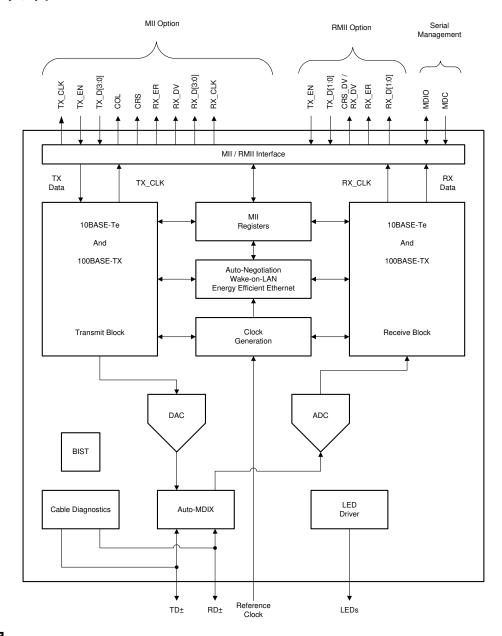
DP83826Ax では、ミックスド シグナル処理を使用してイコライゼーション、データの回復、および誤り訂正が行われるため、ケーブル長が 150m 以上の CAT5e ツイストペア配線で信頼性の高い動作を実現できます。

DP83826Ax は、パワーアップ シーケンス時にハードウェア ブートストラップを使用して、2 つのモードを選択できます。

- BASIC モード
- ENHANCED モード

BASIC モードは、標準イーサネット アプリケーションに必要なすべての機能を提供します。また、現在の多くのアプリケーションで使用されている一般的なピン配置の構成を使用しているので、既存のプラットフォームでの評価とテストを簡素化できます。 DP83826Ax を使用すれば、MAC と MDI 終端を内蔵しているため、ボードの設計を効率化できます。必要なすべてのクロック出力は、25MHz 外部水晶振動子または発振器入力を備えた単一の PLL から生成されます。

ENHANCED モードには、BASIC モードで説明されているすべての動作モードが含まれていますが、ピンを変更すること で追加の機能が可能になります。 ENHANCED モードの DP83826Ax は、標準イーサネット アプリケーションに加えてイーサネット フィールドバス アプリケーションでも使用できます。 機能には以下が含まれます:


- 専用基準クロック出力: CLKOUT (ピン 31) を使用すると、システム全体を同期して、レイテンシを短縮できます (MAC での FIFO の減少)。このクロックは POR で有効化され、リセットを通して使用可能に維持されます。この機能により、他の PHY およびボード上のホスト SoC/FPGA 用の専用クロックの必要性も低下します。
- 専用 HW ストラップで強制モード、MDI、MDIX を使用することで、POR およびリセットからの高速リンク アップが実現します。
- IEEE パワーダウン ピン: PWRDN (ピン 21) は、DP83826Ax の非同期パワーアップとホスト SoC/FPGA 制御に有用で、この専用ピンを介して DP83826Ax リンク アップを引き続き管理できます。
- MAC インターフェイス ピン以外の PHY アドレス ハードウェア ブートストラップにより、MII および RMII MAC インターフェイス ピンのシグナル インテグリティが向上します。

両方のモードのピン マッピングについては、セクション *セクション 5* および *セクション 6* を参照してください。

両方のモードのハードウェア ブートストラップの構成については、セクション *セクション 8.4.1.1* および *セクション 8.4.1.2* を参照してください。

8.2 機能ブロック図

8.3 機能説明

8.3.1 オートネゴシエーション (速度/二重モード選択)

オートネゴシエーションは、リンク セグメントの両端間で設定情報を交換するメカニズムを提供します。このメカニズムは、高速リンク パルス (FLP) を交換することによって実装されます。FLPS は、リンク セグメントの各終端にある 2 つのデバイス間の機能を通信するために使用される情報を提供するバースト パルスです。DP83826Ax は、オートネゴシエーションのために 100BASE-TX および 10BASE-Te の動作モードをサポートしています。オートネゴシエーションにより、リンク パートナーとローカル デバイスのアドバタイズされた能力に基づいて、最も高い共通速度が選択されるようになります。オートネゴシエーションは、BASIC モード制御レジスタ (BMCR、アドレス 0x0000) のビット [12] を使って、ブートストラップを使用して、またはレジスタ設定を使用して、ハードウェアで有効化または無効化できます。オートネゴシエーションの詳細については、IEEE 802.3 条項 28 の仕様を参照してください。

27

8.3.2 Auto-MDIX の解決

DP83826Ax は、リンク パートナーへの接続に「ストレート」ケーブルと「クロスオーバー」ケーブルのいずれを使用しているかを判断できます。DP83826Ax は、TD (MDI) チャネルと Rd (MDIX) チャネルを自動的に再割り当てし、リンク パートナーとのリンクを確立できます。Auto-MDIX 解決は、機能をアドバタイズするために FLP を交換する実際のオートネゴシエーション プロセスよりも前に行われます。自動 MDI/MDIX は IEEE 802.3 条項 40、40.8.2 節に記述されており、10BASE-Te および 100BASE-TX には必要な実装ではありません。Auto-MDIX は、PHY を強制モードで動作させる際にも使用できます。

Auto-MDIX は、ハードウェア ブートストラップを使用して、またはレジスタ構成を行うことで、PHY 制御レジスタ (PHYCR、アドレス 0x0019) のビット [15] を使用して有効化または無効化できます。Auto-MDIX が無効化されている場合、PMA は MDI (ストレート) または MDIX (クロスオーバー) のいずれかに強制されます。 MDI または MDIX の手動構成は、PHYCR のビット [14] を使用して、またはハードウェア ブートストラップを ENHANCED モードで使用することで、レジスタ構成を使用して行うこともできます。

8.3.3 EEE (Energy Efficient Ethernet)

8.3.3.1 EEE の概要

IEEE 802.3az で定義されている省電力型イーサネット (EEE) は、低消費電力アイドル (LPI) モードで動作するレイヤ 1 (物理層) およびレイヤ 2 (データリンク層) に統合された機能です。 LPI モードでは、パケットの使用率が低いときに電力が節約されます。 EEE は、リンクのドロップまたはパケットの破損を発生させずに、 LPI モードの移行および終了を実行するプロトコルを定義します。

DP83826Ax EEE は、100Mbps および 10Mbps の速度をサポートします。 EEE は、MII と RMII 両方の MAC インターフェイスでサポートされています。 10BASE-Te 動作では、EEE は 10BASE-T PHY と完全に相互運用可能な低い送信振幅で動作します。

EEE は、レジスタのプログラミングによって有効化する必要があります。以下の手順では、MDC/MDIO インターフェイスを使用して、DP83826Ax を EEE 用に構成する方法について説明します。

MMD	レジスタ・アドレス	データ
1Fh	001Fh	8000h
7h	203Ch	0002h
1Fh	04D1h	008Bh
1Fh	04DFh	0180h
1Fh	033Eh	A681h
1Fh	033Fh	0003h
1Fh	04F5h	2864h
1Fh	04E0h	FFF2h
1Fh	031Fh	FE36h
1Fh	0308h	0000h
1Fh	04F4h	0800h
1Fh	0123h	0800h
1Fh	0126h	5D23h
1Fh	0132h	0183h
1Fh	04D4h	3322h
1Fh	04CFh	261Dh
1Fh	0310h	76E1h

資料に関するフィードバック(ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

MMD	レジスタ・アドレス	データ
1Fh	0416h	1830h
1Fh	0311h	01FCh
1Fh	0313h	06E3h
1Fh	033Ah	579Bh
1Fh	033Ch	EC00h
1Fh	0317h	1000h
1Fh	031Bh	8848h
1Fh	04F5h	2864h
1Fh	0000h	3300h
1Fh	0466h	FD00h

8.3.3.2 EEE ネゴシエーション

EEE は、オートネゴシエーション中にアドバタイズされます。オートネゴシエーションは、パワーアップ時、管理コマンド時、リンク障害後、またはユーザ介入によって実行されます。 EEE は、両方のリンク パートナーが EEE 機能をアドバタイズする場合にのみサポートされます。 EEE がサポートされていない場合、すべての EEE 機能が無効になり、MAC は LPI をアサートしません。 EEE 機能をアドバタイズするため、PHY は追加のフォーマット済み次ページと未フォーマットの次ページを順番に交換する必要があります。

EEE ネゴシエーションは、レジスタ アクセスを使用して有効化できます。IEEE 802.3az では、MMD3 および MMD7 が EEE 制御およびステータス レジスタの場所として定義されています。MMD3 レジスタ 0x1014、0x1001、0x1016、および MMD7 レジスタ 0x203C、0x203D には、EEE の動作に必要なすべての制御とステータス表示が含まれています。省電力型イーサネット構成レジスタ 3 (EEECFG3、アドレス 0x04D1) には、EEE 構成バイパスの制御が含まれています。

デフォルトでは、EEE 機能はバイパスされます。MMD3 および MMD7 レジスタに基づいて EEE をアドバタイズするには、EEE 機能バイパスを無効化 (0x04D1.0 = 1、0x04D1.3 = 1) し、EEE アドバタイズメントを有効化 (MMD7 0x203C.1 = 1) する必要があります。

8.3.4 802.3az をサポートしていないレガシー MAC のための EEE

デバイスは、レジスタのプログラミングによって LPI 信号 (アイドルおよびリフレッシュ) を開始するように構成することもできます。この機能により、使用されている MAC が EEE をサポートしていない場合でも、システムは EEE を実行できます。このモードでは、ホスト コントローラ アプリケーションによって、LPI 信号のイネーブル / ディスエーブルが決まります。 *DP83826Ax* が LPI 信号モードの場合、アプリケーションは DP83826Ax をアクティブ モードに移行してから、MAC インターフェイス経由でデータを送信します。

DP83826Ax には、LPI 信号モード中にデータを保存するためのバッファリング機能はありません。レジスタ設定によって EEE を有効化するには、以下のレジスタを設定する必要があります。

- 1.0x04D1.0 = 1、0x04D1.3 = 1 を書き込むことで、EEE 機能を有効化します
- 2.書き込み (MMD7 0x203C.1 = 1) により、オート ネゴシエーション中に EEE 機能をアドバタイズします
- 3.0x0000.9 = 1 を書き込むことで、リンクを再ネゴシエーションします
- 4.0x04D1.12 = 1 を書き込むことで、強制的に Tx LPI をアイドル状態にします
- 5.LPI アイドルの送信を停止するには、0x04D1.12 = 0 を書き込みます

29

8.3.5 WoL (Wake-on-LAN) パケット検出

Wake-on-LAN (WoL) は、特定のフレームを検出し、レジスタステータスの変更、GPIO表示、割り込みフラグのいずれかを通じて接続コントローラに通知するメカニズムを提供します。DP83826Ax デバイスの WoL 機能により、物理層より上位にある接続デバイスは、適格な資格情報を持つフレームが検出されるまで低消費電力状態を維持できます。このデバイスは、WoL マジックパケット™ フレーム タイプをサポートしています。適格 WoL フレームを受信すると、デバイス WoL ロジック回路は、GPIO ピンによってユーザー定義イベント (パルスまたはレベル変化)またはステータス割り込みフラグを生成し、接続コントローラにウェークイベントが発生したことを通知します。このデバイスにはサイクル冗長性チェック(CRC) ゲートが内蔵されており、無効なパケットによってウェークアップイベントがトリガされることを防止します。Wake-on-LAN 機能には以下が含まれます。

- サポートされているすべての速度 (100BASE-TX および 10BASE-Te) での WoL フレームの識別
- WoL フレーム受信時のウェークアップ割り込み生成
- 無効なフレームからの割り込み生成を防止するための WoL フレーム CRC エラー チェック
- SecureOn パスワード保護を備えたマジック パケット技術

8.3.5.1 マジック パケット構造

マジック パケット検出を構成した場合、DP83826Ax は、ノードにアドレス指定された受信フレームすべてを、特定のデータ シーケンスでスキャンします。このシーケンスにより、フレームがマジック パケット フレームとして識別されます。

マジック パケット フレームは、送信元アドレス、宛先アドレス (受信ステーションの IEEE アドレスまたはブロードキャスト アドレス)、CRC など、選択した LAN 技術の基本的な要件も満たしている必要があります。

特定のマジック パケット シーケンスは、このノードの MAC アドレスを 16 個複製したもので、中断や中断はありません。 セキュリティが有効な場合は、Secure-On パスワードが続きます。このシーケンスはパケット内の任意の場所に配置できますが、同期ストリームの前に配置する必要があります。 同期ストリームは、6 バイトの 0xFF として定義されます。

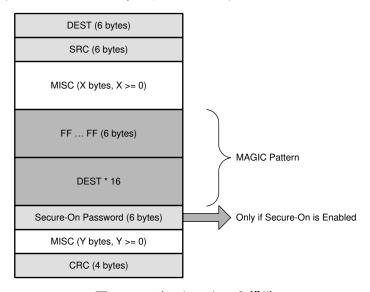


図 8-1. マジック パケット構造

8.3.5.2 マジック パケットの例

以下は、宛先アドレス 11h 22h 33h 44h 55h 66h および SecureOn パスワード 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh のマジック パケットの例です。

DESTINATION SOURCE MISC FF FF FF FF FF FF FF FF 11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66

8.3.5.3 Wake-on-LAN の構成と状態

Wake-on-LAN 機能は、受信構成レジスタ (RXFCFG、アドレス 0x04A0) を使って構成します。 レシーバ ステータス レジスタ (RXFS、アドレス 0x04A1) に Wake-on-LAN ステータスが通知されます。 Wake-on-LAN 割り込みフラグの構成と状態は、MII 割り込みステータス レジスタ 2 (MISR2、アドレス 0x0013) にあります。

8.3.6 低消費電力モード

DP83826Ax デバイスは、3 つの低消費電力モードをサポートしています。このセクションでは、これらの低消費電力モードの背後にある原理、およびそれらを有効にする構成について説明します。

8.3.6.1 アクティブ スリープ

アクティブ スリープ モードにより、リンク パートナーが接続されていない場合の消費電力が低減されます。この機能を有効化するには、PHY の初期化時に PHYSCR レジスタに正しいビットを書き込む必要があります。この機能は、BISCR レジスタを読み出すことで確認できます。

アクティブ スリープが有効化されており、PHY がケーブル接続を検出しない場合、PHY は自動的にアクティブ スリープ モードに遷移します。デバイスがこのモードに遷移すると、TD± および RD± ピンの SMI 回路とエネルギー検出回路を除くすべての内部回路がシャットダウンします。アクティブ スリープ モードでは、デバイスは 1.4 秒ごとに通常のリンク パルス (NLP) を送信して、リンク パートナーの存在を確認します。 リンク パートナーが検出されると、PHY は自動的に通常モードに戻り、内部回路の他の部分に電力を供給します。

デバイスは、PHY 固有の制御レジスタ (PHYSCR、アドレス 0x0011) のビット [14:12] = 0b110 を設定することで、アクティブ スリープ モードを有効化します。

8.3.6.2 IEEE パワーダウン

IEEE パワーダウン スイッチは、SMI および内部クロック回路を除くすべての PHY 回路を無効にします。

IEEE パワーダウン スイッチは、レジスタ アクセスによって、またはピンがパワーダウン機能に構成されている場合に、INTR/PWRDN ピンのいずれかを使用して有効化できます。

INTR/PWRDN ピンによる IEEE パワーダウン スイッチを有効化するには、このピンを Low にしてグランドに駆動する必要があります。

SMI による IEEE パワーダウン スイッチを有効化するには、BASIC モード制御レジスタ (BMCR、アドレス 0x0000) のビット [11] を 1 に設定します。

8.3.6.3 ディープ パワー ダウン状態

ディープパワーダウン状態 (DPD) は、SMI を除くすべての PHY 回路を無効化します。このモードでは、デバイスは PHY PLL を無効化して、消費電力をさらに低減します。

デバイスは、このシーケンスを使用して、DPD 状態に移行します。

- 1. DPD 状態を有効化 (0x0428.2 = 1)
- 2. IEEE パワーダウン状態を有効化 (ピンまたは 0x0000.11 = 1)

8.3.7 クロック出力

このデバイスには、複数のクロック出力構成オプションがあります。外部水晶振動子または CMOS レベルの発振器は、内部 PHY 基準クロックにスティミュラスを提供します。ローカル基準クロックは、デバイス内のすべてのクロックの中央ソースとして機能します。

Product Folder Links: DP83826AE DP83826AI

デバイスがサポートしているクロック出力オプションには以下が含まれます。

MAC IF クロック

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

31

- XI クロック
- フリーランニング クロック
- 再生クロック

MAC IF クロックは、選択した MAC インターフェイスと同じ速度で動作します。 RMII 動作の場合、MAC IF クロック周波数が 50MHz です。

XI クロックはパススルー オプションであり、XI ピンのクロックを GPIO ピンに渡すことができます。クロックは GPIO から送信する前にバッファされ、出力クロックの振幅は選択された VDDIO レベルにあることに注意してください。このクロックは、POR リリース後のデフォルトで CLK_OUT/LED1 ピンで使用可能です (「パワーアップ タイミング」の T4 を参照)。

フリーランニング クロックは、PLL によって内部で生成される 125MHz フリーランニング クロックです。フリーランニング クロックは、非同期データ転送アプリケーションに有用です。

再生クロックは、接続されたリンク パートナーから回復された 125MHz 再生クロックです。 PHY は (リンク パートナーから 送信された) 受信したデータからクロックを再生します。

すべてのクロック構成オプションは、LED GPIO 構成レジスタを使用して有効化します。

レジスタ構成のレジスタ 0x304[2:0] により、このピンを入力ピンとして設定することで、CLKOUT を無効化できます。

8.3.8 MII (Media Independent Interface)

MII (Media Independent Interface) は、PHY を MAC に接続する同期 4 ビット幅ニブル データ インターフェイスです。 MII は IEEE 802.3-2002 条項 22 に完全準拠しています。

MII 信号の概要は以下の通りです:

表 8-1. MII 信号

機能	ピン
データ信号	TX_D[3:0]
アータ信号	RX_D[3:0]
信号の送受信	TX_EN
	RX_DV
ライン ステータス信号	CRS
	COL
エラー信号	RX_ER

資料に関するフィードバック(ご意見やお問い合わせ)を送信

Copyright © 2025 Texas Instruments Incorporated

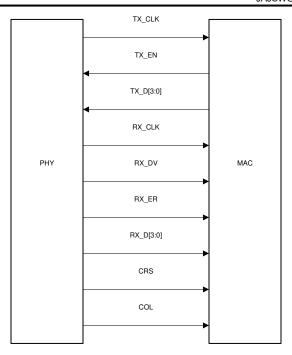


図 8-2. MII シグナリング

また、MII インターフェイスには、搬送波検知信号 (CRS) や衝突検出信号 (COL) が含まれています。 CRS 信号は、データの受信または送信を示すためにアサートされます。 COL 信号は、送信と受信の両方の動作が同時に発生すると、半二重モードで発生する可能性のある衝突の兆候としてアサートされます。

8.3.9 RMII (Reduced Media Independent Interface)

DP83826Ax には、RMII 仕様 v1.2 で規定されている RMII (reduced media-independent interface) が組み込まれています。このインターフェイスの目的は、条項 22 で規定されている IEEE 802.3 の MII の代替として、ピン数を削減することです。アーキテクチャとしては、RMII 仕様は MII の両側に追加の整合レイヤを提供しますが、MII がない場合に実装できます。DP83826Ax には、次の 2 種類の RMII 動作があります:RMII フォロワ と RMII リーダー。RMII リーダー動作では、DP83826Ax は、XI ピンに接続された 25MHz CMOS レベル発振器、XI ピンと XO ピンの間に接続された 25MHz 水晶振動子のいずれかで動作します。DP83826Ax から、基準となる 50MHz 出力クロックを MAC に接続できます。RMII フォロワ動作では、DP83826Ax は XI ピンに接続された 50MHz CMOS レベル発振器で動作し、MAC と同じクロックを共有します。または、RMII フォロワ モードでは、ホスト MAC から供給される 50MHz クロックを使用して PHY を動作させることもできます。

RMII 仕様には、次の特性があります。

- 100BASE-TX および 10BASE-Te のサポート
- MAC から PHY (または外部ソース) に供給される単一のクロック リファレンス
- 独立した 2 ビット幅の送受信データ パスを提供
- MII インターフェイスと同じレベルの CMOS 信号レベルを使用

このモードでは、送信パスと受信パスの両方の内部 50MHz 基準クロックを使用し、データ転送はクロック サイクルごとに 2 ビットです。

RMII信号の概要は以下の通りです。

表 8-2. RMII 信号

機能	ピン
受信データライン	TX_D[1:0]
送信データライン	RX_D[1:0]

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

33

表 8-2. RMII 信号 (続き)

機能	ピン
受信制御信号	TX_EN
送信制御信号	CRS_DV

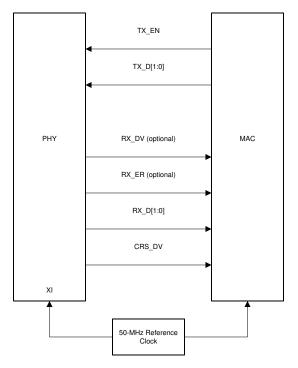


図 8-3. 外部 50MHz CMOS レベル発振器を用いた RMII フォロワ信号方式

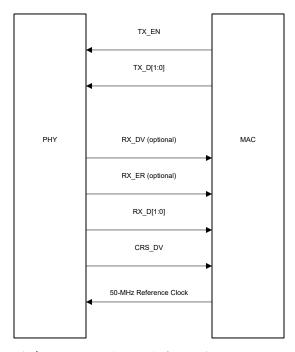


図 8-4. MAC からの 50MHz クロックを用いた RMII フォロワ信号方式

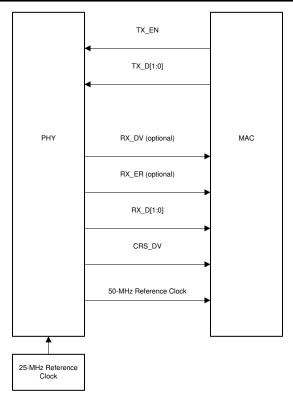


図 8-5. RMII リーダー信号

TX_D[1:0] のデータは、RMII リーダー モードとフォロワ モードでは、50MHz クロックを基準にして PHY でラッチされます。RX D[1:0] のデータは、50MHz クロックを基準として提供されます。

また、 CRX_DV は RX_DV 信号として構成できます。これにより、受信データを簡単に回復でき、 RX_DV を CRS_DV 表示から分離する必要もありません。

8.3.10 RMII リピータ モード

DP83822 デバイスには、RMII 双方向リピータ モード機能を有効化して、ケーブルの到達範囲を延長するオプションがあります。2 つの DP83822 デバイスを外部構成なしで RMII リピータ モードで接続できます。図 8-6 および 図 8-7 に、デバイスが反復モードで動作できるようにする RMII ピンの接続を示します。

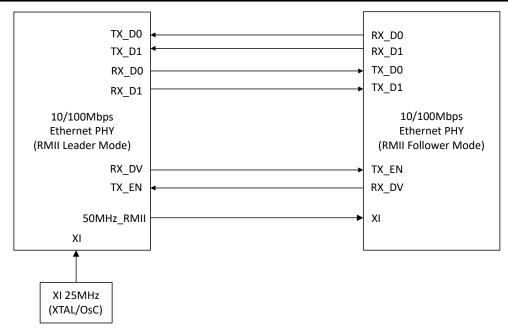


図 8-6. RMII 反復モードリーダー - フォロワ

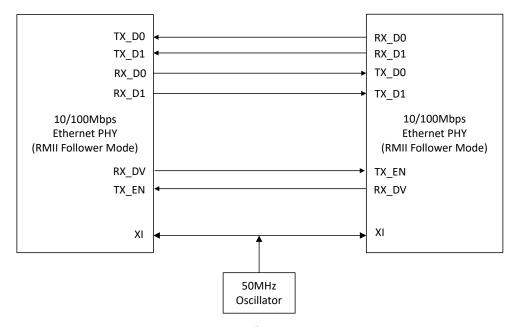


図 8-7. RMII 反復モードフォロワ

8.3.11 シリアル マネージメント インターフェイス

シリアル マネージメント インターフェイスを使うことで、ステータス情報と構成のために使われている DP83826Ax の内部 レジスタ空間にアクセスできます。 SMI は IEEE 802.3 の 22 項に適合しています。 実装されているレジスタ セットは、 IEEE 802.3 に必要なレジスタと、 DP83826Ax の可視性と制御性を高めるためのその他のレジスタで構成されています。

SMI には、管理クロック (MDC) と、管理入力 / 出力データ ピン (MDIO) が含まれます。 MDC は、ステーション (STA) とも呼ばれる外部管理エンティティから供給され、最大 24MHz クロック レートで実行できます。 MDC は連続的である必要はなく、バスがアイドル状態の場合、外部管理エンティティがオフにすることもできます。

MDIO の信号は外部管理エンティティと PHY から供給されます。MDIO ピンのデータは、MDC の立ち上がりエッジでラッチされます。MDIO ピンには、プルアップ抵抗 (広く使用されている値は $2.2K\Omega$ または $1.5K\Omega$) が必要です。これにより、IDLE およびターンアラウンド時に MDIO が High にプルされます。

最大 8 つの PHY が共通の SMI バスを共有できます。PHY を区別するために、パワーアップ時またはハードウェア リセット時に、DP83826Ax は PHY Address[2:0] 構成ピンをラッチして、アドレスを決定します。

管理エンティティは、パワーアップ時またはハードウェア リセットの後の最初のサイクルで SMI トランザクションを開始してはなりません。有効な動作を維持するには、パワーアップ後 50ms 以上、リセットがデアサートされてから 2ms 以上、SMI バスを非アクティブのままにする必要があります (「パワーアップ タイミング」の T4 および「リセット タイミング」の T2 を参照)。通常の MDIO トランザクションでは、管理フレームのレジスタ アドレス フィールドからレジスタ アドレスが直接取り込まれるため、32 の 16 ビット レジスタ (IEEE 802.3 で定義されたレジスタとベンダ固有のレジスタを含む) に直接アクセスできます。データ フィールドは、読み出しと書き込みの両方に使用されます。スタートコードは <01> パターンで示されます。このパターンにより、MDIO ラインはデフォルトのアイドル ライン状態から必ず遷移します。ターンアラウンドは、レジスタ アドレス フィールドとデータ フィールドの間に挿入されたアイドル ビット期間として定義されます。読み出しトランザクション中の競合を避けるため、ターンアラウンドの先頭ビットの間、デバイスは MDIO 信号をアクティブに駆動できません。アドレス指定された DP83826Ax は、2 番目のビットのターンアラウンドの間 MDIO を 0 で駆動し、その後に必要なデータを送信します。

書き込みトランザクションの場合、ステーション管理エンティティはアドレス指定された DP83826Ax にデータを書き込みます。そのため、MDIO ターンアラウンドは不要です。ターンアラウンド期間には、管理エンティティによって <10> が挿入されます。

表 8-3. SMI プロトコル

SMI プロトコル	<idle><start><op code=""><phy address=""><reg addr=""><turnaround><data><idle></idle></data></turnaround></reg></phy></op></start></idle>			
読み出し動作	<アイドル><01><10> <aaaaa><rrrrr><z0><xxxx td="" xxxx="" xxxx<=""></xxxx></z0></rrrrr></aaaaa>			
書き込み動作	<アイドル><01><01> <aaaaa><rrrrr><10><xxxx td="" xx<="" xxxx=""></xxxx></rrrrr></aaaaa>			

8.3.11.1 拡張レジスタ スペース アクセス

DP83826Ax SMI 機能は、レジスタ制御レジスタ (REGCR、アドレス 0x000D)、データ レジスタ (ADDAR、アドレス 0x000E)、および MDIO 管理可能デバイス (MMD) 間接方式 (拡張レジスタ セットへのアクセスに関する IEEE 802.3ah ドラフト条項 22 で定義) を使用した拡張レジスタ セットへの読み出しおよび書き込みアクセスをサポートしています。

標準のレジスタセット MDIO レジスタ 0 \sim 31 には、通常の直接 MDIO アクセスまたは間接方式でアクセスしますが、レジスタ REGCR および レジスタ ADDAR は別で、通常の MDIO トランザクションでのみアクセスされます。 SMI 関数は、これらのレジスタへの間接アクセスを無視します。

REGCR は MMD アクセス制御です。 一般に、レジスタ REGCR[4:0] は、ADDAR レジスタのすべてのアクセスを適切な MMD に向かわせるデバイス アドレス DEVAD です。

DP83826Ax は、3 つの MMD デバイス アドレスをサポートしています。

- 1. ベンダ固有のデバイス アドレス DEVAD[4:0] = 11111 は、一般的な MMD レジスタ アクセスに使用されます。
- 2. DEVAD[4:0] = 00011 は、省電力型イーサネット MMD レジスタ アクセスに使用されます。このデバイス アドレスでアクセス可能なレジスタのレジスタ名の前には、MMD3 が付けられています。
- 3. DEVAD[4:0] = 00111 は、省電力型イーサネット MMD レジスタ アクセスに使用されます。このデバイス アドレスでアクセス可能なレジスタのレジスタ名の前には、MMD7 が付けられています。

レジスタ REGCR および ADDAR によるすべてのアクセスでは、適切な DEVAD を使用する必要があります。その他の DEVAD を使ったトランザクションは無視されます。REGCR[15:14] は、アクセス機能 (アドレス (00)、ポスト インクリメント なしのデータ (01) を保持します。

- ADDAR は、アドレス / データ MMD レジスタです。ADDAR を REGCR と組み合わせて使用することで、拡張レジスタ セットにアクセスできます。レジスタ REGCR[15:14] が (00) の場合、ADDAR は拡張アドレス空間レジスタのアドレスを保持します。それ以外の場合、ADDAR は、アドレス レジスタの内容に応じたデータを保持します。 REGCR[15:14] が (00) に設定されている場合、レジスタ ADDAR にアクセスすると、拡張レジスタ セットのアドレス レジスタが変更されます。 拡張レジスタ セット内のいずれのレジスタにアクセスするにも、このアドレス レジスタを必ず初期化する必要があります。
- REGCR[15:14] が (01) に設定されている場合、レジスタ ADDAR にアクセスすると、アドレス レジスタの値によって選択された拡張レジスタ セット内のレジスタがアクセスされます。

以下のセクションでは、レジスタ REGCR および ADDAR を使って拡張レジスタ セットを操作する方法について説明します。 これらの説明は、一般的な MMD レジスタ アクセス (DEVAD[4:0] = 11111) のデバイス アドレスを使用します。 MMD3 または MMD7 レジスタへのレジスタ アクセスには、対応するデバイス アドレスを使用できます。

資料に関するフィードバック(ご意見やお問い合わせ)を送信

Copyright © 2025 Texas Instruments Incorporated

8.3.11.2 書き込みアドレス動作

アドレスレジスタを設定するには、次の手順に従います。

- 1. レジスタ REGCR に値 0x001F (機能フィールド= 00 (アドレス)、DEVAD = '31') を書き込む。
- 2. レジスタ ADDAR にレジスタ アドレスを書き込む。

それ以降、レジスタ ADDAR (ステップ 2) に書き込むと、そのアドレス レジスタが引き続き書き込まれます。

8.3.11.3 読み出しアドレス動作

アドレスレジスタを読み出すには、次の手順に従います。

- 1. レジスタ REGCR に値 0x001F (機能フィールド= 00 (アドレス)、 DEVAD = '31') を書き込む。
- 2. レジスタ ADDAR からレジスタ アドレスを読み出す。

それ以降、レジスタ ADDAR (ステップ 2) を読み出すと、そのアドレス レジスタが引き続き読み出されます。

8.3.11.4 書き込み(ポスト インクリメントなし)動作

拡張レジスタセット内のレジスタを書き込むには、次の手順に従います。

- 1. レジスタ REGCR に値 0x001F (機能フィールド= 00 (アドレス)、DEVAD = '31') を書き込む。
- 2. レジスタ ADDAR に目的のレジスタ アドレスを書き込む。
- 3. レジスタ REGCR に値 0x401F (データ、ポスト インクリメントなし機能フィールド = 01、DEVAD = 31) を書き込む。
- 4. レジスタ ADDAR に目的の拡張レジスタ セットの内容を書き込む。

それ以降、レジスタ ADDAR (ステップ 4) に書き込むと、そのアドレス レジスタの値によって選択されたレジスタが引き続き書き換えられます。

注

アドレス レジスタが前もって設定されている場合、ステップ (1) および (2) を飛ばすことができます。

8.3.11.5 読み出し (ポスト インクリメントなし) 動作

拡張レジスタセットのレジスタを読み出すには、次の手順に従います。

- 1. レジスタ REGCR に値 0x001F (機能フィールド= 00 (アドレス)、DEVAD = '31') を書き込む。
- 2. レジスタ ADDAR に目的のレジスタ アドレスを書き込む。
- 3. レジスタ REGCR に値 0x401F (データ、ポスト インクリメントなし機能フィールド = 01、DEVAD = 31) を書き込む。
- 4. レジスタ ADDAR の目的の拡張レジスタ セットの内容を読み出す。

それ以降、レジスタ ADDAR (ステップ 4) を読み出すと、ステップ 3 のレジスタ セットの出力が得られます。

注

アドレス レジスタが前もって設定されている場合、ステップ (1) および (2) を飛ばすことができます。

8.3.11.6 書き込み動作の例 (ポスト インクリメントなし)

この例では、ポスト インクリメントなしの書き込み動作を示します。この例では、IO MUX GPIO 制御レジスタ (IOCTRL、アドレス 0x0461) を使用して、MAC インピーダンスを 99.25 Ω に調整します。

- 1. レジスタ 0x000D に値 0x001F を書き込みます。
- 2. レジスタ 0x000E に値 0x0461 を書き込みます (目的のレジスタを IOCTRL に設定します)。
- 3. レジスタ 0x000D に値 0x401F を書き込みます。
- 4. レジスタ 0x000E に値 0x0400 を書き込みます (MAC インピーダンスを 99.25Ω に設定します)。

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ) を送信

39

8.3.12 100BASE-TX

8.3.12.1 100BASE-TX トランスミッタ

100BASE-TX トランスミッタは、MII によって供給される同期 4 ビット ニブル データを、MDI のスクランブルされた MLT-3 125Mbps シリアル データ ストリームに変換するいくつかの機能ブロックで構成されています。 4B5B のエンコードとデコードの詳細については、下の 表 8-4 を参照してください。

送信部は、以下の機能ブロックで構成されています。

- 1. コードグループのエンコーダおよび注入ブロック
- 2. バイパス オプション付きスクランブラ ブロック
- 3. NRZ NRZI エンコーダ ブロック
- 4. バイナリ MLT-3 コンバータ / 共通ドライバ ブロック

100BASE-TXトランスミッタの機能ブロックのバイパス オプションを使うことで、データ変換が常に必要なわけではないアプリケーションに柔軟に対応できます。 DP83826Ax には、IEEE 802.3 規格条項 24 に規定されている 100BASE-TX 送信ステート マシン図が実装されています。

資料に関するフィードバック (ご意見やお問い合わせ) を送信

表 8-4. 4B5B コード グループのエンコード / デコード

	77.7000 7 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
名称	PCS 5B コードグループ	MII 4B ニブル コード
データコード		
0	11110	0000
1	01001	0001
2	10100	0010
3	10101	0011
4	01010	0100
5	01011	0101
6	01110	0110
7	01111	0111
8	10010	1000
9	10011	1001
A	10110	1010
В	10111	1011
С	11010	1100
D	11011	1101
E	11100	1110
F	11101	1111
IDLE および制御コード ⁽¹⁾		,
Н	00100	HALT コード グループ - エラー コード
I	11111	パケット間 IDLE - 0000
J	11000	最初のパケット開始 - 0101
K	10001	2番目のパケット開始 - 0101
Т	01101	最初のパケット終了 - 0000
R	00111	2番目のパケット終了-0000
P	00000	EEE LPI - 0001 ⁽²⁾
 無効なコード		
V	00001	
V	00010	
V	00011	
V	00101	
V	00110	
V	01000	
V	01100	
V	10000	
V	11001	

⁽¹⁾ データフィールドの制御コードグループ I、J、K、T、R は、無効なコードとしてマッピングされ、RX_ER がアサートされます。

41

Product Folder Links: DP83826AE DP83826AI

⁽²⁾ 省電力型イーサネット LPI でも、TX_ER / RX_ER をアサートし、TX_EN / RX_DV をデアサートする必要があります。

8.3.12.1.1 コード グループのコード化と注入

コード グループ エンコーダは、MAC によって生成された 4 ビット (4B) ニブル データを 5 ビット (5B) のコード グループ に変換して送信します。この変換は、制御データをパケット データ コード グループと組み合わせるために必要です。4B から 5B のコード グループ マッピングの詳細については、表 8-4 を参照してください。

コード グループ エンコーダは、伝送時に MAC プリアンブルの最初の 8 ビットを、J/K コード グループ ペア (11000 10001) に置き換えます。コード グループ エンコーダは続けて、4B プリアンブルとデータ ニブルを、対応する 5B コード グループに置き換えます。送信パケットの終了時に、MAC からの送信イネーブル (TX_EN) 信号がデアサートされると、コード グループ エンコーダはフレームの終了を示す T/R コード グループ ペア (01101 00111) を注入します。

T/R コード グループ ペアの後、コード グループ エンコーダは、次の送信パケットが検出されるまで (送信イネーブルの再割り当て)、送信データ ストリームに IDLE を継続的に注入します。

8.3.12.1.2 スクランブル機能

スクランブラは、メディアコネクタおよびツイストペアケーブルの放射型電磁波を制御するために必要です。データをスクランブルすることで、ケーブルに発射される総エネルギーは、広い周波数範囲にわたってランダムに分布します。スクランブラを使用しないと、5Bシーケンスの繰り返しに関連する周波数 (IDLEの連続転送)で、MDIおよびケーブルのエネルギーレベルが FCC 制限を超える可能性があります。

スクランブラは、11 ビットの多項式を持つ閉ループの線形帰還シフト レジスタ (LFSR) として構成されます。閉ループ LFSR の出力は、コード グループ エンコーダからのシリアル NRZ データを含む X-Ord です。その結果、特定の周波数で放射型電磁波を最大 20dB 低減するのに十分なランダム化を伴うスクランブル データ ストリームが得られます。

8.3.12.1.3 NRZ から NRZI へのエンコーダ

送信データストリームがシリアライズおよびスクランブル化された後、Category-5シールドなしツイストペアケーブルを介した 100BASE-TX 転送の TP-PMD 規格に準拠するように、データを NRZI エンコードする必要があります。 DP83826Ax 内では、このブロックをバイパスすることはできません。 NRZI データは 100Mbpsドライバに送信されます。

8.3.12.1.4 バイナリから MLT-3 へのコンバータ

バイナリから MLT-3 への変換は、NRZI エンコーダからのシリアル バイナリ データ ストリームを、交互に位相シフトされた ロジック 1 イベントを持つ 2 つのバイナリ データ ストリームに変換することで行われます。これら 2 つのバイナリ ストリーム をツイストペア 出力ドライバに供給し、ツイストペア出力ドライバは電圧を電流に変換して、送信トランスの一次巻線のいず れかの側を交互に駆動して、最小の電流 MLT-3 信号を生成します。

PMD 出力ペアの共通ドライバから供給される 100BASE-TX MLT-3 信号は、スルーレート制御されます。 TP-PMD 規格 に準拠した遷移時間 (3ns < T_{RISE} (および T_{FALL}) < 5ns) を満たすように AC 結合磁気素子を選択する場合は、スルーレートを考慮する必要があります。

8.3.12.2 100BASE-TX レシーバ

100BASE-TX レシーバはいくつかの機能ブロックで構成され、スクランブルされた MLT-3 125Mbps シリアル データ ストリームを、MII に提供される 4 ビット データと RMII に提供される 2 ビット幅のデータに同期して変換します。

受信セクションは、以下の機能ブロックで構成されています。

- 入力および BLW 補償
- 信号検出
- デジタル アダプティブ イコライゼーション
- MLT-3 バイナリデコーダ
- クロック リカバリ モジュール
- NRZI NRZ デコーダ
- デスクランブラ
- シリアル パラレル データ変換
- コードグループの整合
- 4B/5B デコーダ

- リンク整合性モニタ
- 不良 SSD 検出

8.3.13 10BASE-Te

10BASE-Te トランシーバ モジュールは、IEEE 802.3 に準拠しています。 規格で定義されているように、トランシーバ モジュールには、レシーバ、トランスミッタ、衝突検出、ハートビート、ループバック、ジャバー、リンク整合性機能が含まれています。

注

DP83826Ax を 10BASE-Te アプリケーションで使用する場合は、VOD_CFG3 (レジスタ アドレス:0x030E) を 0x4A40 に設定します。

8.3.13.1 スケルチ

スケルチは、差動受信入力に有効なデータが存在するかどうかを判断する役割を果たします。スケルチ回路は、振幅とタイミングの測定値 (IEEE 802.3 10BASE-Te 規格で規定) を組み合わせて、ツイストペア入力上のデータの有効性を決定します。

パケット開始時の信号はスケルチによってチェックされ、スケルチレベルを超えないパルス (極性に応じて正または負) は 拒否されます。この最初のスケルチレベルを正しく超えると、反対側のスケルチレベルを 50ns 以上超える必要があります。 最後に、信号が有効な入力波形として認定されるには、50ns 以内に元のスケルチレベルを再度超え、拒否されない必要があります。このチェック手順では、各パケットの先頭でプリアンブルビットが 3 つ失われるのが一般的です。トランスミッタの動作中は、5 回連続した遷移が確認されてから、有効なデータが存在することを示します。このとき、スケルチ回路はリセットされます。

DP83826Ax は、IEEE プリアンブル モードとショート プリアンブル モードの両方をサポートしています。10M_CFG レジスタ (アドレス = 0x2A) を参照してください。

8.3.13.2 通常リンク パルスの検出と生成

リンク パルス ジェネレータは、IEEE 802.3 10BASE-Te 規格の定義に従ってパルスを生成します。 各リンク パルスは通常 100ns の持続時間で、送信データがない場合は 16ms ごとに送信されます。 リンク パルスは、リモート エンドとの接続の整合性をチェックするために使用されます

8.3.13.3 ジャバー

ジャバーとは、通常、フォルト状態に起因して、ステーションが最大許容パケット長よりも長い時間送信を行う状態です。ジャバー機能は DP83826Ax 出力を監視し、トランスミッタが法的サイズを超えるパケット送信を試みると、トランスミッタを無効化します。ジャバー タイマはトランスミッタを監視し、トランスミッタが約 100ms アクティブな場合に、送信を無効にします。ジャバー機能によって無効化された場合、モジュールの内部送信イネーブルがアサートされている間、トランスミッタはディスエーブルのままとなります。ジャバー機能が送信出力を再度有効化する前に、この信号を約 500ms (解除時間 / Unjab Time) デアサートする必要があります。ジャバー機能は 10BASE-Te モードでのみ使用可能およびアクティブです。

8.3.13.4 アクティブ リンクの極性検出と訂正

ツイストペア内のワイヤを交換すると、極性エラーが発生します。極性が間違っていると、10BASE-Te 接続に影響します。 100BASE-TX は、MLT-3 エンコーディングによる極性の問題に耐性があります。 10BASE-Te 受信ブロックは、逆極性を自動的に検出します。

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

43

8.3.14 ループバック モード

DP83826Ax には、PHY 内のさまざまな機能ブロックをテストおよび検証するループバック オプションがいくつか備わっています。ループバック モードを有効化すると、デジタルおよびアナログ データ パスのインサーキット テストが可能となります。DP83826Ax は、ニアエンド ループバック モードのいずれか、またはファーエンド (リバース) ループバック モードのいずれかに構成できます。MII ループバックは、BASIC モード制御レジスタ (BMCR、アドレス 0x0000) を使って構成します。その他のすべてのループバック モードは、BIST 制御レジスタ (BISCR、アドレス 0x0016) を使用して有効化します。特に記述のない限り、ループバック モードはすべての速度 (10/100Mbps およびすべての MAC インターフェイス) でサポートされています。

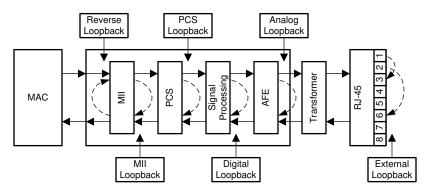


図 8-8. ループバック テスト モード

8.3.14.1 ニアエンド ループバック

ニアエンド ループバックは、デジタル回路またはアナログ回路を経由して、送信したデータをレシーバにループバックする機能を提供します。信号がループバックするポイントは、BISCR レジスタのループバック制御ビット [3:0] を使用して選択します。ニアエンド ループバック モードを選択する前に、オートネゴシエーションを無効化します。この制約は、外部ループバック モードには適用されません。

8.3.14.2 MII のループバック

MII ループバックは PHY を流れる最も浅いループであり、MAC と PHY の間の通信を検証するために便利なテスト モードです。 MII ループバックでは、TX パス上の接続されている MAC から送信されるデータが内部で DP83826Ax にループバックされて RX ピンに転送され、MAC によってデータをチェックできます。

MII ループバックを有効化するには、BMCR のビット[14]、BISCR のビット[2]を設定します。

8.3.14.3 PCS のループバック

PCS ループバックは、PHY の PCS 層で発生します。PCS ループバックを使用する場合、信号処理は実行されません。

PCS 入力ループバックは、BISCR のビット [0] を設定することで有効化されます。

PCS 出力ループバックは、BISCR のビット [1] を設定することで有効化されます。

8.3.14.4 デジタル ループバック

デジタル ループバックには、デジタル送信および受信パス全体が含まれています。アナログ回路の前にデータがループ バックされます。

デジタル ループバックには、次の設定が必要です。

- 0x0000 = 0x2100 // オートネゴシエーションを無効化
- 0x0016 = 0x0104 // デジタル ループバック
- 0x0122 = 0x2000 /
- 0x0123 = 0x2000
- 0x0130 = 0x47FF
- 0x001F = 0x4000 // ソフトリセット

8.3.14.5 アナログ ループバック

10BASE-Te または 100BASE-TX モードで動作する場合、アナログ フロント エンドの後に信号をループバックできます アナログ ループバックは、BISCR のビット [3] を設定することで有効になります。

8.3.14.6 ファーエンド (リバース) ループバック

ファーエンド (リバース) ループバックは、リンク パートナーとの PHY テストを可能にするための特別なテスト モードです。 このモードでは、リンク パートナーから受信したデータは PHY のレシーバを通過し、MAC インターフェイスでループバックされてからリンク パートナーに送信されます。 リバース ループバック モードでは、MAC からのすべてのデータ信号が無視されます。

リバース ループバックは、BISCR のビット [4] を設定することで有効化されます。

8.3.15 BIST の構成

DP83826Ax は、内部 PRBS 内蔵セルフテスト (BIST) 回路を備えており、インサーキット テストおよび診断に適しています。BIST 回路を使用して、送信および受信データ パスの整合性をテストできます。BIST は、内部ループバック (デジタルまたはアナログ) またはケーブル固定具を使用して外部ループバックを使用して実行できます。BIST は、実際のパケットと回線上のパケット間ギャップ (IPG) 形式の擬似ランダムなデータ転送シナリオをシミュレートします。BIST により、パケット長と IPG の完全な制御が可能になります。

BIST パケット長は、BIST 制御およびステータス レジスタ #2 (BICSR2、アドレス 0x001C) のビット [10:0] を使用して制御されます。BIST IPG 長は、BIST 制御およびステータス レジスタ #1 (BICSR1、アドレス 0x001B) のビット [7:0] を使用して制御されます。

BIST は、独立した送信および受信パスを使用して実装されており、送信クロックによって疑似ランダムシーケンスの連続ストリームを生成します。デバイスは、BIST のために 15 ビット疑似ランダムシーケンスを生成します。受信したデータは生成された擬似ランダムデータと比較され、合格/不合格ステータスが判定されます。PRBS チェッカが受信したエラーバイト数は、BICSR1 のビット [15:8] に保存されます。PRBS ロックステータスおよび同期は、BIST 制御レジスタ(BISCR、アドレス 0x0016)から読み出すことができます。

PRBS テストは、BISCR のビット [14] を使用して連続モードに移行させることができます。連続モードでは、BIST エラーカウンタが最大値に達すると、カウンタは再びゼロからカウントを開始します。BIST エラーカウントを読み取るには、BICSR1 のビット [15] を「1」に設定する必要があります。この設定により、読み取りのために BIST エラーの現在の値がロックされます。ビット [15] を設定すると、BIST エラーカウンタがクリアされます。

45

8.3.16 ケーブル診断

イーサネットデバイスは広く導入されていることから、信頼性が高く包括的で、かつユーザーに配慮したケーブル診断ツールに対するニーズがこれまで以上に高まっています。さまざまな種類のケーブル、トポロジ、コネクタが導入されるため、コードの実行に影響を与えずにケーブル障害の識別と報告を行う必要があります。DP83826Ax は、ケーブル診断ツールキットで時間領域反射率測定 (TDR) 機能を提供します。

8.3.16.1 時間領域反射計測 (TDR)

DP83826Ax は、TDR を使用して、ケーブル長の推定の他に、ケーブル、コネクタ、終端の品質を判定します。診断され得る問題としては、オープン、短絡、ケーブルインピーダンスの不一致、コネクタの不良、終端の不一致、クロスフォルト、クロスショート、およびケーブルに沿ったその他の不連続性などが挙げられます。

DP83826Ax は、接続されているケーブルの 2 ペアごとに、振幅 (1V) が既知のテストパルスを送信します。送信された信号はケーブルに沿って進み、各ケーブルの欠陥、故障、コネクタ、ケーブルの端から反射します。パルス送信後、DP83826Ax は、これらすべての反射パルスの復帰時間と振幅を測定します。この手法により、終端されていないケーブル (オープンまたはショート)、不連続性 (不良コネクタ)、不適切に終端されたケーブルの距離と大きさ (インピーダンス) を±1m の精度で測定できます。

すべての TDR 測定において、外部ホストによる軽微な計算 (乗算、加算、参照テーブルなど) を使用して、到着時刻と物理距離の変換が行われます。ホストは、ケーブルの予想伝播遅延を認識している必要があります。これは、ケーブルカテゴリ (CAT5、CAT5e、CAT6 など) によって異なります。

以下の状況下で、TDR 測定が可能となります。

- リンクパートナーが接続解除されている間 反対側でケーブルが接続されていない状態
- リンクパートナーは接続されているが、「休止」のままの状態 (パワーダウン モード時など)
- リンクに障害が発生した場合、またはドロップされた場合に、TDRを自動的にアクティブにできる状態

TDR 自動実行を有効化するには、制御レジスタ #1 (Cr1、アドレス 0x0009) のビット [8] を使用します。リンクがドロップされると、TDR は自動的に実行し、結果をそれぞれの TDR ケーブル診断ロケーション結果レジスタ #1 ~ #5 (CDLRR、アドレス 0x0180 ~ 0x0184) およびケーブル診断振幅結果レジスタ #1 ~ #5 (CDLAR、アドレス 0x0185 ~ 0x0189) に保存します。TDR は、ケーブル診断制御レジスタ (CDCR、アドレス 0x001E) のビット [15] を使用して、手動で実行することもできます。ケーブル診断ステータスは、CDCR のビット [1:0] を読み出すことで取得できます。サイクル平均化やクロスオーバー ディスエーブルなどの TDR の追加機能は、ケーブル診断固有の制御レジスタ (CDSCR、アドレス 0x0170) にあります。詳細については、アプリケーション レポート『DP83826 を使用した時間ドメイン反射測定』を参照してください。

資料に関するフィードバック(ご意見やお問い合わせ)を送信

Copyright © 2025 Texas Instruments Incorporated

8.3.17 高速リンク ドロップ機能

DP83826Ax には高度なリンクドロップ機能があり、さまざまなリアルタイム アプリケーションをサポートしています。リンクドロップ メカニズムは構成可能であり、非常に高速なリンクドロップ応答時間を可能にする ENHANCED モードを搭載しています。

DP83826Ax は、高速リンクドロップ (FLD) とも呼ばれる拡張リンクドロップ メカニズムをサポートしており、リンクを判定するための観測ウィンドウを短縮できます。 リンク ステータスを決定する方法は複数あり、ユーザの好みに応じて有効化または無効化することができます。

DP83826Ax のモードに応じて、FLD のデフォルト状態が異なります。ENHANCED モードでは、Strap7 をプルダウンすることにより、FLD およびすべての検出メカニズムがデフォルトで無効になります。EtherCAT アプリケーションまたは高速リンクドロップが有効でベースライン ワンダー パケットの処理が想定される アプリケーションの場合は、信号エネルギー検出を無効化することが推奨されます。これは、Strap8 を設定することで実行できます。下表に、ストラップで有効化されるモードをまとめます。

表 8-5. ENHANCED モードでのストラップによる FLD 検出モード

FLD ストラッ プ オプション	ストラップ構成	RX エラー カウント ⁽¹⁾	MLT3 エラー カウント	低信号対雑音比 スレッショルド	信号 / エネルギ ー 損失 ⁽¹⁾	デスクランブラ リンク損失
1	Strap7 = LOW Strap1 = X Strap8 = X Strap11 = X	ディセーブル	ディセーブル	ディセーブル	ディセーブル	ディセーブル
2	Strap7 = HIGH Strap1 = HIGH Strap8 = LOW Strap11 = LOW	イネーブル	イネーブル	イネーブル	イネーブル	イネーブル
3	Strap7 = HIGH Strap1 = LOW Strap8 = LOW Strap11 = LOW	イネーブル	イネーブル	ディセーブル	イネーブル	ディセーブル
4	Strap7 = HIGH Strap1 = LOW Strap8 = HIGH Strap11 = LOW	イネーブル	イネーブル	ディセーブル	ディセーブル	ディセーブル
5(1)	Strap7 = HIGH Strap1 = LOW Strap8 = LOW Strap11 = HIGH	ディセーブル	ディセーブル	ディセーブル	イネーブル	ディセーブル
6	Strap7 = HIGH Strap1 = HIGH Strap8 = LOW Strap11 = HIGH	ディセーブル	ディセーブル	イネーブル	イネーブル	イネーブル

⁽¹⁾ リアルタイム アプリケーション向け推奨 FLD 有効化ストラップ設定

BASIC モードでは、高速リンクドロップがデフォルトで有効化されています。表 8-6 に示されているように、BASIC モードの FLD メカニズムは、Strap11 ピンによって決まります。

表 8-6. BASIC モードでのストラップによる FLD 検出

ストラップ構成	RX エラー	MLT3 エラー	低信号対雑音比	信号 / エネルギー	デスクランブラ
	カウント	カウント	スレッショルド	損失	リンク 損失
Strap11 = LOW	イネーブル	イネーブル	ディセーブル	イネーブル	ディセーブル

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

47

表 8-6. BASIC モードでのストラップによる FLD 検出 (続き)

ストラップ構成	RX エラー カウント	MLT3 エラー カウント	低信号対雑音比 スレッショルド	信号 / エネルギー 損失	デスクランブラ リンク損失
Strap11 = HIGH	ディセーブル	ディセーブル	ディセーブル	イネーブル	ディセーブル

いずれのモードでも、FLD は制御レジスタ 3 (CR3、レジスタ アドレス 0x000B) を使用して構成できます。ビット [3:0] およびビット [10] を使用すると、各種 FLD 状態を有効化することができます。リンクドロップが発生した場合は、高速リンクドロップ ステータス レジスタ (FLDS、レジスタ アドレス 0x000F) から特定のフォルト状態の表示を読み出すことができます。

注

Rx_Error カウント、MLT3_Error カウント、低 SNR スレッショルド、信号/エネルギー損失、デスクランブラリンク損失について、制御レジスタ 3 (CR3、レジスタ アドレス 0x000B) で独立したイネーブル/ディスエーブルを利用できます。MLT3 エラー カウント、低信号対雑音比スレッショルド、デスクランブラリンク損失については、信号 / エネルギー損失または Rx_Error カウントを有効化する必要があります。

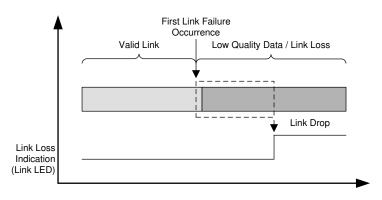


図 8-9. 高速リンク ドロップ

高速リンクドロップ基準には、以下が含まれます。

- RX エラー カウント 定義されている 32 の RX ER が 10µs ウィンドウで発生すると、リンクがドロップされます。
- MLT3 エラー カウント 定義されている 20 の MLT3 エラーが 10µs ウィンドウで発生すると、リンクがドロップされます。 MLT3 エラー ベースの FLD を使用するには、レジスタ高速リンクドロップ構成レジスタ 1 (FLDCFG1、レジスタアドレス 0x0117) を 0x0417 に構成します。
- 低信号対雑音比スレッショルド: 定義されている 20 のスレッショルド超過が 10µs ウィンドウで発生すると、リンクがドロップされます。
- 信号 / エネルギー損失 エネルギー検出器がエネルギー損失を示すと、リンクがドロップされます。
- デスクランブラ リンク損失 デスクランブラがロックを失うと、リンクがドロップされます。 デスクランブラ リンク損失に基づ く FLD を使用するには、高速リンク ドロップ構成レジスタ 2 (FLDCFG2、レジスタ アドレス 0x0131) のビット [5:0] を 0x08 に構成します。

高速リンクドロップ機能により、これらの各オプションを個別に、または任意の組み合わせで使用できます。

8.3.18 LED と GPIO の構成

DP83826Ax にはフレキシブルな LED および GPIO ピンがあり、レジスタ構成を使用して、各種の機能に合わせて設定できます。 LED および GPIO の構成の詳細については、図 8-10 を参照してください。

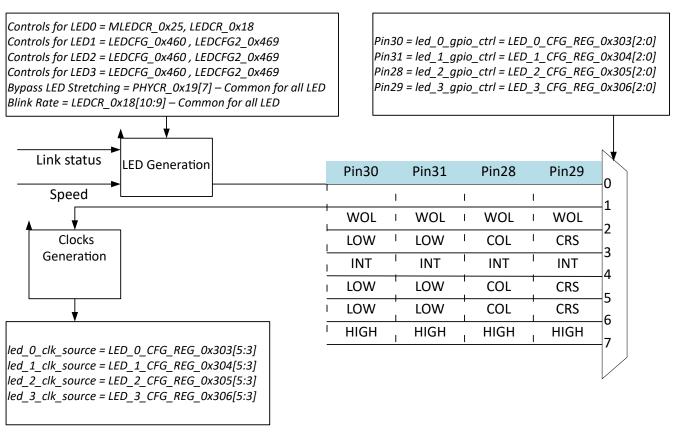


図 8-10. LED と GPIO の構成

注

クロック出力は、ENHANCED モードでのみピン 28 および 29 で使用できます。これらのピンは、25MHz または 50MHz クロックのみを出力するように構成できます。

ENHANCED モードでは、LED に自動極性検出機能があります。LED 駆動は、ピンに構成されたストラップに応じて調整します。たとえば、LED ピンがプルダウン ストラップに構成されている場合、PHY は LED の極性をアクティブ High として割り当てます。LED ピンがプルアップで構成されていると、PHY は LED 極性をアクティブ Low として割り当てます。

BASIC モードでは、LED 極性は常にアクティブ Low です。LED ピンを Low にストラップする必要がある場合は、LED と 直列で $1k\Omega$ プルアップ抵抗および $1.5k\Omega$ プルダウン抵抗を使用する必要があります。これにより、ストラップで 0 が選択されます。より高い抵抗を使用すると、LED の輝度が低下する可能性があることに注意してください。

図 8-11 に、LED を DP83826 に直接接続する 2 つの適切な方法を示します。

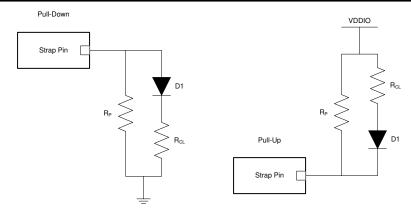


図 8-11. LED ストラップ接続の例

8.4 プログラミング

DP83826Ax は、ハードウェア ベースの構成 (ブートストラップを使用)、およびプログラミングとステータス表示のために、 IEEE で定義されているレジスタ セットを備えています。また、DP83826Ax には、IEEE レジスタでサポートされていない 他の機能を構成するための追加のレジスタ セットもあります。

8.4.1 ハードウェア ブートストラップ構成

DP83826Ax は、デバイスを特定の動作モードに設定するために、多くの機能ピンをストラップ オプションとして使用します。これらのピンの値は、パワーアップ時またはハードリセット時にサンプリングされます。ソフトウェア リセット時には、パワーアップ時またはハードリセット時にサンプリングされた値からストラップ オプションが内部的に再ロードされます。ストラップ オプションのピン構成を以下に定義します。デバイスの構成は、ストラップ ピンまたは管理レジスタ インターフェイスを通じて行うことができます。推奨値のプルアップ抵抗またはプルダウン抵抗を使用して、ストラップ ピン入力と電源の電圧比を設定し、使用可能なモードのいずれかを選択します。すべてのストラップ ピンに 2 つのレベルがあります。

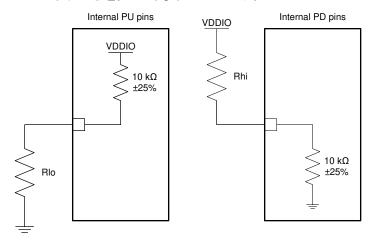


図 8-12. ストラップ回路

表 8-7.2 レベルのストラップ抵抗比

モード (1)	推奨される抵抗					
£-[·(·)	R _{HI} (kΩ)	R _{LO} (kΩ)				
内部 10kΩ プルダウン (PD) ピン						
0-DEFAULT	オープン	オープン				
1	2.49	オープン				
内部 10kΩ プルアップ (PU) ピン						
0	オープン	1.5				
1-DEFAULT	オープン	オープン				

(1) 抵抗比は単なる推奨です。より正確なモード選択を行うには、電気的特性の表に含まれているブートストラップ スレッショルドの値を使用してください。 推奨許容誤差は 1% です。

8.4.1.1 ブートストラップ構成 (ENHANCED モード)

このセクションでは、DP83826Ax の ENHANCED モードの一部のオプションで使用できるハードウェア ブートストラップ について説明します。ストラップ抵抗が実装されていない場合のデフォルト値は、奇数ニブル イネーブル、MII モード、FLD ディスエーブルです。「0」はモード 0 に、「1」はモード 1 に対応します。

FLD 機能は、DP83826Ax が MII MAC インターフェイス用に構成されている場合にのみサポートされます。 MII は Strap1 = $\lceil 0 \rceil$ 、または Strap1 = $\lceil 1 \rceil$ かつ Strap8 = $\lceil 0 \rceil$ の場合に選択されます。

RX_D0、RX_D1、RX_DV、RX_ER、LED0、CRS/LED3、COL/LED2 ストラップは、このフローチャートに依存しません。

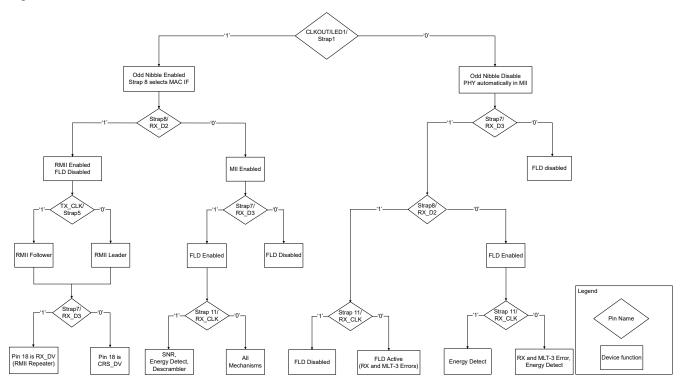


図 8-13. 拡張プートストラップ フローチャート

表 8-8. 拡張モードのデフォルト ブートストラップ

ピン名	ストラップ名	ピン番号	デフォルト
CLKOUT/LED1	Strap1 (POR でのみラッチされます。HW リセットでは、このストラップは再ラッチされません)	31	1
RX_D2	Strap8	14	0
RX_D3	Strap7	13	0
TX_CLK	Strap5	22	0
RX_D3	Strap7	13	0
RX_D1	Strap9	15	0
RX_D0	Strap0	16	0
RX_DV	Strap10	18	0
RX_ER	Strap6 (POR でのみラッチされます。HW リセットでは、このストラップは再ラッチされません)	20	0
LED0	Strap2	30	0

資料に関するフィードバック(ご意見やお問い合わせ)を送信

表 8-8. 拡張モードのデフォルト ブートストラップ (続き)

ピン名	ストラップ名	ピン番号	デフォルト
CRS/LED3	Strap3	29	0
COL/LED2	Strap4	28	0

表 8-9. オート ネゴシエーション ブートストラップ

ピン名	ストラップ名	ピン番号	デフォルト	モード	機能		
				0	Auto-MDIX イネーブル		
RX_D1	Strap9	15	0	1	Auto-MDIX ディスエー ブル		
				0	オートネゴシエーション イネーブル		
RX_D0	Strap0 16	0 Strap0 16 0	16	0	1	オート ネゴシエーション ディスエーブル。 強制 モード 100M を有効化 します	
BY DV	V Strap10 18 0	RX DV Strap10	Ctrop10 19	OV DV Strant0 19 0	0	0	MDIX (Auto-MDIX ディスエーブルの場合のみ適用可能)
IVA_DV		U	1	MDI (Auto-MDIX ディ スエーブルの場合のみ 適用可能)			

表 8-10. CLKOUT/LED1 ブートストラップ

ピン名	ストラップ名	ピン番号	デフォルト	モード	機能
RX ER	Strap6 (POR でのみラッチされます。HW リセ	20	0	0	ピン 31 の CLKOUT 25MHz
KA_ER	ットでは、このストラップ は再ラッチされません)	20	U	1	ピン 31 の LED1

表 8-11. PHY アドレスのブートストラップ

ピン名	ストラップ名	ピン番号	デフォルト	モード	機能
					PHY_ADD0
LED0	Strap2	30	0	0	0
				1	1
					PHY_ADD1
CRS/LED3	Strap3	29	0	0	0
				1	1
					PHY_ADD2
COL/LED2	Strap4	28	0	0	0
				1	1

53

Product Folder Links: DP83826AE DP83826AI

8.4.1.2 ストラップ構成 (BASIC モード)

このセクションでは、BASIC モードで使用できるストラップ構成について説明します。

表 8-12. PHY アドレス ストラップ

ピン名	ストラップ名	ピン番号	デフォルト	モード	機能							
				PHY_ADD0								
RX_D3	Strap7	13	1	0	0							
				1	1							
			14			PHY_ADD1						
RX_D2	Strap8	14		14	14	14	14	14	14	14	0	0
				1	1							
					PHY_ADD2							
RX_D1 Strap9	15	0	0	0								
				1	1							

表 8-13. MAC モード選択ストラップ

ピン名	ストラップ名	ピン番号	デフォルト	Strap10	Strap4	機能		
				0	0	MII MAC モード		
COL	Strap4	28	0	0	0	0 0	1	RMII リーダー モード
				1	1	RMII フォロワ モード		
RX_DV	Strap10	18	0	その他の値は予約済みです。使用禁止。		は予約済みです。使用禁止。		

表 8-14. オートネゴシエーション ストラップ

ピン名	ストラップ名	ピン番号	デフォルト	モード	機能
LEDO	LED0 Strap2	30	1	0	オートネゴシエーション ディスエーブル
LLDO		30	'	1	オートネゴシエーション イネーブル

表 8-15. スピード ストラップ

ピン名	ストラップ名	ピン番号	デフォルト	モード	機能
LED1/	Stran1	21	1	0	速度 10M
TX_ER Strap1 31	I	1	速度 100M		

表 8-16. 全二重 / 半二重

ピン名	ストラップ名	ピン番号	デフォルト	モード	機能
BY D	RX_D0 Strap0	16	1	0	全二重
IXX_D		10	'	1	半二重

表 8-17. MII 絶縁プートストラップ

ピン名	ストラップ名	ピン番号	デフォルト	モード	機能
DV ED	RX_ER Strap6	20	0	0	MII 絶縁ディスエーブル
IW_ER		20	O	1	MII 絶縁イネーブル

資料に関するフィードバック (ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

8.5 レジスタ マップ

8.5.1 DP83826A のレジスタ

DP83826A レジスタのメモリマップされたレジスタを、表 8-18 に示します。表 8-18 にないレジスタ オフセット アドレスは すべて予約済みと見なして、レジスタの内容は変更しないでください。

表 8-18. DP83826A のレジスタ

オフセット	略称	レジスタ名	セクション
0h	BMCR レジスタ	BASIC モード制御レジスタ	表示
1h	BMSR レジスタ	BASIC モード ステータス レジスタ	表示
2h	PHYIDR1 レジスタ	PHY 識別子レジスタ #1	表示
3h	PHYIDR2 レジスタ	PHY 識別子レジスタ #2	表示
4h	ANAR レジスタ	オートネゴシエーション アドバタイズメント レジスタ	表示
5h	ALNPAR レジスタ	オートネゴシエーション リンク パートナー アビリティ レジスタ	表示
6h	ANER レジスタ	オートネゴシエーション拡張レジスタ	表示
7h	ANNPTR レジスタ	オートネゴシエーション次ページレジスタ	表示
8h	ANLNPTR レジスタ	オートネゴシエーション リンク パートナー アビリティ 次ページ レジスタ	表示
9h	CR1 レジスタ	制御レジスタ #1	表示
Ah	CR2 レジスタ	制御レジスタ #2	表示
Bh	CR3 レジスタ	制御レジスタ #3	表示
Dh	REGCR レジスタ	拡張レジスタ制御レジスタ	表示
Eh	ADDAR レジスタ	拡張レジスタ データ レジスタ	表示
Fh	FLDS レジスタ	高速リンク ダウン ステータス レジスタ	表示
10h	PHYSTS レジスタ	PHY ステータス レジスタ	表示
11h	PHYSCR レジスタ	PHY 固有制御レジスタ	表示
12h	MISR1 レジスタ	MII 割り込みステータス レジスタ #1	表示
13h	MISR2 レジスタ	MII 割り込みステータス レジスタ #2	表示
14h	FCSCR レジスタ	誤搬送波検知カウンタレジスタ	表示
15h	RECR レジスタ	受信エラー カウント レジスタ	表示
16h	BISCR レジスタ	BIST 制御レジスタ	表示
17h	RCSR レジスタ	RMII およびステータス レジスタ	表示
18h	LEDCR レジスタ	LED 制御レジスタ	表示
19h	PHYCR レジスタ	PHY 制御レジスタ	表示
1Ah	10BTSCR レジスタ	10Base-Te ステータス / 制御レジスタ	表示
1Bh	BICSR1 レジスタ	BIST 制御およびステータス レジスタ #1	表示
1Ch	BICSR2 レジスタ	BIST 制御およびステータス レジスタ #2	表示
1Eh	CDCR レジスタ	ケーブル診断制御レジスタ	表示
1Fh	PHYRCR レジスタ	PHY リセット制御レジスタ	表示
25h	MLEDCR レジスタ	マルチ LED 制御レジスタ	表示
27h	COMPT レジスタ	コンプライアンス テスト レジスタ	表示
2Ah	10M_CFG		表示
117h	FLD_CFG1		表示
131h	FLD_CFG2		表示
170h	CDSCR レジスタ	ケーブル診断固有制御レジスタ	表示

表 8-18. DP83826A のレジスタ (続き)

オフセット	略称	しい ひょう しょう しょう しょう しょう しょう しょう しょう しょう しょう し	セクション
171h	CDSCR2 レジスタ	ケーブル診断固有制御レジスタ 2	表示
173h	CDSCR3 レジスタ	ケーブル診断固有制御レジスタ3	表示
175h	TDR_175 レジスタ	TDR 制御レジスタ #1	表示
176h	TDR_176 レジスタ	TDR 制御レジスタ #2	表示
177h	CDSCR4 レジスタ	ケーブル診断固有制御レジスタ 4	表示
178h	TDR_178 レジスタ	TDR 制御レジスタ #3	表示
180h	CDLRR1 レジスタ	ケーブル診断ロケーション結果レジスタ#1	表示
181h	CDLRR2 レジスタ	ケーブル診断ロケーション結果レジスタ#2	表示
182h	CDLRR3 レジスタ	ケーブル診断ロケーション結果レジスタ #3	表示
183h	CDLRR4 レジスタ	ケーブル診断ロケーション結果レジスタ#4	表示
184h	CDLRR5 レジスタ	ケーブル診断ロケーション結果レジスタ #5	 表示
185h	CDLAR1 レジスタ	ケーブル診断振幅結果レジスタ#1	表示
186h	CDLAR2 レジスタ	ケーブル診断振幅結果レジスタ#2	表示
187h	CDLAR3 レジスタ	ケーブル診断振幅結果レジスタ #3	表示
188h	CDLAR4 レジスタ	ケーブル診断振幅結果レジスタ #4	表示
189h	CDLAR5 レジスタ	ケーブル診断振幅結果レジスタ #5	 表示
18Ah	CDLAR6 レジスタ	ケーブル診断振幅結果レジスタ#6	 表示
218h	MSE_Val		 表示
302h	IO_CFG1 レジスタ	GPIO ピン構成レジスタ #1	表示
303h	LED0 GPIO レジスタ	LED0 構成レジスタ	表示
304h	LED1 GPIO レジスタ	LED1 構成レジスタ	表示
305h	LED2 レジスタ	LED2 構成レジスタ	表示
306h	LED3 レジスタ	LED3 構成レジスタ	表示
308h	CLK_OUT_LED_STATUS レジスタ	CLK_OUT_LED_STATUS 構成レジスタ #3	表示
30Bh	VOD_CFG1 レジスタ	VoD 構成レジスタ #1	表示
30Ch	VOD_CFG2 レジスタ	VoD 構成レジスタ #2	表示
30Eh	VOD_CFG3 レジスタ	VoD 構成レジスタ #3	表示
404h	ANA_LD_PROG_SL レジスタ	ラインドライバ構成レジスタ	表示
40Dh	ANA_RX10BT_CTRL レジスタ	受信構成レジスタ 10M	表示
456h	GENCFG レジスタ	全般構成レジスタ	表示
460h	LEDCFG レジスタ	LED 構成レジスタ #1	表示
461h	IOCTRL レジスタ	IO MUX GPIO 制御レジスタ	表示
467h	SOR1 レジスタ	ストラップ ラッチイン レジスタ #2	表示
468h	SOR2 レジスタ	ストラップ ラッチイン レジスタ #2	表示
469h	LEDCFG2 レジスタ	LED 構成レジスタ #2	表示
4A0h	RXFCFG1 レジスタ	受信構成レジスタ #1	表示
4A1h	RXFS レジスタ	受信ステータス レジスタ	表示
4A2h	RXFPMD1 レジスタ	受信完全一致データレジスタ#1	表示
4A3h	RXFPMD2 レジスタ	受信完全一致データレジスタ#2	表示
4A4h	RXFPMD3 レジスタ	受信完全一致データレジスタ#3	表示
4A5h	RXFSOP1 レジスタ	受信 Secure-ON パスワード レジスタ #1	表示
4A6h	RXFSOP2 レジスタ	受信 Secure-ON パスワード レジスタ #2	表示

表 8-18. DP83826A のレジスタ (続き)

オフセット	略称	レジスタ名	セクション
4A7h	RXFSOP3 レジスタ	受信 Secure-ON パスワード レジスタ #3	表示

表の小さなセルに収まるように、複雑なビット アクセス タイプを記号で表記しています。表 **8-19** に、このセクションでアクセス タイプに使用しているコードを示します。

表 8-19. DP83826A のアクセス タイプ コード

表 0-13. DI 03020A V/) プロスプリプロード								
アクセス タイプ	コード	説明						
読み取りタイプ	読み取りタイプ							
R	R	読み出し						
RC	R C	読み出し後 クリア						
RCH	R C H	読み取り クリア ハードウェアによって設定またはクリ ア						
RH	R H	ハードウェアによってセットまたはクリ アされる の読み取り						
書き込みタイプ								
W	W	書き込み						
W0C	W 0C	書き込み 0 でクリア						
W1S	W 1S	1 を書き込むことで セット						
リセットまたはデフ	オルト値							
-n		リセット後の値またはデフォルト値						

8.5.1.1 BMCR レジスタ (オフセット = 0h) [リセット = XX00h]

表 8-20 に、BMCR レジスタを示します。

概略表に戻ります。

BASIC モード制御レジスタ

表 8-20. BMCR レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	リセット	RH/W1S	Oh	PHY ソフトウェア リセット:このビットに 1 を書き込むと、PHY PCS レジス タがリセットされます。 リセット動作が完了すると、このビットは自動的に 0 にクリアされます。 PHY ベンダ 固有のレジスタはクリアされません。 OH = 通常動作 1h = ソフトウェア リセットの開始 / リセット進行中
14	MII のループバック	R/W	Oh	MII のループバック: MII ループバック モードが起動すると、MII TXD に提示された送信データは、内部で MII RXD にループバックされます。 さらに、次の追加ビット (100Base-TX の場合はビット BISCR 0x0016[4:0] = 00001b) が設定されます。 0H = 通常動作 1h = MII ループバック イネーブル

表 8-20. BMCR レジスタ フィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	説明
13	速度選択	RH/W	X	速度選択:オートネゴシエーションがディスエーブルの場合 (レジスタ 0x0000 のビット [12] = 0)、このビットに書き込むと、ポート速度を選択できます。 BASIC モードでは、オートネゴシエーションが無効化されている場合、速度はストラップによっても決まります。 0h = 10Mbps 1h = 100Mbps
12	オートネゴシエーション イネーブル	RH/W	x	オートネゴシエーション イネーブル。BASIC モードと ENHANCED モードでのデフォルト値は、ストラップによって決まります。 Oh = オートネゴシエーションを無効化 - ビット [8] および [13] によって、ポート速度と二重モードが決まります。 1h = オートネゴシエーションを有効化 - このビットが設定されていると、このレジスタのビット [8] および [13] は無視されます
11	IEEE パワーダウン	R/W	0h	パワーダウン:このビットを設定した後、PHY のパワーダウンします。このパワーダウン状況中、レジスタ アクセスのみが有効化されます。パワーダウンメカニズムを制御するため、このビットは INT/PWDN_N (ENHANCED モード) ピンからの入力で OR 論理和がとられます。 アクティブ Low INT/PWDN_N がアサートされると、このビットが設定されます。 OH = 通常動作 1h = IEEE パワーダウン
10	絶縁	RH/W	X	絶縁。 BASIC モードでは、デフォルト値はストラップによって決まります。 ENHANCED モードでは、このフィールドはデフォルトで 0 になります。 OH = 通常動作 1h = ポートを MII から絶縁します (シリアル マネージメント インターフェイスを除く)。また、RMII リーダー モードで 50MHz クロックを無効化します
9	オートネゴシエーション再開	RH/W1S	0h	オートネゴシエーション再開オートネゴシエーションがディスエーブルの場合 (ビット [12] = 0)、ビット [9] は無視されます。このビットは、オートネゴシエーションが開始されるまで、自動でクリアされ、値 1 を返します。その後、このビットは自動でクリアされます。オートネゴシエーション プロセスの動作は、管理エンティティがこのビットをクリアしても影響を受けません。0H = 通常動作 1h = オートネゴシエーションを再開、オートネゴシエーションプロセスを再起動
8	二重モード	RH/W	Х	二重モード:オートネゴシエーションがディスエーブルのとき、このビットに 書き込むと、ポートの二重機能を選択できます。 BASIC モードでは、デフォルト値はストラップによって決まります。 ENHANCED モードでは、このフィールドはデフォルトで 0 になります。 0h = 半二重 1h = 全二重
7	衝突テスト	R/W	0h	衝突テスト:このビットを設定すると、512 ビット時間以内に、TX_EN がアサートされ、COL 信号がアサートされます。COL 信号は、TX_EN がデアサートされるのに対応して、4 ビット時間以内にデアサートされます。OH = 通常動作1h = COL 信号テストを有効化
6-0	予約済み	R	0h	予約済み
	1	1	1	I .

8.5.1.2 BMSR レジスタ (オフセット = 1h) [リセット = 7849h]

表 8-21 に、BMSR レジスタを示します。

概略表に戻ります。

BASIC モード ステータス レジスタ

表 8-21. BMSR レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	100Base-T4	R	0h	100Base-T4 対応:このプロトコルは使用できません。常に 0 として読み出します
14	100Base-TX 全二重	R	1h	100Base-TX 全二重対応: 0h = デバイスは全二重 100Base-TX を実行できない 1h = デバイスは全二重 100Base-TX を実行できる
13	100Base-TX 半二重	R	1h	100BASE-TX 半二重対応: 0h = デバイスは半二重 100Base-TX を実行できない 1h = デバイスは半二重 100Base-TX を実行できる
12	10Base-T 全二重	R	1h	10Base-T 全二重対応: 0h = デバイスは全二重 10Base-T を実行できない 1h = デバイスは全二重 10Base-T を実行できる
11	10Base-T 半二重	R	1h	10BASE-T 半二重対応: 0h = デバイスは半二重 10Base-T を実行できない 1h = デバイスは半二重 10Base-T を実行できる
10-7	予約済み	R	0h	予約済み
6	SMI プリアンブル抑制	R	1h	プリアンブル抑制対応: このビットが 1 に設定されている場合、リセット後、無効なオペレーションコード後、または無効なターンアラウンド後に、32 ビットのプリアンブルが 1 回のみ必要となります。このデバイスでは、次のトランザクションを開始する前に、2 つのトランザクション間に少なくとも 500ns のギャップが必要です。その後、MDC の 1 つのポジティブ エッジおよび MDIO = 1 が続きます。 0h = デバイスはプリアンブルが抑制された状態で管理トランザクションを実行できない 1h = デバイスはプリアンブルが抑制された状態で管理トランザクションを実行できる
5	オートネゴシエーション完了	RH	Oh	オートネゴシエーション完了: Oh = オートネゴシエーション プロセスが未完了 (まだ処理中、ディスエーブル、リセット中) 1h = オートネゴシエーション プロセスが完了
4	リモート障害	RC	0h	リモート障害:ファー エンド障害の表示またはリンク パートナーからのリモート障害の通知。このビットは、読み取り時またはリセット時にクリアされます。 Oh = リモート障害状態は未検出 Th = リモート障害状態を検出済み
3	オートネゴシエーション機能	R	1h	オートネゴシエーション機能: Oh = デバイスはオートネゴシエーションを実行できない 1h = デバイスはオートネゴシエーションを実行できる
2	リンク ステータス	RC	Oh	リンク ステータス: 最後にラッチされた値は、読み取り時にクリアされます Oh = リンクが未確立 1h = 有効なリンクが確立済み (10Mbps または 100Mbps 動作の場合)
1	ジャパー検出	RH	Oh	ジャバー検出。このビットは 10Base-T 動作にのみ意味を持ちます。 0h = ジャバー状態は未検出 1h = ジャバー状態を検出済み
0	拡張機能	R	1h	拡張機能: Oh = 基本レジスタ設定機能のみ Th = 拡張レジスタ機能

8.5.1.3 PHYIDR1 レジスタ (オフセット = 2h) [リセット = 2000h]

表 8-22 に、PHYIDR1 レジスタを示します。

概略表に戻ります。

59

PHY 識別子レジスタ #1

表 8-22. PHYIDR1 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
	管理組織識別子 (OUI: Organizationally Unique Identifier) ビット 21:6	R	2000h	PHY 識別子レジスタ #1

8.5.1.4 PHYIDR2 レジスタ (オフセット = 3h) [リセット = A134h]

表 8-23 に、PHYIDR2 レジスタを示します。

概略表に戻ります。

PHY 識別子レジスタ #2

表 8-23. PHYIDR2 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-10	管理組織識別子 (OUI: Organizationally Unique Identifier) ビット 5:0	R	28h	PHY 識別子レジスタ #2
9-4	モデル番号	R	13h	ベンダ モデル番号:ベンダ モデル番号の 6 ビットはビット [9] ~ [4] に割り当てられています。 11h = BASIC モード 13h = ENHANCED モード
3-0	リビジョン番号	R	4h	モデル リビジョン番号:ベンダ モデル リビジョン番号の 4 ビットはビット [3:0] に割り当てられています。このフィールドは、すべての主要なデバイス変更に対してインクリメントされます。

8.5.1.5 ANAR レジスタ (オフセット = 4h) [リセット = 0XX1h]

表 8-24 に、ANAR レジスタを示します。

概略表に戻ります。

オートネゴシエーション アドバタイズメント レジスタ

表 8-24. ANAR レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	次のページ	R/W	0h	次ページ表示: 0h = 次ページ転送が不要 1h = 次ページ転送が必要
14	予約済み	R	0h	予約済み
13	リモート障害	R/W	Oh	リモート障害: Oh = リモート障害は未検出 Th = このデバイスがリモート障害を検出したことをアドバタイズ PHY はリモート障害をサポートしていないことに注意してください。このビットはアプリケーションで設定されません
12	予約済み	R	0h	予約済み
11	非対称型一時停止	R/W	0h	全二重リンクの非対称型一時停止サポート: Oh = 非対称型一時停止機能をアドバタイズしない Th = 非対称型一時停止機能をアドバタイズする
10	一時停止	R/W	0h	全二重リンクの一時停止サポート: Oh = 一時停止機能をアドバタイズしない 1h = 一時停止機能をアドバタイズする

資料に関するフィードバック (ご意見やお問い合わせ) を送信

表 8-24. ANAR レジスタ フィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	説明
9	100Base-T4	R	0h	100Base-T4 サポート: 0h = 100Base-T4 機能をアドバタイズしない 1h = 100Base-T4 機能をアドバタイズする
8	100Base-TX 全二重	RH/W	Х	100BASE-TX 全二重サポート: 値は、強制モードでは重要ではありません。 BASIC モードでは、デフォルトはストラップによって決まります。 ENHANCED モードでは、このフィールドはデフォルトで 1 に設定されます。 0h = 100Base-TX 全二重機能をアドバタイズしない 1h = 100Base-TX 全二重機能をアドバタイズする
7	100Base-TX 半二重	RH/W	х	100BASE-TX 半二重サポート: 値は、強制モードでは重要ではありません。 BASIC モードでは、デフォルトはストラップによって決まります。 ENHANCED モードでは、このフィールドはデフォルトで 1 に設定されます。 0h = 100Base-TX 半二重機能をアドバタイズしない 1h = 100Base-TX 半二重機能をアドバタイズする
6	10Base-T 全二重	RH/W	Х	10BASE-T 全二重サポート: 値は、強制モードでは重要ではありません。 BASIC モードでは、デフォルトはストラップによって決まります。 ENHANCED モードでは、このフィールドはデフォルトで 1 に設定されます。 0h = 10Base-T 全二重機能をアドバタイズしない 1h = 10Base-T 全二重機能をアドバタイズする
5	10Base-T 半二重	RH/W	X	10BASE-T 半二重サポート: 値は、強制モードでは重要ではありません。 BASIC モードおよび ENHANCED モードでは、デフォルトはストラップに よって決まります。 0h = 10Base-T 半二重機能をアドバタイズしない 1h = 10Base-T 半二重機能をアドバタイズする
4-0	セレクタ フィールド	R/W	1h	プロトコル選択ビット:技術セレクタ フィールド (IEEE802.3u<00001>)

8.5.1.6 ALNPAR レジスタ (オフセット = 5h) [リセット = 0000h]

表 8-25 に、ALNPAR レジスタを示します。

概略表に戻ります。

オートネゴシエーション リンク パートナー アビリティレジスタ

表 8-25. ALNPAR レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	次のページ	R	0h	次ページ表示: Oh = リンクパートナーが次ページ転送を要求しない 1h = リンクパートナーが次ページ転送を要求する
14	アクノリッジ	R	0h	アクノリッジ: Oh = リンク パートナーがリンク コード ワードの受信をアクノリッジしない 1h = リンク パートナーがリンク コード ワードの受信をアクノリッジする
13	リモート障害	R	0h	リモート障害: Oh = リンク パートナーがリモート障害イベント検出をアドバタイズしない 1h = リンク パートナーがリモート障害イベント検出をアドバタイズする
12	予約済み	R	0h	予約済み
11	非対称型一時停止	R	0h	非対称型一時停止: Oh = リンクパートナーが非対称型一時停止機能をアドバタイズしない Th = リンクパートナーが非対称型一時停止機能をアドバタイズする

表 8-25. ALNPAR レジスタ フィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	説明
10	一時停止	R	Oh	ー時停止: Oh = リンク パートナーが一時停止機能をアドバタイズしない Th = リンク パートナーが一時停止機能をアドバタイズする
9	100Base-T4	R	0h	100Base-T4 サポート: 0h = リンク パートナーが 100Base-T4 機能をアドバタイズしない 1h = リンク パートナーが 100Base-T4 機能をアドバタイズする
8	100Base-TX 全二重	R	Oh	100BASE-TX 全二重サポート: 0h = リンク パートナーが 100Base-TX 全二重機能をアドバタイズしない 1h = リンク パートナーが 100Base-TX 全二重機能をアドバタイズする
7	100Base-TX 半二重	R	0h	100BASE-TX 半二重サポート: 0h = リンク パートナーが 100Base-TX 半二重機能をアドバタイズしない 1h = リンク パートナーが 100Base-TX 半二重機能をアドバタイズする
6	10Base-T 全二重	R	Oh	10BASE-T 全二重サポート: 0h = リンク パートナーが 10Base-T 全二重機能をアドバタイズしない 1h = リンク パートナーが 10Base-T 全二重機能をアドバタイズする
5	10Base-T 半二重	R	Oh	10BASE-T 半二重サポート: 0h = リンク パートナーが 10Base-T 半二重機能をアドバタイズしない 1h = リンク パートナーが 10Base-T 半二重機能をアドバタイズする
4-0	セレクタ フィールド	R	0h	プロトコル選択ビット:技術セレクタフィールド (IEEE802.3<00001>)

8.5.1.7 ANER レジスタ (オフセット = 6h) [リセット = 0004h]

表 8-26 に、ANER レジスタを示します。

概略表に戻ります。

オートネゴシエーション拡張レジスタ

表 8-26. ANER レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-5	予約済み	R	0h	予約済み
4	並列検出フォルト	RH	0h	並列検出フォルト: Oh = フォルトは未検出 Th = 並列検出プロセス中にフォルトを検出済み
3	リンク パートナーの次ページ 機能	R	0h	リンクパートナーの次ページ機能: Oh = リンク パートナーが次ページを交換できない Th = リンク パートナーが次ページを交換できる
2	ローカル デバイスの次ペー ジ機能	R	1h	次ページ機能: 0h = ローカル デバイスが次ページを交換できない 1h = ローカル デバイスが次ページを交換できる
1	ページの受信	RH	0h	リンクコード ワード ページの受信: Oh = 新しいページは未受信 1h = 新しいオートネゴシエーション ページを受信済み
0	リンク パートナーのオートネ ゴシエーション機能	R	Oh	リンク パートナーのオートネゴシエーション機能: Oh = リンク パートナーがオートネゴシエーションをサポートしていない 1h = リンク パートナーがオートネゴシエーションをサポートしている

8.5.1.8 ANNPTR レジスタ (オフセット = 7h) [リセット = 2001h]

表 8-27 に、ANNPTR レジスタを示します。

概略表に戻ります。

資料に関するフィードバック (ご意見やお問い合わせ) を送信

オートネゴシエーション次ページ レジスタ

表 8-27. ANNPTR レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	次のページ	R/W	0h	次ページ表示: Oh = 追加の次ページの送信の希望をアドバタイズしない Th = 追加の次ページの送信の希望をアドバタイズする
14	予約済み	R	0h	予約済み
13	メッセージ ページ	R/W	1h	メッセージ ページ: Oh = 現在のページは未フォーマット ページ 1h = 現在のページはメッセージ ページ
12	アクノリッジ 2	R/W	Oh	アクノリッジ 2 は、ローカル デバイスに受信メッセージに準拠する機能があることを示すために、次ページ機能によって使用されます。 Oh = メッセージに準拠できない Th = メッセージに準拠できる
11	点滅	R	Oh	トグルは、オートネゴシエーション内の調停機能によって使用され、次ページ交換中にリンクパートナーと同期します。このビットは常に、前に交換されたリンクコードワード内のトグルビットとは逆の値を取ります。 Oh = 前に送信されたリンクコードワードのトグルビットの値が1 1h = 前に送信されたリンクコードワードのトグルビットの値が0
10-0	コード	R/W	1h	このフィールドは、次ページ送信のコード フィールドを表します。メッセージ ページ ビットが設定されている場合 (このレジスタのビット [13])、コードは、IEEE 802.3u 付録 28C で定義されているメッセージ ページとして解釈されます。それ以外の場合、コードは未フォーマット ページとして相互に扱われ、解釈はアプリケーション固有です。コードのデフォルト値は、IEEE 802.3u 付録 28C で定義されている Null ページを表します。

8.5.1.9 ANLNPTR レジスタ (オフセット = 8h) [リセット = 0000h]

表 8-28 に、ANLNPTR レジスタを示します。

概略表に戻ります。

オートネゴシエーション リンク パートナー アビリティ 次ページ レジスタ

表 8-28. ANLNPTR レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	次のページ	R	Oh	次ページ表示: Oh = 追加の次ページの送信の希望をアドバタイズしない Th = 追加の次ページの送信の希望をアドバタイズする
14	アクノリッジ	R	0h	アクノリッジ: Oh = リンク パートナーがリンク コード動作の受信をアクノリッジしない Th = リンク パートナーがリンク コード ワードの受信をアクノリッジする
13	メッセージ ページ	R	Oh	メッセージ ページ: Oh = 現在のページは未フォーマット ページ 1h = 現在のページはメッセージ ページ
12	アクノリッジ 2	R	0h	アクノリッジ 2 は、ローカル デバイスに受信メッセージに準拠する機能があることを示すために、次ページ機能によって使用されます。 Oh = メッセージに準拠できない 1h = メッセージに準拠できる
11	点滅	R	0h	トグルは、オートネゴシエーション内の調停機能によって使用され、次ページ交換中にリンクパートナーと同期します。このビットは常に、前に交換されたリンクコード ワード内のトグル ビットとは逆の値を取ります。 0h = 前に送信されたリンクコード ワードのトグル ビットの値が 1 1h = 前に送信されたリンクコード ワードのトグル ビットの値が 0

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

63

表 8-28. ANLNPTR レジスタのフィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	説明
10-0	メッセージ / 未フォーマット	R	0h	このフィールドは、次ページ送信のコードフィールドを表します。メッセー
	フィールド			ジ ページ ビットが設定されている場合 (このレジスタのビット 13)、コード
				は、IEEE 802.3u 付録 28C で定義されているメッセージ ページとして解
				釈されます。それ以外の場合、コードは未フォーマットページとして相互
				に扱われ、解釈はアプリケーション固有です。
				コードのデフォルト値は、IEEE 802.3u 付録 28C で定義されている Null
				ページを表します。

8.5.1.10 CR1 レジスタ (オフセット = 9h) [リセット = 00X0h]

表 8-29 に、CR1 レジスタを示します。

概略表に戻ります。

制御レジスタ#1

表 8-29. CR1 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-10	予約済み	R	0h	予約済み
9	予約済み	R/W	0h	予約済み
8	TDR 自動実行	R/W	0h	リンク ダウン時の TDR 自動実行 0h = TDR 自動実行を無効化 1h = リンク ダウン イベント後の TDR 手順の実行を有効化
7	リンク損失の回復	R/W	Oh	リンク損失の回復: Oh = 通常のリンク損失動作。このモードでは、短時間の干渉から回復し、短時間の干渉がなくなり信号が正常になるまで、追加の数ミリ秒間リンクを続けて保持することができます。通常のリンク損失動作では、リンクステータスは信号損失によってほぼ 250µs に低下します。 1h = リンク損失回復メカニズムを有効化
6	予約済み	R/W	0h	予約済み
5	堅牢な Auto-MDIX	RH/W	X	堅牢な Auto-MDIX: リンク パートナーが通常の Auto-MDIX でサポートされていない動作モード用に設定されている場合、堅牢な Auto-MDIX によって MDI/MDIX 解決が可能になり、デッドロックが防止されます。強制モードで使用する場合は、堅牢な Auto-MDIX を有効化する必要があります。 BASIC モードでは、このフィールドはデフォルトで 0 になります。 ENHANCED モードでは、デフォルトはストラップによって決まります。 Oh = Auto-MDIX を無効化 1h = 堅牢な Auto-MDIX を有効化
4	予約済み	R/W	0h	予約済み
3-2	予約済み	R/W	0h	予約済み
1	高速 RXDV 検出	R/W	Oh	高速 RXDV 検出: Oh = 高速 RX_DV 検出を無効化。PHY は通常モードで動作します。/JK/の検出後の RX_DV アサート。 1h = /J/ シンボルの検出のみにより、受信パケットで RX_DV のアサート High を有効化する。連続した /K/ が表示されない場合は、RX_ER が生成されます。
0	予約済み	R	0h	予約済み

Product Folder Links: DP83826AE DP83826AI

8.5.1.11 CR2 レジスタ (オフセット = Ah) [リセット = 010Xh]

表 8-30 に、CR2 レジスタを示します。

概略表に戻ります。

資料に関するフィードバック(ご意見やお問い合わせ)を送信

制御レジスタ #2

表 8-30. CR2 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	予約済み	R/W	0h	予約済み
14	予約済み	R/W	0h	予約済み
13-7	予約済み	R/W	2h	予約済み
6	予約済み	R/W	0h	予約済み
5	拡張全二重機能	R/W	Oh	拡張全二重機能: Oh = 拡張全二重機能を無効化。全二重モードと半二重モードのどちらで動作するかは、IEEE の仕様に従います。 1h = 強制 100Base-TX でリンク パートナーと連携している間、全二重を有効化。PHY がオートネゴシエーションまたは強制 100Base-TX に設定され、リンク パートナーが Force 100Base-TX で動作する場合、リンクは常に全二重になります。
4	予約済み	R/W	0h	予約済み
3	予約済み	R/W	0h	予約済み
2	IDLE 時の RX_ER	R/W	0h	IDLE 状態での受信シンボル エラーの検出: 0h = IDLE 状態時の受信シンボル エラーの検出を無効化 1h = IDLE 状態時の受信シンボル エラーの検出を有効化
1	奇数ニブル検出ディスエー ブル	RH/W	X	送信エラーの検出。 ENHANCED モードでは、デフォルトはストラップによって決まります。 BASIC モードでは、このフィールドはデフォルトで 1 になります Oh = 奇数ニブル境界での TX_EN のデアサートの検出を有効化。この場合、TX_EN は 1 つの追加 TX_CLK サイクルによって延長され、その追加サイクル中に TX_ER がアサートされたかのように動作します。 1h = 奇数ニブル境界での送信エラーの検出を無効化
0	予約済み	R/W	0h	予約済み

8.5.1.12 CR3 レジスタ (オフセット= Bh) [リセット= 0X00h]

表 8-31 に、CR3 レジスタを示します。

概略表に戻ります。

制御レジスタ#3

表 8-31. CR3 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-11	予約済み	R/W	0h	予約済み
10	FLD デスクランブラ損失	RH/W	X	デスクランブラ高速リンクドロップ: このオプションは、他の高速リンクダウン モードと並列にビット [3:0] で有効化できます。 BASIC モードでは、このフィールドはデフォルトで 0 になります。 ENHANCED モードでは、デフォルトはストラップによって決まります。 Oh = デスクランブラのリンク損失時にリンクをドロップしない 1h = デスクランブラのリンク損失時にリンクをドロップする
9	予約済み	R	0h	予約済み
8	予約済み	R/W	0h	予約済み
7	予約済み	R/W	0h	予約済み
6	極性スワップ	R/W	Oh	極性スワップ: ポートミラーリング機能:ポートミラーリングを有効化するには、このビットと ビット [5] を High に設定します。 1h = 両方のペアで反転極性: TD+ および TD-、RD+ および RD- 0h = 通常極性

表 8-31. CR3 レジスタのフィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	説明
5	MDI/MDIX スワップ	R/W	0h	MDI/MDIX スワップ: ポートミラーリング機能:ポートミラーリングを有効化するには、このビットと ビット [6] を High に設定します。 0h = MDI ペアは通常 (RD ペアで受信、TD ペアで送信) 1h = MDI ペアをスワップ (TD ペアで受信、RD ペアで送信)
4	予約済み	R/W	0h	予約済み
3-0	高速リンク ダウン モード	RH/W	Oh	高速リンク ダウン モード: ビット 3 は、MII インターフェイスの RX エラー数に基づいてリンクをドロップします。10us 間隔で、事前定義されている 32 の RX エラー発生数に達すると、リンクがドロップされます。 ビット 2 は、MLT3 エラー カウント (DSP 出力の MLT3 コーディング違反) に基づいてリンクをドロップします。10µs 間隔で、事前定義されている 20 の MLT3 エラー発生数に達すると、リンクがドロップされます。 ビット 1: 低信号対雑音比スレッショルドに基づいてリンクをドロップします。 10µs 間隔で、事前定義されている 20 のスレッショルド超過が発生すると、リンクがドロップされます。 ビット 0: 信号 / エネルギー損失表示に基づいてリンクをドロップします。エネルギー検出器がエネルギー損失を示すと、リンクがドロップされます。代表的な応答時間は 10µs です。 C: ビット 0 のデフォルトは 0 です。 NC+MII: ENHANCED モードでは、ビット 0 はストラップから取得されます。 NC + RMII: ビット 0 のデフォルトは 0 です。 高速リンク ダウン機能は 5 つのオプションすべての論理和 (ビット [10] および [3:0]) であり、設計者はこれらの条件の任意の組み合わせを有効にすることができます。

8.5.1.13 REGCR レジスタ (オフセット = Dh) [リセット = 0000h]

表 8-32 に、REGCR レジスタを示します。

概略表に戻ります。

表 8-32. REGCR レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-14	拡張レジスタ コマンド	R/W	Oh	拡張レジスタコマンド: Oh = アドレス Th = データ、ポスト インクリメントなし 2h = データ、読み出しおよび書き込み時にポスト インクリメント 3h = データ、書き込み時のみにポスト インクリメント
13-5	予約済み	R	0h	予約済み
4-0	DEVAD	R/W	Oh	デバイス アドレス: ビット [4:0] はデバイス アドレス DEVAD であり、ADDAR レジスタ (0x000E) へのアクセスを適切な MMD に指示します。特に PHY は、アドレスが 0x04D1 以下のレジスタへのアクセスのためにベンダ固有の DEVAD [4:0] = '11111'を使います。MMD3 アクセスの場合、DEVAD[4:0] = '00011' になります。MMD7 アクセスの場合、DEVAD[4:0] = '00111' になります。 レジスタ REGCR および ADDAR によるすべてのアクセスでは、MMD、MMD3、MMD7 のいずれにも DEVAD を使うことができます。その他のDEVAD を使ったトランザクションは無視されます。

8.5.1.14 ADDAR レジスタ (オフセット = Eh) [リセット = 0000h]

表 8-33 に、ADDAR レジスタを示します。

Copyright © 2025 Texas Instruments Incorporated

66

Product Folder Links: DP83826AE DP83826AI

概略表に戻ります。

表 8-33. ADDAR レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-0	アドレス/データ	R/W		REGCR レジスタ ビット [15:14] = '00' の場合、MMD DEVAD のアドレスレジスタを保持します。 それ以外の場合、MMD DEVAD のデータを保持します。

8.5.1.15 FLDS レジスタ (オフセット = Fh) [リセット = 0000h]

表 8-34 に、FLDS レジスタを示します。

概略表に戻ります。

表 8-34. FLDS レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-9	予約済み	R	0h	予約済み
8-4	高速リンク ダウン ステータス	RCH	Oh	高速リンク ダウン ステータス: 特定の高速リンク ダウン モードがアクティブになるたびに High にラッチされるステータス レジスタで、リンクドロップが発生します (モードが有効であると仮定した場合)。 1h = 信号 / エネルギー損失 2h = 信号対雑音比レベル 4h = MLT3 エラー 8h = RX エラー 10h = デスクランブラ損失同期
3-0	予約済み	R	0h	予約済み

8.5.1.16 PHYSTS レジスタ (オフセット = 10h) [リセット = 0002h]

表 8-35 に、PHYSTS レジスタを示します。

概略表に戻ります。

表 8-35. PHYSTS レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	予約済み	R	0h	予約済み
14	MDI/MDIX モード	RH	0h	MDI/MDIX モード ステータス: 0h = MDI ペアは通常 (RD ペアで受信、TD ペアで送信) 1h = MDI ペアはスワップ済み (TD ペアで受信、RD ペアで送信)
13	受信エラーラッチ	RC	Oh	受信エラー ラッチ: このビットは、RECR レジスタを読み出すとクリアされます。 Oh = 受信エラー イベントは未発生 1h = RXERCNT レジスタ (0x0015) の最後の読み出し以降に受信エラーイベントが発生
12	極性ステータス	RC	Oh	極性ステータス: このビットは、10BTSCR レジスタ (0x001A) のビット [4] の複製です。このビットは 10BTSCR レジスタの読み出しによってクリアされますが、 PHYSTS レジスタの読み出しではクリアされません。 Oh = 正しい極性を検出済み 1h = 反転極性を検出済み
11	誤搬送波検知ラッチ	RC	0h	誤搬送波検知ラッチ: このビットは、FCSR レジスタを読み出すとクリアされます。 Oh = 誤搬送波イベントは未発生 1h = FCSCR レジスタ (0x0014) の最後の読み出し以降に、誤った誤搬 送波イベントが発生

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

67

表 8-35. PHYSTS レジスタ フィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	説明
10	信号検出	RC	0h	信号検出: PMD からのアクティブ HIGH 100Base-TX 無条件信号検出表示
9	デスクランブラ ロック	RC	0h	デスクランブラ ロック: PMD からのアクティブ HIGH 100Base-TX デスクランブラ ロック表示
8	ページの受信	RC	Oh	リンクコード ワード ページの受信: このビットは、ANER レジスタで受信したページ (ビット [1]) の複製であり、 ANER レジスタ (0x0006) の読み取り時にクリアされます。 0h = リンクコード ワード ページは未受信 1h = 新しいリンクコード ワード ページを受信済み
7	MII 割り込み	RC	0h	MII 割り込み保留: 割り込みソースは、MISR レジスタ (0x0012) を読み出すことで判定できます。 MISR を読み出すと、この割り込みビット表示はクリアされます。 0h = 割り込み保留なし 1h = 内部割り込みが保留中であることを示す
6	リモート障害	RCH	Oh	リモート障害: BMSR レジスタ (0x0001) の読み出しまたはリセットによってクリアされます。 1h = リモート障害状態は未検出フォルト条件:オートネゴシエーションを介したリモート障害のリンクパートナーからの通知「0h = リモート障害状況なし」が未検出
5	ジャバー検出	RC	Oh	ジャバー検出: このビットは 10Mbps 動作専用です。このビットは、BMSR レジスタ (0x0001) のジャバー検出ビットの複製であり、PHYSTS レジスタ を読み出してもクリアされません。 0h = ジャバーなし 1h = ジャバー状態を検出済み
4	オートネゴシエーション ステータス	R	0h	オートネゴシエーション ステータス: Oh = オートネゴシエーションが未完了 1h = オートネゴシエーションが完了
3	MII ループバック ステータス	R	0h	MII ループバック ステータス: 0h = 通常動作 1h = ループバックを有効化
2	二重モードのステータス	RH	0h	二重モードのステータス: BASIC モード:オートネゴシエーションがディスエーブルのときに、ストラップによってラッチされます。ENHANCED モード:オートネゴシエーションがディスエーブルの場合は 1 0h = 半二重モード 1h = 全二重モード
1	速度ステータス	RH	1h	速度ステータス: BASIC モード:オートネゴシエーションがディスエーブルのときに、ストラップによってラッチされます。 ENHANCED モード:オートネゴシエーションがディスエーブルの場合は 1 0h = 100Mbps モード 1h = 10Mbps モード
0	リンク ステータス	R	Oh	リンクステータス: このビットは、BMSR レジスタ (アドレス 0x0001) のリンクステータス ビットから複製され、PHYSTS レジスタを読み出してもクリアされません。 0h = リンクが未確立 1h = 有効なリンクが確立済み (10Mbps または 100Mbps の場合)

8.5.1.17 PHYSCR レジスタ (オフセット = 11h) [リセット = 010Xh]

表 8-36 に、PHYSCR レジスタを示します。

Copyright © 2025 Texas Instruments Incorporated

68

Product Folder Links: DP83826AE DP83826AI

概略表に戻ります。

表 8-36. PHYSCR レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	PLL を無効化	R/W	0h	PLL を無効化: 注:クロック回路は IEEE のパワーダウン モードでのみ無効化できます。 0h = 通常動作 1h = 内部クロック回路を無効化
14	パワー セーブ モード イネー ブル	R/W	0h	パワー セーブ モード イネーブル: Oh = 通常動作 1h = パワー セーブ モードを有効化
13-12	パワー セーブ モード	R/W	0h	パワー セーブ モード: Oh = 通常動作モード。PHY は完全な機能を備えています 1h = 予約済み 2h = アクティブ スリープ、SMI およびエネルギー検出機能以外のすべて の内部回路をシャットダウンする低消費電力アクティブ省エネモード。この モードでは、PHY は 1.4 秒 ごとに NLP を送信して、リンク パートナーを ウェークアップします。リンク パートナーが検出されると、自動パワーアップ が実行されます。
11	スクランブラ バイパス	R/W	0h	スクランブラ バイパス: Oh = スクランブラ バイパス ディスエーブル 1h = スクランブラ バイパス イネーブル
10	予約済み	R/W	0h	予約済み
9-8	ループバック FIFO 深度	R/W	1h	ファーエンドループバック FIFO 深度: この FIFO は、RX (受信) クロックレートを TX クロックレートに調整するために使用されます。FIFO の深度は、予想される最大パケット サイズとクロック精度に基づいて設定する必要があります。デフォルト値は 5 ニブルに設定されます。 Oh = 4 ニブル FIFO 1h = 5 ニブル FIFO 2h = 6 ニブル FIFO 3h = 8 ニブル FIFO
7-5	予約済み	R	0h	予約済み
4	COL 全二重イネーブル	R/W	Oh	全二重モードでの衝突: Oh = 全二重モードでの衝突を無効化。衝突は半二重モードでのみアクティブのままになります。 1h = 全二重モードでの衝突信号の生成を有効化
3	割り込み極性	R/W	1h	割り込み極性: Oh = 定常状態 (通常動作) は 0 ロジック、割り込み中は 1 ロジック 1h = 定常状態 (通常動作) は 1 ロジック、割り込み中は 0 ロジック
2	割り込みのテスト	R/W	Oh	割り込みのテスト: 割り込みのテストを容易にするため、PHY に割り込みを生成させます。このビットが設定されている間、割り込みは生成され続けます。 Oh = 割り込みを生成しない 1h = 割り込みを生成する
1	割り込みイネーブル	RH/W	X	割り込みイネーブル: MISR レジスタ (0x0012) でのイベントイネーブルに応じて割り込みを有効化します。 Oh = イベント ベースの割り込みを無効化。ENHANCED モードのデフォルト。 1h = イベント ベースの割り込みを有効化。BASIC モードのデフォルト。

69

表 8-36. PHYSCR レジスタ フィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	説明
0	割り込み出力イネーブル	RH/W		割り込み出力イネーブル: INTR/PWERDN ピンを出力として構成することで (ENHANCED モード)、INTR/PWRDN ピンを使用してアクティブ Low の割り込みイベントを有効化します。 Oh = INTR/PWRDN はパワーダウン ピン。ENHANCED モードのデフォルト。 1h = INTR/PWRDN は割り込み出力。BASIC モードのデフォルト。

8.5.1.18 MISR1 レジスタ (オフセット = 12h) [リセット = 0000h]

表 8-37 に、MISR1 レジスタを示します。

概略表に戻ります。

表 8-37. MISR1 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	リンク品質割り込み	RC	0h	リンク品質ステータス変化割り込み: Oh = リンク品質は良好 1h = リンクがオンの場合のリンク品質の変化
14	エネルギー検出割り込み	RC	0h	エネルギー検出ステータス変化割り込み: Oh = エネルギーの変化は未検出 1h = エネルギーの変化を検出済み
13	リンク ステータス変化割り込み	RC	0h	リンク ステータス変化割り込み: Oh = リンク ステータスの変化なし 1h = リンク ステータス変化時の割り込みが保留中
12	速度変化割り込み	RC	0h	速度ステータス変化割り込み: Oh = 速度ステータスの変化なし 1h = 速度ステータス変化時の割り込みが保留中
11	二重モード変化割り込み	RC	Oh	二重ステータス変化割り込み: Oh = 二重モードのステータスは変化なし 1h = 二重ステータス変化時の割り込みが保留中
10	オートネゴシエーション完了 割り込み	RC	0h	オートネゴシエーション完了割り込み: Oh = オートネゴシエーション完了イベントが保留中 1h = オートネゴシエーション完了割り込みが保留中
9	誤搬送波カウンタ ハーフフル割り込み	RC	Oh	誤搬送波カウンタ ハーフフル割り込み: Oh = 誤搬送波ハーフフル イベントは保留中でない 1h = ハーフフル割り込みを上回る誤搬送波カウンタ (レジスタ FCSCR、アドレス 0x0014) が保留中
8	受信エラー カウンタ ハーフフル割り込み	RC	Oh	受信エラー カウンタ ハーフフル割り込み: Oh = 受信エラー ハーフフル イベントは保留中でない 1h = ハーフフル割り込みを上回る受信エラー カウンタ (レジスタ RECR、アドレス 0x0015) が保留中
7	リンク品質割り込み有効化	R/W	0h	リンク品質の変化時の割り込みを有効化
6	エネルギー検出割り込み有 効化	R/W	0h	エネルギー変化検出時の割り込みを有効化
5	リンク ステータス変化イネー ブル	R/W	0h	リンクステータス変化時の割り込みを有効化
4	速度変化割り込みイネーブル	R/W	0h	速度ステータス変化時の割り込みを有効化
3	二重モード変更割り込みイ ネーブル	R/W	0h	二重ステータス変化時の割り込みを有効化
2	オートネゴシエーション完了 イネーブル	R/W	0h	オートネゴシエーション完了イベント時の割り込みを有効化

資料に関するフィードバック(ご意見やお問い合わせ) を送信

表 8-37. MISR1 レジスタのフィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	説明
1	誤搬送波 HF イネーブル	R/W	0h	誤搬送波カウンタレジスタハーフフルイベント時の割り込みを有効化
0	受信エラー HF イネーブル	R/W	0h	受信エラー カウンタ レジスタ ハーフフル イベント時の割り込みを有効化

8.5.1.19 MISR2 レジスタ (オフセット = 13h) [リセット = 0000h]

表 8-38 に、MISR2 レジスタを示します。

概略表に戻ります。

表 8-38. MISR2 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	へずのフィールトの武明 │説明
15	EEE エラー割り込み	RC	Oh	省電力型イーサネット エラー割り込み: Oh = EEE エラーは未発生 1h = EEE エラーが発生
14	オートネゴシエーション エラ ー割り込み	RC	Oh	オートネゴシエーション エラー割り込み: Oh = オートネゴシエーション エラー イベントが保留中 Th = オートネゴシエーション エラー割り込みが保留中
13	ページ受信割り込み	RC	0h	ページ受信割り込み: Oh = ページは未受信 1h = ページを受信済み
12	ループバック FIFO OF/UF イベント割り込み	RC	0h	ループバック FIFO オーバーフロー / アンダーフロー イベント割り込み: Oh = 保留中の FIFO オーバーフロー / アンダーフロー イベントなし 1h = FIFO オーバーフロー / アンダーフロー イベント割り込みが保留中
11	MDI クロスオーバー変化割 り込み	RC	Oh	MDI/MDIX クロスオーバー ステータス変化割り込み: Oh = MDI クロスオーバー ステータスは変化なし 1h = MDI クロスオーバー ステータス変化割り込みが保留中
10	スリープ モード割り込み	RC	0h	スリープ モード イベント割り込み: Oh = 保留中のスリープ モード イベントなし Th = スリープ モード イベント割り込みが保留中
9	反転極性割り込み/WoLパケット受信割り込み	RC	0h	反転極性割り込み/ WoL パケット受信割り込み: Oh = 保留中の反転極性イベントなし/ WoL パケットは未受信 1h = 反転極性割り込みが保留中/ WoL パケットを受信済み
8	ジャバー検出割り込み	RC	0h	ジャバー検出イベント割り込み: Oh = 保留中のジャバー検出イベントなし 1h = ジャバー検出イベント割り込みが保留中
7	EEE エラー割り込みイネー ブル	R/W	0h	EEE エラー時の割り込みを有効化
6	オートネゴシエーション エラ ー割り込みイネーブル	R/W	0h	オートネゴシエーション エラー イベント時の割り込みを有効化
5	ページ受信割り込みイネー ブル	R/W	0h	ページ受信イベント時の割り込みを有効化
4	ループバック FIFO OF/UF イネーブル	R/W	0h	ループバック FIFO オーバーフロー / アンダーフロー イベント時の割り込みを有効化
3	MDI クロスオーバー変化イ ネーブル	R/W	0h	MDI/X ステータス変化時の割り込みを有効化
2	スリープ モード イベント イネ ーブル	R/W	0h	スリープ モード イベント時の割り込みを有効化
1	極性変化 / WoL パケット イネーブル	R/W	0h	極性ステータス変化時の割り込みを有効化
0	ジャバー検出イネーブル	R/W	0h	ジャバー検出イベント時の割り込みを有効化

8.5.1.20 FCSCR レジスタ (オフセット = 14h) [リセット = 0000h]

表 8-39 に、FCSCR レジスタを示します。

概略表に戻ります。

表 8-39. FCSCR レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-8	予約済み	R	0h	予約済み
7-0	誤搬送波イベントカウンタ	RC	0h	誤搬送波イベント カウンタ: この 8 ビット カウンタは、誤搬送波イベントごとにインクリメントします。最大カウント (FFh) に達すると、このカウンタは停止します。 カウンタがハーフフル (7Fh) を超えると、割り込みイベントが生成されます。このレジスタは、読み取り時にクリアされます。

8.5.1.21 RECR レジスタ (オフセット = 15h) [リセット = 0000h]

表 8-40 に、RECR レジスタを示します。

概略表に戻ります。

表 8-40. RECR レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-0	受信エラー カウンタ	RC		RX_ER カウンタ: 有効なキャリアが存在し (RXDV が設定されている間のみ)、無効なデータシンボルが少なくとも 1 回発生すると、この 16 ビット カウンタは、検出された受信エラーごとにインクリメントします。 MII ループバック モードでは、RX_ER カウンタはカウントされません。 最大カウント (FFh) に達すると、カウンタは停止します。 カウンタがハーフフル (7Fh) を超えると、割り込みが生成されます。このレジスタは、読み取り時にクリアされます。

8.5.1.22 BISCR レジスタ (オフセット = 16h) [リセット = 0100h]

表 8-41 に、BISCR レジスタを示します。

概略表に戻ります。

表 8-41. BISCR レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	予約済み	R	0h	予約済み
14	BIST エラー カウンタ モード	R/W	0h	BIST エラー カウンタ モード: 0h = シングル モード、BIST エラー カウンタが最大値に達すると、PRBS チェッカはカウントを停止します。 1h = 連続モード、BIST エラー カウンタが最大値に達すると、パルスが生成され、カウンタは再びゼロからカウントを開始します。
13	PRBS チェッカ構成	R/W	Oh	PRBS チェッカ構成:ビット [13:12] Oh = PRBS ジェネレータとチェッカの両方がディスエーブル 1h = イネーブル、レジスタ 0x001C で構成されているように、PRBS ジェネレータが定数データを含むシングル パケットを送信。チェッカはディスエーブル。 2h = PRBS 生成はディスエーブル。PRBS チェッカはイネーブル。 3h = PRBS ジェネレータとチェッカの両方がイネーブル。レジスタ 0x001C で構成されているように、PRBS が連続パケットを生成

資料に関するフィードバック (ご意見やお問い合わせ) を送信

表 8-41. BISCR レジスタ フィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	説明
12	パケット生成イネーブル	R/W	Oh	パケット生成イネーブル: ビット [13:12] Oh = PRBS ジェネレータとチェッカの両方がディスエーブル 1h = イネーブル、レジスタ 0x001C で構成されているように、PRBS ジェネレータが定数データを含むシングル パケットを送信。チェッカはディスエーブル。 2h = PRBS 生成はディスエーブル。PRBS チェッカはイネーブル。 3h = PRBS ジェネレータとチェッカの両方がイネーブル。レジスタ 0x001C で構成されているように、PRBS が連続パケットを生成
11	PRBS チェッカ ロック / 同期	RH	0h	PRBS チェッカ ロック / 同期表示: 0h = PRBS チェッカはロックしていない 1h = PRBS チェッカが受信ビット ストリームにロックおよび同期
10	PRBS チェッカ同期喪失	RH	Oh	PRBS チェッカ同期喪失の表示: 0h = PRBS チェッカは同期を失っていない 1h = PRBS チェッカは同期を失った
9	パケット ジェネレータ ステー タス	RH	Oh	パケット生成ステータス表示: Oh = パケット ジェネレータはオフ 1h =パケット ジェネレータがアクティブでパケットを生成
8	電力モード	RH	1h	スリープ モード表示: Oh = PHY がアクティブ スリープ モードであることを示す 1h = PHY が通常の電力モードであることを示す
7	予約済み	R	0h	予約済み
6	MII ループバックでの送信	R/W	0h	MII ループバック モードでのデータ送信 (100Mbps でのみ有効) 0h = MII ループバックで、データがラインに送信されない 1h = TX ピンで受信した MAC からのデータを、MII ループバックから RX ピンへの動作に並行して、ラインに送信できる。このビットは、BMCR レジスタ (0x0000) の MII ループバック モード設定ビット[14] でのみ設定できます。
5	予約済み	R	0h	予約済み
4-0	ループバック モード	R/W	Oh	ループバック モードの選択: PHY には、PHY 内の各種機能ブロックをテストおよび検証するループバックの複数オプションがあります。 ループバック モードを有効化すると、PHY のデジタルおよびアナログ データ パスのインサーキット テストが可能となります。 1h = PCS 入力ループバック (10Base-Te のみで使用) 2h = PCS 出力ループバック (100Base-TX のみで使用)。 追加のレジスタ 書き込みが必要です。 8h = アナログ ループバック (100Ω の終端が必要) 10h = 逆ループバック

8.5.1.23 RCSR レジスタ (オフセット = 17h) [リセット = 00X1h]

表 8-42 に、RCSR レジスタを示します。

概略表に戻ります。

表 8-42. RCSR レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-13	予約済み	R	0h	予約済み
12	予約済み	R	0h	予約済み
11	予約済み	R	0h	予約済み
10	予約済み	R	0h	予約済み
9	予約済み	R	0h	予約済み

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

73

表 8-42. RCSR レジスタ フィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	プ ノイールトの 武明 (統さ) 説明
8	RMII TX クロック シフト	R/W	Oh	RMII TX クロック シフト: RMII フォロワ モードでのみ適用されます Oh =送信パスの内部クロック シフトはディスエーブル 1h = 送信パスの内部クロック シフトはイネーブル
7	RMII クロック選択	RH/W	X	RMII 基準クロックの選択: BASIC モードおよび ENHANCED モードでは、デフォルトはストラップによって決まります。 Oh = 25MHz クロック リファレンス、水晶振動子または CMOS レベル発振器 Th = 50MHz クロック リファレンス、CMOS レベル発振器
6	予約済み	R/W	1h	予約済み
5	RMII モード	RH/W	X	RMII または MII MAC インターフェイス イネーブル。 BASIC モードおよび ENHANCED モードでは、デフォルトはストラップに よって決まります。 0h = MII 動作モードを有効化 1h = RMII 動作モードを有効化
4	RMIIリビジョンの選択	R/W	Oh	RMII リビジョンの選択: Oh = (RMII リビジョン 1.2) CRS_DV はパケットの最後でトグルし、CRSのデアサートを示す 1h = (RMII リビジョン 1.0) 最終データが転送されるまで CRS_DV はアサートされたままとなる CRS_DV は、パケットの最後でトグルしません
3	RMII オーバーフロー ステータス	RC	0h	RX FIFO オーバーフロー ステータス: 0h = オーバーフローを検出済み 1h=通常
2	RMII アンダーフロー ステータス	RC	0h	RX FIFO アンダーフロー ステータス: 0h = アンダーフローを検出済み 1h=通常
1-0	受信弾性バッファサイズ	R/W	1h	受信弾性バッファサイズ: このフィールドは受信弾性バッファを制御し、50MHz の RMII クロックと回復されたデータとの間で周波数変動の許容誤差を許容します。次の値は、シングル パケットの許容範囲をビット単位で示したものです。最小設定では、±50ppm の精度で標準イーサネットフレーム サイズを使用できます。周波数の許容範囲を大きくするには、パケット長をスケーリングすることができます (+/-100ppm)。パケット長を 2 で割ります。 0h = 14 ビット許容値 (最大 16800 バイトのパケット) 1h = 2 ビット許容値 (最大 2400 バイトのパケット) 2h = 6 ビット許容値 (最大 7200 バイトのパケット) 3h = 10 ビット許容値 (最大 1

8.5.1.24 LEDCR レジスタ (オフセット = 18h) [リセット = 04X0h]

表 8-43 に、LEDCR レジスタを示します。

概略表に戻ります。

表 8-43. LEDCR レジスタ フィールドの説明

	ビット	フィールド	タイプ	リセット	説明
Г	15-11	予約済み	R	0h	予約済み
	10-9	点滅速度	R/W		LED 点滅速度 (オン/オフ持続時間): 0h = 20Hz (50ms) 1h = 10Hz (100ms) 2h = 5Hz (200ms) 3h = 2Hz (500ms)
	8	予約済み	R/W	0h	予約済み

表 8-43. LEDCR レジスタ フィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	説明
7	LED リンク極性	RH/W	x	LED リンク極性の設定: リンク LED の極性は BASIC モードではアクティブ Low であり、ENHANCED モードではこのピンのストラップ方向によって定義されます。 このレジスタにより、このストラップ値を無効にすることができます。 Oh = アクティブ Low 極性設定 1h = アクティブ High 極性設定
6-5	予約済み	R/W	0h	予約済み
4	駆動リンク LED	R/W	0h	駆動リンク LED の選択: 0h = 通常動作 1h = ON/OFF ビット [1] の駆動値を LED0 出力ピンに印加
3-2	予約済み	R/W	0h	予約済み
1	リンク LED オン/オフ設定	R/W	0h	リンク LED 出力を強制的にオンにする値 0h = LOW 1h = HIGH
0	予約済み	R/W	0h	予約済み

8.5.1.25 PHYCR レジスタ (オフセット = 19h) [リセット = X0XXh]

表 8-44 に、PHYCR レジスタを示します。

概略表に戻ります。

表 8-44. PHYCR レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	Auto-MDI/X イネーブル	RH/W	X	Auto-MDIX イネーブル: BASIC モードでは、デフォルトで Auto-MDIX イネーブルに設定されます。 ENHANCED モードでは、デフォルトはストラップによって決まります。 Oh = オートネゴシエーション Auto-MDIX 機能を無効化 1h = オートネゴシエーション Auto-MDIX 機能を有効化
14	MDI/X の強制	RH/W	X	MDIX の強制: ENHANCED モード: Auto-MDIX ストラップを無効化すると、FORCE MDI/MDIX ストラップによってラッチされます Oh = 通常動作 (RD ペアで受信、TD ペアで送信) 1h = MDI ペアを強制的に交差 (TD ペアで受信、RD ペアで送信)
13	RX ステータスの一時停止	R	Oh	受信ネゴシエーションの一時停止ステータス:MAC で、一時停止受信を有効化できることを示します。ANAR レジスタのビット [11:10] と ANLPAR レジスタ設定のビット [11:10] に基づきます。この機能は、オートネゴシエーションの最も高い共通分母が全二重技術である場合にのみ、IEEE 802.3 付録 28B の表 28B-3「Pause Resolution」に従って有効化する必要があります。
12	TX ステータスの一時停止	R	0h	送信ネゴシエーション ステータスの一時停止: MAC で、一時停止を有効 化できることを示します。 ANAR レジスタのビット [11:10] と ANLPAR レジスタ設定のビット [11:10] に基づきます。 この機能は、オートネゴシエーションの最も高い共通分母が全二重技術である場合にのみ、 IEEE 802.3 付録 28B の表 28B-3「Pause Resolution」に従って有効化する必要があります。
11	MII リンク ステータス	R	0h	MII リンク ステータス: Oh = アクティブな 100Base-TX 全二重リンクなし、オートネゴシエーションを使用して確立 1h = 100Base-TX 全二重リンクがアクティブ、オートネゴシエーションを使用して確立
10-8	予約済み	R	0h	予約済み

表 8-44. PHYCR レジスタ フィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	説明
7	LED ストレッチをバイパス	R/W	Oh	LED ストレッチをバイパス:このビットを「1」に設定すると、LED ストレッチがバイパスされ、LED に内部値が反映されます。 Oh = 通常の LED 動作 1h = LED ストレッチをバイパス
6	予約済み	R/W	0h	予約済み
5	予約済み	R/W	0h	予約済み
4-0	PHY アドレス	RH	Х	PHY アドレス: BASIC モードおよび ENHANCED モードでは、デフォルトはストラップによって決まります。

8.5.1.26 10BTSCR レジスタ (オフセット = 1Ah) [リセット = 0000h]

表 8-45 に、10BTSCR レジスタを示します。

概略表に戻ります。

表 8-45. 10BTSCR レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-14	予約済み	R	0h	予約済み
13	レシーバ スレッショルド イネーブル	R/W	Oh	レシーバの下限スレッショルド イネーブル: Oh = 通常の 10Base-T 動作 1h = 10Base-T の受信スレッショルドを低くして、より長いケーブルでの動作を実現
12-9	スケルチ	R/W	Oh	スケルチ構成: 10Base-T レシーバのピーク スケルチ「オン」スレッショルドを設定するために使用します。以下に示されているように、200mV ~ 600mV で始まり、50mV のステップ サイズで一部重なります。 0h = 200 mV 1h = 250 mV 2h = 300 mV 3h = 350 mV 4h = 400 mV 5h = 450 mV 6h = 500 mV 7h = 550 mV 8h = 600 mV
8	予約済み	R/W	0h	予約済み
7	NLP ディスエーブル	R/W	0h	NLP 転送制御: Oh = NLP の転送を有効化 1h = NLP の転送を無効化
6-5	予約済み	R	0h	予約済み
4	極性ステータス	R	Oh	極性ステータス: このビットは、PHYSTS レジスタ (0x0010) のビット [12] の複製です。これらのビットは、10BTSCR レジスタの読み取り時にクリアされますが、PHYSTS レジスタの読み取り時にはクリアされません。 0h = 正しい極性を検出済み 1h = 反転極性を検出済み
3-1	予約済み	R	0h	予約済み
0	ジャバー ディスエーブル	R/W	Oh	ジャバー ディスエーブル: 注:この機能は、10Base-Te 動作でのみ適用されます。 0h = ジャバー機能はイネーブル 1h = ジャバー機能はディスエーブル

資料に関するフィードバック (ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

8.5.1.27 BICSR1 レジスタ (オフセット = 1Bh) [リセット = 007Dh]

表 8-46 に、BICSR1 レジスタを示します。

概略表に戻ります。

表 8-46. BICSR1 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-8	BIST エラー カウント	R	Oh	BIST エラー カウント: PRBS チェッカによって受信されたエラー バイトを保持します。このレジスタの値はロックされ、ビット [15] への書き込みが行われるとクリアされます。BIST エラー カウンタ モードが 0 に設定されている場合、カウントは 0xFFで停止します (レジスタ 0x0016 を参照)注:ビット [15] に「1」を書き込むと、連続する読み取り動作のためのカウンタ値がロックされ、BIST エラー カウンタがクリアされます。
7-0	BIST IPG 長	R/W	7Dh	BIST IPG 長: パケット間ギャップ (IPG) の長さにより、BIST によって生成される任意の 2 つの連続するパケット間のギャップ (バイト単位) のサイズが定義されます。 デフォルト値は 0x7D です (125 バイト*4 = 500 バイトに相当)。 実際の IPG 長を得るには、バイナリ値に 4 を掛ける必要があります

8.5.1.28 BICSR2 レジスタ (オフセット = 1Ch) [リセット = 05EEh]

表 8-47 に、BICSR2 レジスタを示します。

概略表に戻ります。

表 8-47. BICSR2 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-11	予約済み	R	0h	予約済み
10-0	BIST パケット長	R/W		BIST パケット長: 生成された BIST パケットの長さ。このレジスタの値により、BIST によって 生成されるすべてのパケット サイズ (バイト単位) が定義されます。 デフォルト値は 0x05EE です (1518 バイトに相当)。

8.5.1.29 CDCR レジスタ (オフセット = 1Eh) [リセット = 0102h]

表 8-48 に、CDCR レジスタを示します。

概略表に戻ります。

表 8-48. CDCR レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	ケーブル診断の開始	R/W	Oh	ケーブル診断プロセスの開始: 診断完了通知ビットがトリガされると、診断開始ビットはクリアされます。 Oh = ケーブル診断はディスエーブル 1h = ケーブル測定を開始
14	cfg_rescal_en	R/W	Oh	抵抗較正開始。このフィールドは通常、Low にする必要があります。このフィールドが High として読み取られた場合、このビットを解除するために書き込みを行い、その直後にハードリセット (レジスタ 0x1F[15]) を実行する必要があります
13-2	予約済み	R	40h	予約済み
1	ケーブル診断ステータス	RH	1h	ケーブル診断プロセス完了: 0h = ケーブル診断が未完了 1h = ケーブル測定プロセスが完了したことを示す

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信 77

表 8-48. CDCR レジスタ フィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	説明
0	ケーブル診断テストの失敗	RH	0h	ケーブル診断プロセスの失敗:
				Oh = ケーブル診断が失敗していない
				1h = ケーブル測定プロセスが失敗したことを示す

8.5.1.30 PHYRCR レジスタ (オフセット = 1Fh) [リセット = 0000h]

表 8-49 に、PHYRCR レジスタを示します。

概略表に戻ります。

表 8-49. PHYRCR レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	ソフトウェア ハード リセット	RH/W1S	Oh	ソフトウェア ハード リセット: OH = 通常動作 1h = PHY をリセット。このビットは自動的にクリアされ、ハードウェア リセット ピンと同じ効果を持っています。
14	デジタル リセット	RH/W1S	Oh	ソフトウェア リスタート: OH = 通常動作 Th = PHY を再起動。このビットは自動的にクリアされ、レジスタを除くすべての PHY 回路をリセットします。
13	予約済み	R/W	0h	予約済み
12-0	予約済み	R/W	0h	予約済み

8.5.1.31 MLEDCR レジスタ (オフセット = 25h) [リセット = 0041h]

表 8-50 に、MLEDCR レジスタを示します。

概略表に戻ります。

表 8-50. MLEDCR レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-10	予約済み	R/W	0h	予約済み
9	MLED 極性スワップ	R/W	Oh	MLED 極性スワップ: MLED 極性はルーティング構成と LED1 ピンのストラップで決まりますが、これは ENHANCED モードの場合のみです。ピン ストラップがプルアップされている場合、極性はアクティブ Low になります。ピン ストラップがプルダウンされている場合、極性はアクティブ High になります。BASIC モードでは、極性は常にアクティブ Low です。
8-7	予約済み	R/W	0h	予約済み

表 8-50. MLEDCR レジスタ フィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	説明
6-3	LED0 構成	R/W	8h	MLED 構成:LED0 のソースを選択 0h = リンク OK 1h = RX/TX 動作
				2h = TX 動作 3h = RX 動作 4h = 衝突
				5h = 100BASE-TX で高速 6h = 10BASE-T で高速 7h = 全二重
				8h = TX/RX 動作時にリンク OK / 点滅 9h = アクティブ ストレッチ信号 Ah = MII リンク (100BT+FD)
				Bh = LPI モード (EEE) Ch = TX/RX MII エラー
				Dh = リンク損失 (レジスタ 0x0001 が読み出されるまでオンに維持) Eh = PRBS エラーの場合に点滅 (シングル エラーの場合はオンに維持、 カウンタがクリアされるまで維持) Fh = 予約済み
2-1	予約済み	R	0h	予約済み
0	cfg_mled_en	R/W	1h	LED0 への MLED ルート: 0h = 予約済み 1h = MLEDCR[6:3] に従って配線された値

8.5.1.32 COMPT レジスタ (オフセット= 27h) [リセット= 0000h]

表 8-51 に、COMPT レジスタを示します。

概略表に戻ります。

表 8-51. COMPT レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-4	予約済み	R/W	0h	予約済み

79

Product Folder Links: DP83826AE DP83826AI

表 8-51. COMPT レジスタのフィールドの説明 (続き)

læl		タイプ	1	
ビット	フィールド		リセット	説明
3-0	コンプライアンス テスト構成	R/W	0h	コンプライアンス テスト構成の選択:
				レジスタ 0x0027 = 1 の ビット [4]、10Base-T テスト パターンを有効化
				レジスタ 0x0428 = 1 のビット [4]、100Base-TX テスト モードを有効化
				ビット [3:0] は以下のように 10Base-T テスト パターンを選択:
				0000 = シングル NLP
				0001 = シングル パルス 1
				0010 = シングル パルス 0
				0011 = 反復 1
				0100 = 反復 0
				0101 = プリアンブル (反復「10」)
				0110 = TP_IDLE が後に続く1 つ 1
				0111 = TP_IDLE が後に続く 1 つの 0
				1000 = 反復「1001」シーケンス
				1001 = ランダム 10Base-T データ
				1010 = TP_IDLE_00
				1011 = TP_IDLE_01
				1100 = TP_IDLE_10
				1101 = TP_IDLE_11
				100Base-TX テスト モードは、レジスタ 0x0428 のビット {[5]、レジスタ
				0x0027 の [3:0]} によって決まります。これらのビットにより、「1」の後に続く
				0の数が決まります。
				0,0001 = [1]の後に 1 個の[0]
				0,0010 = [1]の後に 2 個の[0]
				0,0011 = [1]の後に3個の[0]
				0,0100 = [1]の後に4個の[0]
				0,0101 = [1]の後に 5 個の[0]
				0,0110 = 「1」の後に 6 個の「0」
				0,0111 = 「1」の後に 7 個の「0」
				1,1111 = 「1」の後に 31 個の「0」
				0,0000 = シフトレジスタをクリア
				注 1:100Base-TX テスト モードを再構成するには、レジスタ 0x0428 のビ
				ット[4]をクリアしてから、新しいパターンを構成するために「1」にリセットす
				る必要があります。
				注 2:100Base-TX または 10Base-T テスト モードを実行するときは、
				BASIC モード制御レジスタ (BMCR) アドレス 0x0000 を使って速度を強
				制的に設定する必要があります。

8.5.1.33 10M_CFG レジスタ (オフセット = 2Ah) [リセット = 7998h]

10M_CFG を表 8-52 に示します。

概略表に戻ります。

表 8-52. 10M_CFG レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	予約済み	R	0h	予約済み

資料に関するフィードバック (ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

表 8-52. 10M CFG レジスタのフィールドの説明 (続き)

	2, 0 021 1011 _ 01 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0					
ビット	フィールド	タイプ	リセット	説明		
14	10M プリアンブル モード	R/W	<u>リセット</u> 1h	このデバイスは、10Mbps の 2 つのプリアンブル サイズをサポートしています。-(0) ロング プリアンブル モード (1) ショート プリアンブル モード。 100Mbps モードには影響しません。 ロング プリアンブル モードでは、「ロング」は MDI から受信したプリアンブルの数を表します。このモードでは、レシーバは最大 7 バイトのプリアンブルを使用して、これを有効なプリアンブルとして宣言します。MAC のプリアンブルは、MDI のバイトよりも少ないプリアンブルを持つことができます。デバイスは、7 バイト以上のプリアンブルが MDI ライン上にあることを想定しています。 ショート プリアンブル モードでは、「ショート」は MDI ラインのプリアンブルバイトを表します。このモードでは、レシーバはより短いプリアンブルバイトを表します。このモードでは、レシーバはより短いプリアンブル(3 バイト未満)を転送することを想定している場合は、「ロング」プリアンブルモードに設定することが推奨されます。 0h = ロング プリアンブル モード		
13-0	予約済み	R/W	3998h	1h = ショート プリアンブル モード 予約済み		
1 .50	1 1 11/11/2	' ' ' '	000011	1 1/1714 67		

8.5.1.34 FLD_CFG1 レジスタ (オフセット = 117h) [リセット = 8147h]

FLD_CFG1 を表 8-53 に示します。

概略表に戻ります。

表 8-53. FLD CFG1 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-10	MLT3 の構成エラー カウント の長さ	R/W	20h	MLT3 エラー カウント ウィンドウ。クロック数 (8ns) の場合、ウィンドウをターン単位で設定します。 カウンタは定常状態でカウントします。 Oh = 予約済み 1h = 2 サイクル 3Fh = 64 サイクル
9-4	MLT3 の構成エラー数カウント	R/W	14h	リンク ダウン時にカウントされる MLT3 エラーの数 0h = 予約済み 1h = 1 エラー 3Fh = 63 エラー
3-0	予約済み	R	7h	予約済み

8.5.1.35 FLD_CFG2 レジスタ (オフセット = 131h) [リセット = 0288h]

FLD_CFG2 を表 8-54 に示します。

概略表に戻ります。

表 8-54. FLD_CFG2 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-6	予約済み	R/W	Ah	予約済み
5-0	スクランブラ スレッショルドの 構成	R/W	8h	デスクランブラ エラーに基づいてリンク ダウンを宣言するようにウィンドウを構成します。

8.5.1.36 CDSCR レジスタ (オフセット = 170h) [リセット = 0C12h]

表 8-55 に、CDSCR レジスタを示します。

概略表に戻ります。

表 8-55. CDSCR レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	予約済み	R	0h	予約済み
14	ケーブル診断クロス ディスエ ーブル	R/W	0h	クロス TDR 診断モード: Oh = TDR は 0x170[13] で構成された送信チャネル以外のチャネルでの 反射を探す。 1h = TDR は 0x170[13] で構成された送信チャネルと同じチャネルの反射を探す。
13	cfg_tdr_chan_sel	R/W	Oh	TDR TX チャネルの選択: 0h = 送信チャネルとしてチャネル A を選択。 1h = 送信チャネルとしてチャネル B を選択。
12	cfg_tdr_dc_rem_no_init	R/W	0h	TDR の前に DC 除去モジュールがリセットされないようにし、TDR 反射でDC 除去が有効になるようにする
11	予約済み	R/W	1h	予約済み
10-8	ケーブル診断の平均サイクル	R/W	4h	平均される TDR サイクル数 0h = 1 TDR サイクル 1h = 2 TDR サイクル 2h = 4 TDR サイクル 3h = 8 TDR サイクル 4h = 16 TDR サイクル 5h = 32 TDR サイクル 6h = 64 TDR サイクル 7h = 予約済み
7	予約済み	R/W	0h	予約済み
6-4	cfg_tdr_seg_num	R/W	1h	TDR を実行するケーブル セグメントを選択 - 000b = 予約済み 001b = 0m ~ 10m 010b = 10m ~ 20m 011b = 20m ~ 40m 100b = 40m ~ 80m 101b = 80m 以上 110b = 予約済み 111b = 予約済み
3-0	予約済み	R/W	2h	予約済み

8.5.1.37 CDSCR2 レジスタ (オフセット = 171h) [リセット = C850h]

表 8-56 に、CDSCR2 レジスタを示します。

概略表に戻ります。

表 8-56. CDSCR2 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-0	予約済み	R/W	C850h	予約済み

8.5.1.38 CDSCR3 レジスタ (オフセット = 173h) [リセット = 0D04h]

表 8-57 に、CDSCR3 レジスタを示します。

概略表に戻ります。

表 8-57. CDSCR3 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-8	cfg_tdr_seg_duration	R/W		TDR に選択されたセグメントの継続時間。計算方法: セグメント #1 の場合は (Length_in_meters * 2 * 5.2)/8、セグメント #2 の場合は 8'Hd、セグメント #3 の場合は 8'h1A、セグメント #4 の場合は 8'h34、セグメント #5 の場合は 8'h8F

資料に関するフィードバック (ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

表 8-57. CDSCR3 レジスタのフィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	説明
7-0	cfg_tdr_initial_skip	R/W		セグメントの開始前に回避するサンプル数:セグメント#1の場合は8'h7、セグメント#2の場合は8'h14、セグメント#3の場合は8'h21、セグメント#4の場合は8'h3B、セグメント#5の場合は8'h6F

8.5.1.39 TDR_175 レジスタ (オフセット = 175h) [リセット = 1004h]

表 8-58 に、TDR 175 レジスタを示します。

概略表に戻ります。

表 8-58. TDR 175 レジスタのフィールドの説明

		20 00: 12	11_11000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ビット	フィールド	タイプ	リセット	説明	
15-14	予約済み	R	0h	予約済み	
13-11	cfg_tdr_sdw_avg_loc	R/W	2h	TDR シャドウ平均位置: セグメント #1 の場合は 3'h2、セグメント #2 の場合は 3'h2、セグメント #3 の場合は 3'h2、セグメント #4 の場合は 3'h2、セグメント #5 の場合は 3'h2	
10-5	予約済み	R	0h	予約済み	
4	予約済み	R/W	0h	予約済み	
3-0	cfg_tdr_fwd_shadow	R/W	4h	構成されたセグメントのフォワード シャドウの長さ (フォルト ピークのシャドウが別のフォルト ピークと見なされるのを避けるため):セグメント #1 の場合は 4'h4、セグメント #2 の場合は 4'h4、セグメント #3 の場合は 4'h5、セグメント #4 の場合は 4'h8、セグメント #5 の場合は 4'hB	

8.5.1.40 TDR_176 レジスタ (オフセット = 176h) [リセット = 0005h]

表 8-59 に、TDR_176 レジスタを示します。

概略表に戻ります。

表 8-59. TDR_176 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-5	予約済み	R	0h	予約済み
4-0	cfg_tdr_p_loc_thresh_seg	R/W	5h	

8.5.1.41 CDSCR4 レジスタ (オフセット = 177h) [リセット = 1E00h]

表 8-60 に、CDSCR4 レジスタを示します。

概略表に戻ります。

表 8-60. CDSCR4 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-13	予約済み	R/W	0h	予約済み
12-8	ショート ケーブル スレッショルド	R/W	1Eh	ショートケーブルでの強い反射を補償する TH
7-0	予約済み	R/W	0h	予約済み

8.5.1.42 TDR_178 レジスタ (オフセット = 178h) [リセット = 0002h]

表 8-61 に、TDR_178 レジスタを示します。

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

83

概略表に戻ります。

表 8-61. TDR_178 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-3	予約済み	R	0h	予約済み
2-0	cfg_tdr_tx_pulse_width_se	R/W	2h	セグメントの TDR TX パルス幅:セグメント#1 の場合は 3'h2、セグメント
	g			#2 の場合は 3'h2、セグメント #3 の場合は 3'h2、セグメント #4 の場合は
				3'h2、セグメント#5 の場合は 3'h6

8.5.1.43 CDLRR1 レジスタ (オフセット = 180h) [リセット = 0000h]

表 8-62 に、CDLRR1 レジスタを示します。

概略表に戻ります。

表 8-62. CDLRR1 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-8	予約済み	R	0h	予約済み
7-0	TD ピーク位置 1	R		TDR メカニズムによって送信チャネル (TD) で検出された最初のピークの位置。これらのビットの値は、PHY からの距離に変換する必要があります。

8.5.1.44 CDLRR2 レジスタ (オフセット = 181h) [リセット = 0000h]

表 8-63 に、CDLRR2 レジスタを示します。

概略表に戻ります。

表 8-63. CDLRR2 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-0	予約済み	R	0h	予約済み

8.5.1.45 CDLRR3 レジスタ (オフセット = 182h) [リセット = 0000h]

表 8-64 に、CDLRR3 レジスタを示します。

概略表に戻ります。

表 8-64. CDLRR3 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-0	予約済み	R	0h	予約済み

8.5.1.46 CDLRR4 レジスタ (オフセット = 183h) [リセット = 0000h]

表 8-65 に、CDLRR4 レジスタを示します。

概略表に戻ります。

表 8-65. CDLRR4 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-0	予約済み	R	0h	予約済み

資料に関するフィードバック (ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

8.5.1.47 CDLRR5 レジスタ (オフセット = 184h) [リセット = 0000h]

表 8-66 に、CDLRR5 レジスタを示します。

概略表に戻ります。

表 8-66, CDLRR5 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-0	予約済み	R	0h	予約済み

8.5.1.48 CDLAR1 レジスタ (オフセット = 185h) [リセット = 0000h]

表 8-67 に、CDLAR1 レジスタを示します。

概略表に戻ります。

表 8-67. CDLAR1 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-7	予約済み	R	0h	予約済み
6-0	TD ピーク振幅 1	R		TDR メカニズムによって送信チャネル (TD) で検出された最初のピークの振幅。これらのビットの値は、ケーブル障害や干渉のタイプに変換されます。

8.5.1.49 CDLAR2 レジスタ (オフセット = 186h) [リセット = 0000h]

表 8-68 に、CDLAR2 レジスタを示します。

概略表に戻ります。

表 8-68. CDLAR2 レジスタのフィールドの説明

_					
	ビット	フィールド	タイプ	リセット	説明
	15-0	予約済み	R	0h	予約済み

8.5.1.50 CDLAR3 レジスタ (オフセット = 187h) [リセット = 0000h]

表 8-69 に、CDLAR3 レジスタを示します。

概略表に戻ります。

表 8-69. CDLAR3 レジスタのフィールドの説明

ビッ	, }	フィールド	タイプ	リセット	説明
15-	-0	予約済み	R	0h	予約済み

8.5.1.51 CDLAR4 レジスタ (オフセット = 188h) [リセット = 0000h]

表 8-70 に、CDLAR4 レジスタを示します。

概略表に戻ります。

表 8-70. CDLAR4 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-0	予約済み	R	0h	予約済み

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ) を送信

85

8.5.1.52 CDLAR5 レジスタ (オフセット = 189h) [リセット = 0000h]

表 8-71 に、CDLAR5 レジスタを示します。

概略表に戻ります。

表 8-71. CDLAR5 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-0	予約済み	R	0h	予約済み

8.5.1.53 CDLAR6 レジスタ (オフセット = 18Ah) [リセット = 0000h]

表 8-72 に、CDLAR6 レジスタを示します。

概略表に戻ります。

表 8-72. CDLAR6 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-12	予約済み	R	0h	予約済み
11	TD ピーク極性 1	R	0h	TDR メカニズムによって送信チャネル (TD) で検出された最初のピークの極性。
10-6	予約済み	R	0h	予約済み
5	TD でのクロス検出	R	0h	TD でクロスリフレクションが検出されました。TD+ と TD- の間で短絡していることを示しています。
4	予約済み	R	0h	予約済み
3	予約済み	R	0h	予約済み
2	予約済み	R	0h	予約済み
1-0	予約済み	R	0h	予約済み

8.5.1.54 MSE_Val レジスタ (オフセット = 218h) [リセット = 0000h]

表 8-73 に、MSE Val を示します。

概略表に戻ります。

表 8-73. MSE_Val レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-0	平均二乗誤差	R	0h	平均二乗誤差。

8.5.1.55 IO_CFG1 レジスタ (オフセット = 302h) [リセット = 0X00h]

表 8-74 に、IO_CFG1 レジスタを示します。

概略表に戻ります。

表 8-74. IO_CFG1 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-14	MAC インピーダンス制御	R/W	Oh	MAC インピーダンス制御: MAC インターフェイスのインピーダンス制御により、デジタル ピンの直列終端が設定されます。 Oh = 低速モード Th = 高速モード
13	予約済み	R/W	0h	予約済み
12-9	予約済み	R/W	0h	予約済み

資料に関するフィードバック (ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

表 8-74. IO CFG1 レジスタのフィールドの説明 (続き)

				TO I TO I TO BOOK (NODE)
ビット	フィールド	タイプ	リセット	説明
8	cfg_crs_dv_vs_rx_dv	RH/W	X	RMII モードで CRS_DV または RX_DV として動作する CRS_DV ピンを 選択します。 BASIC モードおよび ENHANCED モードでは、デフォルトはストラップに よって決まります。 0h = RMII_CRS_DV 1h = RMII_RX_DV
7	予約済み	R/W	0h	予約済み
6	予約済み	R	0h	予約済み
5-0	予約済み	R	0h	予約済み

8.5.1.56 LED0 GPIO レジスタ (オフセット = 303h) [リセット = 0008h]

表 8-75 に、LEDO GPIO レジスタを示します。

概略表に戻ります。

表 8-75. LED0 GPIO レジスタのフィールドの説明

3, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,						
ビット	フィールド	タイプ	リセット	説明		
15-6	予約済み	R	0h	予約済み		
5-3	cfg_led0_clk_sel	R/W	1h	LED0 に出力する内部クロックのいずれかを選択します。これは、 cfg_led0_gpio_ctrl[2:0] = 001b の場合に有効になります。可能な構成は 次の通りです。 0h = 予約済み 1h = 予約済み 2h = 予約済み 3h = 予約済み 4h = 予約済み 5h = PLL クロック出力 6h = 再生クロック 7h = 予約済み		
2-0	cfg_led0_gpio_ctrl	R/W	Oh	LED0 の GPIO 構成: 0h = LED0 1h = レジスタ フィールド cfg_led0_clk_sel によって選択されたクロック出力 2h = WoL 3h = 0 4h=割り込みあり 5h = 0 6h = 0 7h = 1		

8.5.1.57 LED1 GPIO レジスタ (オフセット = 304h) [リセット = 000Xh]

表 8-76 に、LED1 GPIO レジスタを示します。

概略表に戻ります。

表 8-76. LED1 GPIO レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-6	予約済み	R	0h	予約済み

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

87

表 8-76. LED1 GPIO レジスタのフィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	説明
5-3	cfg_led1_clk_sel	R/W	1h	LED1 に出力する内部クロックのいずれかを選択します。これは、 cfg_led1_gpio_ctrl[2:0] = 001b の場合に有効になります。可能な構成は 次の通りです。 0h = 予約済み 1h = 予約済み 2h = 予約済み 3h = 予約済み 4h = 予約済み 5h = PLL クロック出力 6h = 再生クロック 7h = 予約済み
2-0	cfg_led1_gpio_ctrl	RH/W	X	LED1 の GPIO 構成デフォルトはストラップによって決まります。 0h = LED1 (BASIC モードでのデフォルト) 1h = 予約済み 2h = WoL 3h = 予約済み 4h=割り込みあり 5h = TX_ER 6h = CLKOUT25M (ENHANCED モードでのデフォルト、ストラップで選択可能) 7h = 予約済み

8.5.1.58 LED2 レジスタ (オフセット = 305h) [リセット = 0008h]

表 8-77 に、LED2 レジスタを示します。

概略表に戻ります。

表 8-77. LED2 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-6	予約済み	R	0h	予約済み
5-3	予約済み	R/W	1h	予約済み
2-0	cfg_led2_gpio_ctrl	RH/W	Oh	LED2 の GPIO 構成デフォルトはストラップによって決まります。 0h = LED2 1h = 予約済み 2h = WoL 3h = COL 4h=割り込みあり 5h = COL 6h = COL 7h = High

8.5.1.59 LED3 レジスタ (オフセット = 306h) [リセット = 0008h]

表 8-78 に、LED3 レジスタを示します。

概略表に戻ります。

表 8-78. LED3 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-6	予約済み	R	0h	予約済み
5-3	予約済み	R/W	1h	予約済み

資料に関するフィードバック (ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

表 8-78. LED3 レジスタのフィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	説明
2-0	cfg_led3_gpio_ctrl	R/W		LED3 の GPIO 構成: 0h = LED3 1h = 予約済み 2h = WoL 3h = CRS 4h=割り込みあり 5h = CRS 6h = CRS 7h = High

8.5.1.60 CLK_OUT_LED_STATUS レジスタ (オフセット = 308h) [リセット = 0002h]

表 8-79 に、CLK_OUT_LED_STATUS レジスタを示します。

概略表に戻ります。

表 8-79. CLK_OUT_LED_STATUS レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-1	予約済み	R/W	1h	予約済み
0	cfg_clkout_25m_off_status	RH		このビットは、ENHANCED モードでのみ適用できます Oh = CLKOUT25 が利用可能 1h = LED1_GPIO が利用可能

8.5.1.61 VOD_CFG1 レジスタ (オフセット = 30Bh) [リセット = 3C00h]

表 8-80 に、VOD_CFG1 レジスタを示します。

概略表に戻ります。

表 8-80. VOD_CFG1 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	OTP からの デフォルト	説明
15-14	予約済み	R	0h		予約済み
13-12	cfg_dac_minus_one_val _mdix_5_to_4	R/W	3h	Y	MDIX モードでのマイナス 1 の mlt3 エンコード データの LD データ。6 ビット データは、{cfg_dac_minus_one_val_mdix_5_to_4 と cfg_dac_minus_one_val_mdix_3_to_0} の 2 つのフィールドに 分割されます 28h = 150% 29h = 143.75% 2Ah = 137.50% 2Bh = 131.25% 2Ch = 125% 2Dh = 118.75% 2Eh = 112.50% 2Fh = 106.25% 30h = 100% 31h = 93.75% 32h = 87.50% 33h = 81.25% 34h = 75% 35h = 68.75% 36h = 62.50% 37h = 56.25% 38h = 50%

表 8-80. VOD_CFG1 レジスタのフィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	OTP からの デフォルト	説明
11-6	cfg_dac_minus_one_val _mdi	R/W	30h	Y	MDI モードでのマイナス 1 の mlt3 エンコード データの LD データ。 28h = 150% 29h = 143.75% 2Ah = 137.50% 2Bh = 131.25% 2Ch = 125% 2Dh = 118.75% 2Eh = 112.50% 2Fh = 106.25% 30h = 100% 31h = 93.75% 32h = 87.50% 33h = 81.25% 34h = 75% 35h = 68.75% 36h = 62.50% 37h = 56.25% 38h = 50%
5-0	cfg_dac_zero_val	R/W	0h	Υ	mlt3 エンコードされたゼロのデータの LD データ

8.5.1.62 VOD_CFG2 レジスタ (オフセット = 30Ch) [リセット = 0410h]

表 8-81 に、VOD_CFG2 レジスタを示します。

概略表に戻ります。

表 8-81. VOD_CFG2 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	OTP からの デフォルト	説明
15-12	cfg_dac_minus_one_val _mdix_3_to_0	R/W	Oh	Y	MDX モードでのマイナス 1 の mlt3 エンコード データの LD データ。6 ビット データは、{cfg_dac_minus_one_val_mdix_5_to_4と cfg_dac_minus_one_val_mdix_3_to_0} の 2 つのフィールドに 分割されます 28h = 150% 29h = 143.75% 2Ah = 137.50% 2Bh = 131.25% 2Ch = 125% 2Dh = 118.75% 2Eh = 112.50% 2Fh = 106.25% 30h = 100% 31h = 93.75% 32h = 87.50% 33h = 81.25% 34h = 75% 35h = 68.75% 36h = 62.50% 37h = 56.25% 38h = 50%

資料に関するフィードバック (ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

表 8-81. VOD_CFG2 レジスタのフィールドの説明 (続き)

			_		7 1 7 1 4 2 D) L 7 3 (N) L C)
ビット	フィールド	タイプ	リセット	OTP からの デフォルト	説明
11-6	cfg_dac_plus_one_val_ mdix	R/W	10h	Y	MDIX モードでの mlt3 エンコードされたプラス 1 のデータの LD データ 08h = 50% 09h = 56.25% 0Ah = 62.50% 0Bh = 68.75% 0Ch = 75% 0Ch = 87.50% 0Eh = 87.50% 0Fh = 93.75% 10h = 100% 11h = 106.25% 12h = 112.50% 13h = 118.75% 14h = 125% 15h = 131.25% 16h = 137.50% 17h = 143.75% 18h = 150%
5-0	cfg_dac_plus_one_val_ mdi	R/W	10h	Y	MDI モードでの mlt3 エンコードされたプラス 1 のデータの LD データ 08h = 50% 09h = 56.25% 0Ah = 62.50% 0Bh = 68.75% 0Ch = 75% 0Dh = 81.25% 0Eh = 87.50% 0Fh = 93.75% 10h = 100% 11h = 106.25% 12h = 112.50% 13h = 118.75% 14h = 125% 15h = 131.25% 16h = 137.50% 17h = 143.75% 18h = 150%

8.5.1.63 VOD_CFG3 レジスタ (オフセット = 30Eh) [リセット = 8400h]

表 8-82 に、VOD_CFG3 レジスタを示します。

概略表に戻ります。

表 8-82. VOD CFG3 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-12	ld_term_mdi_10M_reg	R/W	8h	10M モード、MDI 終端値レジスタ 0h = 122 1h = 119 2h = 116 3h = 113 4h = 110 5h = 107 6h = 105 7h = 102 8h = 100 9h = 98 Ah = 96 Bh = 94 Ch = 92 Dh = 90 Eh = 88 Fh = 86
11	ld_term_mdi_10M_en	R/W	Oh	10M モード、MDI 終端値レジスタ イネーブル 0h = 無効化 1h = イネーブル
10-7	ld_term_mdix_10M_reg	R/W	8h	10M モード、MDIX 終端値レジスタ 0h = 122 1h = 119 2h = 116 3h = 113 4h = 110 5h = 107 6h = 105 7h = 102 8h = 100 9h = 98 Ah = 96 Bh = 94 Ch = 92 Dh = 90 Eh = 88 Fh = 86
6	ld_term_mdix_10M_en	R/W	0h	10M モード、MDIX 終端値レジスタ イネーブル 0h = 無効化 1h = イネーブル
5-2	予約済み	R/W	0h	予約済み
1-0	予約済み	R	0h	予約済み

8.5.1.64 ANA_LD_PROG_SL レジスタ (オフセット = 404h) [リセット = 0080h]

表 8-83 に、ANA_LD_PROG_SL レジスタを示します。

概略表に戻ります。

表 8-83. ANA_LD_PROG_SL レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-0	予約済み	R/W	80h	予約済み

8.5.1.65 ANA_RX10BT_CTRL レジスタ (オフセット = 40Dh) [リセット = 0008h]

表 8-84 に、ANA_RX10BT_CTRL レジスタを示します。

概略表に戻ります。

表 8-84. ANA_RX10BT_CTRL レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-5	予約済み	R/W	0h	予約済み
4-0	rx10bt_comp_sl	R/W	8h	10B-T 電流ゲイン、POS と NEG の両方で共通、200mV ~ 575mV、ステップ サイズ 25mV

8.5.1.66 GENCFG レジスタ (オフセット = 456h) [リセット = 0008h]

表 8-85 に、GENCFG レジスタを示します。

概略表に戻ります。

表 8-85. GENCFG レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-4	予約済み	R/W	0h	予約済み
3	最小 IPG イネーブル	R/W		最小 IPG イネーブル: 0h = 最小 IPG を 200ns に設定 1h = 最小パケット間隔を有効化 (IPG を 200ns ではなく 120ns に設定)
2-0	予約済み	R/W	0h	予約済み

8.5.1.67 LEDCFG レジスタ (オフセット = 460h) [リセット = 5565h]

表 8-86 に、LEDCFG レジスタを示します。

概略表に戻ります。

表 8-86. LEDCFG レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-12	予約済み	R/W	5h	予約済み
	•			
				カウンタがクリアされるまで維持) Fh = 予約済み

表 8-86. LEDCFG レジスタ フィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	説明
7-4	LED2 制御	R/W	6h	LED2 制御: LED2 のソースを選択します。 0h = リンク OK 1h = RX/TX 動作 2h = TX 動作 3h = RX 動作 3h = RX 動作 4h = 衝突 5h = 100BASE-TX で高速 6h = 10BASE-T で高速 7h = 全二重 8h = TX/RX 動作時にリンク OK / 点滅 9h = アクティブ ストレッチ信号 Ah = MII リンク (100BT+FD) Bh = LPI モード (省電力型イーサネット) Ch = TX/RX MII エラー Dh = リンク損失 (レジスタ 0x0001 が読み出されるまでオンに維持) Eh = PRBS エラーの場合に点滅 (シングル エラーの場合はオンに維持、カウンタがクリアされるまで維持) Fh = 予約済み
3-0	LED1 制御	R/W	5h	LED1 制御:LED1 のソースを選択します。 0h = リンク OK 1h = RX/TX 動作 2h = TX 動作 3h = RX 動作 3h = RX 動作 4h = 衝突 5h = 100BASE-TX で高速 6h = 10BASE-T で高速 7h = 全二重 8h = TX/RX 動作時にリンク OK / 点滅 9h = アクティブ ストレッチ信号 Ah = MII リンク (100BT+FD) Bh = LPI モード (省電力型イーサネット) Ch = TX/RX MII エラー Dh = リンク損失 (レジスタ 0x0001 が読み出されるまでオンに維持) Eh = PRBS エラーの場合に点滅 (シングル エラーの場合はオンに維持、カウンタがクリアされるまで維持) Fh = 予約済み

8.5.1.68 IOCTRL レジスタ (オフセット = 461h) [リセット = 0010h]

表 8-87 に、IOCTRL レジスタを示します。

概略表に戻ります。

表 8-87. IOCTRL レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	予約済み	R/W	0h	予約済み
14	予約済み	R/W	0h	予約済み
13-12	予約済み	R/W	0h	予約済み
11	予約済み	R/W	0h	予約済み
10-7	予約済み	R/W	0h	予約済み
6-5	予約済み	R/W	0h	予約済み
4-0	MAC インピーダンス制御	R/W	10h	IO のスルーレートを制御します。LSB のみが使用されます。 10h = 高速 11h = 低速

資料に関するフィードバック (ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

8.5.1.69 SOR1 レジスタ (オフセット = 467h) [リセット = 0000h]

表 8-88 に、SOR1 レジスタを示します。

概略表に戻ります。

表 8-88. SOR1 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	予約済み	R	0h	予約済み
14	予約済み	R	0h	予約済み
13	予約済み	R	0h	予約済み
12	予約済み	R	0h	予約済み
11	Strap11	RH	0h	ピン #19 のストラップ 0h = アクティブ Low 1h = アクティブ High
10	Strap10	RH	0h	ピン #18 のストラップ 0h = アクティブ Low 1h = アクティブ High
9	Strap9	RH	0h	ピン #15 のストラップ 0h = アクティブ Low 1h = アクティブ High
8	Strap8	RH	0h	ピン #14 のストラップ 0h = アクティブ Low 1h = アクティブ High
7	Strap7	RH	0h	ピン #13 のストラップ 0h = アクティブ Low 1h = アクティブ High
6	Strap6	RH	0h	ピン #20 のストラップ 0h = アクティブ Low 1h = アクティブ High
5	Strap5	RH	0h	ピン #22 のストラップ 0h = アクティブ Low 1h = アクティブ High
4	Strap4	RH	0h	ピン #28 のストラップ 0h = アクティブ Low 1h = アクティブ High
3	Strap3	RH	0h	ピン #29 のストラップ 0h = アクティブ Low 1h = アクティブ High
2	Strap2	RH	0h	ピン #30 のストラップ 0h = アクティブ Low 1h = アクティブ High
1	Strap1	RH	0h	ピン #31 のストラップ 0h = アクティブ Low 1h = アクティブ High
0	Strap0	RH	0h	ピン #16 のストラップ 0h = アクティブ Low 1h = アクティブ High

8.5.1.70 SOR2 レジスタ (オフセット = 468h) [リセット = 0287h]

表 8-89 に、SOR2 レジスタを示します。

概略表に戻ります。

95

Product Folder Links: DP83826AE DP83826AI

表 8-89. SOR2 レジスタのフィールドの説明

l 絶縁ビットフィ
7)
7)
I
参照してくださ
で転をキャプチャ

8.5.1.71 LEDCFG2 レジスタ (オフセット = 469h) [リセット = 0XXXh]

表 8-90 に、LEDCFG2 レジスタを示します。

概略表に戻ります。

表 8-90. LEDCFG2 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-11	予約済み	R	0h	予約済み
10	LED3_polarity	RH/W		led 3 極性。デフォルトはストラップによって決まります。 0h = アクティブ Low 1h = アクティブ High
9	LED3_drv_val	R/W	0h	led 3 駆動値

資料に関するフィードバック (ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

表 8-90. LEDCFG2 レジスタのフィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	説明
8	LED3_drv_en	R/W	0h	led 3 駆動イネーブル Oh = 通常動作 1h = LED 極性を駆動
7	予約済み	R	0h	予約済み
6	LED2_polarity	RH/W	X	led 2 極性。デフォルトはストラップによって決まります。 0h = アクティブ Low 1h = アクティブ High
5	LED2_drv_val	R/W	0h	led 2 駆動値
4	LED2_drv_en	R/W	0h	led 2 駆動イネーブル 0h = 通常動作 1h = LED 極性を駆動
3	予約済み	R	0h	予約済み
2	LED1_polarity	RH/W	X	led 1 極性。デフォルトはストラップによって決まります。 0h = アクティブ Low 1h = アクティブ High
1	LED1_drv_val	R/W	0h	led1 駆動値
0	LED1_drv_en	R/W	0h	led 1 駆動イネーブル Oh = 通常動作 1h = LED 極性を駆動

8.5.1.72 RXFCFG1 レジスタ (オフセット = 4A0h) [リセット = 10X1h]

表 8-91 に、RXFCFG1 レジスタを示します。

概略表に戻ります。

表 8-91. RXFCFG1 レジスタのフィールドの説明

Ŀ	ニット	フィールド	タイプ	リセット	説明
1	5-14	予約済み	R	0h	予約済み
	13	予約済み	R	0h	予約済み
	12	CRC ゲート	R/W	1h	CRC ゲート:マジック パケットに不良 CRC が含まれている場合、イネーブル時は表示 (ステータス、割り込み、GPIO) はありません。 Oh = 不良 CRC はマジック パケットまたはパターンの表示をゲートしない 1h = 不良 CRC はマジック パケットおよびパターンの表示をゲートする
	11	WoL レベル変化表示クリア	W0C	0h	WoL レベル変化表示クリア:WoL 表示がレベル変化モードに設定されている場合、このビットは書き込み時にレベルをクリアします。 Oh=クリア
1	10-9	WoL パルス表示の選択	R/W	Oh	WoL パルス表示の選択:WoL 表示がパルス モードに設定されている場合のみ有効です。 Oh = 8 クロック サイクル (125MHz クロック) 1h = 16 クロック サイクル 2h = 32 クロック サイクル 3h = 64 クロック サイクル
	8	WoL 表示の選択	R/W	0h	WoL 表示の選択: 0h = パルス モード 1h = レベル変化モード
	7	WoL イネーブル	RH/W	Х	WoL イネーブル。 BASIC モードでのストラップからのデフォルト。ENHANCED モードでは、 デフォルトは 1 です。 Oh = 通常動作 1h = Wake-on-LAN (WoL) を有効化
	6	ビット マスク フラグ	R/W	0h	ビット マスク フラグ

表 8-91. RXFCFG1 レジスタのフィールドの説明 (続き)

ビット	フィールド	タイプ	リセット	説明
5	Secure-ON イネーブル	R/W	0h	マジック パケットの Secure-ON パスワードを有効化
4	予約済み	R	0h	予約済み
3	予約済み	R	0h	予約済み
2	予約済み	R	0h	予約済み
1	予約済み	R	0h	予約済み
0	WoL マジック パケット イネ ーブル	RH/W	1h	マジック パケット受信時の割り込みを有効化します。ストラップからのデフォルト

8.5.1.73 RXFS レジスタ (オフセット = 4A1h) [リセット = 1000h]

表 8-92 に、RXFS レジスタを示します。

概略表に戻ります。

表 8-92. RXFS レジスタ フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-13	予約済み	R	0h	予約済み
12	WoL 割り込みソース	R/W	1h	WoL 割り込みソース:レジスタ 0x0013 のビット [1] の割り込みソース。 WoL を有効化すると、このビットは自動的に WoL 割り込みに設定されます。 0h = データ極性割り込み 1h = WoL 割り込み
11-8	予約済み	R	0h	予約済み
7	SFD 誤差	RCH	Oh	SFD エラー。High にラッチされ、読み取り時にクリアされます。 Oh = SFD エラーなし 1h = SFD エラーのあるパケット (ビット [13] レジスタ 0x04A0 に示される SFD バイトなし)
6	不良 CRC	RCH	0h	不良 CRC。High にラッチされ、読み取り時にクリアされます。 Oh = 不良 CRC は未受信 1h = 不良 CRC を受信済み
5	Secure-ON ハック フラグ	RCH	0h	Secure-ON ハック フラグ。High にラッチされ、読み取り時にクリアされます。 Oh = 有効な Secure-ON パスワード 1h = マジック パケットの無効なパスワードを検出済み
4	予約済み	RCH	0h	予約済み
3	予約済み	RCH	0h	予約済み
2	予約済み	RCH	0h	予約済み
1	予約済み	RCH	0h	予約済み
0	WoL マジック パケット ステータス	RCH	0h	WoL マジック パケット ステータス。High にラッチされ、読み取り時にクリアされます。

8.5.1.74 RXFPMD1 レジスタ (オフセット = 4A2h) [リセット = 0000h]

表 8-93 に、RXFPMD1 レジスタを示します。

概略表に戻ります。

表 8-93. RXFPMD1 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-8	MAC 宛先アドレス バイト 4	R/W	0h	完全一致データ:MAC 宛先アドレスに構成されている

資料に関するフィードバック (ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

表 8-93. RXFPMD1 レジスタのフィールドの説明 (続き)

1	ビット	フィールド	タイプ	リセット	説明
		MAC 宛先アドレス バイト 5 (MSB)	R/W	0h	完全一致データ:MAC 宛先アドレスに構成されている

8.5.1.75 RXFPMD2 レジスタ (オフセット = 4A3h) [リセット = 0000h]

表 8-94 に、RXFPMD2 レジスタを示します。

概略表に戻ります。

表 8-94. RXFPMD2 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-8	MAC 宛先アドレス バイト 2	R/W	0h	完全一致データ:MAC 宛先アドレスに構成されている
7-0	MAC 宛先アドレス バイト 3	R/W	0h	完全一致データ:MAC 宛先アドレスに構成されている

8.5.1.76 RXFPMD3 レジスタ (オフセット = 4A4h) [リセット = 0000h]

表 8-95 に、RXFPMD3 レジスタを示します。

概略表に戻ります。

表 8-95. RXFPMD3 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-8	MAC 宛先アドレス バイト 0	R/W	0h	完全一致データ:MAC 宛先アドレスに構成されている
7-0	MAC 宛先アドレス バイト 1	R/W	0h	完全一致データ:MAC 宛先アドレスに構成されている

8.5.1.77 RXFSOP1 レジスタ (オフセット = 4A5h) [リセット = 0000h]

表 8-96 に、RXFSOP1 レジスタを示します。

概略表に戻ります。

表 8-96. RXFSOP1 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-8	Secure-ON パスワード バイ ト 1	R/W	0h	Secure-ON パスワードの選択:マジック パケットの Secure-ON パスワード
7-0	Secure-ON パスワード バイト 0	R/W	0h	Secure-ON パスワードの選択:マジック パケットの Secure-ON パスワード

8.5.1.78 RXFSOP2 レジスタ (オフセット = 4A6h) [リセット = 0000h]

表 8-97 に、RXFSOP2 レジスタを示します。

概略表に戻ります。

表 8-97. RXFSOP2 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-8	Secure-ON パスワード バイ ト 3	R/W	0h	Secure-ON パスワードの選択:マジック パケットの Secure-ON パスワード
7-0	Secure-ON パスワード バイト 2	R/W	0h	Secure-ON パスワードの選択:マジック パケットの Secure-ON パスワード

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

99

8.5.1.79 RXFSOP3 レジスタ (オフセット = 4A7h) [リセット = 0000h]

表 8-98 に、RXFSOP3 レジスタを示します。

概略表に戻ります。

表 8-98. RXFSOP3 レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-8	Secure-ON パスワード バイト 5	R/W	0h	Secure-ON パスワードの選択:マジック パケットの Secure-ON パスワード
7-0	Secure-ON パスワード バイト 4	R/W	0h	Secure-ON パスワードの選択:マジック パケットの Secure-ON パスワード

資料に関するフィードバック(ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

9アプリケーションと実装

注

以下のアプリケーション情報は、テキサス インスツルメンツの製品仕様に含まれるものではなく、テキサス インスツルメンツは当該情報の正確性および完全性を保証しないものとします。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

9.1 アプリケーション情報

DP83826Ax は、シングル ポートの 10/100Mbps イーサネット PHY で、MII および RMII によるイーサネット MAC への接続をサポートしています。 イーサネット メディアへの接続は、IEEE 802.3 で定義されたメディア依存インターフェイスを介して行われます。

デバイスをイーサネット アプリケーションに使用する場合、正常に動作させるには特定の要件を満たす必要があります。 以下のサブセクションは、適切な部品選択と必要な回路の接続に役立つことを目的としています。

9.2 代表的なアプリケーション

下図に、DP83826Ax の代表的なアプリケーションを示します。

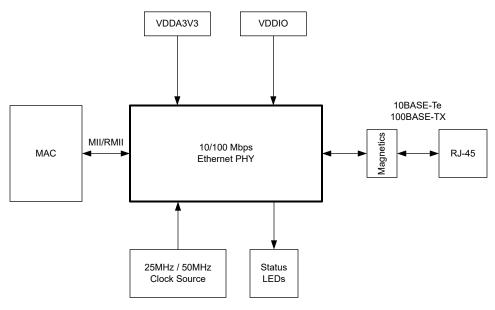


図 9-1. DP83826Ax の代表的なアプリケーション

101

9.2.1 ツイストペア インターフェイス (TPI) ネットワーク回路

図 9-2 に、10Mbps または 100Mbps の推奨ツイストペア インターフェイス ネットワーク回路を示します。 PCB および部品の特性によって異なるため、アプリケーションをテストして、回路が目的のアプリケーションの要件を満たしていることを確認する必要があります。

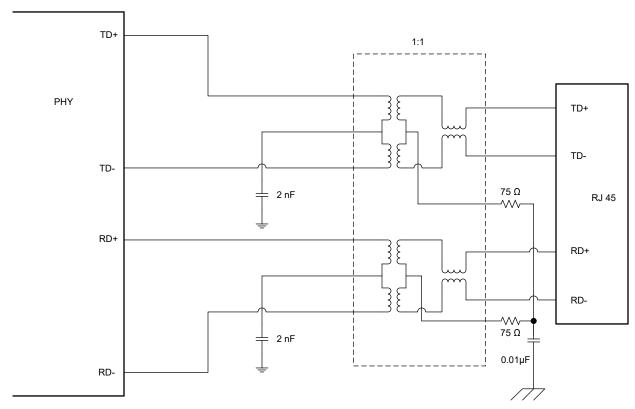


図 9-2. TPI ネットワーク回路

9.2.2 トランスに関する推奨事項

トランスの推奨については、以下のトランスの電気仕様を参照してください。

パラメータ テスト条件 標準値 単位 ±2% 巻数比 1:1 挿入損失 1~100MHz -1 dΒ dΒ $1\sim$ 30MHz -16 リターン ロス $30\sim$ 60MHz dΒ -12 60~80MHz -10 dΒ dΒ -30 $1\sim$ 50MHz 差動と同相の除去比 50∼150MHz -20 dΒ

30MHz

60MHz

HPOT

表 9-1. トランスの電気的仕様

クロストーク

絶縁

-35

-30

1500

dB

dΒ

Vrms

9.2.3 静電容量式 DC ブロッキング

トランスレス ネットワーク アプリケーションの動作要件を満たすには、図 9-3 の回路図に示されている以下の設計を使用する必要があります。

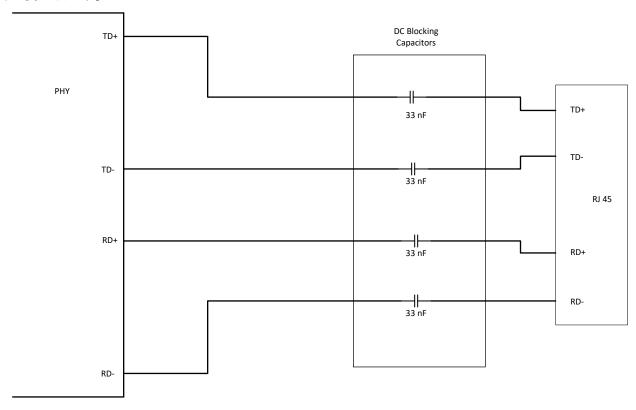


図 9-3. トランスレス DC ブロッキング構成

9.2.4 設計要件

TPI 動作 (100BASE-TX または 10BASE-Te) における DP83826Ax の設計要件は次の通りです。

- VDDA3V3 電源 = 3.3V
- VDDIO 電源 = 3.3V または 1.8V
- 基準クロック入力 = 25MHz または 50MHz (RMII フォロワ)

9.2.4.1 クロック要件

DP83826Ax は、外部 CMOS レベル発振器ソース、または外部水晶振動子を使用した内部発振器をサポートしています。

9.2.4.1.1 発振器

外部クロック ソースを使用する場合は、XI をクロック ソースに接続して、XO をフローティングのままにします。発振器クロックの振幅は、VDDIO の公称電圧である必要があります。

9.2.4.1.2 水晶振動子

水晶振動子で動作させる場合は、25MHz の並列共振、20pF の負荷水晶振動子を使用することが推奨されます。水晶振動子回路の標準的なピン配置については、図 9-4 を参照してください。負荷コンデンサの値は、水晶振動子のベンダによって異なります。推奨される負荷については、ベンダにお問い合わせください。詳細については、アプリケーション レポート『テキサス インスツルメンツ製イーサネット物理層トランシーバの水晶振動子の選択と仕様』を参照してください。

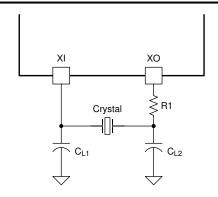


図 9-4. 水晶発振回路

表 9-2. 25MHz 水晶振動子仕様

パラメータ	テスト条件	最小値	標準値	最大値	単位
周波数			25		MHz
周波数の許容誤差	動作温度、経年劣化、他の要因を含む	-50		50	ppm
負荷容量			15	40	pF
ESR				50	Ω

9.2.5 詳細な設計手順

9.2.5.1 MII のレイアウト ガイドライン

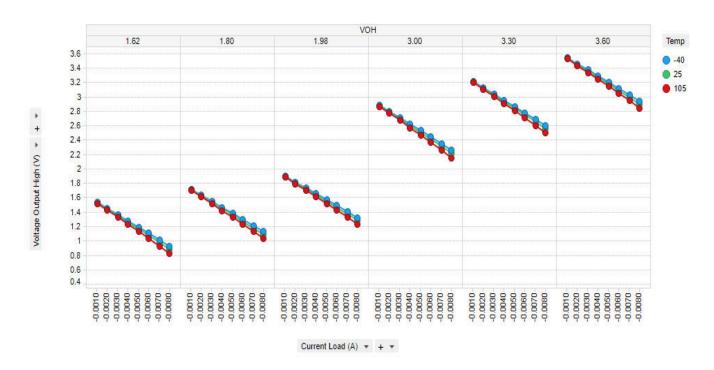
- 1. MII 信号はシングルエンド信号です。
- 2. グランド間インピーダンスが 50Ω のトレースを配線します
- 3. パターン長はできるだけ短くし、2 インチ (5cm) 未満、最大でも 6 インチ (15cm) 未満が推奨されます

9.2.5.2 RMII のレイアウト ガイドライン

- RMII 信号はシングルエンド信号です。
- グランド間インピーダンスが 50Ω のトレースを配線します
- パターン長はできるだけ短くし、2 インチ (5cm) 未満、最大でも 6 インチ (15cm) 未満が推奨されます

9.2.5.3 MDI のレイアウト ガイドライン

- MDI 信号は差動です。
- グランドへのインピーダンスが 50Ωで、差動制御インピーダンスが 100Ωのトレースを配線します。
- MDIトレースは同じ層のトランスに配線します。
- 金属シールドの RJ-45 コネクタを使用し、シールドをシャーシ グランドに電気的に接続します。
- 磁気素子の下の電源と設置は避けます。
- 回路のグランドとシャーシのグランド プレーンが重ならないようにしてください。プレーン間に隙間を残して、シャーシグランドを絶縁されたアイランドに変えることで、シャーシのグランドと回路のグランドを分離した状態にします。フローティング金属を防止するため、シャーシのグランドと回路のグランドとの間に 1206 (サイズ) のコンデンサを接続することが推奨されます。805 (サイズ) 未満のコンデンサは、空間距離が小さいために、ESD のアーチ型パスが形成される可能性があります。


資料に関するフィードバック(ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

9.2.6 アプリケーション曲線

図 9-5 に、I/O 電源電圧が 1.8V および 3.3V のときの DP83826Ax 出力ピンドライブ 特性を示します。

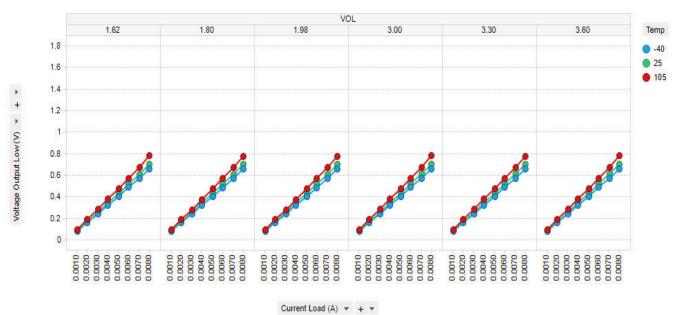


図 9-5. DP83826Ax 出力ピンドライブ特性

9.3 電源に関する推奨事項

DP83826Ax は、3.3V または 1.8V の I/O 電源電圧と 3.3V のアナログ電源で動作できます。3.3V の I/O 電源電圧が必要な場合、DP83826Ax は単一の 3.3V 電源レールでも動作できます。内部 LDO は、デバイスの動作に必要なすべての電源レールを生成します。単一の電源電圧を使用して、設計要件を簡素化し、BOM コストとソリューション全体のサイ

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ) を送信

105

ズを削減できる DP83826Ax は、幅広いアプリケーションで実用的なソリューションとなります。下図に、推奨される電源デカップリング ネットワークを示します。

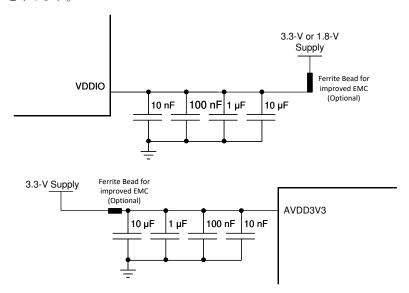


図 9-6. 電源デカップリングに関する推奨事項

9.4 レイアウト

9.4.1 レイアウトのガイドライン

DP83826AEVM を参照してください。

9.4.1.1 信号トレース

PCBトレースは損失が大きいため、長いトレースが信号品質を低下させる可能性があります。すべてのトレースはできる限り短くします。特に記述のない限り、すべての信号トレースは 50Ω のシングルエンド インピーダンスでなくてはなりません。差動トレースは、 100Ω 差動にする必要があります。全体を通してインピーダンスが制御されていることを確認します。インピーダンスの不連続性は反射を引き起こし、放射とシグナル インテグリティの問題につながります。スタブは、すべての信号トレース (特に差動信号ペア) で回避しなければなりません。

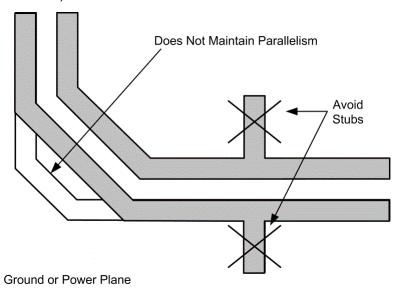


図 9-7. 差動信号トレース

Copyright © 2025 Texas Instruments Incorporated

差動ペア内では、トレースを互いに並行させ、長さを一致させる必要があります。 長さを一致させることで遅延の差が最小化され、同相ノイズと放射の増加を防止できます。 MAC インターフェイス接続でも、長さを一致させることは重要です。 すべての MII および RMII 送信信号トレースは互いに同じ長さ、すべての MII および RMII 受信信号トレースは互いに同じ長さ、すべての MII および RMII 受信信号トレースは互いに同じ長さでなくてはなりません。

信号パスのトレースには交差もビアも存在しないようにします。ビアにはインピーダンスの不連続性を生じさせるため、できるだけ少なくする必要があります。トレースペアは同じ層に配線します。異なる層の信号は、それらの間に少なくとも 1 つの復帰パスプレーンがない限り、互いに交差させてはなりません。差動ペアは、それらの間の結合距離を常に一定に保つ必要があります。利便性と効率性を高めるため、重要な信号 (例: MDI 差動ペア、基準クロック、MAC IF トレース) を最初に配線することを推奨します。

9.4.1.2 復帰パス

一般に最も良い方法は、すべての MDI 信号トレースの下にベタの復帰パスを設けることです。この復帰パスは、連続的なグランドまたは DC 電源プレーンであってもかまいません。復帰パスの幅を狭くすると、信号トレースのインピーダンスに影響を及ぼす可能性があります。この影響は、復帰パスの幅が信号トレースの幅と同等である場合、より顕著になります。信号トレースの間の復帰パスの断線は、避ける必要があります。分割されたプレーンをまたぐ信号は、予測不可能な復帰パス電流を引き起こし、信号の品質に影響を及ぼし、放射の問題を引き起こす可能性があります。

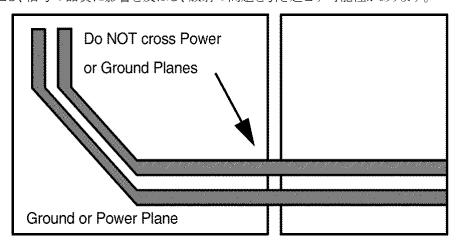


図 9-8. 差動信号ペアおよびプレーン交差

9.4.1.3 トランスのレイアウト

トランスの下に金属層が存在しないようにする必要があります。トランスはその下にある金属にノイズを注入する可能性があり、システムの性能に影響を及ぼす可能性があります。 図 9-2 を参照してください。

107

9.4.1.4 金属注入

信号でも電源でもないすべての金属注入領域は、グランドに接続する必要があります。システム内に浮動の金属が存在していないことと、差動パターン間に金属が存在していないことが必要です。

9.4.1.5 PCB 層スタッキング

シグナル インテグリティと性能の要件を満たすには、4 層以上の PCB が推奨されます。しかし、可能であれば 6 層 PCB を使用します。

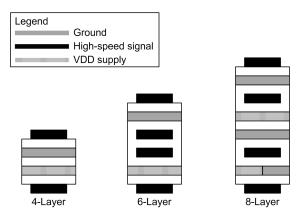


図 9-9. 推奨レイヤ スタックアップ

9.4.1.5.1 レイアウト例

レイアウトの詳細については、DP83826EVM を参照してください。

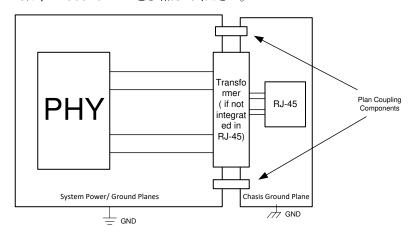


図 9-10. レイアウト例

10 デバイスおよびドキュメントのサポート

10.1 関連資料

関連資料については、以下を参照してください。

『DP83826 を使用した時間ドメイン反射測定』

『DP83826 トラブルシューティング ガイド』

『テキサスインスツルメンツ製イーサネット物理層トランシーバの水晶振動子の選択と仕様』

『イーサネット製品関連頭字語の中国語と英語の定義』

10.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。右上の「ア ラートを受け取る]をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができ ます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

10.3 サポート リソース

10.4 商標

マジック パケット™ is a trademark of Advanced Micro Devices, Inc..

EtherCAT® is a registered trademark of Beckhoff Automation GmbH, Germany.

すべての商標は、それぞれの所有者に帰属します。

10.5 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うこと を推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずか に変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

10.6 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

11 改訂履歴

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

C	nanges from Revision " (May 2025) to Revision A (October 2025)	Page
•	VOL_3V3 の最大値を 0.8V から 0.4V に更新	11
•	100M MII 受信タイミングを更新	11
•	25MHz および 50MHz のクロック周波数許容誤差を ±100ppm から ±50ppm に更新	11
•	接合部温度を 115℃ から 125℃ に変更	11
•	「RMII リピータ モード」セクションを追加	3 <mark>5</mark>
•	オプション #2 および #6 について、Strap 8 の条件を X から LOW に変更	47
•	フローチャートを更新し、Strap 11 の構成を追加	<mark>52</mark>
•	デフォルトのブートストラップ設定を反映するように表 8-8 を更新	<mark>52</mark>
•	BASIC モードの「PHY アドレス ストラップ」表について、モードが 1 の場合、「PHY_ADD0 = 0」から「PHY_A	4DD0 =
	1 」に変更。	54
•	レジスタ 0x1E ビット 14 の説明を更新	<mark>55</mark>
•	表 8-92 のビット 3 について、スレーブからフォロワに変更	55
•	表 9-1 の推奨トランスは廃止済みのため削除	102

Product Folder Links: DP83826AE DP83826AI

資料に関するフィードバック(ご意見やお問い合わせ)を送信

DP83826AE, DP83826AI

JAJSWG1A - MAY 2025 - REVISED OCTOBER 2025

• クロック周波数の許容誤差を ±100ppm から ±50ppm に更新.......102

12 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、指定のデバイスに使用できる最新のデータです。このデータは、予告なく、このドキュメントを改訂せずに変更される場合があります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

111

Product Folder Links: DP83826AE DP83826AI

www.ti.com 4-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
DP83826AERHBR	Active	Production	VQFN (RHB) 32	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	826AE
DP83826AERHBT	Active	Production	VQFN (RHB) 32	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	826AE
DP83826AIRHBR	Active	Production	VQFN (RHB) 32	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	826AI
DP83826AIRHBT	Active	Production	VQFN (RHB) 32	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	826AI

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

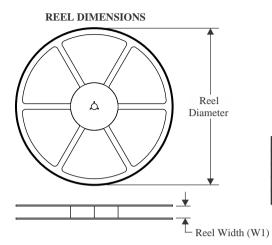
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

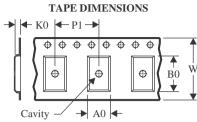
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

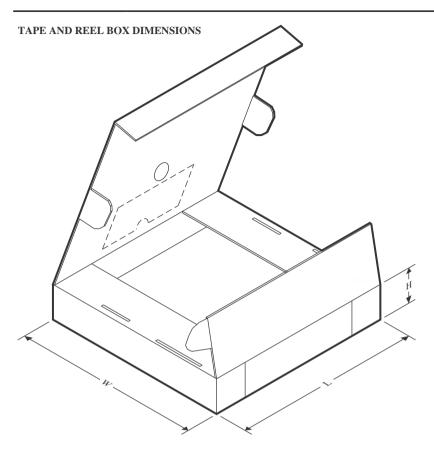
PACKAGE MATERIALS INFORMATION

www.ti.com 4-Nov-2025

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

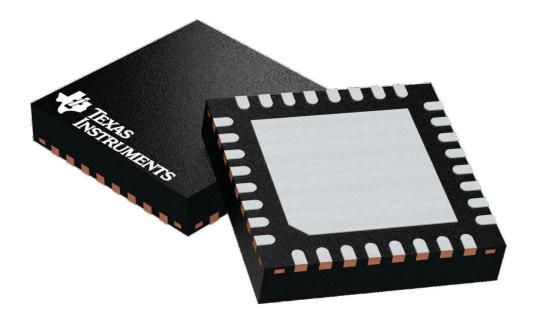
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DP83826AERHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
DP83826AERHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
DP83826AIRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
DP83826AIRHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2

www.ti.com 4-Nov-2025

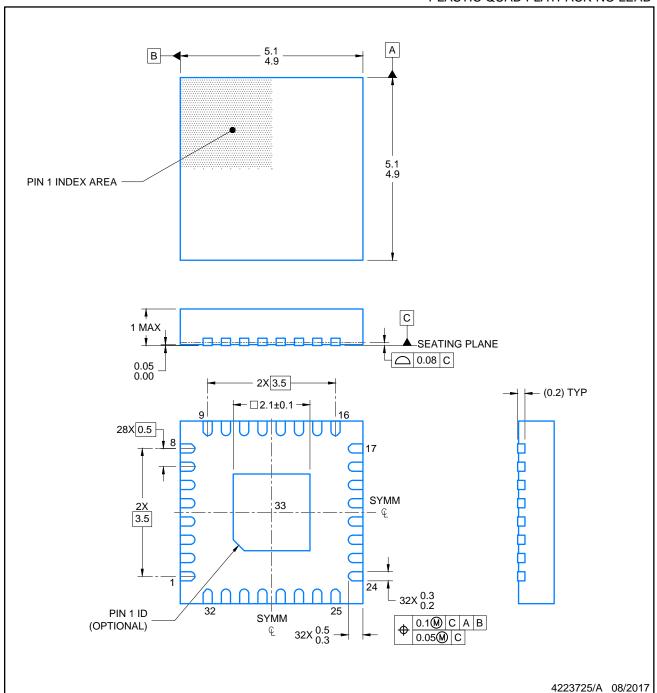


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DP83826AERHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
DP83826AERHBT	VQFN	RHB	32	250	210.0	185.0	35.0
DP83826AIRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
DP83826AIRHBT	VQFN	RHB	32	250	210.0	185.0	35.0

5 x 5, 0.5 mm pitch

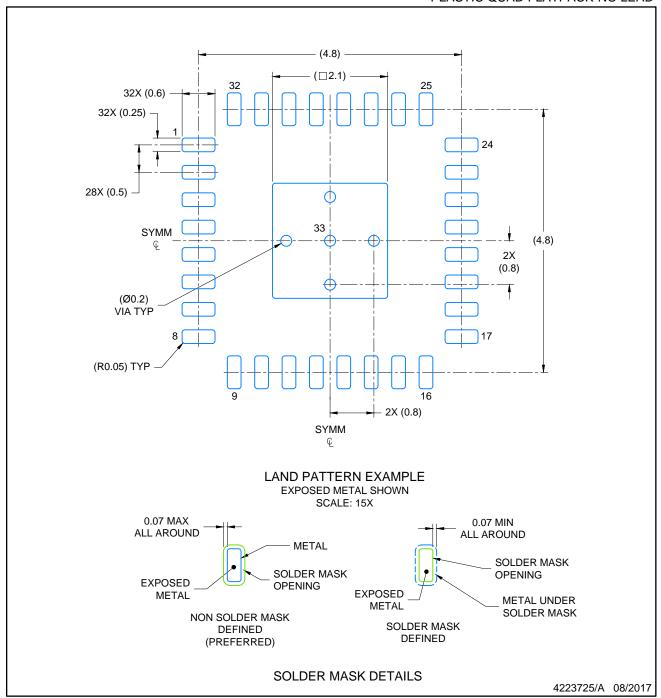
PLASTIC QUAD FLATPACK - NO LEAD



Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4224745/A

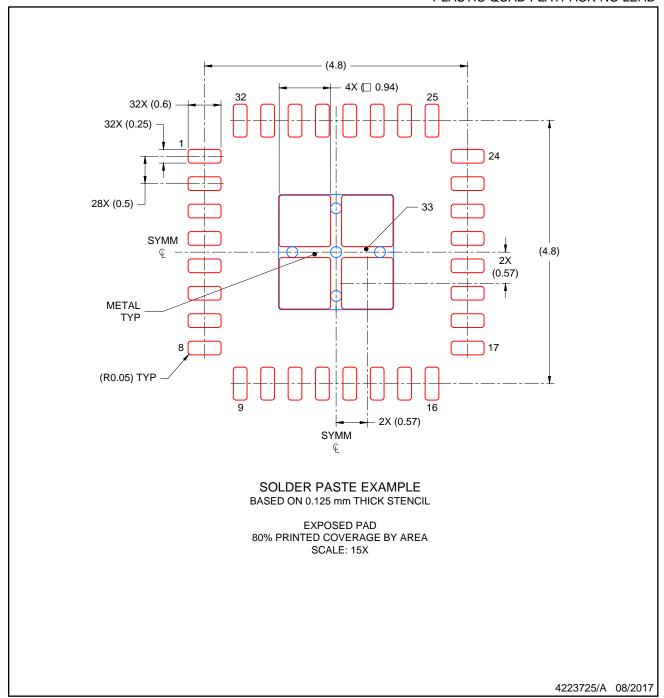
PLASTIC QUAD FLATPACK-NO LEAD


NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2.
- This drawing is subject to change without notice.

 The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

PLASTIC QUAD FLATPACK-NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK-NO LEAD

NOTES: (continued)

Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日: 2025 年 10 月