DLP472TP JAJSQF9 - AUGUST 2024 # DLP472TP 0.47 インチ 4K UHD デジタル マイクロミラー デバイス # 1 特長 - 対角 0.47 インチのマイクロミラー アレイ - ディスプレイ解像度:4K UHD (3840 × 2160) - 5.4μm のマイクロミラー ピッチ - マイクロミラー傾斜角:±17°(平面に対して) - 下部光源 - SubLVDS 入力データバス - 4K UHD、60Hz (60fps) の動画をサポート - 1080p、最大 240Hz をサポート - DLPC8445 ディスプレイ コントローラ、DLPA3085 パ ワー マネージメント IC (PMIC) および LED ドライバに より、LED の動作をサポート # 2 アプリケーション - モバイル スマート TV - モバイル プロジェクタ - デジタル サイネージ ### 3 概要 DLP472TP デジタル マイクロミラー デバイス (DMD) は、 デジタル制御型の MEMS (micro-electromechanical system) 空間光変調器 (SLM) で、色鮮やかな 4K UHD ディスプレイシステムを実現します。テキサス・インスツルメ ンツの DLP® 製品である 0.47 インチ 4K UHD チップセッ トは、DLP472TP DMD、DLPC8445 ディスプレイ コントロ ーラ、DLPA3085 PMIC および LED ドライバで構成され ています。このコンパクトなチップセットは、小型の 4K UHD ディスプレイを実現する完全なシステム ソリューショ ンを提供します。 #### 製品情報 | 部品番号 | パッケージ ⁽¹⁾ | パッケージ サイズ | |----------|----------------------|--------------------| | DLP472TP | FQY (166) | 24.50mm × 11.00 mm | 詳細については、セクション 12 を参照してください。 アプリケーション概略図 # **Table of Contents** | 1 | 特長 | 1 | |---|---|------------| | 2 | アプリケーション | 1 | | 3 | 概要 | 1 | | | Pin Configuration and Functions | | | | 4.1 Pin Functions | | | 5 | Specifications | | | | 5.1 Absolute Maximum Ratings | | | | 5.2 Storage Conditions | | | | 5.3 ESD Ratings | | | | 5.4 Recommended Operating Conditions | | | | 5.5 Thermal Information | | | | 5.6 Electrical Characteristics | | | | 5.7 Switching Characteristics | 12 | | | 5.8 Timing Requirements | 12 | | | 5.9 System Mounting Interface Loads | 17 | | | 5.10 Micromirror Array Physical Characteristics | 17 | | | 5.11 Micromirror Array Optical Characteristics | 18 | | | 5.12 Window Characteristics | | | | 5.13 Chipset Component Usage Specification | 20 | | 6 | Detailed Description | 2 1 | | | 6.1 Overview | | | | 6.2 Functional Block Diagram | | | | 6.3 Feature Description | | | | 6.4 Device Functional Modes | 22 | | | 6.5 Optical Interface and System Image Quality | | | | Considerations | 22 | | 6.6 Micromirror Array Temperature Calculation | . 23 | |---|------| | 6.7 Micromirror Power Density Calculation | .24 | | 6.8 Micromirror Landed-On/Landed-Off Duty Cycle | | | 7 Application and Implementation | | | 7.1 Application Information | | | 7.2 Typical Application | | | 7.3 Temperature Sensor Diode | | | 8 Power Supply Recommendations | | | 8.1 DMD Power Supply Power-Up Procedure | | | 8.2 DMD Power Supply Power-Down Procedure | | | 9 Layout | | | 9.1 Layout Guidelines | . 33 | | 9.2 Layout Example | . 34 | | 10 Device and Documentation Support | | | 10.1 サード・パーティ製品に関する免責事項 | .35 | | 10.2 Device Support | | | 10.3 Documentation Support | | | 10.4 ドキュメントの更新通知を受け取る方法 | | | 10.5 Trademarks | | | 10.6 静電気放電に関する注意事項 | | | 10.7 用語集 | | | 11 Revision History | | | 12 Mechanical, Packaging, and Orderable | . 00 | | Information | 37 | | | . 01 | # 4 Pin Configuration and Functions 図 4-1. FQY Package 166-Pin LGA (Bottom View) ### 注意 The layout and operation of signals identified in the Pin Functions table must be properly managed to make sure there is reliable operation of the 0.47" 4K UHD S321 DMD. Refer to the Layout Guidelines for the DMD and Controller before designing the board. #### 4.1 Pin Functions | PIN ⁽²⁾ | | (1) | | | TRACE | |--------------------|--------|---------------------|---|-------------------|----------------| | NAME | PAD ID | TYPE ⁽¹⁾ | DESCRIPTION | TERMINATION | LENGTH
(mm) | | D_AP(0) | A2 | I | High-speed Differential Data Pair lane A0 | Differential 100Ω | 3.75497 | | D_AN(0) | B2 | I | High-speed Differential Data Pair lane A0 | Differential 100Ω | 3.75482 | | D_AP(1) | A6 | I | High-speed Differential Data Pair lane A1 | Differential 100Ω | 4.62509 | | D_AN(1) | B6 | I | High-speed Differential Data Pair lane A1 | Differential 100Ω | 4.625 | | D_AP(2) | C1 | I | High-speed Differential Data Pair lane A2 | Differential 100Ω | 3.59503 | | D_AN(2) | C2 | I | High-speed Differential Data Pair lane A2 | Differential 100Ω | 3.59513 | | D_AP(3) | C6 | I | High-speed Differential Data Pair lane A3 | Differential 100Ω | 5.12758 | | D_AN(3) | C7 | I | High-speed Differential Data Pair lane A3 | Differential 100Ω | 5.12745 | | D_AP(4) | G3 | I | High-speed Differential Data Pair lane A4 | Differential 100Ω | 1.60057 | | D_AN(4) | G4 | I | High-speed Differential Data Pair lane A4 | Differential 100Ω | 1.6004 | | D_AP(5) | F7 | I | High-speed Differential Data Pair lane A5 | Differential 100Ω | 3.64067 | | D_AN(5) | F6 | I | High-speed Differential Data Pair lane A5 | Differential 100Ω | 3.64091 | | D_AP(6) | F4 | I | High-speed Differential Data Pair lane A6 | Differential 100Ω | 1.58206 | | D_AN(6) | F5 | I | High-speed Differential Data Pair lane A6 | Differential 100Ω | 1.58187 | | D_AP(7) | H6 | I | High-speed Differential Data Pair lane A7 | Differential 100Ω | 2.70067 | | D_AN(7) | G6 | I | High-speed Differential Data Pair lane A7 | Differential 100Ω | 2.70086 | | DCLK_AP | E5 | I | High-speed Differential Clock A | Differential 100Ω | 2.96493 | | DCLK_AN | D5 | I | High-speed Differential Clock A | Differential 100Ω | 2.9653 | | D_BP(0) | B30 | I | High-speed Differential Data Pair lane B0 | Differential 100Ω | 3.57087 | Product Folder Links: DLP472TP Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 | PIN ⁽²⁾ | | (1) | | | TRACE | | |--------------------|--------|---------------------|---|-------------------|----------------|--| | NAME | PAD ID | TYPE ⁽¹⁾ | DESCRIPTION | TERMINATION | LENGTH
(mm) | | | D_BN(0) | A30 | I | High-speed Differential Data Pair lane B0 | Differential 100Ω | 3.57064 | | | D_BP(1) | C32 | I | High-speed Differential Data Pair lane B1 | Differential 100Ω | 4.2546 | | | D_BN(1) | B32 | I | High-speed Differential Data Pair lane B1 | Differential 100Ω | 4.25425 | | | D_BP(2) | A28 | I | High-speed Differential Data Pair lane B2 | Differential 100Ω | 4.97968 | | | D_BN(2) | B28 | I | High-speed Differential Data Pair lane B2 | Differential 100Ω | 4.97953 | | | D_BP(3) | C31 | I | High-speed Differential Data Pair lane B3 | Differential 100Ω | 3.12736 | | | D_BN(3) | C30 | I | High-speed Differential Data Pair lane B3 | Differential 100Ω | 3.12743 | | | D_BP(4) | C27 | I | High-speed Differential Data Pair lane B4 | Differential 100Ω | 5.44353 | | | D_BN(4) | B27 | I | High-speed Differential Data Pair lane B4 | Differential 100Ω | 5.4433 | | | D_BP(5) | D28 | I | High-speed Differential Data Pair lane B5 | Differential 100Ω | 3.32124 | | | D_BN(5) | D27 | I | High-speed Differential Data Pair lane B5 | Differential 100Ω | 3.32115 | | | D_BP(6) | F30 | I | High-speed Differential Data Pair lane B6 | Differential 100Ω | 2.99334 | | | D_BN(6) | E30 | I | High-speed Differential Data Pair lane B6 | Differential 100Ω | 2.99374 | | | D_BP(7) | G27 | I | High-speed Differential Data Pair lane B7 | Differential 100Ω | 3.14865 | | | D_BN(7) | G28 | I | High-speed Differential Data Pair lane B7 | Differential 100Ω | 3.14902 | | | DCLK_BP | D29 | I | High-speed Differential Clock B | Differential 100Ω | 5.03976 | | | DCLK_BN | D30 | I | High-speed Differential Clock B | Differential 100Ω | 5.0395 | | | D_CP(0) | J4 | I | High-speed Differential Data Pair lane C0 | Differential 100Ω | 2.06577 | | | D_CN(0) | H4 | I | High-speed Differential Data Pair lane C0 | Differential 100Ω | 2.06568 | | | D_CP(1) | J7 | I | High-speed Differential Data Pair lane C1 | Differential 100Ω | 4.87119 | | | D_CN(1) | J6 | I | High-speed Differential Data Pair lane C1 | Differential 100Ω | 4.87131 | | | D_CP(2) | K5 | I | High-speed Differential Data Pair lane C2 | Differential 100Ω | 4.69951 | | | D_CN(2) | J5 | I | High-speed Differential Data Pair lane C2 | Differential 100Ω | 4.69926 | | | D_CP(3) | L4 | I | High-speed Differential Data Pair lane C3 | Differential 100Ω | 3.27735 | | | D_CN(3) | L5 | I | High-speed Differential Data Pair lane C3 | Differential 100Ω | 3.27722 | | | D_CP(4) | L2 | I | High-speed Differential Data Pair lane C4 | Differential 100Ω | 4.65167 | | | D_CN(4) | M2 | I | High-speed Differential Data Pair lane C4 | Differential 100Ω | 4.6513 | | | D_CP(5) | M3 | I | High-speed Differential Data Pair lane C5 | Differential 100Ω | 5.70359 | | | D_CN(5) | N3 | I | High-speed Differential Data Pair lane C5 | Differential 100Ω | 5.70352 | | | D_CP(6) | M5 | I | High-speed Differential Data Pair lane C6 | Differential 100Ω | 2.57704 | | | D_CN(6) | M6 | I | High-speed Differential Data Pair lane C6 | Differential 100Ω | 2.57727 | | | D_CP(7) | N7 | I | High-speed Differential Data Pair lane C7 | Differential 100Ω | 3.77278 | | | D_CN(7) | M7 | I | High-speed Differential Data Pair lane C7 | Differential 100Ω | 3.77317 | | | DCLK_CP | K2 | I | High-speed Differential Clock C | Differential 100Ω | 2.3747 | | | DCLK_CN | J2 | I | High-speed Differential Clock C | Differential 100Ω | 2.37429 | | | D_DP(0) | G29 | I | High-speed Differential Data Pair lane D0 | Differential 100Ω | 3.67925 | | | D_DN(0) | F29 | I | High-speed Differential Data Pair lane D0 | Differential 100Ω | 3.6794 | | | D_DP(1) | F27 | I | High-speed Differential Data Pair lane D1 | Differential 100Ω | 4.73751 | | | D_DN(1) | E27 | I | High-speed Differential Data Pair lane D1 | Differential 100Ω | 4.73796 | | | D_DP(2) | K30 | I | High-speed Differential Data Pair lane D2 | Differential 100Ω | 2.76933 | | | D_DN(2) | K29 | I | High-speed Differential Data Pair lane D2 | Differential 100Ω | 2.76936 | | | D_DP(3) | J27 | I | High-speed Differential Data Pair lane D3 | Differential 100Ω | 3.07794 | | | D_DN(3) | K27 | I | High-speed Differential Data Pair lane D3 | Differential 100Ω | 3.07804 | | | D_DP(4) | M30 | I | High-speed Differential Data Pair lane D4 | Differential 100Ω | 3.60026 | | | PIN ⁽²⁾ | | TYPE ⁽¹⁾ | DEGODISTION | TEDMINISTICS | TRACE | |--------------------
---|---------------------|--|-------------------|----------------| | NAME | PAD ID | TYPE | DESCRIPTION | TERMINATION | LENGTH
(mm) | | D_DN(4) | L30 | I | High-speed Differential Data Pair lane D4 | Differential 100Ω | 3.60028 | | D_DP(5) | M27 | I | High-speed Differential Data Pair lane D5 | Differential 100Ω | 3.24012 | | D_DN(5) | L27 | I | High-speed Differential Data Pair lane D5 | Differential 100Ω | 3.24002 | | D_DP(6) | N26 | I | High-speed Differential Data Pair lane D6 | Differential 100Ω | 4.69564 | | D_DN(6) | M26 | I | High-speed Differential Data Pair lane D6 | Differential 100Ω | 4.69594 | | D_DP(7) | M31 | I | High-speed Differential Data Pair lane D7 | Differential 100Ω | 3.97347 | | D_DN(7) | M32 | I | High-speed Differential Data Pair lane D7 | Differential 100Ω | 3.97352 | | DCLK_DP | H29 | I | High-speed Differential Clock D | Differential 100Ω | 1.7593 | | DCLK_DN | J29 | I | High-speed Differential Clock D | Differential 100Ω | 1.75933 | | LS_WDATA | D4 | I | LVDS Data | | 2.29224 | | LS_CLK | C4 | I | LVDS CLK | | 1.73951 | | LS_RDATA_A | C5 | 0 | LVCMOS Output | | 2.72344 | | LS_RDATA_B | D3 | 0 | LVCMOS Output | | 2.22814 | | LS_RDATA_C | E3 | 0 | LVCMOS Output | | 3.22863 | | LS_RDATA_D | F3 | 0 | LVCMOS Output | | 4.90151 | | DMD_DEN_ARSTZ | D2 | I | ARSTZ | | 1.80911 | | TEMP_N | N1 | I | Temp Diode N | | 1.84006 | | TEMP_P | M1 | I | Temp Diode P | | 2.62822 | | VDD | A3, A4,
C26, D1,
D6, D7,
D26, E2,
E6, E7,
E26, F2,
G30, H28,
H30, J26,
J30, K1,
K6, K26,
K31, K32,
L1, L31,
L32, N2 | Р | Digital Core Supply Voltage | | 14.26561 | | VDDI | A5, B5,
F26, G26,
H26, H27,
K7, L7 | Р | SubLVDS supply voltage | | 3.72532 | | VRESET | B3, B26 | Р | Supply voltage for negative bias of micromirror reset signal | | 25.57603 | | VBIAS | A27, B4 | Р | Supply voltage for positive bias of micromirror reset signal | | 24.70004 | | VOFFSET | A26, C3,
L6, L26 | Р | Supply voltage for HVCMOS logic, stepped up logic level | | 8.73417 | 5 Product Folder Links: DLP472TP | PIN ⁽²⁾ | | (1) | | | TRACE | |--------------------|---|---------------------|----------------|-------------|----------------| | NAME | PAD ID | TYPE ⁽¹⁾ | DESCRIPTION | TERMINATION | LENGTH
(mm) | | VSS | A1, A7,
A29, A31,
A32, B1,
B7, B29,
B31, C28,
C29, D31,
D32, E4,
E28, E29,
F28, G5,
G7, H2, H3,
H5, H7, J3,
J28, K3,
K4, K28,
L3, L28,
L29, M4,
M28, M29,
N4, N5, N6,
N27, N31,
N32 | G | Ground | | 24.6246 | | N/C | N28, N29,
N30, L25,
K25, J25,
H25, G25,
F25, E25,
D25 | NC | No Connect Pin | | None | - (1) I=Input, O=Output, P=Power, G=Ground, NC=No Connect - (2) Only 163 pins are electrically connected for functional use # 5 Specifications #### 5.1 Absolute Maximum Ratings Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. | · | | MIN | MAX | UNIT | |---|--|------|------------------------|------| | SUPPLY VOLTAGE | | | - | | | V_{DD} | Supply voltage for LVCMOS core logic and LPSDR low speed interface (1) | -0.5 | 2.3 | V | | V_{DDI} | Supply voltage for SubLVDS receivers ⁽¹⁾ | -0.5 | 2.3 | V | | V _{OFFSET} | Supply voltage for HVCMOS and micromirror electrode ^{(1) (2)} | -0.5 | 11 | V | | V _{BIAS} | Supply voltage for micromirror electrode ⁽¹⁾ | -0.5 | 19 | V | | V _{RESET} | Supply voltage for micromirror electrode ⁽¹⁾ | -15 | 0.5 | V | | V _{DDI} - V _{DD} | Supply voltage delta, absolute value ⁽³⁾ | | 0.3 | V | | V _{BIAS} - V _{OFFSET} | Supply voltage delta, absolute value ⁽⁴⁾ | | 11 | V | | V _{BIAS} - V _{RESET} | Supply voltage delta, absolute value ⁽⁵⁾ | | 34 | V | | INPUT VOLTAGE | | | 1 | | | | Input voltage for other inputs LSIF and LVCMOS ⁽¹⁾ | -0.5 | V _{DD} + 0.5 | V | | | Input voltage for other inputs SubLVDS ⁽¹⁾ (6) | -0.5 | V _{DDI} + 0.5 | V | | SUBLVDS INTERFACE | | | | | | V _{ID} | SubLVDS input differential voltage (absolute value) ^{(1) (6)} | | 810 | mV | | I _{ID} | SubLVDS input differential current | | 10 | mA | | CLOCK FREQUENCY | | | 1 | | | f_{clock} | Clock frequency for low speed interface LS_CLK | 100 | 130 | MHz | | TEMPERATURE DIODE | | | 1 | | | I _{TEMP_DIODE} | Max current source into temperature diode | | 120 | μA | | ENVIRONMENTAL | | | 1 | | | T1 T | Temperature, operating ⁽⁷⁾ | 0 | 90 | °C | | T_{WINDOW} and T_{ARRAY} | Temperature, non-operating ⁽⁷⁾ | -40 | 90 | °C | | T _{DELTA} | Absolute temperature delta between any point on the window edge and theceramic test point TP1 ⁽⁸⁾ | | 30 | °C | | T _{DP} | Dew point temperature, operating and non–operating (noncondensing) | | 81 | °C | - (1) All voltage values are with respect to the ground terminals (V_{SS}). The following required power supplies must be connected for proper DMD operation: V_{DD}, V_{DDI}, V_{OFFSET}, V_{BIAS}, and V_{RESET}. All V_{SS} connections are also required. - (2) V_{OFFSET} supply transients must fall within specified voltages. - (3) Exceeding the recommended allowable absolute voltage difference between V_{DDI} and V_{DD} may result in excessive current draw and permanent damage to the device. - (4) Exceeding the recommended allowable absolute voltage difference between V_{BIAS} and V_{OFFSET} may result in excessive current draw and permanent damage to the device. - (5) Exceeding the recommended allowable absolute voltage difference between V_{BIAS} and V_{RESET} may result in excessive current draw and permanent damage to the device. - (6) This maximum input voltage rating applies when each input of a differential pair is at the same voltage potential. Sub-LVDS differential inputs must not exceed the specified limit or damage may result to the internal termination resistors. - (7) The highest temperature of the active array (as calculated using the Micromirror Array Temperature Calculation) or of any point along the window edge. The locations of thermal test points TP2, TP3, TP4, and TP5 are intended to measure the highest window edge temperature. If a particular application causes another point on the window edge to be at a higher temperature, that point should be used. - (8) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge. The window test points TP2, TP3, TP4, and TP5 are intended to result in the worst case delta. If a particular application causes another point on the window edge to result in a larger delta temperature, that point should be used. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 7 # 5.2 Storage Conditions Applicable for the DMD as a component or non-operating in a system. | | | MIN | MAX | UNIT | |---------------------|---|-----|-----|--------| | T_{DMD} | DMD temperature | -40 | 85 | °C | | T _{DP-AVG} | Average dew point temperature, non-condensing ⁽¹⁾ | | 24 | °C | | T _{DP-ELR} | Elevated dew point temperature range, non-condensing ⁽²⁾ | 28 | 36 | °C | | CT _{ELR} | Cumulative time in elevated dew pointt temperature range | | 6 | months | - (1) The average temperature over time (including storage and operating temperatures) that the device is not in the elevated dew point temperature range. - (2) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total cumulative time of CT_{ELR}. # 5.3 ESD Ratings | | | | VALUE | UNIT | |--------------------|---------------|---|-------|------| | V Electrostation | Electrostatic | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ | ±1000 | V | | V _(ESD) | Discharge | Charged device model (CDM), per JEDEC specification ANSI/ESDA/JEDEC JS-002 ⁽²⁾ | ±250 | V | - (1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process. - (2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process. 資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated # **5.4 Recommended Operating Conditions** Over operating free-air temperature range and supply voltages (unless otherwise noted). The functional performance of the device specified in this data sheet is achieved when operating the device within the limits defined by the Recommended Operating Conditions. No level of performance is implied when operating the device above or below the Recommended Operating Conditions limits. | Operating Condition | | MIN | TYP | MAX | UNIT | |----------------------|---|-------|-----|----------|--------------------| | SUPPLY VOLTAGE | RANGE | | | | | | | Supply voltage for LVCMOS core logic ⁽¹⁾ (2) | | | | | | VDD | Supply voltage for LPSDR low-speed interface ⁽¹⁾ (2) | 1.71 | 1.8 | 1.95 | V | | VDDI | Supply voltage for SubLVDS receivers ⁽¹⁾ (2) | 1.71 |
1.8 | 1.95 | V | | VOFFSET | Supply voltage for HVCMOS and micromirror electrode ⁽¹⁾ (2) (3) | 9.5 | 10 | 10.5 | V | | VBIAS | Supply voltage for mirror electrode ⁽¹⁾ (2) | 17.5 | 18 | 18.5 | V | | VRESET | Supply voltage for micromirror electrode ⁽¹⁾ (2) | -14.5 | -14 | -13.5 | V | | VDDI- VDD | Supply voltage delta (absolute value) ⁽¹⁾ (2) (4) | , | | 0.3 | V | | VBIAS-VOFFSET | Supply voltage delta (absolute value) ⁽¹⁾ (2) (5) | | | 10.5 | V | | VBIAS- VRESET | Supply voltage delta (absolute value) ⁽¹⁾ (2) (6) | | | 33 | V | | CLOCK FREQUEN | CY | | | | | | £ | Clock frequency for low speed interface LS_CLK ⁽⁷⁾ | 108 | | 120 | MHz | | f clock | Clock frequency for high-speed interface DCLK (8) | | | 720 | MHz | | DCD _{IN} | Duty cycle distortion | 44 | | 56 | % | | SUBLVDS INTERFA | NCE | , | | | | | V _{ID} | LVDS differential input voltage magnitude ⁽⁸⁾ | 150 | 250 | 350 | mV | | V _{CM} | Common mode voltage ⁽⁸⁾ | 700 | 900 | 1100 | mV | | V _{SUBLVDS} | SubLVDS voltage ⁽⁸⁾ | 525 | | 1275 | mV | | Z _{LINE} | Line differential impedance (PWB/trace) | 90 | 100 | 110 | Ω | | Z _{IN} | Internal differential termination resistance ⁽¹⁰⁾ | 80 | 100 | 120 | Ω | | | 100Ω differential PCB trace | 6.35 | | 152.4 | mm | | ENVIRONMENTAL | - | | | | | | T | Array temperature, long-term operation ⁽⁹⁾ (10) (11) (12) | 10 | | 40 to 70 | °C | | T _{ARRAY} | Array temperature, short-term operation, 500 hr max ⁽¹⁰⁾ (13) | 0 | | 10 | °C | | T _{Window} | Window temperature, operational ⁽¹⁴⁾ | | | 85 | °C | | T _{DELTA} | Absolute Temperature difference between any point on the window edge and the ceramic test point TP1 ⁽¹⁶⁾ | | | 15 | °C | | T _{DP-AVG} | Average dew point temperature, (non-condensing) ⁽¹⁵⁾ | | | 24 | °C | | T _{DP-ELR} | Elevated dew point temperature range, (non-condensing) ⁽¹⁶⁾ | | 28 | 36 | °C | | CT _{ELR} | Cumulative time in elevated dew point temperature range | | | 6 | Months | | ILLUMINATION | - | | | | | | ILL _{UV} | Illumination, wavelength < 410nm ⁽⁹⁾ | | | 10 | mW/cm ² | | ILL _{VIS} | Illumination power at wavelengths ≥ 410nm and ≤ 800nm ⁽¹⁷⁾ | , | , | 20.5 | W/cm ² | | ILL _{IR} | Illumination, wavelength between > 800nm | | | 10 | mW/cm ² | | ILL _{BLU} | Illumination power at wavelengths ≥ 410nm and ≤ 475nm ⁽¹⁷⁾ | | | 6.5 | W/cm ² | | ILL _{BLU1} | Illumination power at wavelengths ≥ 410nm and ≤ 445nm ⁽¹⁷⁾ | | | 1.2 | W/cm ² | | ILL _θ | Illumination marginal ray angle ⁽¹⁸⁾ | | | 55 | deg | ⁽¹⁾ The following power supplies are all required to operate the DMD: V_{DD}, V_{DDI}, V_{OFFSET}, V_{BIAS}, and V_{RESET}. All V_{SS} connections are required to operate the DMD. ⁽²⁾ All voltage values are with respect to the V_{SS} ground pins. ⁽³⁾ V_{OFFSET} supply transients must fall within specified max voltages. ⁽⁴⁾ To prevent excess current, the supply voltage delta $|V_{DDI} - V_{DDI}|$ must be less than the specified limit. ⁽⁵⁾ To prevent excess current, the supply voltage delta |V_{BIAS} - V_{OFFSET}| must be less than the specified limit. - (6) To prevent excess current, the supply voltage delta |V_{BIAS} V_{RESET}| must be less than the specified limit. - (7) LS_CLK must run as specified to ensure internal DMD timing for reset waveform commands. - (8) Refer to the SubLVDS timing requirements in セクション 5.8. - (9) Simultaneous exposure of the DMD to the maximum Recommended Operating Conditions for temperature and UV illumination will reduce device lifetime. - (10) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point (TP1) and the package thermal resistance using the Micromirror Array Temperature Calculation. - (11) Per Maximum Recommended Array Temperature—Derating Curve, the maximum operational array temperature should be derated based on the micromirror landed duty cycle that the DMD experiences in the end application. Refer to Micromirror Landed-On/Landed-Off Duty Cycle for a definition of micromirror landed duty cycle. - (12) Long-term is defined as the usable life of the device. - (13) Short-term is the total cumulative time over the useful life of the device. - (14) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge. The window test points TP2, TP3, TP4, and TP5 are intended to result in the worst case delta temperature. If a particular application causes another point on the window edge to result in a larger delta temperature, that point should be used. - (15) The average over time (including storage and operating) that the device is not in the 'elevated dew point temperature range'. - (16) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total cumulative time of CT_{ELR}. - (17) The maximum allowable optical power incident on the DMD is limited by the maximum optical power density for each wavelength range specified and the micromirror array temperature (T_{ARRAY}). - (18) The maximum marginal ray angle of the incoming illumination light at any point in the micromirror array, including Pond of Micromirrors (POM), should not exceed 55 degrees from the normal to the device array plane. The device window aperture has not necessarily been designed to allow incoming light at higher maximum angles to pass to the micromirrors, and the device performance has not been tested nor qualified at angles exceeding this. Illumination light exceeding this angle outside the micromirror array (including POM) will contribute to thermal limitations described in this document, and may negatively affect lifetime. 図 5-1. Maximum Recommended Array Temperature—Derating Curve #### 5.5 Thermal Information | | DLP472TP | | |---------------------|----------|------| | THERMAL METRIC | FQY | UNIT | | | 163 PIN | | | THERMAL INFORMATION | | | 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2024 Texas Instruments Incorporated # 5.5 Thermal Information (続き) | | DLP472TP | | |--|----------|------| | THERMAL METRIC | FQY | UNIT | | | 163 PIN | | | Thermal Resistance, active area to test point 1 (TP1) ⁽¹⁾ | 1.2 | °C/W | (1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of maintaining the DMD within the temperature range specified in the Recommended Operating Conditions. The total heat load on the DMD is largely driven by the incident light absorbed by the active area; although other contributions include light energy absorbed by the window aperture and electrical power dissipation of the array. Optical systems should be designed to minimize the light energy falling outside the window clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device. #### 5.6 Electrical Characteristics Over operating free-air temperature range (unless otherwise noted) (1) | | PARAMETER ⁽⁷⁾ | TEST CONDITIONS (2) | MIN | TYP MAX | UNIT | |---------------------|--|--|-----------------------|-----------------------|----------| | CURRENT | | | | | | | I _{DD} | Supply current: V _{DD} ⁽³⁾ ⁽⁴⁾ | Typical | | 140 | mA | | I _{DDI} | Supply current: V _{DDI} ⁽³⁾ ⁽⁴⁾ | Typical | | 45 | mA | | I _{OFFSET} | Supply current: V _{OFFSET} (5) (6) | Typical | | 6 | mA | | I _{BIAS} | Supply current: V _{BIAS} (5) (6) | Typical | | .5 | mA | | I _{RESET} | Supply current: V _{RESET} ⁽⁶⁾ | Typical | -1.8 | | mA | | POWER | | | | | | | P _{DD} | Supply power dissipation: V _{DD} ⁽³⁾ ⁽⁴⁾ | Typical | | 252 | mW | | P _{DDI} | Supply power dissipation: V _{DDI} ^{(3) (4)} | Typical | | 81 | mW | | P _{OFFSET} | Supply power dissipation: V _{OFFSET} (5) (6) | Typical | | 60 | mW | | P _{BIAS} | Supply power dissipation: V _{BIAS} ⁽⁵⁾ ⁽⁶⁾ | Typical | | 9 | mW | | P _{RESET} | Supply power dissipation: V
_{RESET} ⁽⁶⁾ | Typical | | 25.2 | mW | | P _{TOTAL} | Supply power dissipation Total | Typical | | 427.2 | mW | | LPSDR INPU | т | | 1 | | | | V _{IH} | High-level input voltage ⁽⁸⁾ (9) | | 0.7 x V _{DD} | V _{DD} + 0.3 | x VDE | | V _{IL} | Low-level input voltage ^{(8) (9)} | | -0.3 | 0.3 x V _{DD} | x VDE | | V _{IH(AC)} | AC input high voltage ⁽⁸⁾ (9) | | 0.8 × V _{DD} | V _{DD} + 0.3 | x VDE | | V _{IL(AC)} | AC input low voltage ^{(8) (9)} | | -0.3 | 0.2 × V _{DD} | x VDE | | VHyst | Input Hysteresis (V _{T+} – V _{T-}) ⁽¹¹⁾ | | 0.1 × V _{DD} | 0.4 × V _{DD} | V | | I _{IL} | Low level input current | V _{DD} = 1.95 V, V _I = 0V | -100 | | nA | | I _{IH} | High level input current | V _{DD} = 1.95 V, V _I = 1.95V | | 135 | uA | | LPSDR OUT | PUT | | | | | | V _{OH} | DC output high voltage ⁽¹⁰⁾ | I _{OH} = -2 mA | 0.8 x V _{DD} | | X
VDD | | V _{OL} | DC output low voltage ⁽¹⁰⁾ | I _{OL} = 2 mA | | 0.2 x V _{DD} | X
VDD | | CAPACTIANO | CE | 1 | 1 | | 1 | | C _{IN} | Input capacitance LVCMOS | F = 1 MHz | | 10 | pF | | C _{IN} | Input capacitance SubLVDS | F = 1 MHz | | 20 | pF | | C _{OUT} | Output capacitance | F = 1 MHz | | 10 | pF | | | I control of the cont | 1 | 1 | | | - (1) Device electrical characteristics are over セクション 5.4 unless otherwise noted. - (2) All voltage values are with respect to the ground pins (V_{SS}). - (3) To prevent excess current, the supply voltage delta | V_{DDI} V_{DD} | must be less than the specified limit. - 4) Supply power dissipation based on non-compressed commands and data. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 11 - To prevent excess current, the supply voltage delta | V_{BIAS} V_{OFFSET} | must be less than the specified limit. - Supply power dissipation based on 3 global resets in 200 µs. - All power supply connections are required to operate the DMD: V_{DD} , V_{DDI} , V_{OFFSET} , V_{BIAS} , V_{RESET} . All V_{SS} connections are also (7) - LPSDR specifications are for pins LS CLK and LS WDATA. (8) - Low-speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC Standard No. 209B, Low-Power Double Data Rate (LPDDR) JESD209B. - (10) LPSDR output specification is for pins LS_RDATA_A, LS_RDATA_B, LS_RDATA_C, LS_RDATA_D. - (11) Refer to Figure 6-10 #### 5.7 Switching Characteristics Over operating free-air temperature range (unless otherwise noted)(1) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------|---|------------------------|-----|-----|-----|------| | t _{PD} | Output propagation, clock to Q, rising edge of LS_CLK input to LS_RDATA output. | C _L = 45 pF | | | 15 | ns | | | Slew rate, LS_RDATA | | 0.3 | | | V/ns | | | Output duty cycle distortion, LS_RDATA | | 40 | | 60 | % | (1) Device electrical characteristics are over セクション 5.4 unless otherwise noted. ### 5.8 Timing Requirements Over operating free-air temperature range (unless otherwise noted) (1) | • | | | MIN | NOM | MAX | UNIT | |-----------------------|---|---|------|------|------|------| | LPSDR | | | | | | | | t _f | Fall slew rate (2) | (80% to 20%) × V _{DD} ⁽⁵⁾ | 0.25 | | | V/ns | | t _c | Cycle time LS_CLK ⁽⁵⁾ | 50% to 50% reference points ⁽⁵⁾ | 7.7 | 8.3 | | ns | | t _r | Rise slew rate (1) | (30% to 80%) × V _{DD} ⁽⁶⁾ | 1 | | 3 | V/ns | | t _f | Fall slew rate (1) | (70% to 20%) x V _{DD} ⁽⁶⁾ | 1 | , | 3 | V/ns | | t _r | Rise slew rate (2) | (20% to 80%) × V _{DD} ⁽⁶⁾ | 0.25 | | | V/ns | | t _{W(H)} | Pulse duration LS_CLK high | 50% to 50% reference points ⁽⁵⁾ | 3.1 | | | ns | | t _{W(L)} | Pulse duration LS_CLK low | 50% to 50% reference points ⁽⁵⁾ | 3.1 | | | ns | | t _{WINDOW} | Window time ⁽¹⁾ (3) | Setup time + Hold time ⁽⁵⁾ | 3 | | | ns | | t _{DERATING} | Window time derating ^{(1) (3)} | For each 0.25 V/ns reduction in slew rate below 1 V/ns ⁽⁸⁾ | | 0.35 | | ns | | t _{su} | Setup time | LS_WDATA valid before LS_CLK ⁽⁵⁾ | | | 1.5 | ns | | t _h | Hold time | LS_WDATA valid after LS_CLK ⁽⁵⁾ | | | 1.5 | ns | | SubLVDS | | | | | | | | t _r | Rise slew rate | 20% to 80% reference points ⁽⁷⁾ | 0.7 | 1 | | V/ns | | t _f | Fall slew rate | 80% to 20% reference points ⁽⁷⁾ | 0.7 | 1 | | V/ns | | t _c | Cycle time D_CLK ⁽⁹⁾ | 50% to 50% reference points ⁽⁹⁾ | 1.35 | 1.39 | | ns | | t _{W(H)} | Pulse duration DCLK high | 50% to 50% reference points ⁽⁹⁾ | 0.7 | | | ns | | t _{W(L)} | Pulse duration DCLK low | 50% to 50% reference points ⁽⁹⁾ | 0.7 | | | ns | | t _{su} | Setup time | DATA valid before D_CLK ⁽⁹⁾ | | | 0.17 | ns | | t _h | Hold time | DATA valid after D_CLK ⁽⁹⁾ | | | 0.17 | ns | | t _{WINDOW} | Window time | Setup time + Hold time ⁽⁹⁾ (10) | | | 0.25 | ns | | t _{POWER} | Power-up receiver ⁽⁴⁾ | | | | 200 | ns | - Specification is for LS CLK and LS WDATA pins. Refer to LPSDR input rise and fall slew rate in Figure 6-3 (1) - Specification is for DMD DEN ARSTZ pin. Refer to LPSDR input rise and fall slew rate in Figure 6-3 (2) - (3) Window time derating example: 0.5-V/ns slew rate increases the window time by 0.7 ns, from 3 to 3.7 ns. - (4) Specification is for SubLVDS receiver time only and does not take into account commanding and latency after commanding. - (5) See Figure 6-2. - (6)See Figure 6-3. - See Figure 6-4. (7) - (8)See Figure 6-5. 12 Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 - (9) See Figure 6-6. - (10) See Figure 6-7. The low-speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC Standard No. 209B, *Low Power Double Data Rate (LPDDR)* JESD209B. ### 図 5-2. LPSDR Switching Parameters 図 5-3. LPSDR Input Rise and Fall Slew Rate Not to Scale 図 5-4. SubLVDS Input Rise and Fall Slew Rate 図 5-5. Window Time Derating Concept 図 5-6. SubLVDS Switching Parameters Note: Refer to セクション 5.8 for details. ### 図 5-7. High-Speed Training Scan Window ☑ 5-8. SubLVDS Voltage Parameters 図 5-9. SubLVDS Waveform Parameters 図 5-10. SubLVDS Equivalent Input Circuit 15 LS_CLK LS_WDATA V Stop Start tpD LS_RDATA 図 5-12. LPSDR Read Out # **Data Sheet Timing Reference Point** See セクション 5.6 for more information. 図 5-13. Test Load Circuit for Output Propagation Measurement # 5.9 System Mounting Interface Loads | PARAMETER | CONDITION | MIN | NOM | MAX | UNIT | |---------------------------|---|-----|-----|------|------| | Thermal Interface Area | Maximum load evenly distributed within each area ⁽¹⁾ | | | 73.5 | N | | Electrical Interface Area | Maximum load evenly distributed within each area (1) | | | 150 | IN | #### (1) See Figure 6-14. 図 5-14. System Mounting Interface Loads ### **5.10 Micromirror Array Physical Characteristics** | PARAMETER DESCRIPTION | | | UNIT | |-------------------------------------|--|--------|-------------------| | Number of active columns (1) (2) | M | 1920 | micromirrors | | Number of active rows (1) (2) | N | 1080 | micromirrors | | Micromirror (pixel) pitch (1) | Р | 5.4 | μm | | Micromirror active array width (1) | Micromirror pitch × number of active columns | 10.368 | mm | | Micromirror active array height (1) | Micromirror pitch × number of active columns | 5.832 | mm | | Micromirror active border (3) | Pond of micromirror (POM) | 20 | micromirrors/side | - (1) See Figure 6-15 - (2) The fast switching speed of the DMD micromirrors combined with advanced DLP image processing algorithms enables each micromirror to display four distinct pixels on the screen during every frame, resulting in a full 3840 x 2160 pixel image being displayed. - (3) The structure and qualities of the bordere around the active array includes a band of partially functional micromirrors referred to as the i{Pond of Micromirrors} (POM). These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state but still require an electrical bias to tilt toward the OFF state. English Data Sheet: DLPS247 図 5-15. Micromirror Array Physical Characteristics # **5.11 Micromirror Array Optical Characteristics** | | PARAMETER | TEST CONDITIONS | MIN T | YP MAX | UNIT | |---------------------------|---------------------------------------|---------------------|-------|--------|--------------| | Micromirror tilt ang | le | Landed state (1) | | 17 | 0 | | Micromirror tilt ang | le tolerance (2) (3) (4) (5) | | -1.4 | 1.4 | 0 | | Micromirror tilt dire | ection (6) (7) | Landed ON state | 2 | 70 | 0 | | Micromirror tilt dire | ection ^{(6) (7)} | Landed OFF state | 1 | 80 | 0 | | Micromirror crosso | ver time ⁽⁸⁾ | Typical Performance | | 1 3 | 110 | | Micromirror switch | ing time ⁽⁹⁾ | Typical Performance | 6 | | μs | | | Bright pixel(s) in active area (11) | Gray 10 Screen (12) | | 0 | | | | Bright pixel(s) in the POM (13) | Gray 10 Screen (12) | | 1 | | | Image
Performance (10) | Dark pixel(s) in the active area (14) | White Screen | | 4 | micromirrors | | 1 onemanos | Adjacent pixel(s) (15) | Any Screen | | 0 | | | | Unstable pixel(s) in active area (16) | Any Screen | | 0 | | - (1) Measured relative to the plane formed by the overall micromirror array. - (2) Additional variation exists between the micromirror array and the package datums. - (3) Represents the landed tilt angle variation relative to the nominal landed tilt angle. - (4) Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different devices. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2024 Texas Instruments Incorporated - 5) For some applications, it is critical to account for the micromirror tilt angle variation in the overall system optical design. With some system optical designs, the micromirror tilt angle variation within a device may result in perceivable
non-uniformities in the light field reflected from the micromirror array. With some system optical designs, the micromirror tilt angle variation between devices may result in colorimetry variations, system efficiency variations or system contrast variations. - (6) When the micromirror array is landed (not parked), the tilt direction of each individual micromirror is dictated by the binary contents of the CMOS memory cell associated with each individual micromirror. A binary value of 1 results in a micromirror landing in the ON State direction. A binary value of 0 results in a micromirror landing in the OFF State direction. See the Micromirror Landed Orientation and Tilt Figure 6-16. - (7) Micromirror tilt direction is measured as in a typical polar coordinate system: Measuring counter-clockwise from a 0° degree reference which is aligned with the +X Cartesian axis. - (8) The time required for a micromirror to nominally transition from one landed state to the opposite landed state. - (9) The minimum time between successive transitions of a micromirror. - (10) Conditions of Acceptance: All DMD image quality returns will be evaluated using the following projected image test conditions: Test set degamma shall be linear Test set brightness and contrast shall be set to nominal The diagonal size of the projected image shall be a minimum of 20 inches The projections screen shall be 1X gain The projected image shall be inspected from a 38 inch minimum viewing distance The image shall be in focus during all image quality tests - (11) Bright pixel definition: A single pixel or mirror that is stuck in the ON position and is visibly brighter than the surrounding pixels - (12) Gray 10 screen definition: All areas of the screen are colored with the following settings: Red = 10/255 Green = 10/255 Blue = 10/255 - (13) POM definition: Rectangular border of off-state mirrors surrounding the active area - (14) Dark pixel definition: A single pixel or mirror that is stuck in the OFF position and is visibly darker than the surrounding pixels - (15) Adjacent pixel definition: Two or more stuck pixels sharing a common border or common point, also referred to as a cluster - (16) Unstable pixel definition: A single pixel or mirror that does not operate in sequence with parameters loaded into memory. The unstable pixel appears to be flickering asynchronously with the image 図 5-16. Micromirror Landed Orientation and Tilt #### **5.12 Window Characteristics** | | DESCRIPTION ⁽¹⁾ | MIN | TYP | MAX | |--------------------------------------|--|-----|----------------------|-----| | Window material | | | Corning Eagle XG | | | Window refractive index | At wavelength 546.1 nm | | 1.5119 | | | Window aperture ⁽²⁾ | | | See ⁽²⁾ . | | | Illumination overfill ⁽³⁾ | | | See ⁽³⁾ . | | | Window transmittance, single-pass | Minimum within the wavelength range 420 nm to 680 nm. Applies to all angles 0° to 30° AOI. (4) | 97% | | | | through both surfaces and glass | Average over the wavelength range 420 nm to 680 nm. Applies to all angles 30° to 45° AOI. (4) | 97% | | | - (1) See Section 7.5 - (2) See the package mechanical characteristics for details regarding the size and location of the window aperture. - (3) The active area of the DMD device is surrounded by an aperture on the inside of the window surface that masks structures of the DMD device assembly from normal view. The aperture is sized to anticipate several optical conditions. Overfill light illuminating the area outside the active array can scatter and create adverse effects to the performance of an end application using the DMD. The illumination optical system should be designed to limit light flux incident outside the active array to less than 10% of the average flux level in the active area. Depending on the particular system's optical architecture and assembly tolerances, the amount of overfill light on the outside of the active array may cause system performance degradation. - (4) Angle of incidence (AOI) is the angle between an incident ray and the normal to a reflecting or refracting surface. # 5.13 Chipset Component Usage Specification Reliable function and operation of the DLP472TP DMD requires that it be used in conjunction with the other components of the applicable DLP chipset, including those components that contain or implement TI DMD control technology. TI DMD control technology consists of the TI technology and devices used for operating or controlling a DLP DMD. 注 TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system operating conditions exceeding limits described previously. Product Folder Links: DLP472TP 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2024 Texas Instruments Incorporated # 6 Detailed Description #### 6.1 Overview The DLP472TP DMD is a 0.47-inch diagonal spatial light modulator which consists of an array of highly reflective aluminum micromirrors. The DMD is an electrical input, optical output micro-optical-electrical-mechanical system (MOEMS). The fast switching speed of the DMD micromirrors combined with advanced DLP image processing algorithms enables each micromirror to display four distinct pixels on the screen during every frame, resulting in a full 3840 × 2160 pixel image being displayed. The electrical interface is low voltage differential signaling (LVDS). The DMD consists of a two-dimensional array of 1-bit CMOS memory cells. The array is organized in a grid of M memory cell columns by N memory cell rows. Refer to the Functional Block Diagram. The positive or negative deflection angle of the micromirrors can be individually controlled by changing the address voltage of underlying CMOS addressing circuitry and micromirror reset signals (MBRST). The DLP 0.47" 4K UHD chipset is comprised of the DLP472TP DMD, DLPC8445 display controller, and the DLPA3085 PMIC driver. To ensure reliable operation, the DLP472TP DMD must always be used with the DLP display controller and the PMIC specified in the chipset. # 6.2 Functional Block Diagram 21 Product Folder Links: DLP472TP #### **6.3 Feature Description** #### 6.3.1 Power Interface The DMD requires 4 DC voltages: 1.8V source, V_{OFFSET} , V_{RESET} , and V_{BIAS} . In a typical LED-based system, 1.8V, V_{OFFSET} , V_{RESET} , and V_{BIAS} is managed by the DLPA3085 PMIC and LED driver. #### 6.3.2 LPSDR Low-Speed Interface The Low Speed Interface handles instructions that configure the DMD and control reset operation. LS_CLK is the low-speed clock, and LS_WDATA is the low speed data input. #### 6.3.3 High-Speed Interface The purpose of the high-speed interface is to transfer pixel data rapidly and efficiently, making use of high speed DDR transfer and compression techniques to save power and time. The high-speed interface is composed of differential SubLVDS receivers for inputs, with a dedicated clock. #### 6.3.4 **Timing** The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be considered. 5-13 shows an equivalent test load circuit for the output under test. Timing reference loads are not intended to be precise representations of any particular system environment or depiction of the actual load presented by a production test. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving. #### 6.4 Device Functional Modes DMD functional modes are controlled by the DLPC8445 display controller. See the DLPC8445 display controller data sheet or contact a TI applications engineer. #### 6.5 Optical Interface and System Image Quality Considerations TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment optical performance involves making trade-offs between numerous component and system design parameters. Optimizing system optical performance and image quality strongly relate to optical system design parameter trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical performance is contingent on compliance to the optical system operating conditions described in the following sections. #### 6.5.1 Numerical Aperture and Stray Light Control The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area should be the same. This angle should not exceed the nominal device micromirror tilt angle unless appropriate apertures are added in the illumination and projection pupils to block out flat-state and stray light from the projection lens. The micromirror tilt angle defines DMD capability to separate the "ON" optical path from any other light path, including undesirable flat-state specular reflections from the DMD window, DMD border structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture exceeds the micromirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger than the illumination numerical aperture angle (and vice versa), contrast degradation and objectionable artifacts in the display border and active area could occur. #### 6.5.2 Pupil Match TI's optical and image quality specifications assume that the exit pupil of the illumination optics is nominally centered within 2° of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable artifacts in the display border and active area, which may require additional system apertures to control, especially if the numerical aperture of the system exceeds the pixel tilt angle. のせ) を送信 Copyright © 2024 Texas Instruments
Incorporated Product Folder Links: *DLP472TP* ### 6.5.3 Illumination Overfill The active area of the device is surrounded by an aperture on the inside DMD window surface that masks structures of the DMD chip assembly from normal view, and is sized to anticipate several optical operating conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the window aperture opening and other surface anomalies that may be visible on the screen. The illumination optical system should be designed to limit light flux incident anywhere on the window aperture from exceeding approximately 10% of the average flux level in the active area. Depending on the particular system optical architecture, overfill light may have to be further reduced below the suggested 10% level in order to be acceptable. ### **6.6 Micromirror Array Temperature Calculation** 図 6-1. DMD Thermal Test Points 23 Product Folder Links: DLP472TP Micromirror array temperature cannot be measured directly, therefore it must be computed analytically from measurement points on the outside of the package, the package thermal resistance, the electrical power, and the illumination heat load. The relationship between array temperature and the reference ceramic temperature (thermal test TC1/TP1 in \boxtimes 6-1) is provided by the following equations: $$T_{ARRAY} = T_{CERAMIC} + (Q_{ARRAY} \times R_{ARRAY-TO-CERAMIC})$$ $$Q_{ARRAY} = Q_{ELECTRICAL} + Q_{ILLUMINATION}$$ #### where - T_{ARRAY} = Computed array temperature (°C) - T_{CERAMIC} = Measured ceramic temperature (°C) (TP1 location) - R_{ARRAY-TO-CERAMIC} = Thermal resistance of package specified in 図 6-1 from array to ceramic TP1 (°C/Watt) - Q_{ARRAY} = Total DMD power on the array (W) (electrical + absorbed) - Q_{ELECTRICAL} = Nominal electrical power (W) - Q_{INCIDENT} = Incident illumination optical power (W) - Q_{ILLUMINATION} = (DMD average thermal absorptivity × Q_{INCIDENT}) (W) - DMD average thermal absorptivity = 0.4 The electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating frequencies. A nominal electrical power dissipation to use when calculating array temperature is 1.0 Watts. The absorbed power from the illumination source is variable and depends on the operating state of the micromirrors and the intensity of the light source. The equations shown above are valid for a single chip or multichip DMD system. It assumes an illumination distribution of 83.7% on the active array and 16.3% on the array border. The sample calculation for a typical projection application is as follows: ``` Q_{INCIDENT} = 9.4W \text{ (measured)} T_{CERAMIC} = 55.0^{\circ}\text{C (measured)} Q_{ELECTRICAL} = 1.0W Q_{ARRAY} = 1.0W + (0.40 \times 9.4W) = 4.76W T_{ARRAY} = 55.0^{\circ}\text{C} + (4.76 \text{ W} \times 1.2^{\circ}\text{C/W}) = 60.7^{\circ}\text{C} ``` #### 6.7 Micromirror Power Density Calculation The calculation of the optical power density of the illumination on the DMD in the different wavelength bands uses the total measured optical power on the DMD, percent illumination overfill, area of the active array, and ratio of the spectrum in the wavelength band of interest to the total spectral optical power. - ILL_{UV} = [OP_{UV-RATIO} × Q_{INCIDENT}] × 1000 ÷ A_{ILL} (mW/cm²) - ILL_{VIS} = $[OP_{VIS-RATIO} \times Q_{INCIDENT}] \div A_{ILL} (W/cm^2)$ - ILL_{IR} = [OP_{IR-RATIO} × Q_{INCIDENT}] × 1000 ÷ A_{ILL} (mW/cm²) - ILL_{BLU} = [OP_{BLU-RATIO} × Q_{INCIDENT}] ÷ A_{ILL} (W/cm²) - ILL_{BLU1} = [OP_{BLU1-RATIO} × Q_{INCIDENT}] ÷ A_{ILL} (W/cm²) 資料に関するフィードバック(ご意見やお問い合わせ)を送信 24 Copyright © 2024 Texas Instruments Incorporated • $A_{ILL} = A_{ARRAY} \div (1 - OV_{ILL}) (cm^2)$ #### where: - ILL_{UV} = UV illumination power density on the DMD (mW/cm²) - ILL_{VIS} = VIS illumination power density on the DMD (W/cm²) - ILL_{IR} = IR illumination power density on the DMD (mW/cm²) - ILL_{BLU} = BLU illumination power density on the DMD (W/cm²) - ILL_{BI U1} = BLU1 illumination power density on the DMD (W/cm²) - A_{ILL} = illumination area on the DMD (cm²) - Q_{INCIDENT} = total incident optical power on DMD (W) (measured) - A_{ARRAY} = area of the array (cm²) (data sheet) - OV_{II.I.} = percent of total illumination on the DMD outside the array (%) (optical model) - OP_{UV-RATIO} = ratio of the optical power for wavelengths <410nm to the total optical power in the illumination spectrum (spectral measurement) - OP_{VIS-RATIO} = ratio of the optical power for wavelengths ≥410nm and ≤800nm to the total optical power in the illumination spectrum (spectral measurement) - OP_{IR-RATIO} = ratio of the optical power for wavelengths >800nm to the total optical power in the illumination spectrum (spectral measurement) - OP_{BLU-RATIO} = ratio of the optical power for wavelengths ≥410nm and ≤475nm to the total optical power in the illumination spectrum (spectral measurement) - OP_{BLU1-RATIO} = ratio of the optical power for wavelengths ≥410nm and ≤445nm to the total optical power in the illumination spectrum (spectral measurement) The illumination area varies and depends on the illumination overfill. The total illumination area on the DMD is the array area and the overfill area around the array. The optical model is used to determine the percent of the total illumination on the DMD that is outside the array (OV_{ILL}) and the percent of the total illumination that is on the active array. From these values, the illumination area (A_{ILL}) is calculated. The illumination is assumed to be uniform across the entire array. From the measured illumination spectrum, the ratio of the optical power in the wavelength bands of interest to the total optical power is calculated. #### Sample calculation: Q_{INCIDENT} = 9.40 W (measured) $A_{ARRAY} = ((10.368 \text{mm} \times 5.832 \text{mm}) \div 100) = 0.6047 \text{cm}^2 \text{ (data sheet)}$ OV_{ILL} = 16.3% (optical model) OP_{UV-RATIO} = 0.00021 (spectral measurement) OP_{VIS-RATIO} = 0.99977 (spectral measurement) OP_{IR-RATIO} = 0.00002 (spectral measurement) OP_{BLU-RATIO} = 0.28100 (spectral measurement) OP_{BLU1-RATIO} = 0.03200 (spectral measurement) $$\begin{split} & A_{ILL} = 0.6047 \text{cm}^2 \div (1 - 0.163) = 0.7224 \text{cm}^2 \\ & ILL_{UV} = [0.00021 \times 9.40 \text{ W}] \times 1000 \div 0.7224 \text{cm}^2 = 2.732 \text{mW/cm}^2 \\ & ILL_{VIS} = [0.99977 \times 9.40 \text{ W}] \div 0.7224 \text{cm}^2 = 13.01 \text{mW/cm}^2 \\ & ILL_{IR} = [0.00002 \times 9.40 \text{ W}] \times 1000 \div 0.7224 \text{cm}^2 = 0.260 \text{mW/cm}^2 \\ & ILL_{BLU} = [0.28100 \times 9.40 \text{ W}] \div 0.7224 \text{cm}^2 = 3.66 \text{mW/cm}^2 \\ & ILL_{BIJJ} = [0.03200 \times 9.40 \text{ W}] \div 0.7224 \text{cm}^2 = 0.42 \text{mW/cm}^2 \end{split}$$ #### 6.8 Micromirror Landed-On/Landed-Off Duty Cycle ### 6.8.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the percentage of time that an individual micromirror is landed in the ON state versus the amount of time the same micromirror is landed in the OFF state. For example, a landed duty cycle of 100/0 indicates that the referenced pixel is in the ON state 100% of the time (and in the OFF state 0% of the time); whereas 0/100 would indicate that the pixel is in the OFF state 100% of the time. Likewise, 50/50 indicates that the pixel is ON for 50% of the time (and OFF for 50% of the time). Note that when assessing the landed duty cycle, the time spent switching from one state (ON or OFF) to the other state (OFF or ON) is considered negligible and is thus ignored. Since a micromirror can only be landed in one state or the other (ON or OFF), the two numbers (percentages) always add to 100. #### 6.8.2 Landed Duty Cycle and Useful Life of the DMD Knowing the long-term average landed duty cycle (of the end product or application) is important because subjecting all (or a portion) of the DMD micromirror array (also called the active array) to an asymmetric landed duty cycle for a prolonged period of time can reduce the DMD useful life. Note that it is the symmetry/asymmetry of the landed duty cycle that is of relevance. The symmetry of the landed duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a landed duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly asymmetrical. #### 6.8.3 Landed Duty Cycle and Operational DMD Temperature Operational DMD temperature and landed duty cycle interact to affect DMD useful life, and this interaction can be exploited to reduce the impact that an asymmetrical landed duty cycle has on the DMD useful life. This is quantified in the derating curve shown in \boxtimes 5-1. The importance of this curve is that: - · All points along this curve represent the same useful life. - All points above this curve represent lower useful life (and the further away from the curve, the lower the useful life). - All points below this curve represent higher useful life (and the further away from the curve, the higher the useful life). This curve specifies the maximum operating DMD temperature that the DMD should be operated at for a given long-term average landed duty cycle. #### 6.8.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application During a given period of time, the landed duty cycle of a given pixel follows from the image content being displayed by that pixel. *資料に関するフィードバック (ご意見やお問い合わせ) を送信* Copyright © 2024 Texas Instruments Incorporated For example, in the simplest case, when displaying pure-white on a given pixel for a given time period, that pixel operates under a 100/0 landed duty cycle during that time period. Likewise, when displaying pure-black, the pixel operates under a 0/100 landed duty cycle. Between the two extremes (ignoring for the moment color and any image processing that may be applied to an incoming image), the
landed duty cycle tracks one-to-one with the gray scale value, as shown in 表 6-1. | 表 6-1. Grayscale Value and Landed Duty Cycle | | | | | | |--|-------------------|--|--|--|--| | GRAYSCALE VALUE | LANDED DUTY CYCLE | | | | | | 0% | 0/100 | | | | | | 10% | 10/90 | | | | | | 20% | 20/80 | | | | | | 30% | 30/70 | | | | | | 40% | 40/60 | | | | | | 50% | 50/50 | | | | | | 60% | 60/40 | | | | | | 70% | 70/30 | | | | | | 80% | 80/20 | | | | | | 90% | 90/10 | | | | | | 100% | 100/0 | | | | | 表 6-1. Grayscale Value and Landed Duty Cycle Accounting for color rendition (but still ignoring image processing) requires knowing both the color intensity (from 0% to 100%) for each constituent primary color (red, green, and/or blue) for the given pixel as well as the color cycle time for each primary color, where "color cycle time" is the total percentage of the frame time that a given primary must be displayed in order to achieve the desired white point. Use 式 1 to calculate the landed duty cycle of a given pixel during a given time period. #### where - Red_Cycle_%, represents the percentage of the frame time that red is displayed to achieve the desired white point - Green_Cycle_% represents the percentage of the frame time that green is displayed to achieve the desired white point - Blue_Cycle_%, represents the percentage of the frame time that blue is displayed to achieve the desired white point For example, assume that the red, green, and blue color cycle times are 30%, 50%, and 20% respectively (in order to achieve the desired white point), then the landed duty cycle for various combinations of red, green, blue color intensities would be as shown in $\frac{1}{5}$ 6-2 and $\frac{1}{5}$ 6-3. 表 6-2. Example Landed Duty Cycle for Full-Color, Color Percentage | CYCLE PERCENTAGE | | | | | | |------------------|-----|-----|--|--|--| | RED GREEN BLUE | | | | | | | 30% | 50% | 20% | | | | 表 6-3. Example Landed Duty Cycle for Full-Color | S | LANDED DUTY | | | |-----|-------------|------|-------| | RED | GREEN | BLUE | CYCLE | | 0% | 0% | 0% | 0/100 | Product Folder Links: DLP472TP Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 27 表 6-3. Example Landed Duty Cycle for Full-Color (続 | SCALE VALUE LANDED DUTY | | | | | | |-------------------------|-------------|------------|-------|--|--| | 8 | SCALE VALUE | | | | | | RED | GREEN | GREEN BLUE | | | | | 100% | 0% | 0% | 50/50 | | | | 0% | 100% | 0% | 20/80 | | | | 0% | 0% | 100% | 30/70 | | | | 12% | 0% | 0% | 6/94 | | | | 0% | 35% | 0% | 7/93 | | | | 0% | 0% | 60% | 18/82 | | | | 100% | 100% | 0% | 70/30 | | | | 0% | 100% | 100% | 50/50 | | | | 100% | 0% | 100% | 80/20 | | | | 12% | 35% | 0% | 13/87 | | | | 0% | 35% | 60% | 25/75 | | | | 12% | 0% | 60% | 24/76 | | | | 100% | 100% | 100% | 100/0 | | | The last factor to account for in estimating the landed duty cycle is any applied image processing. Within the controller, the gamma function affects the landed duty cycle. Gamma is a power function of the form Output Level = A × Input Level Gamma, where A is a scaling factor that is typically set to 1. In the controller, gamma is applied to the incoming image data on a pixel-by-pixel basis. A typical gamma factor is 2.2, which transforms the incoming data as shown in \boxtimes 6-2. 図 6-2. Example of Gamma = 2.2 From \boxtimes 6-2, if the gray scale value of a given input pixel is 40% (before gamma is applied), then gray scale value will be 13% after gamma is applied. Therefore, it can be seen that since gamma has a direct impact displayed gray scale level of a pixel, it also has a direct impact on the landed duty cycle of a pixel. Consideration must also be given to any image processing which occurs before the controller. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Product Folder Links: DLP472TP English Data Sheet: DLPS247 # 7 Application and Implementation 注 以下のアプリケーション情報は、テキサス・インスツルメンツの製品仕様に含まれるものではなく、テキサス・インスツルメンツはその正確性も完全性も保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。また、お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。 ### 7.1 Application Information DMDs are spatial light modulators that reflect incoming light from an illumination source to one of two directions, with the primary direction being into a projection or collection optic. Each application is derived primarily from the optical architecture of the system and the format of the data coming into the DLPC8445 controller. The high tilt pixel in the bottom-illuminated DMD increases brightness performance and enables a smaller system footprint for thickness-constrained applications. Typical applications using the DLP472TP include mobile smart TVs and digital signage. #### 7.2 Typical Application The DLP472TP DMD, combined with DLPC8445 digital controller and a power management device, provides full 4K UHD resolution for bright, colorful display applications. See Z 7-1, which shows the system components needed along with the LED configuration of the DLP 0.47" 4K UHD chipset. The components include the DLP472TP DMD, the DLPC8445 display controller, and the DLPA3085 PMIC and LED driver. 図 7-1. Typical 4K UHD LED Application Diagram #### 7.2.1 Design Requirements Other core components of the display system include an illumination source, an optical engine for the illumination and projection optics, other electrical and mechanical components, and software. The type of illumination used and the desired brightness have a major effect on the overall system design and size. Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ) を送信 29 The display system uses the DLP472TP as the core imaging device and contains a 0.47-inch array of micromirrors. The DLPC8445 controller is the digital interface between the DMD and the rest of the system, taking digital input from the front-end receiver and driving the DMD over a high-speed interface. The DLPA3085 PMIC serves as a voltage regulator for the DMD, controller, and LED illumination functionality. #### 7.2.2 Detailed Design Procedure For a complete DLP system, an optical module or light engine is required that contains the DLP472TP DMD, associated illumination sources, optical elements, and necessary mechanical components. To ensure reliable operation, the DMD must always be used with the DLPC8445 display controller and the DLPA3085 PMIC driver. #### 7.2.3 Application Curve The typical LED-current-to-luminance relationship when LED illumination is used is shown in Z 7-2. 図 7-2. Luminance vs. Current ### 7.3 Temperature Sensor Diode The software application provides functions to configure the TMP411 to read the DLP472TP DMD temperature sensor diode. Use this data to incorporate additional functionality in the overall system design, such as adjusting illumination, fan speeds, and so on. All communication between the TMP411 and the DLPC8445 controller is completed using the I^2C interface. The TMP411 connects to the DMD through the pins outlined in 2000 4. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2024 Texas Instruments Incorporated # 8 Power Supply Recommendations The following power supplies are all required to operate the DMD: - V_{SS} - V_{BIAS} - V_{DD} - V_{DDI} - V_{OFFSET} - V_{RESET} DMD power-up and power-down sequencing is strictly controlled by the DLP display controller. #### 注意 For reliable operation of the DMD, the following power supply sequencing requirements must be followed. Failure to adhere to any of the prescribed power-up and power-down requirements may affect device reliability. See the DMD power supply sequencing requirements in \boxtimes 8-1. V_{BIAS} , V_{DD} , V_{DDI} , V_{OFFSET} , and V_{RESET} power supplies must be coordinated during power-up and power-down operations. Failure to meet any of the below requirements result in a significant reduction in the DMD reliability and lifetime. Common ground V_{SS} must also be connected. 表 8-1. Power Supply Sequence Requirements | SYMBOL | PARAMETER | DESCRIPTION | MIN | TYP | MAX | UNIT | |---------------------|----------------------|---|-----|-----|-----|------| | t _{DELAY} | Delay requirement | from V _{OFFSET} power up to V _{BIAS} power up | 2 | | | ms | | V _{OFFSET} | Supply voltage level | at beginning of power-up sequence delay ⁽¹⁾ | | | 6 | V | | V _{BIAS} | Supply voltage level | at end of power-up sequence delay ⁽¹⁾ | | | 6 | V | ⁽¹⁾ See 🗵 8-1, Power-Up Sequence Delay Requirement. #### 8.1 DMD Power Supply Power-Up Procedure - During power-up, V_{DD} and V_{DDI} must always start and settle before V_{OFFSET} plus Delay1 specified in 表 8-2, V_{BIAS}, and V_{RESET} voltages are applied to the DMD. - During power-up, it is a strict requirement that the voltage difference between V_{BIAS} and V_{OFFSET} must be within the specified limit shown in セクション 5.4. - During power-up, there is no requirement for the relative timing of V_{RESET} with respect to V_{BIAS}. - Power supply slew rates during power-up are flexible, provided that the transient voltage levels follow the requirements specified in セクション 5.1. in セクション 5.4. and in 図 8-1. - During power-up, LVCMOS input pins must not be driven high until after V_{DD} have settled at operating voltages listed in セクション 5.4. ### 8.2 DMD Power Supply Power-Down Procedure - During power-down, V_{DD} and V_{DDI} must be supplied until after V_{BIAS}, V_{RESET}, and V_{OFFSET} are discharged to within the specified limit of ground. See ₹ 8-2. - During power-down, it is a strict requirement that the voltage difference between V_{BIAS} and V_{OFFSET} must be within the specified limit shown in セクション 5.4. - During power-down, there is no requirement for the relative timing of V_{RESET} with respect to V_{BIAS}. - Power supply slew rates during power-down are flexible, provided that the transient voltage levels follow the requirements specified in セクション 5.1, in セクション 5.4, and in 図 8-1. Product Folder Links: DLP472TP • During
power-down, LVCMOS input pins must be less than specified in セクション 5.4. Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 31 - A. See セクション 4 for the Pin Functions Table. - B. To prevent excess current, the supply voltage difference |V_{OFFSET} V_{BIAS}| must be less than the specified limit in セクション 5.4. - C. To prevent excess current, the supply difference |V_{BIAS} V_{RESET}| must be less than the specified limit in セクション 5.4. - D. V_{BIAS} should power up after V_{OFFSET} has powered up, per the Delay1 specification in 表 8-2. - E. DLP controller software initiates the global V_{BIAS} command. - F. After the DMD micromirror park sequence is complete, the DLP controller software initiates a hardware power-down that activates DMD_EN_ARSTZ and disables V_{BIAS}, V_{RESET}, and V_{OFFSET}. - G. Under power-loss conditions where emergency DMD micromirror park procedures are being enacted by the DLP controller hardware DMD_EN_ARSTZ will go low. - H. V_{DD} must remain high until after V_{OFFSET} , V_{BIAS} , and V_{RESET} go low, per Delay2 specification in $\frac{1}{8}$ 8-2. - I. To prevent excess current, the supply voltage delta $|V_{DDI} V_{DD}|$ must be less than the specified limit in 29932×5.4 . ### 図 8-1. DMD Power Supply Requirements #### 表 8-2. DMD Power-Supply Requirements | PARAMETER | DESCRIPTION | MIN | NOM | MAX | UNIT | |-----------------------|--|-----|-----|-----|------| | Delay1 ⁽¹⁾ | Delay from V_{OFFSET} settled at recommended operating voltage to V_{BIAS} and V_{RESET} power up | 1 | 2 | | ms | | | Delay V_{DD} must be held high from V_{OFFSET} , V_{BIAS} , and V_{RESET} powering down. | 50 | | | μs | (1) See 🗵 8-1. English Data Sheet: DLPS247 # 9 Layout # 9.1 Layout Guidelines The DLP472TP DMD connects to a PCB or a flex circuit using an interposer. For additional layout guidelines regarding length matching and impedance, see the DLPC8445 controller data sheet. For a detailed layout example, refer to the layout design files. Some layout guidelines for routing to the DLP472TP DMD are: - Match lengths for the LS_WDATA and LS_CLK signals, as specified in the DLPC8445 controller data sheet. - Match lengths for the HS bus differential signals as specified in the DLPC8445 controller data sheet. - Minimize vias, layer changes, and turns for the HS bus signals. Refer to 9-1. - Supply capacitance needs can vary per design. Refer to the layout design file for a general guideline. Supplies need to be verified on the design to ensure all supplies are operating in the recommended operating range at the DMD. 33 Product Folder Links: DLP472TP # 9.2 Layout Example 図 9-1. Routing Example # 10 Device and Documentation Support # 10.1 サード・パーティ製品に関する免責事項 サード・パーティ製品またはサービスに関するテキサス・インスツルメンツの出版物は、単独またはテキサス・インスツルメン ツの製品、サービスと一緒に提供される場合に関係なく、サード・パーティ製品またはサービスの適合性に関する是認、サ ード・パーティ製品またはサービスの是認の表明を意味するものではありません。 #### 10.2 Device Support ### 10.2.1 Device Nomenclature 図 10-1. Part Number Description #### 10.2.2 Device Markings The device marking includes both human-readable information and a 2-dimensional matrix code. The humanreadable information is described in 🗵 10-2 and includes the legible character string GHJJJJK 472TPFQY. GHJJJJK is the lot trace code and 472TPFQY is the device marking. Example: GHJJJJK DLP472TPFQY 図 10-2. DMD Marking Locations English Data Sheet: DLPS247 ### 10.3 Documentation Support #### 10.3.1 Related Documentation The following documents contain additional information related to the chipset components used with the DMD. - DLPC8445 High Resolution Controller Data Sheet - DLPA3085 PMIC and High-Current LED Driver IC Data Sheet ## 10.4 ドキュメントの更新通知を受け取る方法 ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。 #### 10.5 Trademarks DLP® is a registered trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 #### 10.6 静電気放電に関する注意事項 この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。 ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。 #### 10.7 用語集 テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。 # 11 Revision History 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 | DATE REVISION | | NOTES | | | | | |---------------|---|-----------------|--|--|--|--| | August 2024 | * | Initial Release | | | | | 資料に関するフィードバック (ご意見やお問い合わせ) を送信 English Data Sheet: DLPS247 # 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 37 Product Folder Links: DLP472TP ### 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated www.ti.com 2-Jun-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|--------|---------------|------------------|--------------------------|---------|-------------------------------|----------------------------|--------------|------------------| | | | | | | | (4) | (5) | | | | DLP472TPFQY | Active | Production | CLGA (FQY) 174 | 80 JEDEC
TRAY (5+1) | In-Work | NI/AU | N/A for Pkg Type | 0 to 70 | | | DLP472TPFQY.B | Active | Production | CLGA (FQY) 174 | 80 JEDEC
TRAY (5+1) | In-Work | NI/AU | N/A for Pkg Type | 0 to 70 | | | XDLP472TPFQY.B | Active | Preproduction | CLGA (FQY) 174 | 80 JEDEC
TRAY (5+1) | Yes | NI/AU | N/A for Pkg Type | 0 to 70 | | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. ### 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web
ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated