
SCLS608A - MARCH 2005 - REVISED APRIL 2008

- Qualified for Automotive Applications
- Schmitt-Trigger Action on Each Input With No External Components
- Hysteresis Voltage Typically 0.9 V at V_{DD} = 5 V and 2.3 V at V_{DD} = 10 V
- Noise Immunity Greater Than 50%
- No Limit on Input Rise and Fall Times
- Standardized, Symmetrical Output Characteristics
- 100% Tested for Quiescent Current at 20 V
- Maximum Input Current of 1µA at 18 V Over Full Package Temperature Range, 100 nA at 18 V and 25°C

- 5-V, 10-V, and 15-V Parametric Ratings
- ESD Protection Level Per AEC-Q100 Classification
 - 2000-V (H2) Human-Body Model
 - 200-V (M3) Machine-Model
 - 1000-V (C5) Charge-Device Model
- Applications
 - Wave and Pulse Shapers
 - High-Noise-Environment Systems
 - Monostable Multivibrators
 - Astable Multivibrators
 - NAND Logic

description/ordering information

The CD4093B consists of four Schmitt-trigger circuits. Each circuit functions as a two-input NAND gate, with Schmitt-trigger action on both inputs. The gate switches at different points for positive- and negative-going signals. The difference between the positive voltage (V_P) and the negative voltage (V_N) is defined as hysteresis voltage (V_H) (see Figure 2).

The CD4093B is available in 14-lead small-outline plastic package (M96) and 14-lead thin shrink small-outline packages (PWR suffixes).

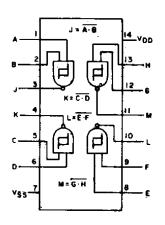
ORDERING INFORMATION[†]

T _A	PAC	CKAGE [‡]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 125°C	SOIC (M)	Reel of 2000	CD4093BQM96Q1	CD4093BQ

[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com.

[‡] Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2008, Texas Instruments Incorporated

SCLS608A - MARCH 2005 - REVISED APRIL 2008

functional block diagram

logic diagram

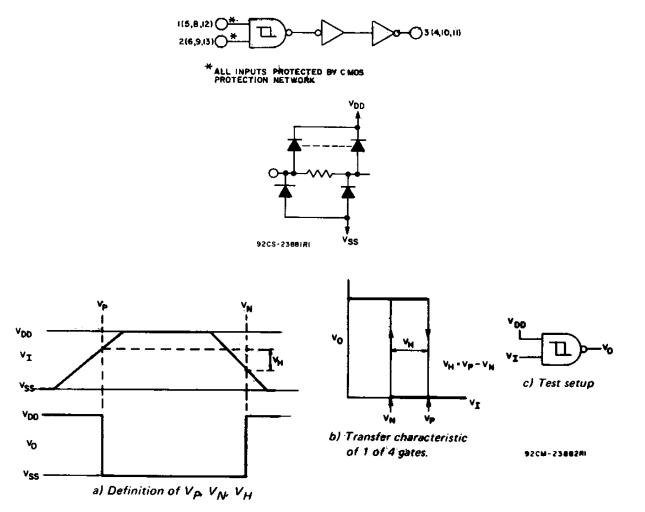
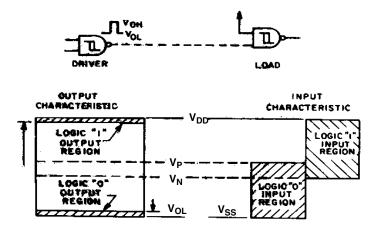
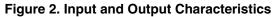




Figure 1. Hysteresis Definition, Characteristic, and Test Setup

SCLS608A - MARCH 2005 - REVISED APRIL 2008

TYPICAL CHARACTERISTICS

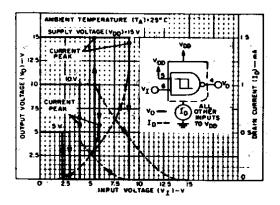


Figure 3. Typical Current and Voltage Transfer Characteristics

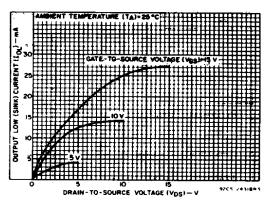


Figure 5. Typical Output Low (Sink) Current Characteristics

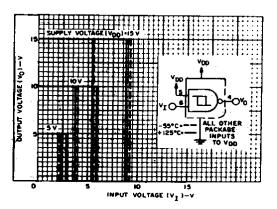
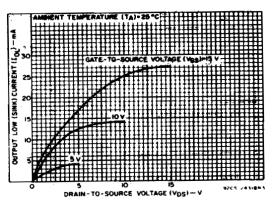



Figure 4. Typical Voltage Transfer Characteristics as a Function of Temperature

SCLS608A - MARCH 2005 - REVISED APRIL 2008

TYPICAL CHARACTERISTICS

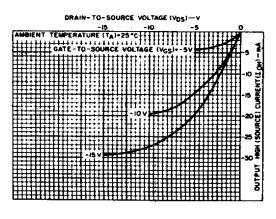


Figure 7. Typical Output High (Source) Current Characteristics

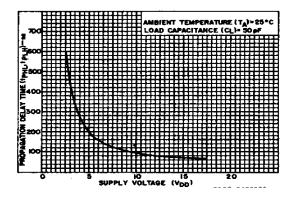


Figure 9. Typical Propagation Delay Time vs Supply Voltage

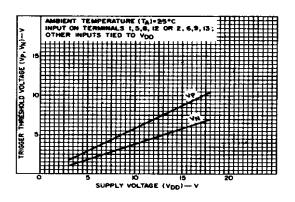


Figure 11. Typical Trigger Threshold Voltage vs V_{DD}

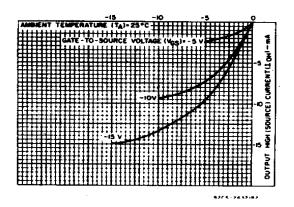
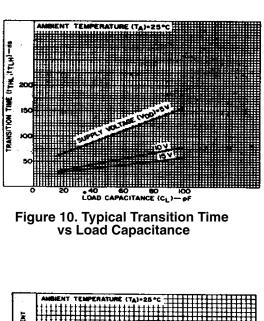



Figure 8. Minimum Output High (Source) Current Characteristics

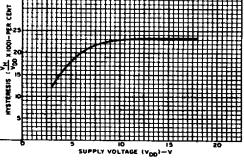


Figure 12. Typical Percent Hysteresis vs Supply Voltage

SCLS608A - MARCH 2005 - REVISED APRIL 2008

TYPICAL CHARACTERISTICS

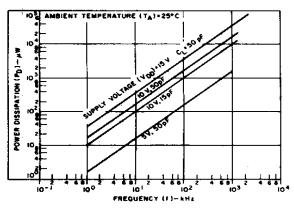


Figure 13. Typical Power Dissipation vs Frequency Characteristics

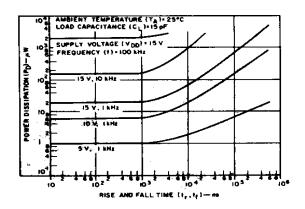
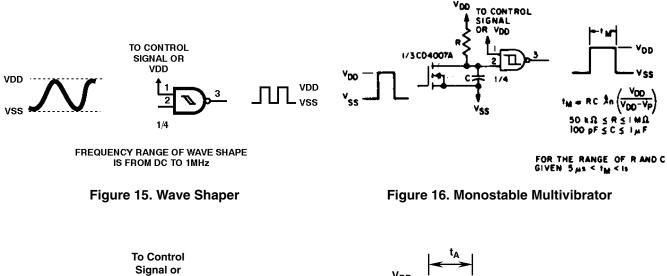
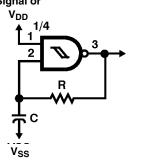
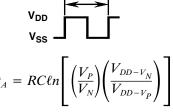
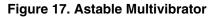





Figure 14. Typical Power Dissipation vs Rise and Fall Times



 $\begin{array}{lll} & 50 \ k\Omega \leq \ R \leq \ 1 \ M\Omega \\ & 100 \ pF \leq \ C \ \leq \ 1 \ \mu F \\ & For the \ Range \ of \ R \ and \ C \\ & Given \ 2 \ ms < t_A < 0.4 \ s \end{array}$

SCLS608A - MARCH 2005 - REVISED APRIL 2008

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

DC supply voltage range, V _{DD}	
Input voltage range, V _I , all inputs	
DC input current, any one input	±10 mA
Package thermal impedance, θ_{JA} (see Note 1)	
Device dissipation per output transistor for T _A , all package types	100 mW
Operating temperature range, T _A	–40°C to 125°C
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions[‡]

		MIN	MAX	UNIT
V _{CC}	Supply voltage range (T_A = full package temperature range)	3	18	V

[‡] For maximum reliability, nominal operating conditions should be selected so that operation is always within the given range.

SCLS608A - MARCH 2005 - REVISED APRIL 2008

static electrical characteristics

	CC	ONDITIO	NS	LIMITS AT INDICATED TEMPERATURES (°C)					S (°C)			
CHARACTERISTIC	vo	Vi	V _{DD}	40	0-	105		25		UNIT		
	(V)	(V)	(V)	-40	85	125	MIN	TYP [†]	MAX			
		0,5	5	1	30	30		0.02	1			
		0,10	10	2	60	60		0.02	2			
Quiescent device current, I _{DD} max		0,15	15	4	120	120		0.02	4	μA		
		0,20	20	20	600	600		0.04	20			
		А	5	2.2	2.2	2.2	2.2	2.9				
		А	10	4.6	4.6	4.6	4.6	5.9				
		А	15	6.8	6.8	6.8	6.8	8.8		.,		
Positive trigger theshold voltage, V _P min		В	5	2.6	2.6	2.6	2.6	3.3		V		
		В	10	5.6	5.6	5.6	5.6	7				
		В	15	6.3	6.3	6.3	6.3	9.4				
		А	5	3.6	3.6	3.6		2.9	3.6			
		А	10	7.1	7.1	7.1		5.9	7.1			
N/		Α	15	10.8	10.8	10.8		8.8	10.8	v		
V _P max		В	5	4	4	4		3.3	4			
		В	10	8.2	8.2	8.2		7	8.2			
		В	15	12.7	12.7	12.7		9.4	12.7			
		А	5	0.9	0.9	0.9	0.9	1.9		v		
		А	10	2.5	2.5	2.5	2.5	3.9				
		А	15	4	4	4	4	5.8				
Negative trigger threshold voltage, V_N min		В	5	1.4	1.4	1.4	1.4	2.3				
		В	10	3.4	3.4	3.4	3.4	5.1				
		В	15	4.8	4.8	4.8	4.8	7.3				
		А	5	2.8	2.8	2.8		1.9	2.8			
		А	10	5.2	5.2	5.2		3.9	5.2			
		А	15	7.4	7.4	7.4		5.8	7.4			
V _N max		В	5	3.2	3.2	3.2		2.3	3.2	V		
		В	10	6.6	6.6	6.6		5.1	6.6			
		В	15	9.6	9.6	9.6		7.3	9.6			
		А	5	0.3	0.3	0.3	0.3	0.9				
		Α	10	1.2	1.2	1.2	1.2	2.3				
		А	15	1.6	1.6	1.6	1.6	3.5				
Hysteresis voltage, V _H min		В	5	0.3	0.3	0.3	0.3	0.9		V		
		В	10	1.2	1.2	1.2	1.2	2.3				
		В	15	1.6	1.6	1.6	1.6	3.5				
		А	5	1.6	1.6	1.6		0.9	1.6			
		А	10	3.4	3.4	3.4		2.3	3.4			
		А	15	5	5	5		3.5	5			
V _H max		В	5	1.6	1.6	1.6		0.9	1.6	V		
		В	10	3.4	3.4	3.4		2.3	3.4			
		В	15	5	5	5		3.5	5			

NOTES: A. Inputs on terminals 1, 5, 8, 12 or 2, 6, 9, 13; other inputs to V_{DD} . B. Inputs on terminals 1 and 2, 5 and 6, 8 and 9, or 12 and 13; other inputs to V_{DD} .

SCLS608A - MARCH 2005 - REVISED APRIL 2008

static electrical characteristics (continued)

	co	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)					
CHARACTERISTIC	Vo	Vi	V _{DD}				25			UNIT
	(V)		-40	85	125	MIN	TYP [†]	MAX		
	0.4	0,5	5	0.61	0.42	0.36	0.51	1		mA
Output low (sink) current, I _{OL} min	0.5	0,10	10	1.5	1.1	0.9	1.3	2.6		
	1.5	0,15	15	4	2.8	2.4	3.4	6.8		
	4.6	0,5	5	-0.61	-0.42	-0.36	-0.51	-1		
Output high (course) ourseast la sein	2.5	0,5	5	-1.8	-1.3	-1.15	-1.6	-3.2		mA
Output high (source) current, I _{OH} min	9.5	0,10	10	-1.5	-1.1	-0.9	-1.3	-2.6		
	13.5	0,15	15	-4	-2.8	-2.4	-3.4	-6.8		
		0,5	5	0.05	0.05	0.05		0	0.05	v
Output voltage low level, V _{OL} max		0,10	10	0.05	0.05	0.05		0	0.05	
		0,15	15	0.05	0.05	0.05		0	0.05	
		0,5	5	4.95	4.95	4.95	4.95	5		v
Output voltage high level, V _{OH} min		0,10	10	9.95	9.95	9.95	9.95	10		
		0,15	15	14.95	14.95	14.95	14.95			
Input current, I _{IN} max		0,18	18	±0.1	±1	±1		±10 ⁻⁵	±0.1	μA

dynamic electrical characteristics

 T_{A} = 25°C, input $t_{r},\,t_{f}$ = 20 ns, C_{L} = 50 pF, R_{L} = $\,200\;k\Omega$

	TEST		LIMITS			
CHARACTERISTIC	CONDITIONS	$V_{DD}(V)$	MIN	TYP	MAX	UNIT
		5		190	380	
Propagation delay time, t _{PHL} , t _{PLH}		10		90	180	ns
		15		65	130	
		5		100	200	
Transition time, t _{THL} , t _{TLH}		10		50	100	ns
		15		40	80	
Input capacitance, CIN	Any Input			5	7.5	pF

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
CD4093BQM96G4Q1	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CD4093BQ
CD4093BQM96G4Q1.A	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CD4093BQ
CD4093BQM96Q1	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CD4093BQ
CD4093BQM96Q1.A	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CD4093BQ

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD4093B-Q1 :

23-May-2025

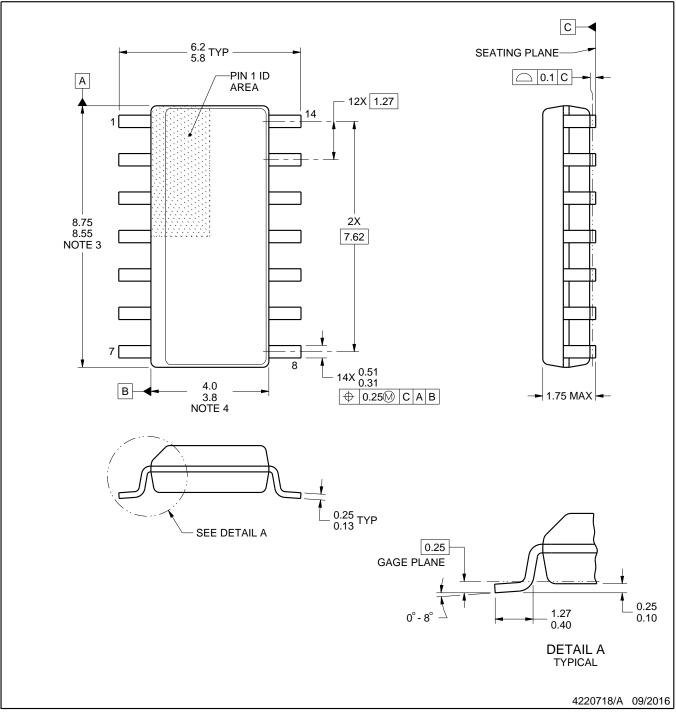
• Catalog : CD4093B

• Military : CD4093B-MIL

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

Military - QML certified for Military and Defense Applications


D0014A

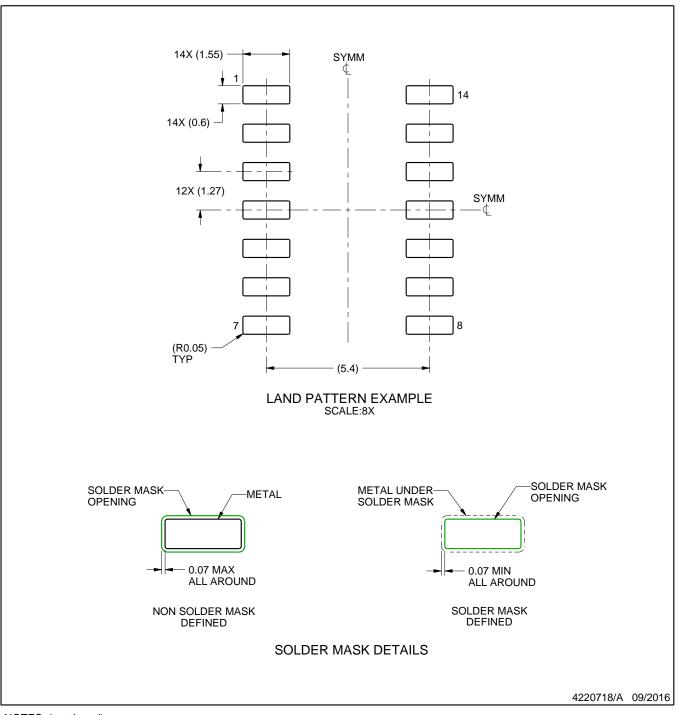
PACKAGE OUTLINE

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
- 5. Reference JEDEC registration MS-012, variation AB.



D0014A

EXAMPLE BOARD LAYOUT

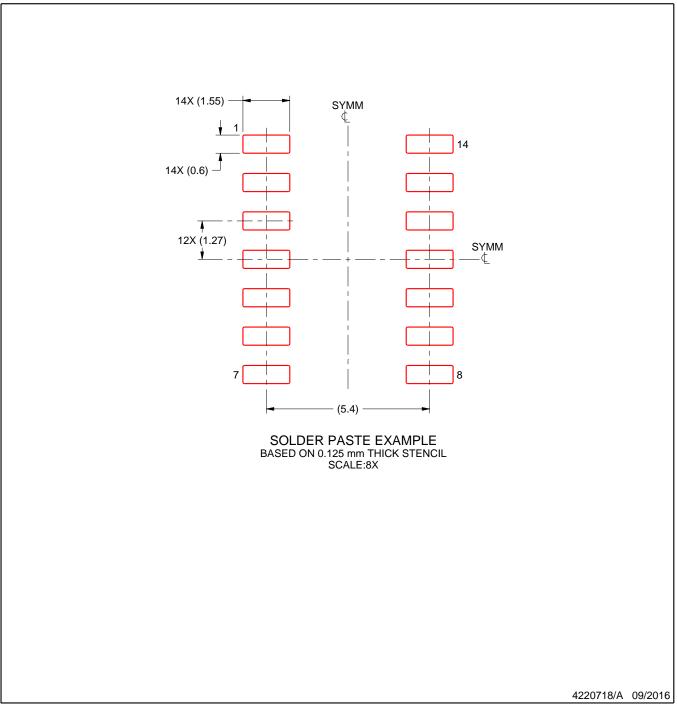
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



D0014A

EXAMPLE STENCIL DESIGN

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated