AFE7901

12GSPS DAC と 3GSPS ADC 搭載、AFE7901 4T4R RF サンプリング AFE

1 特長

- データシート全体のご請求
- クワッド RF サンプリング 12GSPS 送信 DAC
- クワッド RF サンプリング 3GSPS 受信 ADC
- TX または RX ごとの最大 RF 信号帯域幅:400MHz
- RF 周波数範囲:5MHz~7.4GHz
- デジタル ステップ アッテネータ (DSA):
 - TX:40dB レンジ、0.125dB ステップ
 - RX:25dB レンジ、0.5dB ステップ
- TXとRX向けにシングルバンドまたはデュアルバンド DUC または DDC を搭載
- TX または RX ごとに 16 個の NCO
- DAC もしくは ADC クロック用の内部 PLL もしくは VCO、または DAC もしくは ADC サンプル レートでの 外部クロックを選択可能
- Sysref アライメント検出器
- SerDes データ インターフェイス:
 - JESD204B、JESD204C 適合
 - 8 つの SerDes トランシーバ (最大 29.5Gbps)
 - サブクラス 1 のマルチデバイス同期
- パッケージ: 17mm × 17mm FCBGA、0.8mm ピッチ

2 アプリケーション

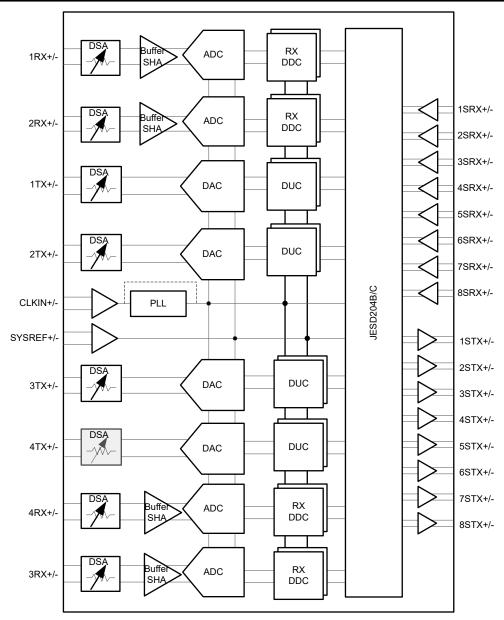
- ・レーダー
- 追尾フロント・エンド
- 防衛無線
- 戦術通信網
- ワイヤレス通信テスト

3 説明

AFE7901 は、 高性能で広帯域のマルチチャネル トランシ ーバで、4 つの RF サンプリング トランスミッタ チェーンと 4 つの RF サンプリング レシーバ チェーンを内蔵していま す。このデバイスは、最大 7.4GHz で動作するため、追加 の周波数変換段を必要とせず、L、S、Cバンドの周波数 範囲について直接 RF サンプリングが可能です。この密 度と柔軟性の向上により、多くのチャネル数を持つマルチ ミッションシステムが可能になります。

TX 信号パスは、1 つまたは 2 つのデジタル アップ コンバ ータを使用して、TX パスごとに最大 400MHz の信号帯 域幅を実現する補間およびデジタル アップコンバージョン オプションをサポートしています。 DUC の出力は、2 次ナ イキスト動作を拡張する混在モード出力方式で 12GSPS の DAC (D/A コンバータ) を駆動します。 DAC 出力は、 40dB レンジ、1dB アナログ ステップ、0.125dB デジタル ステップの可変ゲイン アンプ (TX DSA) を内蔵していま

各レシーバ チェーンは、3GSPS の ADC (A/D コンバー タ) に接続された 25dB レンジの DSA (デジタル ステップ アッテネータ)を備えています。各レシーバチャネルは、 外部または内部の自律的な AGC (自動ゲイン制御) を補 助するためのアナログピーク電力検出器とさまざまなデジ タル電力検出器、およびデバイスの信頼性を確保するた めの RF 過負荷検出器を備えています。柔軟なデシメー ション オプションにより、1 つまたは 2 つのデジタル ダウ ン コンバータ (DDC) を使用して、最大 400MHz の信号 帯域幅を最適化できます。


パッケージ情報

部品番号	パッケージ ⁽¹⁾	パッケージ サイズ ⁽²⁾
AFE7901	FC-BGA	17mm × 17mm

- (1) 詳細については、「*メカニカル、パッケージ、および注文情報」*を参 照してください。
- パッケージサイズ (長さ×幅) は公称値であり、該当する場合はピ ンも含まれます。

English Data Sheet: SBASAO5

機能ブロック図

目次

1 特長	1	5.9 電源の電気的特性	33
2 アプリケーション	1	5.10 タイミング要件	35
3 説明	1	5.11 スイッチング特性	36
4 ピン構成および機能	4	5.12 代表的特性	37
5 仕様	11	6 デバイスおよびドキュメントのサポート	157
5.1 絶対最大定格	11	6.1ドキュメントの更新通知を受け取る方法	157
5.2 ESD 定格	11	6.2 サポート・リソース	157
5.3 推奨動作条件	12	6.3 商標	157
5.4 熱に関する情報 (AFE79xx)	12	6.4 静電気放電に関する注意事項	157
5.5 トランスミッタの電気的特性	13	6.5 用語集	157
5.6 RF ADC の電気的特性	23	7 改訂履歴	157
5.7 PLL / VCO / クロックの電気的特性	29	8 メカニカル、パッケージ、および注文情報	157
5.8 デジタルの電気的特性	31		

4 ピン構成および機能

	А	В	с	D	E	,	G	н	J	к	L	М	N	P	R	т	U	v	w	Y	
20	VDD1P2 TXCLK	2TXOUT+	2TXOUT-	VDD1P2 TXCLK	VDD1P8TX	1ТХОЦТ-	1TXOUT+	VDD1P8TX	VSSTX	VDD1P2 PLLCLK REF	VDD1P8 PLLVCO	VSSTX	VDD1P8TX	зтхоит+	зтхоит-	VDD1P8TX	VDD1P2 TXCLK	4TXOUT-	4TXOUT+	VDD1P2 TXCLK	20
19	VSSTXCLK	VSSTX	VSSTX	VSSTXCLK	VSSTX	VSSTX	VSSTX	VSSTX	PLL	SYSREF+	SYSREF-	VSSPLL	VSSTX	VSSTX	VSSTX	VSSTX	VSSTXCLK	VSSTX	VSSTX	VSSTXCLK	19
									LDOUT	VDD1P2	VDD1P2	VSSPLL									-
18	VSSFBCLK	VSSFBCLK	VSSTX	VSSTX	VSSTX	VSSTX	VSSTX	VSSTX	CLKREF	PLLCLK REF	PLLCLK REF	CLKREF	VSSTX	VSSTX	VSSTX	VSSTX	VSSTX	VSSTX	VSSFBCLK	VSSFBCLK	18
17	VDD1P8 FBCLK	VSSFB	VSSTX	VDD1P2 TXENC	VSSTXENC	VSSTX	VDD1P8 TXDAC	VDD1P8 TXDAC	VSS PLLRXCML	REFCLK+	REFCLK-	VSS PLLRXCML	VDD1P8 TXDAC	VDD1P8 TXDAC	VSSTX	VSSTXENC	VDD1P2 TXENC	VSSTX	VSSFB	VDD1P8 FBCLK	17
16	NC	VSSFB	VDD1P8FB	VDD1P2FB	VSSTXENC	GTR_7 _SPIB2SEN	GTR_17 _SPIB1CLK	GTR_14 _SPIB1SEN	V SSPLL FBCML	VDD1P8PLL	VDD1P8PLL	VSSPLL FBCML	GTL_7 _ALARM1	GTL_15 _GPIO3	GTL_18 _SPIASDO	VSSTXENC	VDD1P2FB	VDD1P8FB	VSSFB	NC	16
15	NC	VSSFB	VDD1P8FB	VDD1P2FB	VDD1P2FB	GTR_15 _RESETZ	GTR_13 _TRST	GTR_3 TXTDD1	GTR_9 SPIB2SDO	VDD1P2 PLLRXCML	VDD1P2 PLLFBCML	GTL_3 _AUX0	GTL_2 _ALARM2	GTL_4 SPIACLK	GTL_6 _RXTDD2	VDD1P2FB	VDD1P2FB	VDD1P8FB	VSSFB	NC	15
	VDD1P8	VSSFB	VSSFB			GTR_5	GTR_18	GTR_4	GTR_2	GTR_8	GTL_8	GTL_9	GTL_17	GTL_1	GTL_5			VSSFB	VSSFB	VDD1P8	
14	FBCLK	VSSFB	VSSFB	VDD1P2FB	VDD1P2RX	_TDO	_TDI	_TCLK	_SPIB2CLK	_FBTDD1	_AUX1	_AUX2	_SPIA SDIO	SPEEP	_SPIA SEN	VDD1P2RX	VDD1P2FB	VSSFB	VSSFB	FBCLK	14
13	VDD1P2RX	VSSRX	VSSRX	VSSRX	VDD1P2RX	VDD1P2RX	GTR_0 _RXGSWAP	SPIB2 _SDIO	GND_ESD	DVDD0P9	DV DD0P9	GND_ESD	GTL_0 _GPIO2	GTL_11 _AUX3	VDD1P2RX	VDD1P2RX	VSSRX	VSSRX	VSSRX	VDD1P2RX	13
12	1RXIN+	VSSRX	VSSRX	VSSRX	VDD1P2RX	VDD1P2RX	GTR_11 _SPIB1 _SDO	GTR_1 _GPIO1	DGND	DVDD0P9	DV DD0P9	DGND	GTL_13 _AUX4	GTL_12 _BIST1	VDD1P2RX	VDD1P2RX	VSSRX	VSSRX	VSSRX	3RXIN+	12
11	1RXIN-	VSSRX	VDD1P8RX	VDD1P8RX	VDD1P2RX	VDD1P2RX	GTR_10 _TMS	GTR_12 _SPIB1 _SDIO	DGND	DVDD0P9	DVDD0P9	DGND	GTL_14 _AUX5	GTL_10 _BIST0	VDD1P2RX	VDD1P2RX	VDD1P8RX	VDD1P8RX	VSSRX	3RXIN-	11
10	VDD1P2RX	VSSRX	VDD1P8RX	VDD1P8RX	VDD1P8RX	VDD1P8RX	GBR_6 _RXBLNB	GBR_5 _FSPIDB	DGND	DVDD0P9	DVDD0P9	DGND	GBL_5 _GPIO15	GBL_6 _GPIO16	VDD1P8RX	VDD1P8RX	VDD1P8RX	VDD1P8RX	VSSRX	VDD1P2RX	10
	VDD1P8						GBR_9	GBR_7					GBL_7	GBL_9						VDD1P8	
9	RXCLK	VSSRXCLK	VDD1P8RX	VDD1P8RX	VDD1P8RX	VDD1P8RX	_SYNCB _OUT0-	_SYNCB _OUT0+	DGND	DVDD0P9	DV DD0P9	DGND	_SYNCB _OUT1+	_SYNCB _OUT1-	VDD1P8RX	VDD1P8RX	VDD1P8RX	VDD1P8RX	VSSRXCLK	RXCLK	9
8	2RXIN-	VSSRX	VSSRXCLK	GND_ESD	GBR_10 _FSPICLKA	VDD1P8RX	GBR_13 _GPIO8	GBR_8 _SYNCB _IN0+	DGND	DVDD0P9	DV DD0P9	DGND	GBL_8 _SYNCB _IN1+	GBL_13 _GPIO19	VDD1P8RX	GBL_10 _GPIO17	GND_ESD	VSSRXCLK	VSSRX	4RXIN-	8
7	2RXIN+	VSSRX	VSSRXCLK	GND_ESD	GBR_11 _RXTDD1	GBR_14 _FSPIDA	GBR_12 _GPIO7	GBR_17 _SYNCB _IN0-	DGND	DVDD0P9	DV DD0P9	DGND	GBL_17 _SYNCB _IN1-	GBL_12 _FSPICLKD	GBL_14 _FSPIDD	GBL_11 _GPIO18	GND_ESD	VSSRXCLK	VSSRX	4RXIN+	7
6	VDD1P8 RXCLK	VSSRXCLK	GBR_0 _GPIO4	GBR_19 _GPIO12	GBR_16 _GPIO10	GBR_1 _GPIO5	GBR_15 _GPIO9	VDD1P8 GPIO	DGND	DVDD0P9	DVDD0P9	DGND	VDD 1P8 GPIO	GBL_15 _FSPIDC	GBL_1 _FBTDD2	GBL_16 _RXCLNB	GBL_19 _GPIO20	GBL_0 _GPIO13	VSSRXCLK	VDD1P8 RXCLK	6
5	VSSRXCLK	VSSRXCLK	GBR_18 GPIO11	GBR_2 _RXALNB	GBR_4 GPI06	GBR_3 _FSPICLKB	IFORCE	VSSGPIO	DGND	DVDD0P9	DV DD0P9	DGND	VSSGPIO	VSENSE	GBL_3 _GPIO14	GBL_4 _RXDLNB	GBL_2 _FSPICLKC	GBL_18 TXTDD2	VSSRXCLK	VSSRXCLK	5
																					-
4	VSST	VSST	1STX+	VDDT0P9	2STX+	VDDA1P8	3STX-	VDDA1P8	4STX-	VSST	VSST	5STX-	VDDA 1P8	6STX-	V DDA 1P8	7STX+	V DD T0P9	8STX+	VSST	VSST	4
3	1SRX+	VSST	1STX-	V DD T0P9	2STX-	VDDA1P8	3STX+	VDDA 1P8	4STX+	SERDES _AMUX1	SERDES _AMUX2	5STX+	VDDA 1P8	6STX+	V DDA 1P8	7STX-	VDDT0P9	8STX-	VSST	8SRX+	3
2	1SRX-	VSST	VSST	VSST	VSST	VSST	VSST	VSST	VSST	DVDD0P9	DV DD0P9	VSST	VSST	VSST	VSST	VSST	VSST	VSST	VSST	8SRX-	2
1	VSST	2SRX+	2SRX-	VSST	3SRX+	3SRX-	VSST	4SRX+	4SRX-	VSST	VSST	5SRX-	5SRX+	VSST	6SRX-	6SRX+	VSST	7SRX-	7SRX+	VSST	1
l	A	В	С	D	E	F	G	н	J	К	L L	М	N	P	R	т	U	v	w	Y	J
	TX Ou	utputs																			
	Clock																				
	Serdes Tra	nsm itters																			
	MISC /																				

図 4-1. FCBGA パッケージ、400 ピン (上面図)

表 4-1. ピンの機能

State of the state								
ボール名	ボール番号	種類(1)	説明					
RF インターフェイス								
NC	A15、A16、Y15、Y16	I	接続しないでください。					
1RXIN-	A11	I	レシーバ チャネル 1 RF 入力:負端子。 未使用の RX 入力はオープンのままにできます。					
1RXIN+	A12 I		レシーバ チャネル 1 RF 入力:正端子。 未使用の RX 入力はオープンのままにできます。					

資料に関するフィードバック (ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AFE7901

	2X 4-1	. ヒンの機能	
ボール名	ボール番号	種類(1)	説明
2RXIN-	A8	I	レシーバ チャネル 2 RF 入力: 負端子。 未使用の RX 入力はオープンのままにできます。
2RXIN+	A7	I	レシーバ チャネル 2 RF 入力:正端子。 未使用の RX 入力はオープンのままにできます。
3RXIN-	Y11	I	レシーバ チャネル 3 RF 入力:負端子。
3RXIN+	Y12	I	レシーバ チャネル 3 RF 入力:正端子。未使用の RX 入力はオープンのままにできます。
4RXIN-	Y8	I	レシーバ チャネル 4 RF 入力: 負端子。 未使用の RX 入力はオープンのままにできます。
4RXIN+	Y7	I	レシーバ チャネル 4 RF 入力:正端子。 未使用の RX 入力はオープンのままにできます。
1TXOUT-	F20	0	トランスミッタ チャネル 1 RF 出力:負端子。 未使用時は 1.8V に接続します。
1TXOUT+	G20	0	トランスミッタ チャネル 1 RF 出力:正端子。 未使用時は 1.8V に接続します。
2TXOUT-	C20	0	トランスミッタ チャネル 2 RF 出力:負端子。 未使用時は 1.8V に接続します。
2TXOUT+	B20	0	トランスミッタ チャネル 2 RF 出力:正端子。 未使用時は 1.8V に接続します。
3TXOUT-	R20	0	トランスミッタ チャネル 3 RF 出力:負端子。 未使用時は 1.8V に接続します。
3TXOUT+	P20	0	トランスミッタ チャネル 3 RF 出力:正端子。 未使用時は 1.8V に接続します。
4TXOUT-	V20	0	トランスミッタ チャネル 4 RF 出力:負端子。 未使用時は 1.8V に接続します。
4TXOUT+	W20	0	トランスミッタ チャネル 4 RF 出力:正端子。 未使用時は 1.8V に接続します。
差動クロック入力		•	
REFCLK-	L17	I	基準クロック入力:負端子
REFCLK+	K17	I	基準クロック入力:正端子
SYSREF-	L19	I	SYSREEF 入力:負端子
SYSREF+	K19	I	SYSREEF 入力:正端子
SerDes CML インターフェイス			
1SRX-	A2	I	CML SerDes インターフェイス レーン 1 入力:負端子。 未使用の SerDes 入力はオープンのままにできます。
1SRX+	А3	I	CML SerDes インターフェイス レーン 1 入力:正端子。 未使用の SerDes 入力はオープンのままにできます。
2SRX-	C1	I	CML SerDes インターフェイス レーン 2 入力:負端子。 未使用の SerDes 入力はオープンのままにできます。
2SRX+	B1	I	CML SerDes インターフェイス レーン 2 入力:正端子。 未使用の SerDes 入力はオープンのままにできます。
3SRX-	F1	I	CML SerDes インターフェイス レーン 3 入力: 負端子
3SRX+	E1	I	CML SerDes インターフェイス レーン 3 入力:正端子。 未使用の SerDes 入力はオープンのままにできます。
4SRX-	J1	I	CML SerDes インターフェイス レーン 4 入力: 負端子
4SRX+	H1	<u> </u>	CML SerDes インターフェイス レーン 4 入力:正端子
5SRX-	M1	I	CML SerDes インターフェイス レーン 5 入力:負端子。 未使用の SerDes 入力はオープンのままにできます。
		I	

	22.7.1	1	(((((((((((((((((((
ボール名	ボール番号	種類(1)	説明		
5SRX+	N1	I	CML SerDes インターフェイス レーン 5 入力:正端子		
6SRX-	R1	I	CML SerDes インターフェイス レーン 6 入力:負端子		
6SRX+	Т1	I	CML SerDes インターフェイス レーン 6 入力:正端子。 未使用の SerDes 入力はオープンのままにできます。		
7SRX-	V1	I	CML SerDes インターフェイス レーン 7 入力:負端子		
7SRX+	W1	I	CML SerDes インターフェイス レーン 7 入力:正端子。 未使用の SerDes 入力はオープンのままにできます。		
8SRX-	Y2	I	CML SerDes インターフェイス レーン 8 入力:負端子		
8SRX+	Y3	I	CML SerDes インターフェイス レーン 8 入力:正端子。 未使用の SerDes 入力はオープンのままにできます。		
1STX-	С3	0	CML SerDes インターフェイス レーン 1 出力:負端子。 未使用の SerDes 出力はオープンのままにできます。		
1STX+	C4	0	CML SerDes インターフェイス レーン 1 出力:正端子。 未使用の SerDes 出力はオープンのままにできます。		
2STX-	E3	0	CML SerDes インターフェイス レーン 2 出力: 負端子。 未使用の SerDes 出力はオープンのままにできます。		
2STX+	E4	0	CML SerDes インターフェイス レーン 2 出力:正端子。 未使用の SerDes 出力はオープンのままにできます。		
3STX-	G4	0	CML SerDes インターフェイス レーン 3 出力:負端子。 未使用の SerDes 出力はオープンのままにできます。		
3STX+	G3	0	CML SerDes インターフェイス レーン 3 出力:正端子。 未使用の SerDes 出力はオープンのままにできます。		
4STX-	J4	0	CML SerDes インターフェイス レーン 4 出力:負端子。 未使用の SerDes 出力はオープンのままにできます。		
4STX+	J3	0	CML SerDes インターフェイス レーン 4 出力:正端子。 未使用の SerDes 出力はオープンのままにできます。		
5STX-	M4	0	CML SerDes インターフェイス レーン 5 出力: 負端子。 未使用の SerDes 出力はオープンのままにできます。		
5STX+	M3	0	CML SerDes インターフェイス レーン 5 出力:正端子。 未使用の SerDes 出力はオープンのままにできます。		
6STX-	P4	0	CML SerDes インターフェイス レーン 6 出力:負端子。 未使用の SerDes 出力はオープンのままにできます。		
6STX+	P3	0	CML SerDes インターフェイス レーン 6 出力:正端子。 未使用の SerDes 出力はオープンのままにできます。		
7STX-	ТЗ	0	CML SerDes インターフェイス レーン 7 出力: 負端子。 未使用の SerDes 出力はオープンのままにできます。		
7STX+	Т4	0	CML SerDes インターフェイス レーン 7 出力:正端子。 未使用の SerDes 出力はオープンのままにできます。		
8STX-	V3	0	CML SerDes インターフェイス レーン 8 出力: 負端子。 未使用の SerDes 出力はオープンのままにできます。		
8STX+	V4	0	CML SerDes インターフェイス レーン 8 出力:正端子。 未使用の SerDes 出力はオープンのままにできます。		
GPIO 機能					
GBL_0_GPIO13	V6	I/O	GPIO.		
GBL_1_FBTDD2	R6	I/O	FB TDD2 入力信号のデフォルト位置。		

	23,	4-1. こノの機能	E (杭さ)			
ボール名	ボール番号	種類(1)	説明			
GBL_2_FSPICLKC	U5	I/O	FSPI C クロックのデフォルトおよび推奨位置 (FSPI は工場専用。汎用 GPIO として利用可能)。			
GBL_3_GPIO14	R5	I/O	GPIO _°			
GBL_4_RXDLNB	T5	I/O	RX チャネル D AGC LNA バイパス出力信号のデフォルト位置。			
GBL_5_GPIO15	N10	I/O	GPIO _°			
GBL_6_GPIO16	P10	I/O	GPIO _°			
GBL_7_SYNCB_OUT1+	N9	I/O	JESD Sync\ 1 出力差動正端子のデフォルト位置。			
GBL_8_SYNCB_IN1+	N8	I/O	JESD Sync\ 1 入力差動正端子のデフォルト位置。			
GBL_9_SYNCB_OUT1-	P9	I/O	JESD Sync\ 1 出力差動負端子のデフォルト位置。			
GBL_10_GPIO17	Т8	I/O	GPIO _°			
GBL_11_GPIO18	T7	I/O	GPIO _°			
GBL_12_FSPICLKD	P7	I/O	FSPI D クロックのデフォルトおよび推奨位置 (FSPI は工場専用。汎用 GPIO として利用可能)。			
GBL_13_GPIO19	P8	I/O	GPIO _°			
GBL_14_FSPIDD	R7	I/O	FSPI D データのデフォルトおよび推奨位置 (FSPI は工場専用。 汎用 GPIO として利用可能)。			
GBL_15_FSPIDC	P6	I/O	FSPI C クロックのデフォルトおよび推奨位置 (FSPI は工場専用。汎用 GPIO として利用可能)。			
GBL_16_RXCLNB	Т6	I/O	RX チャネル C AGC LNA バイパス出力信号のデフォルト位置。			
GBL_17_SYNCB_IN1-	N7	I/O	JESD Sync\ 1 入力差動負端子のデフォルト位置。			
GBL_18_TXTDD2	V5	I/O	TX TDD2 入力信号のデフォルト位置。			
GBL_19_GPIO20	U6	I/O	GPIO _°			
GBR_0_GPIO4	C6	I/O	GPIO.			
GBR_1_GPIO5	F6	I/O	GPIO.			
GBR_2_RXALNB	D5	I/O	RX チャネル A AGC LNA バイパス出力信号のデフォルト位置。			
GBR_3_FSPICLKB	F5	I/O	FSPI B クロックのデフォルトおよび推奨位置 (FSPI は工場専用。汎用 GPIO として利用可能)。			
GBR_4_GPIO6	E5	I/O	GPIO.			
GBR_5_FSPIDB	H10	I/O	FSPI B データのデフォルトおよび推奨位置 (FSPI は工場専用。 汎用 GPIO として利用可能)。			
GBR_6_RXBLNB	G10	I/O	RX チャネル B AGC LNA バイパス出力信号のデフォルト位置。			
GBR_7_SYNCB_OUT0+	Н9	I/O	JESD Sync\ 0 出力差動正端子のデフォルト位置。			
GBR_8_SYNCB_IN0+	H8	I/O	JESD Sync\ 0 入力差動正端子のデフォルト位置。			
GBR_9_SYNCB_OUT0-	G9	I/O	JESD Sync\ 0 出力差動負端子のデフォルト位置。			
GBR_10_FSPICLKA	E8	I/O	FSPI A クロックのデフォルト位置 (FSPI は工場専用。汎用 GPIO として利用可能)。			
GBR_11_RXTDD1	E7	I/O	RX TDD1 入力信号のデフォルト位置。			
GBR_12_GPIO7	G7	I/O	GPIO _°			
GBR_13_GPIO8	G8	I/O	GPIO _°			
GBR_14_FSPIDA	F7	I/O	FSPI A クロックのデフォルトおよび推奨位置 (FSPI は工場専用。汎用 GPIO として利用可能)。			
GBR_15_GPIO9	G6	I/O	GPIO _°			
GBR_16_GPIO10	E6	I/O	GPIO _°			
GBR_17_SYNCB_IN0-	H7	I/O	JESD Sync\ 0 入力差動負端子のデフォルト位置。			
GBR_18_GPIO11	C5	I/O	GPIO _°			

ボール名	衣 4-1. こ / り (旅形 (
GBR_19_GPIO12	D6	1/0	GPIO ₀					
GTL_0_GPIO2	N13	1/0	GPIO.					
GTL 1 SLEEP	P14	1/0	スリープ入力信号のデフォルト位置。					
GTL 2 ALARM2	N15	1/0	アラーム2出力信号のデフォルト位置。					
GTL 3 AUX0	M15	1/0	GPIO または補助低速 ADC 入力 0					
GTL 4 SPIACLK	P15	1/0	SPIA クロックの固定位置。					
GTL 5 SPIASEN	R14	I/O	SPIA 送信イネーブルの固定位置。					
GTL_6_RXTDD2	R15	1/0	RX TDD2 入力信号のデフォルト位置。					
GTL 7 ALARM1	N16	I/O	アラーム 1 出力信号のデフォルト位置。					
GTL_8_AUX1	L14	I/O	GPIO または補助低速 ADC 入力 1。					
GTL_9_AUX2	M14	I/O	GPIO または補助低速 ADC 入力 2。					
GTL_9_AUX2	10114	1/0						
GTL_10_BIST0	P11	I/O	BISTO 機能の固定位置。JTAG 使用時は Low に設定し、通常動作時は High に設定します。					
GTL_11_AUX3	P13	I/O	GPIO または補助低速 ADC 入力 3。					
GTL_12_BIST1	P12	I/O	BIST1 機能の固定位置。JTAG 使用時は High に設定し、通常動作時は Low に設定します。					
GTL_13_AUX4	N12	I/O	GPIO または補助低速 ADC 入力 4。					
GTL_14_AUX5	N11	I/O	GPIO または補助低速 ADC 入力 5。					
GTL_15_GPIO3	P16	I/O	GPIO _°					
GTL_17_SPIASDIO	N14	I/O	SPI A シリアル データ入力 (3 および 4 線式) または出力 (3 線式のみ) の固定位置。					
GTL_18_SPIASDO	R16	I/O	4線式でのSPIAシリアルデータ出力の固定位置。					
GTR_0_RXGSWAP	G13	I/O	RX ゲイン スワップ入力のデフォルト位置。					
GTR_1_GPIO1	H12	I/O	GPIO _°					
GTR_2_SPIB2CLK	J14	I/O	SPI B2 クロックのデフォルトおよび推奨位置。					
GTR_3_TXTDD1	H15	I/O	TX TDD1 入力信号のデフォルト位置。					
GTR_4_TCLK	H14	I/O	JTAG テストクロックの固定位置。					
GTR_5_TDO	F14	I/O	JTAG テスト データ出力の固定位置。					
GTR_6_SPIB2_SDIO	H13	I/O	SPI B2 シリアル データ入力 / 出力のデフォルトおよび推奨位置。					
GTR_7_SPIB2SEN	F16	I/O	SPI B2 イネーブル入力のデフォルトおよび推奨位置。					
GTR_8_FBTDD1	K14	I/O	FB TDD1 入力信号のデフォルト位置。					
GTR_9_SPIB2SDO	J15	I/O	SPI B2 シリアル データ出力のデフォルトおよび推奨位置 (4 線式)					
GTR_10_TMS	G11	I/O	JTAG テストモード選択の固定位置。					
GTR_11_SPIB1_SDO	G12	1/0	SPI B1 シリアル データ出力のデフォルトおよび推奨位置 (4 線式)。					
GTR_12_SPIB_SDIO	H11	I/O	SPI B1 シリアル データ入力 / 出力のデフォルトおよび推奨位置。					
GTR_13_TRST	G15	I/O	JTAG テストリセットの固定位置。JTAG ポートを使用しない場合、Low にプルする必要があります。					
GTR_14_SPIB1SEN	H16	I/O	SPI B1 イネーブル入力のデフォルトおよび推奨位置。					
GTR_15_RESETZ	F15	I/O	リセット機能の固定位置。チップ全体をデフォルトのレジスタ設定 にリセットします。					
GTR_17_SPIB1CLK	G16	I/O	SPI B1 クロックのデフォルトおよび推奨位置。					

	衣 4-1. こノの 依能 (続き)								
ボール名	ボール番号	種類(1)	説明						
GTR_18_TDI	G14	I/O	JTAG テスト データ入力の固定位置。						
電源									
DVDD	K2, K5, K6, K7, K8, K9, K10, K11, K12, K13, L2, L5, L6, L7, L8, L9, L10, L11, L12, L13		0.9V デジタル電源						
VDD1P2FB	D14, D15, D16, E15, U14, U15, U16, T15	_	FB ADC 用 1.2V 電源。						
VDD1P8FB	C15, C16, V15, V16	_	FB ADC 用 1.8V 電源。						
VDD1P8FBCLK	A14、A17、Y17、Y14	_	FB ADC クロック用 1.8V 電源。						
VDD1P2PLLCLKREF	K20、K18、L18	_	PLL 用 1.2V 電源。						
VDDPLL1P2FBCML	L15	_	FB ADC に PLL クロックを分配するための 1.2V 電源。						
VDDPLL1P2RXCML	K15	_	RX ADC にクロックを分配するための 1.2V 電源。						
VDD1P8PLL	K16、L16	_	PLL 用 1.8V 電源						
VDD1P8PLLVCO	L20	_	内部 PLL および VCO 用 1.8V 電源これは敏感なネットであり、 レイアウトには特別な注意が必要です。						
VDD1P2RX	A10, A13, E11, E12, E13, E14, F11, F12, F13, R11, R12, R13, T11, T12, T13, T14, Y10, Y13	_	RX ADC 用 1.2V 電源。						
VDD1P8RX	C9、C10、C11、D9、D10、 D11、E9、E10、F8、F9、F10、 R8、R9、R10、T9、T10、U9、 U10、U11、V9、V10、V11	_	RX ADC 用 1.8V 電源。						
VDD1P8RXCLK	A6, A9, Y6, Y9	_	RX ADC クロック用 1.8V 電源。						
VDD1P2TXENC	D17、U17	_	DAC エンコーダ用 1.2V 電源。						
VDD1P2TXCLK	A20、D20、U20、Y20	_	DAC クロック用 1.2V 電源。						
VDD1P8TX	E20、H20、N20、T20	_	DAC 用 1.8V 電源						
VDD1P8TXDAC	G17、H17、N17、P17	_	DAC 用 1.8V 電源						
VDD1P8GPIO	H6, N6	_	GPIO 用 1.8V 電源						
VDDA1P8	F3、F4、H3、H4、R3、R4、 N3、N4	_	SerDes 1.8V のアナログ電源。						
VDDT0P9	D3、D4、U3、U4	_	SerDes デジタル 0.9V 電源。						
グランド									
DGND	J5, J6, J7, J8, J9, J10, J11, J12, M5, M6, M7, M8, M9, M10, M11, M12	_	デジタル コア グランド						
VSSGPIO	H5, N5	_	GPIO グランド。						
VSSFB	B14、B15、B16、B17、C14、 V14、W14、W15、W16、W17	_	FB ADC 電源用グランド。						
VSSFBCLK	A18、B18、W18、Y18	_	FB ADC 1.8V クロック電源用グランド。						
GND_ESD	D7、D8、J13、M13、U7、U8	_	ESD 保護回路用グランド。						
VSSRX B7, B8, B10, B11, B12, C12, D12, B13, C13, D13, W7, W8, W10, W11, W13, U12, V12, W12, U13, V13		_	RX ADC 用グランド。						
VSSRXCLK	A5、B5、B6、B9、C7、C8、 W5、W6、W9、Y5、V7、V8	_	RX ADC クロック用グランド。						

ボール名	ボール番号	種類(1)	説明
VSSTX	B19、C17、C18、C19、D18、 E18、E19、F17、F18、F19、 G18、G19、H18、H19、J20、 M20、N18、N19、P18、P19、 R17、R18、R19、T18、T19、 U18、V17、V18、V19、W19	_	TX DAC 用グランド。
VSSTXENC	E16、E17、T16、T17	_	TX DAC エンコーダ用グランド。
VSSTXCLK	A19, D19, U19, Y19	_	TX DAC クロック用グランド。
VSSPLL	M19	_	PLL 用グランド。
VSSPLLFBCML	J16、M16	_	FB ADC クロック用グランド。
VSSPLLCLKREF	J18、M18	_	CLKREF PLL 用グランド。
VSSPLLRXCML	J17、M17	_	RX ADC クロック用グランド。
VSST	A1, A4, B2, B3, B4, C2, D1, D2, E2, F2, G1, G2, H2, J2, K1, K4, L1, L4, M2, N2, P1, P2, R2, T2, U1, U2, V2, W2, W3, W4, Y1, Y4	_	SerDes グランド。
その他		-	
IFORCE	G5	_	テキサス・インスツルメンツ専用に予約済み。接続しないでくださ い。
PLL_LDOUT	J19	_	100nF のコンデンサを GND に接続
SerDes_AMUX1	К3	_	SerDes レーン 1~4 のアナログ テストピン。フローティングのままにできます。
SerDes_AMUX2	L3	_	SerDes レーン 5~8 のアナログ テストピン。フローティングのままにできます。
VSENSE	P5	_	プロセス テスト: 電圧検出 (テキサス・インスツルメンツ専用)。 接続しないでください。

⁽¹⁾ 信号タイプ: I = 入力、O = 出力、I/O = 入力または出力。

5 仕様

5.1 絶対最大定格

自由気流での動作温度範囲内 (特に記述のない限り)(1)

		最小値	最大値	単位
	DVDD0P9、VDDT0P9	-0.3	1.2	V
電源電圧範囲	VDD1P2RX、VDD1P2TXCLK、VDD1P2TXENC、VDD1P2PLL、 VDD1P2PLLCLKREF、VDD1P2FB、VDD1P2FBCML、 VDD1P2RXCML	-0.3	1.4	V
	VDD1P8RX、VDD1P8RXCLK、VDD1P8TX、VDD1P8TXDAC、 VDD1P8TXENC、VDD1P8PLL、VDD1P8PLLVCO、VDD1P8FB、 VDD1P8FBCLK、VDD1P8GPIO、VDDA1P8	TXCLK, VDD1P2TXENC, VDD1P2PLL, VDD1P2FB, VDD1P2FBCML, -0.3 1.4 RXCLK, VDD1P8TX, VDD1P8TXDAC, VDP8PLL, VDD1P8PLL, VDD1P8PLL, VDD1P8PLL, VDD1P8PLL, VDD1P8PLL, VDD1P8PL, VDD1P8PB, 1P8GPIO, VDDA1P8 -0.5 VDDRX1P8+0.3 -0.5 VDDFB1P8+0.3 -0.5 VDDTX1P8+0.3 +/0.3 1.4 -0	V	
	{1/2/3/4}RXIN+/-	-0.5 VDI	DRX1P8+0.3	V
	1FBIN+/-、2FB+/-	-0.5 VDI	DFB1P8+0.3	V
	{1/2/3/4}TXOUT+/-	-0.5 VDI	OTX1P8+0.3	V
	REFCLK+/-、SYSREF+/-	-0.3	1.4	V
	{1:8}SRX+/-	-0.3	1.4	V
ピン電圧範囲	{1:8}STX+/-			V
ピン電圧範囲 P _{MAX} (xRXIN+/-)	GPIO{B/C/D/E}x、SPICLK、SPISDIO、SPISDO、SPISEN、RESETZ、BISTB0、BISTB1	-0.5 VDI	0.3	V
	IFORCE, VSENSE	-0.3 VD		V
	SRDAMUX1、SRDAMUX2	TXENC, VDD1P2PLL, D1P2FBCML, -0.3 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.7 -0.8 -0.9	V	
	f _{IN} = 5MHz, DSA = 20dB		19.7	
	f _{IN} = 30MHz, DSA = 20dB		17.8	
	f _{IN} = 410MHz, DSA = 20dB	,	17.6	
D (vDVINL)	f _{IN} = 830MHz, DSA = 20dB		16.7	dBm
r _{MAX} (xrxiin+/-)	f _{IN} = 1760MHz, DSA = 20dB		17.0	UDIII
	f _{IN} = 2610MHz, DSA = 20dB		18	
P _{MAX} (xRXIN+/-)	f _{IN} = 3610MHz, DSA = 20dB		18.5	
	f _{IN} = 4910MHz, DSA = 20dB		19.3	
ピーク入力電流	任意の入力		20	mA
T _J	接合部温度		150	°C
T _{stg}	保存温度	-65	150	°C

^{(1) 「}*絶対最大定格*」を上回るストレスが加わった場合、デバイスに永続的な損傷が発生する可能性があります。これらはあくまでもストレス定格であり、*推奨動作条件*に示されている条件を超える当該の条件またはその他のいかなる条件下での、デバイスの正常な動作を保証するものではありません。絶対最大定格の状態が長時間続くと、デバイスの信頼性に影響を与える可能性があります。

5.2 ESD 定格

			値	単位
V _(ESD) 静電放電		人体モデル (HBM)、ANSI/ESDA/JEDEC JS-001 に準拠、すべてのピン ⁽¹⁾	1000	V
		デバイス帯電モデル (CDM)、JEDEC 仕様 JESD22-C101 準拠、すべてのピン	150	V

(1) JEDEC ドキュメント JEP155 には、500V HBM であれば標準的な ESD 管理プロセスにより安全な製造が可能であると記載されています。

5.3 推奨動作条件

自由気流での動作温度範囲内 (特に記述のない限り)

		最小値	公称值	最大値	単位
DVDD0P9、VDDT0P9	電源電圧 0.9V	0.9	0.925	0.95	V
VDD1P2{RX/TXCLK/TXENC/FB/PLL/ PLLCLKREF/FBCML/RXCML}	電源電圧 1.2V	1.15	1.2	1.25	V
VDD1P8{RX/RXCLK/TX/TXDAC/ TXENC/PLL/PLLVCO/FB/FBCLK/ GPIO}、VDDA1P8	電源電圧 1.8V	1.75	1.8	1.85	V
T _A	周囲温度	-40		85	°C
т.	動作時の接合部温度			110 ⁽¹⁾	°C
'J	最大動作接合部温度	125			°C

⁽¹⁾ この接合部温度以上で長時間使用すると、デバイスの時間あたりの故障回数 (FIT) レートが上昇する可能性があります。詳細については、 SBAA403 アプリケーション ノートを参照してください

5.4 熱に関する情報 (AFE79xx)

教評価基準 ⁽¹⁾		17mm x 17mm FC-BGA	الله الله الله الله
	然計価基準 學	400 ピン	単位
$R_{\theta JA}$	接合部から周囲への熱抵抗	16.2	°C/W
R _{0JC(top)}	接合部からケース (上面) への熱抵抗	0.42	°C/W
R _{0JB}	接合部から基板への熱抵抗	4.85	°C/W
Ψ_{JT}	接合部から上面への特性パラメータ	0.12	°C/W
Ψ_{JB}	接合部から基板への特性パラメータ	4.6	°C/W

(1) 従来および最新の熱評価基準の詳細については、『半導体および IC パッケージの熱評価基準』アプリケーション レポートを参照してください。

5.5 トランスミッタの電気的特性

T_A = +25°Cでの代表値、全動作温度範囲は T_{A,MIN} = -40°C~T_{J,MAX} = +110°C、TX 入力レート = 491.52MSPS、、f_{DAC} = 11796.48MSPS (6GHz 以下の帯域で動作)、f_{DAC} = 9000MSPS (6GHz 以上)、PLL クロック モード (出力周波数 6GHz 未満) および外部クロック モード (出力周波数 6GHz 超)、1 次ナイキストではインターリーブ モード、2 次ナイキストでは非インターリーブ混在モード、公称電源、-1dBFS で 1トーン、DSA 減衰 = 0dB、特に記述のない限り。

	パラメータ	テスト条件	最小値	標準値	最大値	単位
DAC _{RES}	DAC の分解能			14		ビット
		f _{DAC} = 12GSPS、1 次ナイキスト	5		6000	
		f _{DAC} = 9GSPS、1 次ナイキスト	5		4500	
f _{RFout}	RF 出力周波数範囲	f _{DAC} = 9GSPS、2 次ナイキスト	4500		7400	MHz
		f _{DAC} = 6GSPS、1 次ナイキスト	5		3000	
		f _{DAC} = 6GSPS、2 次ナイキスト	3000		6000	
		f _{out} = 10MHz \ f _{DAC} = 6GSPS \ -0.1dBFS		6.5		dBm
		f _{out} = 30MHz, f _{DAC} = 6GSPS, -0.1dBFS		6.5		dBm
		f _{out} = 400MHz, f _{DAC} = 6GSPS, -0.1dBFS		5.6		dBm
		f _{OUT} = 850MHz, f _{DAC} = 5898.24MSPS, -0.5dBFS		4.3		dBm
	デバイスピンでの最大フルスケール出力電力、最大ゲインの1トーン	f _{OUT} = 1800MHz, f _{DAC} = 5898.24MSPS, -0.5dBFS		3.2		dBm
P _{max_FS}		f _{OUT} = 2600MHz, f _{DAC} = 8847.36MSPS, -0.5dBFS		2.3		dBm
		f _{OUT} = 3500MHz、-0.5dBFS		2.9		dBm
		f _{OUT} = 4900MHz、-0.5dBFS		-0.6		dBm
		f _{OUT} = 3500MHz、f _{DAC} = 5898.24MSPS、-0.5dBFS、ストレートモード		-2.3		dBm
		f _{OUT} = 4900MHz、f _{DAC} = 5898.24MSPS、-0.5dBFS、ストレートモード		-3.4		dBm
		f _{OUT} = 4900MHz、f _{DAC} = 8847.36MSPS、-0.5dBFS、ストレートモ ード		-3.9		dBm
R _{TERM}	出力の終端抵抗	デフォルト設定		100		Ω
ATT _{range}	DSA 減衰範囲			40		dB
	DSA アナログ減衰ステップ			1.0		dB
ATT _{step}	DOA # = 7 = 10 mm (DAII)(2)	0 < 減衰 < 40dB、キャリブレーション後		±0.1		dB
	DSA 減衰ステップ精度 (DNL) ⁽²⁾	0 < 減衰 < 40dB、キャリブレーション前		±0.2		
		f _{out} = 30MHz		±1		度
		f _{out} = 400MHz		±1		度
		f _{out} = 850MHz		±1		度
ATT _{step}	DSA ゲイン ステップ位相精度、任意の 8dB レンジ ⁽²⁾	f _{out} = 1800MHz		±1		度
	OUD P > V	f _{out} =2600MHz		±1		nh:
		f _{out} = 3500MHz		±1		度
		f _{out} = 4900MHz		±1		度

T_A = +25℃での代表値、全動作温度範囲は T_{A,MIN} = -40℃~T_{J,MAX} = +110℃、TX 入力レート = 491.52MSPS、、f_{DAC} = 11796.48MSPS (6GHz 以下の帯域で動作)、f_{DAC} = 9000MSPS (6GHz 以上)、PLL クロック モード (出力周波数 6GHz 未満) および外部クロック モード (出力周波数 6GHz 超)、1 次ナイキストではインターリーブ モード、2 次ナイキストでは非インターリーブ混在モード、公称電源、-1dBFS で 1トーン、DSA 減衰 = 0dB、特に記述のない限り。

	パラメータ	テスト条件	最小値 標準値	最大値 単位
_	20.豆田區	任意の 20MHz	0.1	dВ
G _{flat}	ゲイン平坦性	600MHz 帯域帯、F _{out} < 4.9G	1.2	dB
		f _{DAC} = 6GSPS、f _{out} = 5MHz±1MHz、各トーン -7dBFS	-48	dBc
		f _{DAC} = 6GSPS、f _{out} = 30MHz±1MHz、各トーン -7dBFS	-47	dBc
		f _{DAC} = 6GSPS、f _{out} = 400MHz±2MHz、各トーン -7dBFS	-51	dBc
		f _{out} = 850MHz ±10MHz、各トーン -7dBFS	-61	dBc
		f _{out} = 1800MHz ±10MHz、各トーン -7dBFS	-62	dBc
		f _{out} = 2600MHz ±10MHz、各トーン -7dBFS	-64	dBc
		f _{out} = 3500MHz ±10MHz、各トーン -7dBFS	-63	dBc
IMD3	3 次相互変調歪	f _{out} = 4900MHz ±10MHz、各トーン -7dBFS	-64	dBc
		f _{out} = 5MHz ±1MHz、各トーン -13dBFS	-72	dBc
		f _{DAC} = 6GSPS、f _{out} = 30MHz±1MHz、各トーン -13dBFS	-71	dBc
		f _{DAC} = 6GSPS、f _{out} = 400MHz±2MHz、各トーン -13dBFS	-72	dBc
		f _{out} = 850MHz ±10MHz、各トーン -13dBFS	-73	dBc
		f _{out} = 1800MHz ±10MHz、各トーン -13dBFS	-75	dBc
		f _{out} = 2600MHz ±10MHz、各トーン -13dBFS	-79	dBc
		f _{out} = 3500MHz ±10MHz、各トーン -13dBFS	-77	dBc
	f _{out} = 4900MHz ±10MHz、各トーン -13dBFS	-77	dBc	

 T_A = +25°Cでの代表値、全動作温度範囲は $T_{A,MIN}$ = -40°C~ $T_{J,MAX}$ = +110°C、TX 入力レート = 491.52MSPS、、 f_{DAC} = 11796.48MSPS (6GHz 以下の帯域で動作)、 f_{DAC} = 9000MSPS (6GHz 以上)、PLL クロック モード (出力周波数 6GHz 未満) および外部クロック モード (出力周波数 6GHz 超)、1 次ナイキストではインターリーブ モード、2 次ナイキストでは非インターリーブ混在モード、公称電源、-1dBFS で 1トーン、DSA 減衰 = 0dB、特に記述のない限り。

	パラメータ	テスト条件	最小値 標準値 最大値	単位
		f _{out} = 30MHz、f _{DAC} = 6000MSPS、イン ターリーブ モード、20Gbps SerDes レート	45	dBc
		f _{out} = 400MHz、f _{DAC} = 6000MSPS、インターリーブ モード、20Gbps SerDes レート	48	dBc
		f _{out} = 850MHz, f _{DAC} = 11796.48MSPS	62	dBc
SFDR	スプリアス フリー ダイナミック レンジ (ナイキスト ゾーン内)	f _{out} = 1800MHz \ f _{DAC} = 11796.48MSPS	56	dBc
		f _{out} = 2600MHz \ f _{DAC} = 11796.48MSPS	39	dBc
		f _{out} = 3500MHz \ f _{DAC} = 11796.48MSPS	42	dBc
		f _{out} = 4900MHz \ f _{DAC} = 11796.48MSPS	60	dBc
	インターリービング イメージ	f _{DAC} = 5898.24MSPS、インターリーブ モード	-47	dBc
f _S /2 - f _{OUT}		f _{DAC} = 8847.36MSPS、インターリーブ モード	-43	dBc
		f _{DAC} = 11796.48MSPS、インターリーブ モード	-43	dBc
		f _{DAC} = 6GSPS, f _{out} = 5MHz	-72	dBc
		f _{DAC} = 6GSPS, f _{out} = 30MHz	-75	dBc
		f _{DAC} = 6GSPS f _{out} = 100MHz	-73	dBc
		f _{OUT} = 400MHz	-46	dBc
		f _{OUT} = 850MHz	-65	dBc
		f _{out} = 1800MHz	-68	dBc
HD2	2 次高調波歪み (ナイキストゾーン内)	f _{OUT} = 2600MHz	-47	dBc
1102	2 次同調仮正の (アイイハアノーンド)	f _{OUT} = 3500MHz	-59	dBc
		f _{OUT} = 4900MHz	-48	dBc
		f _{OUT} = 850MHz, A _{OUT} = -12dBFS	-74	dBc
		$f_{OUT} = 1800MHz$, $A_{OUT} = -12dBFS$	-67	dBc
		f _{OUT} = 2600MHz, A _{OUT} = -12dBFS	-58	dBc
		f _{OUT} = 3500MHz, A _{OUT} = -12dBFS	-69	dBc
		f _{OUT} = 4900MHz、A _{OUT} = -12dBFS	-59	dBc

T_A = +25℃での代表値、全動作温度範囲は T_{A,MIN} = -40℃~T_{J,MAX} = +110℃、TX 入力レート = 491.52MSPS、、f_{DAC} = 11796.48MSPS (6GHz 以下の帯域で動作)、f_{DAC} = 9000MSPS (6GHz 以上)、PLL クロック モード (出力周波数 6GHz 未満) および外部クロック モード (出力周波数 6GHz 超)、1 次ナイキストではインターリーブ モード、2 次ナイキストでは非インターリーブ混在モード、公称電源、-1dBFS で 1トーン、DSA 減衰 = 0dB、特に記述のない限り。

	パラメータ	テスト条件	最小値 標準値	最大値	単位
		f _{DAC} = 6GSPS, f _{out} = 5MHz	-46		dBc
		f _{DAC} = 6GSPS, f _{out} = 30MHz	-48		dBc
		f _{DAC} = 6GSPS, f _{out} = 100MHz	-49		dBc
		f _{DAC} = 6GSPS, f _{out} = 400MHz	-49		dBc
		f _{OUT} = 850MHz	-56		dBc
		f _{out} = 1800MHz	-58		dBc
		f _{OUT} = 2600MHz	-60		dBc
		f _{OUT} = 3500MHz	-63		dBc
		f _{OUT} = 4900MHz	-66		dBc
HD3	3 次高調波歪み (ナイキストゾーン内)	f _{DAC} =6GSPS, f _{out} = 5MHz, A _{OUT} = -12dBFS	-83		dBc
		f_{DAC} =6GSPS, f_{out} = 30MHz, A_{OUT} = -12dBFS	-83		dBc
		f _{DAC} =6GSPS, f _{out} = 100MHz, A _{OUT} = -12dBFS	-82		dBc
		f _{DAC} =6GSPS, f _{out} = 400MHz, A _{OUT} = -12dBFS	-79		dBc
		f _{OUT} = 850MHz, A _{OUT} = -12dBFS	-87		dBc
		f _{OUT} = 1800MHz, A _{OUT} = -12dBFS	-84		dBc
		f _{OUT} = 2600MHz, A _{OUT} = -12dBFS	-79		dBc
		f _{OUT} = 3500MHz, A _{OUT} = -12dBFS	-84		dBc
		f _{OUT} = 4900MHz, A _{OUT} = -12dBFS	-88		dBc

 T_A = +25°Cでの代表値、全動作温度範囲は $T_{A,MIN}$ = -40°C~ $T_{J,MAX}$ = +110°C、TX 入力レート = 491.52MSPS、、 f_{DAC} = 11796.48MSPS (6GHz 以下の帯域で動作)、 f_{DAC} = 9000MSPS (6GHz 以上)、PLL クロック モード (出力周波数 6GHz 未満) および外部クロック モード (出力周波数 6GHz 超)、1 次ナイキストではインターリーブ モード、2 次ナイキストでは非インターリーブ混在モード、公称電源、-1dBFS で 1トーン、DSA 減衰 = 0dB、特に記述のない限り。

	パラメータ	テスト条件	最小値	標準値	最大値	単位
		f _{DAC} = 6GSPS f _{out} = 5MHz		-58		dBc
		f _{DAC} = 6GSPS f _{out} = 30MHz		-60		dBc
		f _{DAC} = 6GSPS , f _{out} = 100MHz		-61		dBc
		f _{DAC} = 6GSPS \ f _{out} = 400MHz		-50		dBc
		f _{OUT} = 850MHz		-85		dBc
		f _{out} = 1800MHz		-90		dBc
		f _{OUT} = 2600MHz		-84		dBc
		f _{OUT} = 3500MHz		-86		dBc
		f _{OUT} = 4900MHz		-87		dBc
HDn、n≧4	 高調波歪み n≧4 (ナイキストゾーン内)	f _{DAC} =6GSPS, f _{out} = 5MHz, A _{OUT} = -12dBFS		-92		dBc
	, , , , , , , , , , , , , , , , , , ,	f_{DAC} =6GSPS, f_{out} = 30MHz, A_{OUT} = -12dBFS		-94		dBc
		f_{DAC} =6GSPS, f_{out} = 100MHz, A_{OUT} = -12dBFS		-93		dBc
		f_{DAC} =6GSPS, f_{out} = 400MHz, A_{OUT} = -12dBFS		-85		dBc
		$f_{OUT} = 850MHz, A_{OUT} = -12dBFS$		-89		dBc
		f _{OUT} = 1800MHz, A _{OUT} = -12dBFS		-92		dBc
		f _{OUT} = 2600MHz, A _{OUT} = -12dBFS		-87		dBc
		f _{OUT} = 3500MHz, A _{OUT} = -12dBFS		-88		dBc
		f _{OUT} = 4900MHz \ A _{OUT} = -12dBFS		-89		dBc
	+/- 250MHz 以内のスプリアス フリー ダイ ナミック レンジ	f _{DAC} = 6GSPS f _{out} = 400MHz		87		dBc
		f _{out} = 850MHz, f _{DAC} = 11796.48MSPS		84		dBc
		f _{out} = 1800MHz, f _{DAC} = 11796.48MSPS		78		dBc
SFDR +/- 250MHz		f _{out} = 2600MHz, f _{DAC} = 11796.48MSPS		80		dBc
		f _{out} = 3500MHz, f _{DAC} = 11796.48MSPS		81		dBc
		f _{out} = 4900 MHz, f _{DAC} = 11796.48MSPS		74		dBc
		f_{DAC} = 5898.24MSPS f_{OUT} = f_{DAC} / 4-50MHz		-95		dBFS
f _S /4	 固定スプリアス 	f_{DAC} = 8847.36MSPS f_{OUT} = f_{DAC} / 4-50MHz		-88		dBFS
		f_{DAC} = 11796.48MSPS $\int_{OUT} f_{DAC} dt$ 4-50MHz		-76		dBFS
		f_{DAC} = 5898.24MSPS $\int_{OUT} f_{DAC}$ 2-50MHz		-52		dBFS
f _S /2	固定スプリアス	f_{DAC} = 8847.36MSPS、 f_{OUT} = f_{DAC} / 2-50MHz		-45		dBFS
		f_{DAC} = 11796.48MSPS, f_{OUT} = f_{DAC} / 2-50MHz		-49		dBFS

T_A = +25℃での代表値、全動作温度範囲は T_{A,MIN} = -40℃~T_{J,MAX} = +110℃、TX 入力レート = 491.52MSPS、、f_{DAC} = 11796.48MSPS (6GHz 以下の帯域で動作)、f_{DAC} = 9000MSPS (6GHz 以上)、PLL クロック モード (出力周波数 6GHz 未満) および外部クロック モード (出力周波数 6GHz 超)、1 次ナイキストではインターリーブ モード、2 次ナイキストでは非インターリーブ混在モード、公称電源、-1dBFS で 1トーン、DSA 減衰 = 0dB、特に記述のない限り。

	パラメータ	テスト条件	最小値 標準値	最大値	単位
		2 次ナイキスト、f _{DAC} = 5898.24MSPS、 f _{OUT} = 3 * f _{DAC} /4 -50MHz	-82		dBFS
3*f _S /4	固定スプリアス	2 次ナイキスト、f _{DAC} = 8847.36MSPS、 f _{OUT} = 3 * f _{DAC} /4 -50MHz	-75		dBFS
		2 次ナイキスト、f _{DAC} = 11796.48MSPS、 f _{OUT} = 3 * f _{DAC} /4 -50MHz	-49		dBFS
		減衰 = 0dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-70		dBc
ACPR _{1xcarr}	ACPR - 1 キャリア、LTE 20MHz E-	減衰 = 20dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-66		dBc
, tor Ttixcarr	TM1.1 キャリア f _{OUT} = 0.85GHz	減衰 = 28dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-62		dBc
		減衰 = 39dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-51		dBc
		減衰 = 0dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-71		dBc
ACPR _{1xcarr}	ACPR - 1 キャリア、LTE 20MHz E-TM1.1 キャリア f _{OUT} = 1.8425GHz	減衰 = 20dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-66		dBc
ACI N _{1xcarr}		減衰 = 28dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-61		dBc
		減衰 = 39dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-50		dBc
	ACPR - 1 キャリア、LTE 20MHz E- TM1.1 キャリア f _{OUT} = 2.6GHz	減衰 = 0dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-72		dBc
ACPR _{1xcarr}		減衰 = 20dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-66		dBc
ACFIN _{1xcarr}		減衰 = 28dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-60		dBc
		減衰 = 39dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-49		dBc
		減衰 = 0dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-71		dBc
ACPR _{1xcarr}	ACPR - 1 キャリア、LTE 20MHz E-	減衰 = 20dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-65		dBc
ACFIN _{1xcarr}	TM1.1 キャリア f _{OUT} = 3.5GHz	減衰 = 28dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-58		dBc
		減衰 = 39dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-47		dBc
		減衰 = 0dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-69		dBc
ACPR _{1xcarr}	ACPR - 1 キャリア、LTE 20MHz E-TM1.1 キャリア f _{OUT} = 4.9GHz	減衰 = 20dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-64		dBc
		減衰 = 28dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-58		dBc
		減衰 = 39dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-47		dBc

Copyright © 2025 Texas Instruments Incorporated

 T_A = +25°Cでの代表値、全動作温度範囲は $T_{A,MIN}$ = -40°C~ $T_{J,MAX}$ = +110°C、TX 入力レート = 491.52MSPS、、 f_{DAC} = 11796.48MSPS (6GHz 以下の帯域で動作)、 f_{DAC} = 9000MSPS (6GHz 以上)、PLL クロック モード (出力周波数 6GHz 未満) および外部クロック モード (出力周波数 6GHz 超)、1 次ナイキストではインターリーブ モード、2 次ナイキストでは非インターリーブ混在モード、公称電源、-1dBFS で 1トーン、DSA 減衰 = 0dB、特に記述のない限り。

	パラメータ	テスト条件	最小値 標準値	最大値	単位
		減衰 = 0dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-65		dBc
ACPR _{1xcarr}	ACPR - 1 キャリア、NR 100MHz E-	減衰 = 20dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-59		dBc
ACPR _{1xcarr}	TM1.1 キャリア f _{OUT} = 2.6GHz	減衰 = 28dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-53		dBc
		減衰 = 39dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-41		dBc
		減衰 = 0dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-63		dBc
ACDD	ACPR - 1 キャリア、NR 100MHz E-	減衰 = 20dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-56		dBc
ACPR _{1xcarr}	TM1.1 キャリア f _{OUT} = 3.5GHz	減衰 = 28dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-49		dBc
		減衰 = 39dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-38		dBc
	ACPR - 1 キャリア、NR 100MHz E- TM1.1 キャリア f _{OUT} = 4.9GHz	減衰 = 0dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-63		dBc
ACDD		減衰 = 20dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-56		dBc
ACPR _{1xcarr}		減衰 = 28dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-51		dBc
		減衰 = 39dB、f _{DAC} = 11796.48MSPS、 Pout =-13dBFS	-41		dBc
	エラー ベクトル振幅、1x 20MHz E-	F _{out} =0.85GHz, f _{DAC} = 11796.48MSPS, P _{OUT} =-13dBFs	0.16		%
		F _{out} =1.8425GHz, f _{DAC} = 11796.48MSPS, P _{OUT} =-13dBFs	0.21		%
EVM	TM3.1/3.1a、リファレンスなし、クロック / イズ	F _{out} =2.6GHz, f _{DAC} = 11796.48MSPS, P _{OUT} =-13dBFs	0.24		%
		F _{out} =3.5GHz, P _{OUT} =-13dBFs	0.27		%
		F _{out} =4.9GHz, P _{OUT} =-13dBFs	0.38		%
		Atten=0dB、f _{DAC} = 6000MSPS、 20Gbps SerDes レート、Pout=-12dBFs	-148		dBFS/ Hz
NSD _{dBFS}	ノイズ スペクトル密度 20MHz オフセット f _{OUT} = 5MHz	Atten=20dB、f _{DAC} = 6000MSPS、 20Gbps SerDes レート、Pout=-12dBFs	-143		dBFS/ Hz
		Atten=28dB、f _{DAC} =6000MSPS、 20Gbps SerDes レート、Pout=-12dBFs	-139		dBFS/ Hz
		Atten=39dB、f _{DAC} = 6000MSPS、 20Gbps SerDes レート、Pout=-12dBFs	-129		dBFS/ Hz

T_A = +25℃での代表値、全動作温度範囲は T_{A,MIN} = -40℃~T_{J,MAX} = +110℃、TX 入力レート = 491.52MSPS、、f_{DAC} = 11796.48MSPS (6GHz 以下の帯域で動作)、f_{DAC} = 9000MSPS (6GHz 以上)、PLL クロック モード (出力周波数 6GHz 未満) および外部クロック モード (出力周波数 6GHz 超)、1 次ナイキストではインターリーブ モード、2 次ナイキストでは非インターリーブ混在モード、公称電源、-1dBFS で 1トーン、DSA 減衰 = 0dB、特に記述のない限り。

	パラメータ	テスト条件	最小値 標準値 最大値	単位
		Atten=0dB、f _{DAC} = 6000MSPS、 20Gbps SerDes ▷─├、Pout=-12dBFs	-154	dBFS/ Hz
NSD _{dBFS}	ノイズ スペクトル密度 20MHz オフセット	Atten=20dB、f _{DAC} = 6000MSPS、 20Gbps SerDes レート、Pout=-12dBFs	-146	dBFS/ Hz
	f _{OUT} = 30MHz	Atten=28dB、f _{DAC} =6000MSPS、 20Gbps SerDes レート、Pout=-12dBFs	-142	dBFS/ Hz
		Atten=39dB、f _{DAC} = 6000MSPS、 20Gbps SerDes レート、Pout=-12dBFs	-132	dBFS/ Hz
		Atten=0dB、f _{DAC} = 6000MSPS、 20Gbps SerDes ▷─├、Pout=-12dBFs	-158	dBFS/ Hz
NCD	ノイズ スペクトル密度 20MHz オフセット	Atten=20dB、f _{DAC} = 6000MSPS、 20Gbps SerDes レート、Pout=-12dBFs	-150	dBFS/ Hz
NSD _{dBFS}	f _{OUT} = 100MHz	Atten=28dB、f _{DAC} =6000MSPS、 20Gbps SerDes レート、Pout=-12dBFs	-146	dBFS/ Hz
		Atten=39dB、f _{DAC} = 6000MSPS、 20Gbps SerDes レート、Pout=-12dBFs	-136	dBFS/ Hz
		Atten=0dB、f _{DAC} = 6000MSPS、 20Gbps SerDes レート、Pout=-12dBFs	-160	dBFS/ Hz
NCD	ノイズ スペクトル密度 20MHz オフセット f _{OUT} = 400MHz	Atten=20dB、f _{DAC} = 6000MSPS、 20Gbps SerDes レート、Pout=-12dBFs	-153	dBFS/ Hz
NSD _{dBFS}		Atten=28dB、f _{DAC} =6000MSPS、 20Gbps SerDes レート、Pout=-12dBFs	-150	dBFS/ Hz
		Atten=39dB、f _{DAC} = 6000MSPS、 20Gbps SerDes レート、Pout=-12dBFs	-139	dBFS/ Hz
		減衰 = 0dB、f _{DAC} = 5898.24MSPS、 Pout = -13dBFs	-158.8	dBFS/ Hz
NSD	ノイズ スペクトル密度 20MHz オフセット	減衰 = 20dB、f _{DAC} = 5898.24MSPS、 Pout = -13dBFs	-152.7	dBFS/ Hz
NSD _{dBFS}	f _{OUT} = 0.85GHz	減衰 = 28dB、f _{DAC} = 5898.24MSPS、 Pout = -13dBFs	-148.7	dBFS/ Hz
		減衰 = 39dB、f _{DAC} = 5898.24MSPS、 Pout = -13dBFs	-137.9	dBFS/ Hz
NSD _{dBFS}		減衰 = 0dB、f _{DAC} = 5898.24MSPS、 Pout = -13dBFs	-157.9	dBFS/ Hz
	ノイズ スペクトル密度 20MHz オフセット	減衰 = 20dB、f _{DAC} = 5898.24MSPS、 Pout = -13dBFs	-151.3	dBFS/ Hz
	f _{OUT} = 1.8GHz	減衰 = 28dB、f _{DAC} = 5898.24MSPS、 Pout = -13dBFs	-145.6	dBFS/ Hz
		減衰 = 39dB、f _{DAC} = 5898.24MSPS、 Pout = -13dBFs	-134.8	dBFS/ Hz

 T_A = +25°Cでの代表値、全動作温度範囲は $T_{A,MIN}$ = -40°C~ $T_{J,MAX}$ = +110°C、TX 入力レート = 491.52MSPS、、 f_{DAC} = 11796.48MSPS (6GHz 以下の帯域で動作)、 f_{DAC} = 9000MSPS (6GHz 以上)、PLL クロック モード (出力周波数 6GHz 未満) および外部クロック モード (出力周波数 6GHz 超)、1 次ナイキストではインターリーブ モード、2 次ナイキストでは非インターリーブ混在モード、公称電源、-1dBFS で 1トーン、DSA 減衰 = 0dB、特に記述のない限り。

	パラメータ	テスト条件	最小値 標準値	最大値	単位
		減衰 = 0dB、f _{DAC} = 8847.36MSPS、 Pout = -13dBFs	-158.3		dBFS/ Hz
Nep	ノイズ スペクトル密度 20MHz オフセット	減衰 = 20dB、f _{DAC} = 8847.36MSPS、 Pout = -13dBFs	-151.6		dBFS/ Hz
NSD _{dBFS}	f _{OUT} = 2.6GHz	減衰 = 28dB、f _{DAC} = 8847.36MSPS、 Pout = -13dBFs	-144.9		dBFS/ Hz
		減衰 = 39dB、f _{DAC} = 8847.36MSPS、 Pout = -13dBFs	-134.0		dBFS/ Hz
		減衰 = 0dB、f _{DAC} = 11796.48MSPS、 Pout = -13dBFs	-158.2		dBFS/ Hz
Nep	ノイズ スペクトル密度 20MHz オフセット	減衰 = 20dB、f _{DAC} = 11796.48MSPS、 Pout = -13dBFs	-150.9		dBFS/ Hz
NSD _{dBFS}	F _{OUT} = 3.5GHz	減衰 = 28dB、f _{DAC} = 11796.48MSPS、 Pout = -13dBFs	-144.4		dBFS/ Hz
		減衰 = 39dB、f _{DAC} = 11796.48MSPS、 Pout = -13dBFs	-133.4		dBFS/ Hz
	ノイズ スペクトル密度 20MHz オフセット F _{OUT} = 4.9GHz	減衰 = 0dB、f _{DAC} = 11796.48MSPS、 Pout = -13dBFs	-154.6		dBFS/ Hz
NOD		減衰 = 20dB、f _{DAC} = 11796.48MSPS、 Pout = -13dBFs	-147.0		dBFS/ Hz
NSD _{dBFS}		減衰 = 28dB、f _{DAC} = 11796.48MSPS、 Pout = -13dBFs	-140.7		dBFS/ Hz
		減衰 = 39dB、f _{DAC} = 11796.48MSPS、 Pout = -13dBFs	-129.9		dBFS/ Hz
S22	出力リターン ロス、+/- fc * 10%	マッチングを使用	-12		dB
		f _{out} = 10MHz、f _{DAC} =6000MSPS、ストレート モード ⁽³⁾	-96		dB
		f _{out} = 30MHz、f _{DAC} = 6000MSPS、ストレート モード ⁽³⁾	-97		dB
		f _{out} = 100MHz、f _{DAC} = 6000MSPS、ストレートモード(3)	-102		dB
		f _{out} = 400MHz、f _{DAC} = 6000MSPS、ストレートモード(4)	-85		dB
絶縁	ニア チャネル: 1TXOUT から 2TXOUT、または 3TXOUT から 4TXOUT ⁽¹⁾	f _{OUT} = 900MHz、f _{DAC} = 8847.36MSPS、ストレート モード	-80		dB
	31X001 //-9 41X001 (*/	f _{out} = 1850MHz、f _{DAC} = 8847.36MSPS、ストレート モード	-77		dB
		f _{out} = 2600 MHz、f _{DAC} = 8847.36MSPS、ストレート モード	-64		dB
		f _{out} = 3500 MHz、f _{DAC} = 8847.36MSPS、ストレート モード	-61		dB
		f _{out} = 4900MHz、f _{DAC} = 8847.36MSPS、ストレート モード	-60		dB

T_A = +25℃での代表値、全動作温度範囲は T_{A,MIN} = -40℃~T_{J,MAX} = +110℃、TX 入力レート = 491.52MSPS、、f_{DAC} = 11796.48MSPS (6GHz 以下の帯域で動作)、f_{DAC} = 9000MSPS (6GHz 以上)、PLL クロック モード (出力周波数 6GHz 未満) および外部クロック モード (出力周波数 6GHz 超)、1 次ナイキストではインターリーブ モード、2 次ナイキストでは非インターリーブ混在モード、公称電源、-1dBFS で 1トーン、DSA 減衰 = 0dB、特に記述のない限り。

	パラメータ	テスト条件	最小値 標準値	最大値	単位
		f _{out} = 10MHz、f _{DAC} =6000MSPS、ストレート モード ⁽³⁾	-104		dB
		f _{out} = 30MHz、f _{DAC} = 6000MSPS、ストレート モード ⁽³⁾	-100		dB
		f _{out} = 100MHz、f _{DAC} = 6000MSPS、ストレートモード ⁽³⁾	-105		dB
		f _{out} = 400MHz、f _{DAC} = 6000MSPS、ストレートモード ⁽⁴⁾	-97		dB
絶縁	ファー チャネル: 1/2TXOUT から 3/4TXOUT	f _{OUT} = 900MHz、f _{DAC} = 8847.36MSPS、ストレート モード	-90		dB
		f _{out} = 1850MHz、f _{DAC} = 8847.36MSPS、ストレート モード	-91		dB
		f _{out} = 2600MHz、f _{DAC} = 8847.36MSPS、ストレート モード	-93		dB
		f _{out} = 3500MHz、f _{DAC} = 8847.36MSPS、ストレート モード	-94		dB
		f _{out} = 4900MHz、f _{DAC} = 8847.36MSPS、ストレート モード	-83.2		dB
		f _{OUT} = 3.7GHz f _{OFFSET} = 100Hz	-97		dBc/Hz
PN _{TXADD}		f _{OUT} = 3.7GHz、f _{OFFSET} = 1kHz	-106		dBc/Hz
	追加の位相ノイズの外部クロック モード	f _{OUT} = 3.7GHz, f _{OFFSET} = 10kHz	-117		dBc/Hz
	(5)	f _{OUT} = 3.7GHz, f _{OFFSET} = 100kHz	-128		dBc/Hz
		f _{OUT} = 3.7GHz, f _{OFFSET} = 1MHz	-138		dBc/Hz
		f _{OUT} = 3.7GHz, f _{OFFSET} = 10MHz	-144		dBc/Hz

⁽¹⁾ TxP/M で 100 オームの差動を使用して測定されます。 各ピンで各 TxP/M に対する DC バイアスは 1.8V に維持され、削除されません。 TX パス 上の他の外部コンポーネントは切断されます。

Copyright © 2025 Texas Instruments Incorporated

⁽²⁾ DSA キャリブレーション手順の後

^{(3) 1}µH の DC フィード インダクタを使用して測定

^{(4) 0.39}µH の DC フィード インダクタを使用して測定

⁽⁵⁾ 入力クロック位相ノイズを減算しました。

5.6 RF ADC の電気的特性

 T_A = +25°C での代表値、全動作温度範囲は $T_{A,MIN}$ = -40°C~ $T_{J,MAX}$ = +110°C、RX 入力レート = 491.52MSPS、 f_{ADC} = 2949.12MSPS インターリーブ モード、 f_{REF} = 491.52MHz での PLL クロック モード、公称電源、DSA 設定 =3dB、SerDes レート =24.33Gbps、特に記述のない限り。

	パラメータ	テスト条件	最小値	標準値	最大値	単位
ADC _{RES}	ADC の分解能			14		ビット
F _{RFin}	RF 入力周波数範囲		5		7400	MHz
		f _{IN} = 5MHz、DSA = 0dB、f _{ADC} = 1500MSPS、f _{NCO} = 17MHz、48 でデ シメーション		-0.4		dBm
		f_{IN} = 30MHz, DSA = 0dB, f_{ADC} = 1500MSPS, f_{NCO} = 30MHz, 24 \vec{c} \vec{c} \vec{c} \vec{c}		-2.2		dBm
P _{FS_CW,min}	デバイスピンでの最小フルスケール入力 電力 ⁽¹⁾	f _{IN} = 410MHz、DSA = 0dB、f _{ADC} = 3000MSPS、f _{NCO} = 400MHz、12 でデシメーション		-2.5		dBm
		f _{IN} = 830MHz, DSA = 0dB		-2.9		dBm
		f _{IN} = 1760MHz, DSA = 0dB		-2.8		dBm
		f _{IN} = 2610MHz, DSA = 0dB		-1.8		dBm
		f _{IN} = 3610MHz, DSA = 0dB		-0.4		dBm
		f _{IN} = 4910MHz, DSA = 0dB		0.1		dBm
R _{TERM}	入力リファレンス インピーダンス			100.0		Ω
ATT _{range}	DSA 減衰範囲			25.0		dB
	DSA 減衰ステップ			0.5		dB
	DSA 減衰ステップ精度	デルタ = Gatt(X) - Gatt(X - 1)、F _{in} = 3610MHz、キャリブレーション後		0.1		dB
ATT _{step}	DSA ゲイン ステップ位相精度 任意の 8dB レンジ	F _{in} = 3610MHz、キャリブレーション後		0.9		度
	DSA ゲイン ステップ位相精度 任意の 8dB レンジ	F _{in} = 4910MHz、キャリブレーション後		1.8		度
		80MHz 帯域幅で測定		0.2		dB
G _{flat}	ゲイン平坦性	200MHz 帯域幅で測定		0.5		dB
		400MHz 帯域幅で測定		1.1		dB

 T_A = +25°C での代表値、全動作温度範囲は $T_{A,MIN}$ = -40°C~ $T_{J,MAX}$ = +110°C、RX 入力レート = 491.52MSPS、 f_{ADC} = 2949.12MSPS インターリーブ モード、 f_{REF} = 491.52MHz での PLL クロック モード、公称電源、DSA 設定 =3dB、SerDes レート =24.33Gbps、特に記述のない限り。

	パラメータ	テスト条件	最小値	標準値	最大値	単位
		f _{IN} =5MHz、DSA = 3dB、f _{ADC} = 1500MSPS、f _{NCO} = 17MHz、48 でデ シメーション		-147.1		dBFS/Hz
		f _{IN} =30MHz、DSA = 3dB、f _{ADC} = 1500MSPS、f _{NCO} = 30MHz、24 でデ シメーション		-150.7		dBFS/Hz
		f _{IN} = 410MHz、DSA = 3dB、f _{ADC} = 3000MSPS、f _{NCO} = 400MHz、24 でデシメーション		-155.4		dBFS/Hz
		f _{IN} = 830MHz, DSA = 3dB		-156.2		dBFS/Hz
		f _{IN} = 1760MHz, DSA = 3dB		-156.0		dBFS/Hz
		f _{IN} = 2610MHz, DSA = 3dB		-155.4		dBFS/Hz
		f _{IN} = 3610MHz, DSA = 3dB		-155.1		dBFS/Hz
NOD	ノイズ密度 ⁽³⁾	f _{IN} = 4910MHz, DSA = 3dB		-155.1		dBFS/Hz
NSD	(小信号 = -30dBFS)	f _{IN} =5MHz、f _{ADC} = 1500MSPS、f _{NCO} = 17MHz、48 でデシメーション、3 <=減衰 <=22		-147.8		dBFS/Hz
		f _{IN} =30MHz、f _{ADC} = 1500MSPS、f _{NCO} = 30MHz、24 でデシメーション、3 <=減衰 <=22		-151.5		dBFS/Hz
		f _{IN} = 410MHz、3 <= 減衰 <=22、f _{ADC} = 3000MSPS、f _{NCO} = 400MHz、24 でデ シメーション		-156.6		dBFS/Hz
		f _{IN} = 830MHz、3≦減衰≦22		-156.0		dBFS/Hz
		f _{IN} = 1760MHz、3≦減衰≦25		-155.8		dBFS/Hz
		f _{IN} = 2610MHz、3≦減衰≦25		-155.7		dBFS/Hz
		f _{IN} = 3610MHz、3≦減衰≦25		-155.4		dBFS/Hz
		f _{IN} = 4910MHz、3≦減衰≦25		-155.8		dBFS/Hz
		f _{IN} =5MHz、f _{ADC} = 1500MSPS、f _{NCO} = 17MHz、48 でデシメーション		29.4		dB
		f _{IN} =30MHz、f _{ADC} = 1500MSPS、f _{NCO} = 30MHz、24 でデシメーション		24.5		dB
NF_{min}	ノイズ指数最小値	f _{IN} = 410MHz、f _{ADC} = 3000MSPS、f _{NCO} = 400MHz、24 でデシメーション		19.3		dB
	DSA 減衰 = 0~3dB	f _{IN} = 830MHz		19.1		dB
		f _{IN} = 1760MHz		19.0		dB
		f _{IN} = 2610MHz		20.9		dB
		f _{IN} = 3610MHz		22.8		dB
		f _{IN} = 4910MHz		22.4		dB

English Data Sheet: SBASAO5

 T_A = +25°C での代表値、全動作温度範囲は $T_{A,MIN}$ = -40°C~ $T_{J,MAX}$ = +110°C、RX 入力レート = 491.52MSPS、 f_{ADC} = 2949.12MSPS インターリーブ モード、 f_{REF} = 491.52MHz での PLL クロック モード、公称電源、DSA 設定 =3dB、SerDes レート =24.33Gbps、特に記述のない限り。

	パラメータ	テスト条件	最小值	標準値	最大値	単位
		f _{IN} =5MHz、f _{ADC} = 1500MSPS、f _{NCO} = 17MHz、48 でデシメーション		30.6		dB
		f _{IN} =30MHz、f _{ADC} = 1500MSPS、f _{NCO} = 30MHz、24 でデシメーション		25.1		dB
NF	ノイズ指数 ⁽⁴⁾	f _{IN} = 410MHz、f _{ADC} = 3000MSPS、f NCO = 400MHz、24 でデシメーション		20.1		dB
	DSA 減衰 = 4dB	f _{IN} = 830MHz		20.0		dB
		f _{IN} = 1760MHz		20.6		dB
		f _{IN} = 2610MHz		21.9		dB
		f _{IN} = 3610MHz		23.5		dB
		f _{IN} = 4910MHz		22.3		dB
		f _{IN} =5MHz、f _{ADC} = 1500MSPS、f _{NCO} = 17MHz、48 でデシメーション		45.9		dB
		f _{IN} =30MHz、f _{ADC} = 1500MSPS、f _{NCO} = 30MHz、24 でデシメーション		40.2		dB
NF _{max}	ノイズ指数	f _{IN} = 410MHz、f _{ADC} = 3000MSPS、f NCO = 400MHz、24 でデシメーション		35.0		dB
max	DSA 減衰 = 20dB	f _{IN} = 830MHz		34.7		dB
		f _{IN} = 1760MHz	35.2		dB	
		f _{IN} = 2610MHz		36.0		dB
		f _{IN} = 3610MHz		37.3		dB
		f _{IN} = 4910MHz		37.6		dB
		f _{IN} = 30±1 MHz、f _{ADC} = 1500MSPS、f NCO = 30MHz、24 でデシメーション		-82		dBc
	3 次相互変調、f _{IN} ± 10MHz で 2トーン	f _{IN} = 400MHz および 405MHz、f _{ADC} = 3000MSPS、f _{NCO} = 400MHz、24 でデシメーション		-75		dBc
MD3	各トーン -7dBFS	f _{IN} = 840MHz		-82		dBc
		f _{IN} = 1770MHz		-84		dBc
		f _{IN} = 2610MHz		-74		dBc
		f _{IN} = 3610MHz		-77		dBc
		f _{IN} = 4920MHz		-76		dBc
		f _{IN} =5MHz、f _{ADC} = 1500MSPS、f _{NCO} = 17MHz、48 でデシメーション		78		dBFS
		f _{IN} =30MHz、f _{ADC} = 1500MSPS、f _{NCO} = 30MHz、24 でデシメーション		100		dBFS
SFDR	スプリアス フリー ダイナミック レンジ 出力帯域幅内、A _{IN} = -3dBFS	f _{IN} = 410MHz、f _{ADC} = 3000MSPS、f _{NCO} = 400MHz、24 でデシメーション		94		dBFS
		f _{IN} = 830MHz		88		dBFS
		f _{IN} = 1760MHz		81		dBFS
		f _{IN} = 2610MHz		88		dBFS
		f _{IN} = 3610MHz		84		dBFS
		f _{IN} = 4910MHz		79		dBFS

25

 T_A = +25°C での代表値、全動作温度範囲は $T_{A,MIN}$ = -40°C~ $T_{J,MAX}$ = +110°C、RX 入力レート = 491.52MSPS、 f_{ADC} = 2949.12MSPS インターリーブ モード、 f_{REF} = 491.52MHz での PLL クロック モード、公称電源、DSA 設定 =3dB、SerDes レート =24.33Gbps、特に記述のない限り。

	パラメータ	テスト条件	最小値	標準値	最大値	単位
		f _{IN} =5MHz、f _{ADC} = 1500MSPS、f _{NCO} = 17MHz、48 でデシメーション		-84		dBFS
		f _{IN} =30MHz、f _{ADC} = 1500MSPS、バイパス モード (TI 専用テストモード)		-91		dBFS
HD2	2 次高調波歪み	f _{IN} = 410MHz、f _{ADC} = 3000MSPS、バイパス モード (TI 専用テスト モード)		-90		dBFS
	$A_{IN} = -3dBFS^{(2)}$	f _{IN} = 830MHz		-86		dBFS
		f _{IN} = 1760MHz		-90		dBFS
		f _{IN} = 2610MHz		-88		dBFS
		f _{IN} = 3610MHz		-87		dBFS
		f _{IN} = 4910MHz		-84		dBFS
		f _{IN} =5MHz、f _{ADC} = 1500MSPS、f _{NCO} = 17MHz、48 でデシメーション		-78		dBFS
		f _{IN} =30MHz、f _{ADC} = 1500MSPS、バイパス モード (TI 専用テストモード)		-96		dBFS
HD3	3 次高調波歪み	f _{IN} = 410MHz、f _{ADC} = 3000MSPS、バ イパス モード (TI 専用テスト モード)		-94		dBFS
1.50	A _{IN} = -3dBFS	f _{IN} = 830MHz		-80		dBFS
		f _{IN} = 1760MHz		-85		dBFS
		f _{IN} = 2610MHz		-86		dBFS
		f _{IN} = 3610MHz		-78		dBFS
		f _{IN} = 4910MHz		-75		dBFS
		f _{IN} =5MHz、f _{ADC} = 1500MSPS、f _{NCO =} 17MHz、48 でデシメーション		-94		dBFS
		f _{IN} =30MHz、f _{ADC} = 1500MSPS、f _{NCO} = 30MHz、24 でデンメーション		-94		dBFS
HDn, n > 3	HD2とHD3を除くSFDR A _{IN} = -3dBFS	f _{IN} = 410MHz、f _{ADC} = 3000MSPS、f _{NCO =} 400MHz、24 でデ シメーション		-94		dBFS
	, did GGDI G	f _{IN} = 830MHz		-88		dBFS
		f _{IN} = 1760MHz		-81		dBFS
		f _{IN} = 2610MHz		-88		dBFS
		f _{IN} = 3610MHz		-84		dBFS
		f _{IN} = 4910MHz		-82		dBFS

 T_A = +25°C での代表値、全動作温度範囲は $T_{A,MIN}$ = -40°C~ $T_{J,MAX}$ = +110°C、RX 入力レート = 491.52MSPS、 f_{ADC} = 2949.12MSPS インターリーブ モード、 f_{REF} = 491.52MHz での PLL クロック モード、公称電源、DSA 設定 =3dB、SerDes レート =24.33Gbps、特に記述のない限り。

	パラメータ	テスト条件	最小値 標準値 最大値	単位
		f _{IN} = 5MHz、f _{ADC} = 1500MSPS、f _{NCO} = 17MHz、48 でデシメーション	101	dBFS
		f _{IN} =30MHz、f _{ADC} = 1500MSPS、f _{NCO} = 30MHz、24 でデシメーション	105	dBFS
SFDR	スプリアス フリー ダイナミック レンジ A _{IN} = -13 dBFS	f _{IN} = 410MHz、f _{ADC} = 3000MSPS、f _{NCO =} 400MHz、24 でデ シメーション	95	dBFS
		f _{IN} = 830MHz	89	dBFS
		f _{IN} = 1760MHz	89	dBFS
		f _{IN} = 2610MHz	95	dBFS
		f _{IN} = 3610MHz	87	dBFS
		f _{IN} = 4910MHz	90	dBFS
		f _{IN} = 5MHz、f _{ADC} = 1500MSPS、f _{NCO} = 17MHz、48 でデシメーション	-104	dBFS
		f _{IN} =30MHz、f _{ADC} = 1500MSPS、バイパス モード (TI 専用テストモード)	-91	dBFS
HD2	2 次高調波歪み ⁽²⁾	f _{IN} = 410MHz、f _{ADC} = 3000MSPS、バイパス モード (TI 専用テスト モード)	-104	dBFS
I IDZ	A _{IN} = -13 dBFS	f _{IN} = 830MHz、基板トリムを使用	-79	dBFS
		f _{IN} = 1760MHz、基板トリムを使用	-102	dBFS
		f _{IN} = 2610MHz、基板トリムを使用	-100	dBFS
		f _{IN} = 3610MHz、基板トリムを使用	-101	dBFS
		f _{IN} = 4910MHz、基板トリムを使用	-99	dBFS
		f _{IN} = 5MHz、f _{ADC} = 1500MSPS、f _{NCO} = 17MHz、48 でデシメーション	-103	dBFS
		f _{IN} =30MHz、f _{ADC} = 1500MSPS、バイパス モード (TI 専用テストモード)	-84	dBFS
HD3	3 次高調波歪み A _{IN} = -13 dBFS	f _{IN} = 381MHz、f _{ADC} = 3000MSPS、バイパス モード (TI 専用テスト モード)	-91	dBFS
5		f _{IN} = 830MHz	-95	dBFS
		f _{IN} = 1760MHz	-95	dBFS
		f _{IN} = 2610MHz	-98	dBFS
		f _{IN} = 3610MHz	-97	dBFS
		f _{IN} = 4910MHz	-94	dBFS

27

 T_A = +25°C での代表値、全動作温度範囲は $T_{A,MIN}$ = -40°C \sim $T_{J,MAX}$ = +110°C、RX 入力レート = 491.52MSPS、 f_{ADC} = 2949.12MSPS インターリーブ モード、 f_{REF} = 491.52MHz での PLL クロック モード、公称電源、DSA 設定 =3dB、SerDes レート =24.33Gbps、特に記述のない限り。

	パラメータ	テスト条件	最小値 標準値 最大	直
		f _{IN} = 5MHz、f _{ADC} = 1500MSPS、f _{NCO} = 17MHz、48 でデシメーション	-104	dBFS
		f _{IN} =30MHz、f _{ADC} = 1500MSPS、f _{NCO} = 30MHz、24 でデシメーション	-105	dBFS
HDn, n > 3	HD2とHD3を除くSFDR A _{IN} = -13dBFS	f _{IN} = 410MHz、f _{ADC} = 3000MSPS、f _{NCO} = 400MHz、24 でデ シメーション	-95	dBFS
	Thy Comments	f _{IN} = 830MHz	-89	dBFS
		f _{IN} = 1760MHz	-89	dBFS
		f _{IN} = 2610MHz	-95	dBFS
		f _{IN} = 3610MHz	-90	dBFS
		f _{IN} = 4910MHz	-90	dBFS
		f _{IN} = 5MHz、f _{ADC} = 1500MSPS、f _{NCO} = 17MHz、48 でデシメーション	-98	dB
		f _{IN} =30MHz、f _{ADC} = 1500MSPS、f _{NCO} = 30MHz、24 でデシメーション	-98	dB
	ニア チャネル: 1RXIN から 2RXIN	f _{IN} = 400MHz	-88	dB
RX-RX/FB 絶縁	3RXIN から 4RXIN	f _{IN} = 830MHz	-77	dB
		f _{IN} = 1760MHz	-71	dB
		f _{IN} = 2610MHz	-74	dB
		f _{IN} = 3610MHz	-77	dB
		f _{IN} = 4910MHz	-65	dB
		f _{IN} = 5MHz、f _{ADC} = 1500MSPS、f _{NCO} = 17MHz、48 でデシメーション	-105	dB
		f _{IN} =30MHz、f _{ADC} = 1500MSPS、f _{NCO} = 30MHz、24 でデシメーション	-101	dB
	1TXOUT から 1RXIN	$f_{IN} = 400MHz$	-99	dB
TX-RX 絶縁	3TXOUT から 2RXIN	f _{IN} = 830MHz	-86	dB
		f _{IN} = 1760MHz	-87	dB
		f _{IN} = 2610MHz	-84	dB
		f _{IN} = 3610MHz	-82	dB
		f _{IN} = 4910MHz	-82	dB

⁽¹⁾ DSA にデジタル ゲイン範囲を追加して DSA の有効範囲を拡張することで、最小減衰でのフルスケール入力を低減できます。 デジタル ゲイン範囲全体にわたってノイズ指数は一定に保たれます。

English Data Sheet: SBASAO5

⁽²⁾ 特定のプリント基板で HD2 トリムを実施した後。

⁽³⁾ DSA = $3dB\sim0dB$ まで、NSD は DSA 1dB あたり 1dB 上昇

⁽⁴⁾ DSA = 3dB 超では、NF は DSA 1dB あたり 1dB 上昇

5.7 PLL / VCO / クロックの電気的特性

TA = +25°Cでの代表値、全動作温度範囲は $T_{A,MIN}$ = -40°C~ $T_{J,MAX}$ = +110°C、リファレンス クロック入力周波数 491.52MHz (特に記述のない限り)、 f_{DAC} = f_{VCO} 、 f_{OUT} = f_{DAC} /4、 f_{VCO} に正規化

	パラメータ	テスト条件	最小値	標準値	最大値	単位
£	VCO1 の最小周波数				7.2	GHz
f _{VCO1}	VCO1 の最大周波数		7.68			GHz
	VCO2 の最小周波数				8.848	GHz
f _{VCO2}	VCO2 の最大周波数		9.216			GHz
	VCO3 の最小周波数				9.8304	GHz
f _{VCO3}	VCO3 の最大周波数		10.24			GHz
_	VCO4 の最小周波数				11.7965	GHz
f _{VCO4}	VCO4 の最大周波数		12.288			GHz
DIV _{DAC}	DAC サンプル レート分周器			1、2、ま たは3		
DIV _{RXADC}	ADC サンプル レート分周器			1、2、3、 4、6、ま たは8		
		600kHz		-113		dBc/Hz
		800kHz		-116		dBc/Hz
	閉ループ位相ノイズ (F _{PLL} =	1MHz		-119		dBc/Hz
		1.8MHz		-125		dBc/Hz
		5MHz		-133		dBc/Hz
		50MHz		-141		dBc/Hz
		600kHz		-114		dBc/Hz
		800kHz		-118		dBc/Hz
	閉ループ位相ノイズ (F _{PLL} =	1MHz		-120		dBc/Hz
	8.84736GHz、F _{REF} = 491.52MHz)	1.8MHz		-127		dBc/Hz
		5MHz		-135		dBc/Hz
PN _{VCO}		50MHz		-142		dBc/Hz
		600kHz		-113		dBc/Hz
		800kHz		-116		dBc/Hz
	閉ループ位相ノイズ (F _{PLL} = 9.8403GHz、	1MHz		-119		dBc/Hz
	F _{REF} = 491.52MHz)	1.8MHz		-125		dBc/Hz
		5MHz		-134		dBc/Hz
		50MHz		-140		dBc/Hz
		600kHz		-116		dBc/Hz
		800kHz		-119		dBc/Hz
	閉ループ位相ノイズ (F _{PLL} =	1MHz		-122		dBc/Hz
	7.86432GHz、F _{REF} = 491.52MHz)	1.8MHz		-127		dBc/Hz
		5MHz		-136		dBc/Hz
		50MHz		-143		dBc/Hz
		f _{PLL} = 11.79848GHz、[1kHz、100MHz]		-43.4		dBc/Hz
F _{rms}	クロック PLL 積分位相誤差 (1)	f _{PLL} = 8.8536GHz [1kHz 100MHz]		-47.6		dBc/Hz
		f _{PLL} = 9.8304GHz、[1kHz、100MHz]		-46.2		dBc/Hz
f _{PFD}	PFD 周波数		100		500	MHz
PN _{pll_flat}	正規化された PLL フラット ノイズ	f _{VCO} = 11796.48MHz		-226.5		dBc/Hz

5.7 PLL / VCO / クロックの電気的特性 (続き)

TA = +25°Cでの代表値、全動作温度範囲は $T_{A,MIN}$ = -40°C~ $T_{J,MAX}$ = +110°C、リファレンス クロック入力周波数 491.52MHz (特に記述のない限り)、 f_{DAC} = f_{VCO} 、 f_{OUT} = $f_{DAC}/4$ 、 f_{VCO} に正規化

	パラメータ	テスト条件	最小値	標準値	最大値	単位
F _{REF}	入力クロック周波数		0.1		12	GHz
V _{SS}	入力クロック レベル		0.6		1.8	Vppdiff
結合				AC 結合 のみ		
	REFCLK 入力インピーダンス ⁽²⁾	並列抵抗		100		Ω
	REFOLK AMADE — 3 DA (A)	並列容量		0.5		pF

- (1) シングル サイドバンド。リファレンス クロックの影響は含まれません
- (2) インピーダンスと周波数との関係については、テキサス・インスツルメンツが提供している S11 データを参照してください

5.8 デジタルの電気的特性

TA = +25℃での代表値、全動作温度範囲は T_{A,MIN} = -40℃~T_{J,MAX} = +110℃ (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
CML SerDes 入	カ [8:1]SRX+/-					
V _{SRDIFF}	SerDes レシーバ入力振幅	差動	100		1200	mVpp
V _{SRCOM}	SerDes 入力コモン モード			400		mV
Z _{SRdiff}	SerDes 内部差動終端 (1)			100		Ω
		フル レート モード	19		29.5	Gbps
F _{SerDes}	SerDes ビットレート	ハーフレートモード	9.5	-	16.25	Gbps
		クォーター レート モード	4.75		8.125	Gbps
	挿入損失許容 ⁽²⁾	SerDes 電源 = 1.8V		25		dB
TJ	総ジッタ許容			-	0.42	UI
CML SerDes 出	カ [8:1]STX+/-					
V _{STDIFF}	SerDesトランスミッタ出力振幅	差動	500		1000	mVpp
V _{STCOM}	SerDes 出力コモン モード		0.4	0.45	0.55	٧
Z _{STdiff}	SerDes 出力インピーダンス			100		Ω
TRF	出力の立ち上がりおよび立ち下がり時間	20~80%	8			ps
TEQS	イコライゼーション範囲				7	dB
TTJ	出力の総ジッタ				0.21	UI
CMOS I/O:GPIO	$\{B/C/D/E\}x$, SPICLK, SPISDIO, SPISDO,	SPISEN, RESETZ, BISTB0	、BISTB1			
V _{IH}	High レベル入力電圧		0.6×VDD1 P8GPIO			V
V _{IL}	Low レベル入力電圧				0.4×VDD1 P8GPIO	V
I _{IH}	High レベル入力電流		-250		250	μA
I _{IL}	Low レベル入力電流		-250		250	μA
C _L	CMOS 入力容量			2		pF
V _{OH}	High レベル入力電圧		VDD1P8G PIO-0.2			V
V _{OL}	Low レベル入力電圧				0.2	٧
差動入力:SYSRE	EF+/- モード A					
F _{SYSREFMAX}	SYSREF 入力周波数最大値			40		MHz
V _{SWINGSRMAX}	SYSREF 入力スイング最大値			1.8		Vppdiff ⁽³⁾
V _{SWINGSRMIN}	SYSREF 入力スイング最小値	f _{REF} < 500MHz		0.3		Vppdiff ⁽³⁾
V _{SWINGSRMIN}	SYSREF 入力スイング最小値	f _{REF} > 500MHz		0.6		Vppdiff ⁽³⁾
V _{COMSRMAX}	SYSREF 入力コモン モード電圧最大値			0.8		٧
V _{COMSRMIN}	SYSREF 入力コモン モード電圧最小値			0.6		V
Z _T	入力の終端	差動		100 (1)		Ω
C _L	入力容量	各ピンから GND		0.5		pF
LVDS 入力:0SYN	NCIN+/- および 1SYNCIN+/-					
V _{ICOM}	入力コモン モード電圧			1.2		V
V _{ID}	差動入力電圧スイング			450		Vppdiff ⁽³⁾
Z _T	入力の終端	差動		100		Ω
LVDS 出力:0SYN	NCOUT+/- および 1SYNCOUT+/-	·				
V _{OCOM}	出力コモン モード電圧			1.2		V

5.8 デジタルの電気的特性 (続き)

TA = +25℃での代表値、全動作温度範囲は T_{A,MIN} = -40℃~T_{J,MAX} = +110℃ (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
V _{OD}	差動出力電圧スイング			500		Vppdiff ⁽³⁾
Z _T	内部終端			100		Ω

- (1) SYSREF 終端は 100Ω 、 150Ω 、 300Ω の間で設定可能です。
- (2) 損失許容はバンプ間の STX から SRX です。
- (3) Vppdiff は最大差動電圧 (正の値) と最小差動電圧 (負の値) の差です。

Copyright © 2025 Texas Instruments Incorporated

5.9 電源の電気的特性

 T_A = +25°Cでの代表値、全動作温度範囲は $T_{A,MIN}$ = -40°C~ $T_{J,MAX}$ = +110°C、TX 入力レート = 500MSPS、RX 出力レート = 500MSPS、 f_{DAC} = 9000MSPS インターリーブ モード、 f_{ADC} = 3000MSPS、公称電源、-1dBFS で 1トーン、DSA 減衰 = 0dB、SerDes レート = 20Gbps、特に記述のない限り。

	パラメータ	テスト条件	最小値	標準値	最大値	単位
	グループ 3A:VDD1P8FB + VDD1P8RX + VDD1P8TX			588		mA
I _{VDD1P8}	グループ 3B:VDD1P8FBCLK + VDD1P8RXCLK + VDD1P8TXDAC + VDD1P8GPIO + VDDA1P8	モード 1:4T4R - TDD (TX 75%、RX 25%) TX デュアル バンド:72x Int、TX レート 125MSPS		439		mA
	グループ 3C:VDD1P8PLL + VDD1P8PLLVCO	RX デュアル バンド: 24x Dec、RX レート 125MSPS		74		mA
I _{VDD1P2}	グループ 2:VDD1P2FB + VDD1P2RX + VDD1P2TXCLK + VDD1P2TXENC + VDD1P2FBCML + VDD1P2RXCML + VDD1P2PLLCLKREF	f _{DAC} = 9000MSPS、f _{OUT} = f _{IN} = 1.9、 2.6GHz f _{ADC} = 3000MSPS JESD:8/10 コーディング、20Gbps TX:2-16-16-1、RX:2-16-16-1		1191		mA
I _{VDD0P9}	グループ 1A:DVDD0P9 + VDDT0P9			1928		mA
P _{diss}	電力散逸			5196		mW
	グループ 3A:VDD1P8FB + VDD1P8RX + VDD1P8TX			1146		mA
I _{VDD1P8}	VDD1P8GPIO + VDDA1P8	TX デュアル バンド:96x Int、TX レート	553		mA	
	グループ 3C:VDD1P8PLL + VDD1P8PLLVCO	RX デュアル バンド: RX 24x、RX レート 125MSPS		78		mA
I _{VDD1P2}	グループ 2: VDD1P2FB + VDD1P2RX + VDD1P2TXCLK + VDD1P2TXENC + VDD1P2FBCML + VDD1P2RXCML + VDD1P2PLLCLKREF	f _{DAC} = 12GSPS、f _{TX} = 1.85GHz f _{ADC} = 3GSPS、f _{RX} = 1.75GHz JESD:8/10 コーディング、20Gbps TX:2-16-16-1、RX:2-16-16-1		2152		mA
I _{VDD0P9}	グループ 1A:DVDD0P9 + VDDT0P9			3217		mA
P _{diss}	電力散逸			8757		mW
	グループ 3A:VDD1P8FB + VDD1P8RX + VDD1P8TX			1146		mA
I _{VDD1P8}	グループ 3B:VDD1P8FBCLK + VDD1P8RXCLK + VDD1P8TXDAC + VDD1P8GPIO + VDDA1P8	モード 3:4T4R - FDD TX シングル バンド:96x Int、TX レート 125MSPS		546		mA
	グループ 3C:VDD1P8PLL + VDD1P8PLLVCO	RX シングル バンド: RX 24x、RX レート 125MSPS		78		mA
I _{VDD1P2}	グループ 2:VDD1P2FB + VDD1P2RX + VDD1P2TXCLK + VDD1P2TXENC + VDD1P2FBCML + VDD1P2RXCML + VDD1P2PLLCLKREF			2144		mA
I _{VDD0P9}	グループ 1A: DVDD0P9 + VDDT0P9	1		2904		mA
P _{diss}	電力散逸	1		8444		mW

5.9 電源の電気的特性 (続き)

 T_A = +25°Cでの代表値、全動作温度範囲は $T_{A,MIN}$ = -40°C~ $T_{J,MAX}$ = +110°C、TX 入力レート = 500MSPS、RX 出力レート = 500MSPS、 f_{DAC} = 9000MSPS インターリーブ モード、 f_{ADC} = 3000MSPS、公称電源、-1dBFS で 1トーン、DSA 減衰 = 0dB、SerDes レート = 20Gbps、特に記述のない限り。

	パラメータ	テスト条件	最小値	標準値	最大値	単位
	グループ 3A:VDD1P8FB + VDD1P8RX + VDD1P8TX			1147		mA
I _{VDD1P8}	グループ 3B:VDD1P8FBCLK + VDD1P8RXCLK + VDD1P8TXDAC + VDD1P8GPIO + VDDA1P8	モード 4:4T4R - FDD TX シングル バンド:24x Int、TX レート 500MSPS		700		mA
	グループ 3C:VDD1P8PLL + VDD1P8PLLVCO	RX シングル バンド: RX 6x、RX レート 500MSPS		78		mA
I _{VDD1P2}	グループ 2:VDD1P2FB + VDD1P2RX + VDD1P2TXCLK + VDD1P2TXENC + VDD1P2FBCML + VDD1P2RXCML + VDD1P2PLLCLKREF	f _{DAC} = 12GSPS、f _{TX} = 1.85GHz f _{ADC} = 3GSPS、f _{RX} = 1.75GHz JESD:8/10 コーディング、20Gbps TX:4-8-4-1、RX:4-8-4-1		2150		mA
I _{VDD0P9}	グループ 1A:DVDD0P9 + VDDT0P9			3228		mA
P _{diss}	電力散逸			9031		mW
I _{VDD1P8}	グループ 3A:VDD1P8FB + VDD1P8RX + VDD1P8TX			24		mA
I _{VDD1P8}	グループ 3B:VDD1P8FBCLK + VDD1P8RXCLK + VDD1P8TXDAC + VDD1P8GPIO + VDDA1P8			339		mA
I _{VDD1P8}	グループ 3C:VDD1P8PLL + VDD1P8PLLVCO	モード 5: モード 4 スリープ モードと同じ構成。 SLEEP ピンは		12		mA
I _{VDD1P2}	グループ 2:VDD1P2FB + VDD1P2RX + VDD1P2TXCLK + VDD1P2TXENC + VDD1P2FBCML + VDD1P2RXCML + VDD1P2PLLCLKREF	High にする。		58		mA
I _{VDD0P9}	グループ 1A:DVDD0P9 + VDDT0P9			282		mA
P _{diss}	電力散逸			1004		mW

5.10 タイミング要件

 T_A = +25°Cでの代表値、全動作温度範囲は $T_{A,MIN}$ = -40°C~ $T_{J,MAX}$ = +110°C、TX 入力レート = 491.52MSPS、 f_{DAC} = 8847.36MSPS、 f_{ADC} = 2949.12MSPS、公称電源、-1dBFS で 1トーン、DSA 減衰 = 0dB、SerDes レート = 24.33Gbps、特に記述のない限り。

		最小值	公称值	最大値	単位
タイミング:8	YSREF+/-				
t _{s(SYSREF)}	セットアップ時間、SYSREF+/- 有効から CLK+/- の立ち上がりエッジまで		50		ps
t _{h(SYSREF)}	ホールド時間、CLK+/-の立ち上がりエッジの後の SYSREF+/- 有効の期間		50		ps
タイミング:シ	· リアル ポート				
t _{s(SENB)}	SCLK の立ち上がりエッジまでの SENB のセットアップ時間			15	ns
t _{h(SENB)}	SCLK の最後の立ち上がりエッジの後の SENB のホールド時間 (1)			5 + t _{SCLK}	ns
t _{s(SDIO)}	セットアップ時間、SDIO 有効から SCLK の立ち上がりエッジまで			15	ns
t _{h(SDIO)}	ホールド時間、SCLK の立ち上がりエッジの後の SDIO 有効の期間			5	ns
t _{(SCLK)_W}	最小 SCLK 周期:レジスタ書き込み			25	ns
t _{(SCLK)_R}	最小 SCLK 周期:レジスタ読み取り			50	ns
t _{d(data_out)}	SCLK の立ち下がりエッジの後の最小データ出力遅延			0	ns
	SCLK の立ち下がりエッジの後の最大データ出力遅延			15	ns
t _{RESET}	最小 RESETZ パルス幅		1		ms

(1) SDEN では、最後の SCLK エッジでさらに 1 クロック サイクル、ホールドされる必要があります

5.11 スイッチング特性

 T_A = +25°Cでの代表値、全動作温度範囲は $T_{A,MIN}$ = -40°C~ $T_{J,MAX}$ = +110°C、TX 入力レート = 491.52MSPS、 f_{DAC} = 8847.36MSPS、 f_{ADC} = 2949.12MSPS、公称電源、-1dBFS で 1トーン、DSA 減衰 = 0dB、SerDes レート = 24.33Gbps、特に記述のない限り。

	パラメータ	テスト条件	最小値	標準値	最大値	単位	
TX チャネ	ド ル レイテンシ						
	SerDes レシーバのアナログ遅延	フルレート		2.8		ns	
t _{JESDTX}	JESD から TX 出力までのレイテンシ	LMFSHd = 2-8-8-1、368.64MSPS の入力 レート、24x 補間、SerDes レート = 16.22Gbps (JESD204C)		152		インター フェイス クロック サ イクル ⁽¹⁾	
		LMFSHd = 8-16-4-1、491.52MSPS 24x 補間、SerDes レート = 16.22Gbps (JESD204C)		176			
		LMFSHd = 4-16-8-1、245.76MSPS 48x 補間、SerDes レート = 16.22Gbps (JESD204C)		124			
		LMFSHd = 2-16-16-1、122.88MSPS 96x 補間、SerDes レート = 16.22Gbps (JESD204C)		97			
RX チャネ	トル レイテンシ						
	SerDesトランスミッタのアナログ遅延			3.6		ns	
t _{JESDRX}	RX 入力から JESD 出力までのレイテンシ	LMFS = 2-16-16-1、122.88MSPS、24x デ シメーション、SerDes レート = 16.22Gbps (JESD204C)		92		インターフェイス	
		LMFS = 4-16-8-1、245.76MSPS、12x デシ メーション、SerDes レート = 16.22Gbps (JESD204C)		108			
		LMFS = 2-8-8-1、368.64 MSPS、8x デシメ ーション、Serdes レート = 16.22Gbps (JESD204C)		118		クロック † イクル ⁽¹	
		LMFS = 4-8-4-1、491.52MSPS、6x デシメ ーション、SerDes レート = 16.22Gbps (JESD204C)		153			
FB チャネ	トル レイテンシ						
	SerDesトランスミッタのアナログ遅延			3.6		ns	
t _{JESDFB}	FB 入力から JESD 出力までのレイテンシ	LMFS = 1-2-8-1、368.64MSPS、8x デシメ ーション		151		インター フェイス	
		LMFS = 2-4-4-1、491.52MSPS、6x デシメ ーション		177		クロック サ イクル ⁽¹⁾	

⁽¹⁾ インターフェイス クロック サイクルは、デジタル インターフェイスのクロック レートの周期です。 たとえば、1GSPS = 1ns です。

Copyright © 2025 Texas Instruments Incorporated

5.12 代表的特性

5.12.1 RX 代表的特性: 30MHz~400MHz

 T_A = +25°C における代表値。デフォルト条件は 30MHz。ADC サンプル レート = 1500MSPS、出力サンプル レート = 62.5MSPS (24x でデシメーション)、 f_{REF} = 500MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 3dB。400MHz のデフォルト条件: ADC サンプル レート = 1500MSPS、出力サンプル レート = 125MSPS (12x でデシメーション)、 f_{REF} = 500MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 3dB。

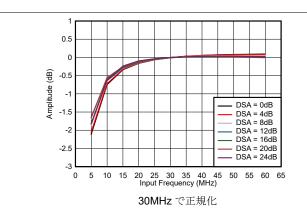


図 5-1. RX 帯域内ゲイン平坦性 (f_{IN} = 30MHz)

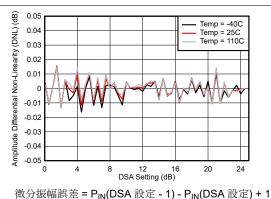


図 5-3. RX 較正済み微分振幅誤差と DSA 設定との関係 (30MHz)

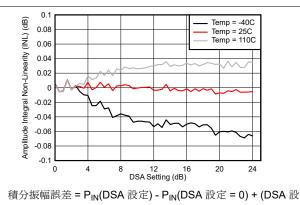
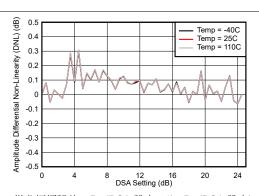
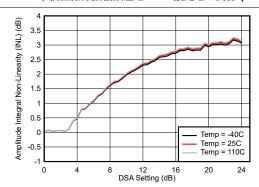




図 5-5. RX 較正済み積分振幅誤差と DSA 設定との関係 (30MHz)

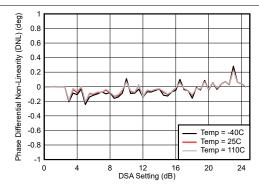
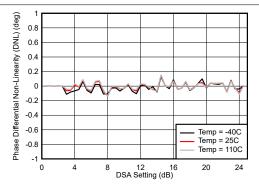

微分振幅誤差 = P_{IN}(DSA 設定 - 1) - P_{IN}(DSA 設定) + 1

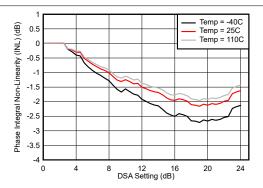
図 5-2. RX 未較正微分振幅誤差と DSA 設定との関係 (30MHz)

積分振幅誤差 = $P_{IN}(DSA$ 設定) - $P_{IN}(DSA$ 設定 = 0) + (DSA 設定) 定)

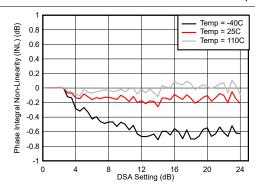
図 5-4. RX 未較正積分振幅誤差と DSA 設定との関係 (30MHz)



微分位相誤差 = Phase_{IN}(DSA 設定 - 1) - Phase_{IN}(DSA 設定)


図 5-6. RX 未較正微分位相誤差と DSA 設定との関係 (30MHz)

 T_A = +25°C における代表値。デフォルト条件は 30MHz。ADC サンプル レート = 1500MSPS、出力サンプル レート = 62.5MSPS (24x でデシメーション)、 f_{REF} = 500MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 3dB。400MHz のデフォルト条件:ADC サンプル レート = 1500MSPS、出力サンプル レート = 125MSPS (12x でデシメーション)、 f_{REF} = 500MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 3dB。



微分位相誤差 = Phase_{IN}(DSA 設定 - 1) - Phase_{IN}(DSA 設定)

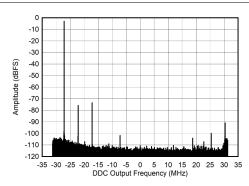

積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

図 5-7. RX 較正済み微分位相誤差と DSA 設定との関係 (30MHz)

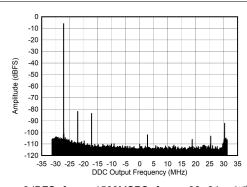
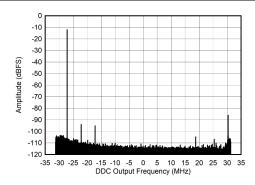

0.8GHz 整合あり 積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

図 5-8. RX 未較正積分位相誤差と DSA 設定との関係 (30MHz)

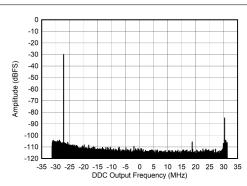
 A_{IN} = -3dBFS、 f_{ADC} = 1500MSPS、 f_{NCO} = 32.13MHz、24x でデシメーション


図 5-9. RX 較正済み積分位相誤差と DSA 設定との関係 (30MHz)

 A_{IN} = -6dBFS、 f_{ADC} = 1500MSPS、 f_{NCO} = 32。24x でデシメーション

図 5-11. RX 出力 FFT (5MHz)

図 5-10. RX 出力 FFT (5MHz)

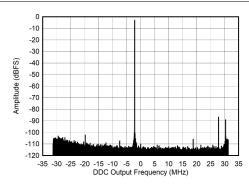


 A_{IN} = -12dBFS、 f_{ADC} = 1500MSPS、 f_{NCO} = 32.13MHz、24x で デシメーション

図 5-12. RX 出力 FFT (5MHz)

 T_A = +25°C における代表値。デフォルト条件は 30MHz。ADC サンプル レート = 1500MSPS、出力サンプル レート = 62.5MSPS (24x でデシメーション)、 f_{REF} = 500MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 3dB。400MHz のデフォルト条件:ADC サンプル レート = 1500MSPS、出力サンプル レート = 125MSPS (12x でデシメーション)、 f_{REF} = 500MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 3dB。

Product Folder Links: AFE7901



 A_{IN} = -30dBFS、 f_{ADC} = 1500MSPS、 f_{NCO} = 32.13MHz、24x で デシメーション

0 -10 -20 -30 -40 -50 -50 -50 -70 -100 -110 -120 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 DDC Output Frequency (MHz)

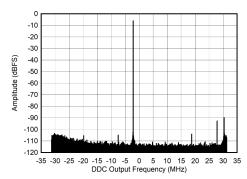

 A_{IN} = -60dBFS、 f_{ADC} = 1500MSPS、 f_{NCO} = 32.13MHz、24x で デシメーション

図 5-13. RX 出力 FFT (5MHz)

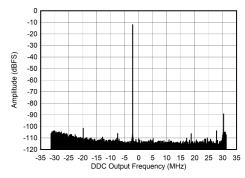
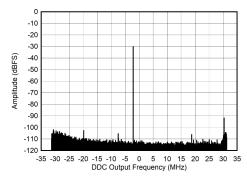

 A_{IN} = -3dBFS、 f_{ADC} = 1500MSPS、 f_{NCO} = 32.13MHz、24x でデシメーション

図 5-14. RX 出力 FFT (5MHz)

 A_{IN} = -6dBFS、 f_{ADC} = 1500MSPS、 f_{NCO} = 32.13MHz、24x でデシメーション

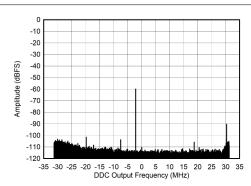

図 5-15. RX 出力 FFT (30MHz)

 A_{IN} = -12dBFS、 f_{ADC} = 1500MSPS、 f_{NCO} = 32.13MHz、24x で デシメーション

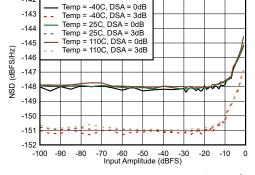
図 5-17. RX 出力 FFT (30MHz)

図 5-16. RX 出力 FFT (30MHz)

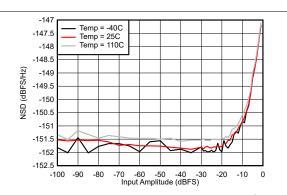
 A_{IN} = -30dBFS、 f_{ADC} = 1500MSPS、 f_{NCO} = 32.13MHz、24x で デシメーション


図 5-18. RX 出力 FFT (30MHz)

Copyright © 2025 Texas Instruments Incorporated


資料に関するフィードバック(ご意見やお問い合わせ)を送信

 T_A = +25°C における代表値。デフォルト条件は 30MHz。ADC サンプル レート = 1500MSPS、出力サンプル レート = 62.5MSPS (24x でデシメーション)、 f_{REF} = 500MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 3dB。400MHz のデフォルト条件:ADC サンプル レート = 1500MSPS、出力サンプル レート = 125MSPS (12x でデシメーション)、 f_{REF} = 500MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 3dB。



A_{IN} = -60dBFS、f_{ADC} = 1500MSPS、f_{NCO} = 32.13MHz、24x で デシメーション

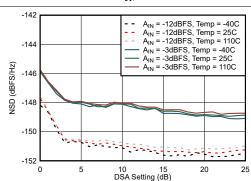


図 5-19. RX 出力 FFT (30MHz)

 f_{ADC} = 1500MSPS、 f_{NCO} = 32.13MHz、24x によってデシメーション

 f_{ADC} = 1500MSPS、 f_{NCO} = 32.13MHz、24x によってデシメーション

図 5-21. 30MHz で NSD と入力振幅との関係 (DSA = 12)

DSA = 3dB, Temp = -40C-90 DSA = 3dB, Temp = 25C DSA = 3dB, Temp = 110C DSA = 12dB, Temp = -40C -95 -100 DSA = 12dB, Temp = 25C DSA = 12dB, Temp = 110C (dBFS) -105 -110 -115 -120 -125 -130 -70 -60 -50 -40 -30 Input Amplitude (dBFS, per tone)

 f_{ADC} = 1500MSPS, f_{NCO} = 32.13MHz, 24x によってデシメーション

図 5-23. 30MHz での IMD3 と入力振幅との関係

図 5-22. 30MHz での NSD と DSA 減衰との関係

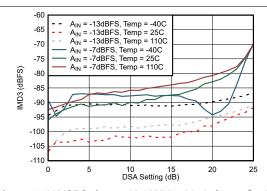
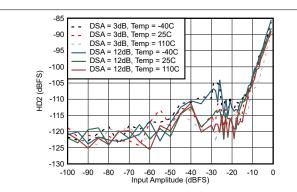
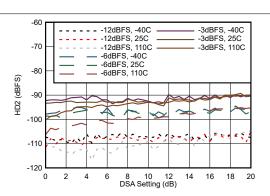
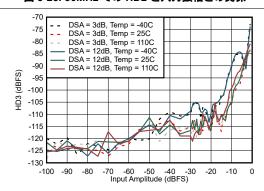



図 5-24. 30MHz での IMD3 と DSA 設定との関係


資料に関するフィードバック(ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

 T_A = +25°C における代表値。デフォルト条件は 30MHz。ADC サンプル レート = 1500MSPS、出力サンプル レート = 62.5MSPS (24x でデシメーション)、 f_{REF} = 500MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 3dB。400MHz のデフォルト条件:ADC サンプル レート = 1500MSPS、出力サンプル レート = 125MSPS (12x でデシメーション)、 f_{REF} = 500MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 3dB。



 f_{ADC} = 1500MSPS、 f_{NCO} = 32.13MHz、24x によってデシメーション

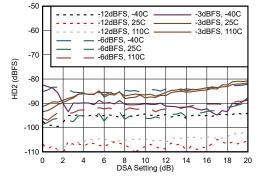

 f_{ADC} = 1500MSPS、 f_{NCO} = 32。24x でデシメーション

図 5-25. 30MHz での HD2 と入力振幅との関係

f_{ADC} = 1500MSPS、f_{NCO} = 32.13MHz、24x によってデシメーション

図 5-26. 30MHz での HD2 と DSA 設定との関係

 f_{ADC} = 1500MSPS, f_{NCO} = 32.13MHz, 24x בער באסר ארייט אריי

図 5-27, 30MHz での HD3 と入力振幅との関係

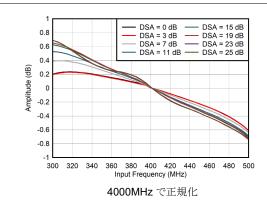
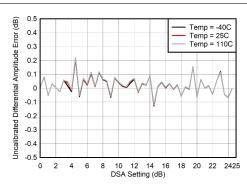



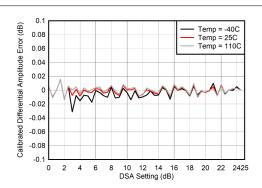
図 5-29. RX 帯域内ゲイン平坦性 (f_{IN} = 400MHz)

図 5-28. 30MHz での HD3 と DSA 設定との関係

微分振幅誤差 = P_{IN}(DSA 設定 - 1) - P_{IN}(DSA 設定) + 1

図 5-30. RX 未較正微分振幅誤差と DSA 設定との関係 (30MHz)

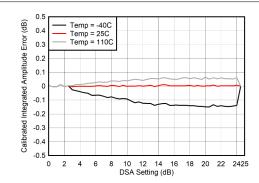
Copyright © 2025 Texas Instruments Incorporated


資料に関するフィードバック(ご意見やお問い合わせ)を送信

41

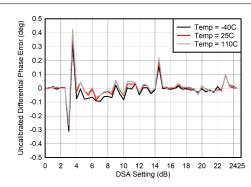
Product Folder Links: AFE7901

T_A = +25℃ における代表値。 デフォルト条件は 30MHz。 ADC サンプル レート = 1500MSPS、出力サンプル レート = 62.5MSPS (24x でデシメーション)、 f_{REF} = 500MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 3dB。 400MHz のデフォルト条件:ADC サンプル レート = 1500MSPS、出力サンプル レート = 125MSPS (12x でデシメーション)、 f_{REF} = 500MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 3dB。


微分振幅誤差 = P_{IN}(DSA 設定 - 1) - P_{IN}(DSA 設定) + 1

Error (dB) Temp = -40C Temp = 25C 1.75 Temp = 110C 1.5 Integrated Amplitude 1.25 0.75 0.5 0.25 Jncalibrated 10 12 14 16 18 20 22 2425 0 DSA Setting (dB)

積分振幅誤差 = P_{IN}(DSA 設定) - P_{IN}(DSA 設定 = 0) + (DSA 設 定)


図 5-31. RX 較正済み微分振幅誤差と DSA 設定との関係 (400MHz)

積分振幅誤差 = P_{IN}(DSA 設定) - P_{IN}(DSA 設定 = 0) + (DSA 設

図 5-32. RX 未較正積分振幅誤差と DSA 設定との関係 (400MHz)

微分位相誤差 = Phase_{IN}(DSA 設定 - 1) - Phase_{IN}(DSA 設定)

図 5-33. RX 較正済み積分振幅誤差と DSA 設定との関係 (400MHz)

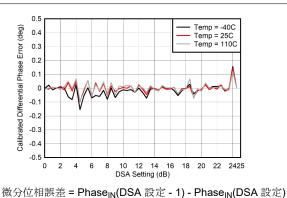
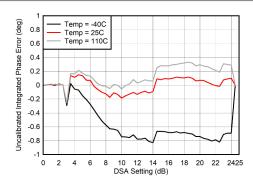
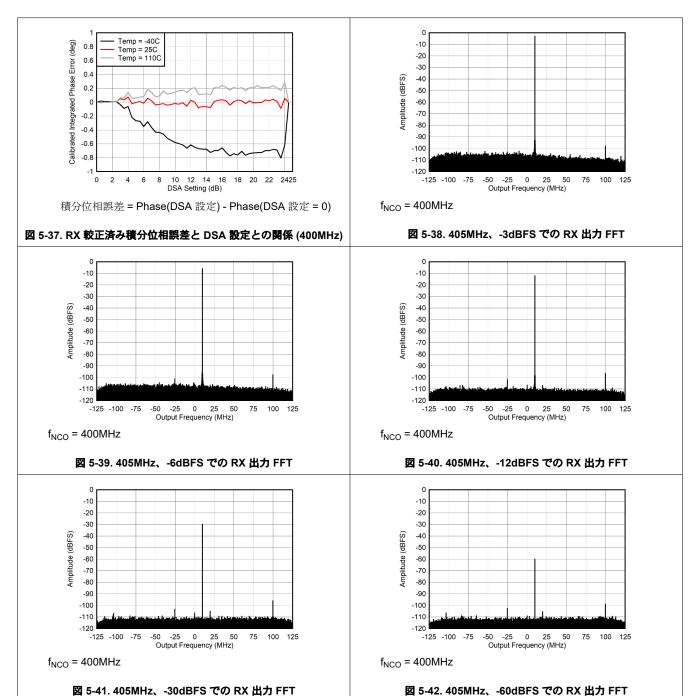
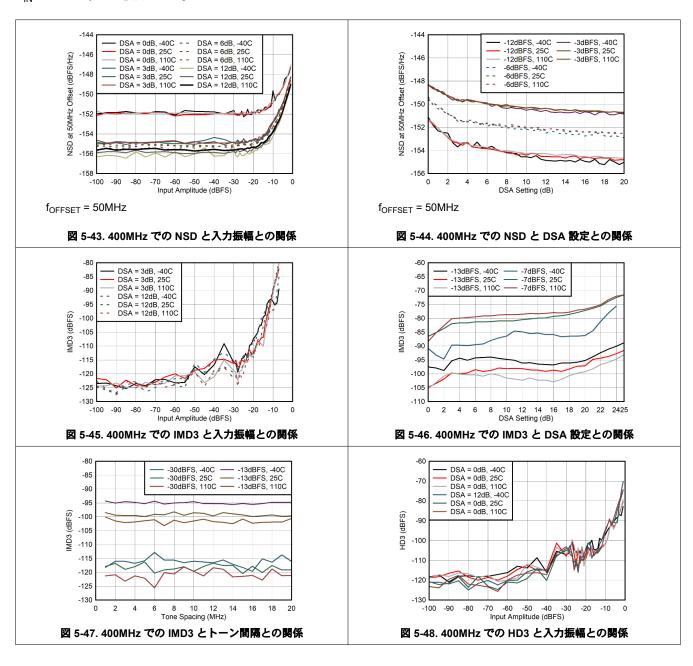



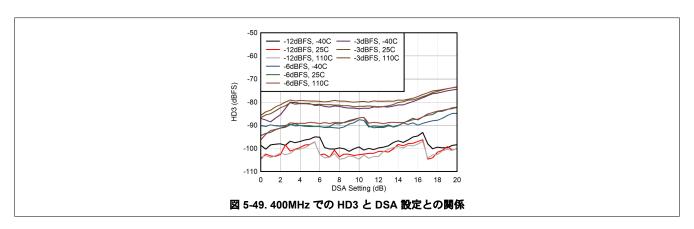
図 5-35. RX 較正済み微分位相誤差と DSA 設定との関係 (400MHz)


図 5-34. RX 未較正微分位相誤差と DSA 設定との関係 (400MHz)

積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)


図 5-36. RX 未較正積分位相誤差と DSA 設定との関係 (400MHz)

 T_A = +25°C における代表値。デフォルト条件は 30MHz。ADC サンプル レート = 1500MSPS、出力サンプル レート = 62.5MSPS (24x でデシメーション)、 f_{REF} = 500MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 3dB。400MHz のデフォルト条件:ADC サンプル レート = 1500MSPS、出力サンプル レート = 125MSPS (12x でデシメーション)、 f_{REF} = 500MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 3dB。



 T_A = +25°C における代表値。デフォルト条件は 30MHz。ADC サンプル レート = 1500MSPS、出力サンプル レート = 62.5MSPS (24x でデシメーション)、 f_{REF} = 500MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 3dB。400MHz のデフォルト条件:ADC サンプル レート = 1500MSPS、出力サンプル レート = 125MSPS (12x でデシメーション)、 f_{REF} = 500MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 3dB。

 T_A = +25°C における代表値。デフォルト条件は 30MHz。ADC サンプル レート = 1500MSPS、出力サンプル レート = 62.5MSPS (24x でデシメーション)、 f_{REF} = 500MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 3dB。400MHz のデフォルト条件:ADC サンプル レート = 1500MSPS、出力サンプル レート = 125MSPS (12x でデシメーション)、 f_{REF} = 500MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 3dB。

45

Product Folder Links: AFE7901

5.12.2 RX 代表的特性: 800MHz

T_A = +25℃、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件:出力サンプル レート = 491.52MSPS (6 でデシメーション)、f_{REF} = 491.52MHz の PLL クロック モード、A_{IN} = -3dBFS、DSA 設定 = 4dB。

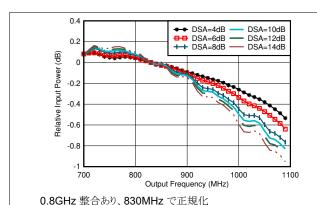
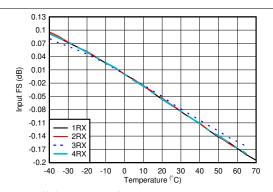
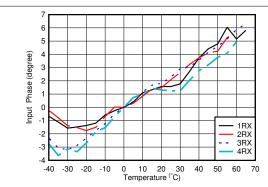
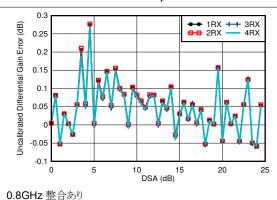




図 5-50. RX 帯域内ゲイン平坦性 (チャネル 1RX、f_{IN} = 830MHz)



0.8GHz 整合あり、各チャネルについて 25℃のフルスケールで正 規化

図 5-51. RX 入力フルスケールと温度との関係 (各種チャネル、 800MHz)

0.8GHz 整合あり、25℃の位相で正規化

微分振幅誤差 = P_{IN}(DSA 設定 - 1) - P_{IN}(DSA 設定) + 1

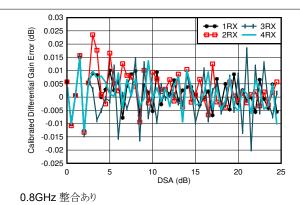
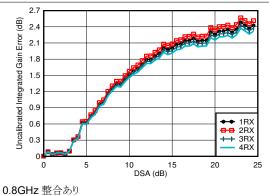
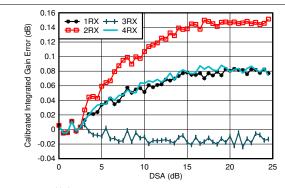
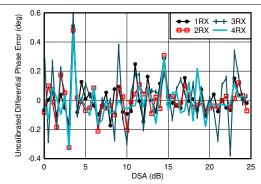



図 5-54. RX 較正済み微分振幅誤差と DSA 設定との関係 (0.8GHz)

微分振幅誤差 = P_{IN}(DSA 設定 - 1) - P_{IN}(DSA 設定) + 1


図 5-53. RX 未較正微分振幅誤差と DSA 設定との関係 (0.8GHz)

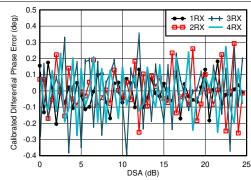
積分振幅誤差 = P_{IN}(DSA 設定) - P_{IN}(DSA 設定 = 0) + (DSA 設定) = 0) + (DSA 設定)


図 5-55. RX 未較正積分振幅誤差と DSA 設定との関係 (0.8GHz)

T_A = +25℃、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件: 出力サンプル レート = 491.52MSPS (6 でデシメーション)、f_{REF} = 491.52MHz の PLL クロック モード、A_{IN} = -3dBFS、DSA 設定 = 4dB。

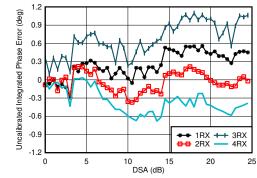
0.8GHz 整合あり

積分振幅誤差 = $P_{IN}(DSA$ 設定) - $P_{IN}(DSA$ 設定 = 0) + (DSA 設定)

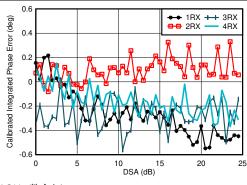


0.8GHz 整合あり

微分位相誤差 = Phase_{IN}(DSA 設定 - 1) - Phase_{IN}(DSA 設定)


図 5-57. RX 未較正微分位相誤差と DSA 設定との関係 (0.8GHz)

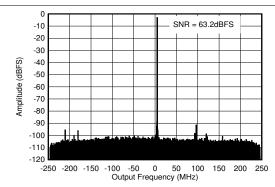
0.8GHz 整合あり


微分位相誤差 = Phase_{IN}(DSA 設定 - 1) - Phase_{IN}(DSA 設定)

0.8GHz 整合あり

積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

図 5-58. RX 較正済み微分位相誤差と DSA 設定との関係 (0.8GHz)



0.8GHz 整合あり

積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

図 5-60. RX 較正済み積分位相誤差と DSA 設定との関係 (0.8GHz)

図 5-59. RX 未較正積分位相誤差と DSA 設定との関係 (0.8GHz)

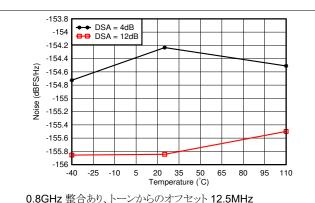

0.8 GHz 整合あり、 f_{IN} = 840 MHz、 A_{IN} = -3 dBFS

図 5-61. RX 出力 FFT (0.8GHz)

資料に関するフィードバック(ご意見やお問い合わせ)を送信

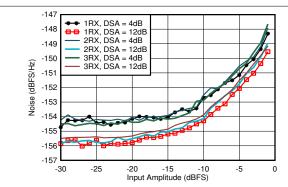
T_A = +25℃、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件: 出力サンプル レート = 491.52MSPS (6 でデシメーション)、f_{REF} = 491.52MHz の PLL クロック モード、A_{IN} = -3dBFS、DSA 設定 = 4dB。

110 °C, DSA = 12dB 110 °C

-40 °C. DSA = 4dB

-40 °C, DSA = 4dB -40 °C, DSA = 12dB 25 °C, DSA = 4dB 25 °C, DSA = 12dB 110 °C, DSA = 4dB

-148


-149

-150

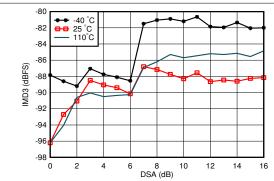

0.8GHz 整合あり、DSA 設定 = 12dB、トーンから 12.5MHz オフ セット

図 5-62. RX ノイズ スペクトル密度と温度との関係 (0.8GHz)

0.8GHz 整合あり、トーンからのオフセット 12.5MHz

0.8GHz 整合あり、各トーンは -7dBFS、トーン間隔 = 20MHz

図 5-64. RX ノイズ スペクトル密度と入力振幅との関係 (各種チャネル、0.8GHz)

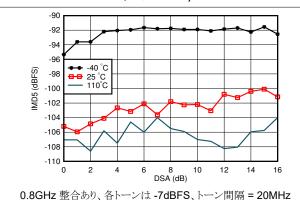
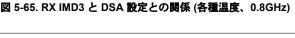
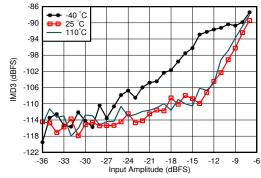
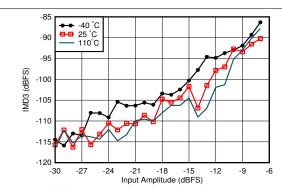
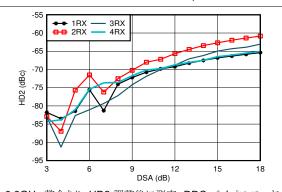




図 5-66. RX IMD5 と DSA 設定との関係 (各種温度、0.8GHz)



0.8GHz 整合あり、トーン間隔 = 20MHz、DSA = 4dB


図 5-67. RX IMD3 と入力レベルとの関係 (各種温度、0.8GHz)

T_A = +25℃、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件: 出力サンプル レート = 491.52MSPS (6 でデシメーション)、f_{REF} = 491.52MHz の PLL クロック モード、A_{IN} = -3dBFS、DSA 設定 = 4dB。

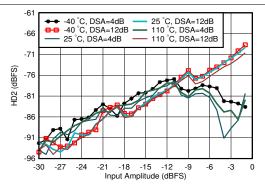

0.8GHz 整合あり、トーン間隔 = 20MHz、DSA = 12dB

図 5-68. RX IMD3 と入力レベルとの関係 (各種温度、0.8GHz)

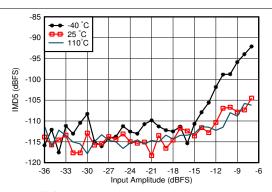

0.8GHz 整合あり、HD2 調整後に測定、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

図 5-70. RX HD2 と DSA 設定との関係 (各種チャネル、0.8GHz)

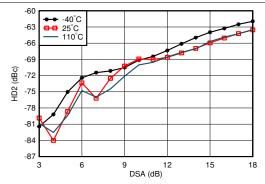

0.8GHz 整合あり、HD2 調整後に測定、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

図 5-72. RX HD2 と入力レベルとの関係 (各種温度、0.8GHz)

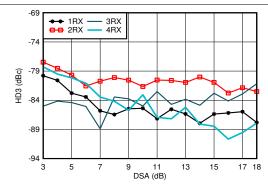

0.8GHz 整合あり、トーン間隔 = 20MHz、DSA = 12dB

図 5-69. RX IMD5 と入力レベルとの関係 (各種温度、0.8GHz)

0.8GHz 整合あり、HD2 調整後に測定、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

図 5-71. RX HD2 と DSA 設定との関係 (各種温度、0.8GHz)

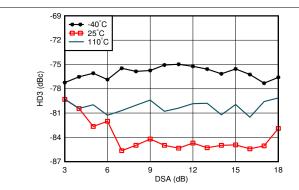
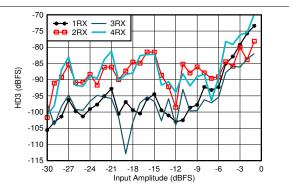
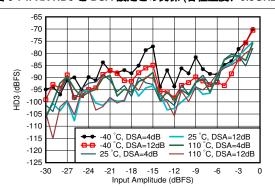

0.8GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

図 5-73. RX HD3 と DSA 設定との関係 (各種チャネル、0.8GHz)


資料に関するフィードバック(ご意見やお問い合わせ)を送信 49

T_A = +25℃、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件: 出力サンプル レート = 491.52MSPS (6 でデシメーション)、f_{REF} = 491.52MHz の PLL クロック モード、A_{IN} = -3dBFS、DSA 設定 = 4dB。



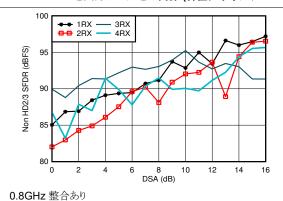
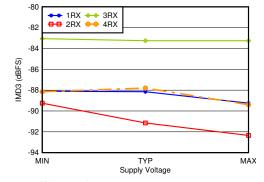
0.8GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

0.8GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

図 5-74. RX HD3 と DSA 設定との関係 (各種温度、0.8GHz)

0.8GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

図 5-75. RX HD3 と入力レベルとの関係 (各種チャネル、0.8GHz)

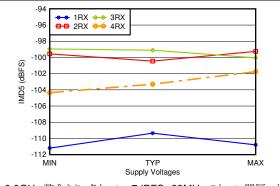
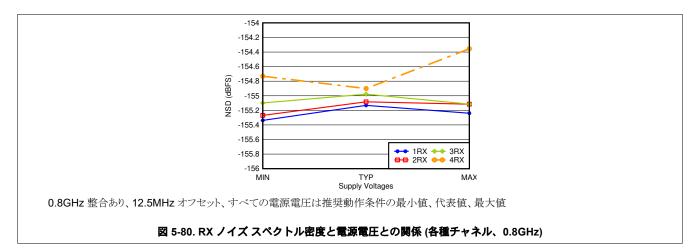

図 5-77. RX (HD2/3 を除く) と DSA 設定との関係 (0.8GHz)

図 5-76. RX HD3 と入力レベルとの関係 (各種温度、0.8GHz)

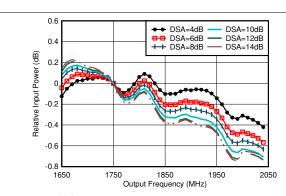
0.8GHz 整合あり、各トーン -7dBFS、20MHz のトーン間隔、すべての電源電圧は推奨動作条件の最小値、代表値、最大値

図 5-78. RX IMD3 と電源電圧との関係 (各種チャネル、0.8GHz)

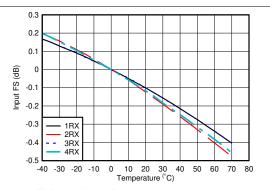


0.8GHz 整合あり、各トーン -7dBFS、20MHz のトーン間隔、すべての電源電圧は推奨動作条件の最小値、代表値、最大値

図 5-79. RX IMD5 と電源電圧との関係 (各種チャネル、0.8GHz)



T_A = +25℃、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件:出力サンプル レート = 491.52MSPS (6 でデシメーション)、f_{REF} = 491.52MHz の PLL クロック モード、A_{IN} = -3dBFS、DSA 設定 = 4dB。



T_A = +25℃、ADC サンプリング レート = 2949.12GHz での代表値。 デフォルト条件: 出力サンプル レート = 491.52MSPS (6 でデシ メーション)、 f_{REF} = 491.52MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 4dB。

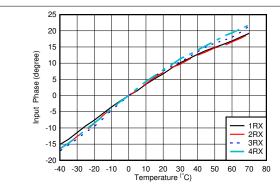
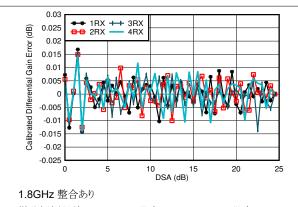

1.8GHz 整合あり、1.75GHz で正規化

図 5-81. RX 帯域内ゲイン平坦性 (f_{IN} = 1750MHz)

1.8GHz 整合あり、各チャネルについて 25℃のフルスケールで正 規化

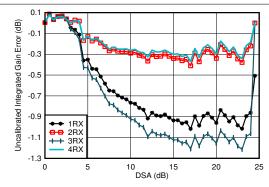
図 5-82. RX 入力フルスケールと温度との関係 (各種チャネル、 1.75GHz)



2.6GHz 整合あり、25℃の位相で正規化

Erro 0.05 Uncalibrated Differential Gain -0.05 -0.15 -0.2 ++ 1RX ++ 3RX --- 2RX --- 4RX -0.3 10 DSA (dB)

1.8GHz 整合あり 微分振幅誤差 = P_{IN}(DSA 設定 - 1) - P_{IN}(DSA 設定) + 1

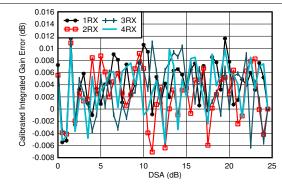

図 5-83. RX 入力位相と温度との関係 (各種 DSA、f_{IN} = 1.75GHz)

微分振幅誤差 = P_{IN}(DSA 設定 - 1) - P_{IN}(DSA 設定) + 1

図 5-85. RX 較正済み微分振幅誤差と DSA 設定との関係 (1.75GHz)

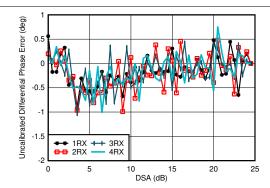
図 5-84. RX 未較正微分振幅誤差と DSA 設定との関係 (1.75GHz)

1.8GHz 整合あり


0.15 (g

0.

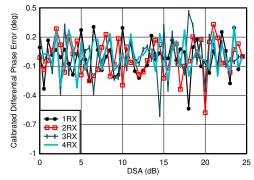
積分振幅誤差 = P_{IN}(DSA 設定) - P_{IN}(DSA 設定 = 0) + (DSA 設 定)


図 5-86. RX 未較正積分振幅誤差と DSA 設定との関係 (1.75GHz)

T_A = +25℃、ADC サンプリング レート = 2949.12GHz での代表値。 デフォルト条件: 出力サンプル レート = 491.52MSPS (6 でデシ メーション)、 f_{REF} = 491.52MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 4dB。

1.8GHz 整合あり

積分振幅誤差 = P_{IN}(DSA 設定) - P_{IN}(DSA 設定 = 0) + (DSA 設 定)


1.8GHz 整合あり

微分位相誤差 = Phase_{IN}(DSA 設定 - 1) - Phase_{IN}(DSA 設定)

図 5-88. RX 未較正微分位相誤差と DSA 設定との関係 (1.75GHz)

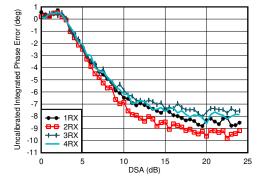
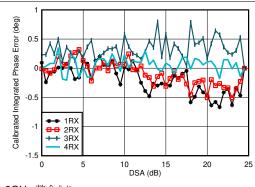


図 5-87. RX 較正済み積分振幅誤差と DSA 設定との関係 (1.75GHz)

1.8GHz 整合あり

微分位相誤差 = Phase_{IN}(DSA 設定 - 1) - Phase_{IN}(DSA 設定)

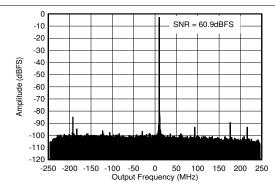


1.8GHz 整合あり

Product Folder Links: AFE7901

積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

図 5-89. RX 較正済み微分位相誤差と DSA 設定との関係 (1.75GHz)



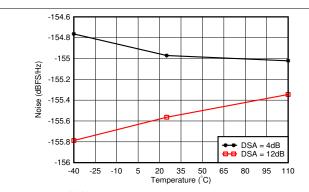
1.8GHz 整合あり

積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

図 5-91. RX 較正済み積分位相誤差と DSA 設定との関係 (1.75GHz)

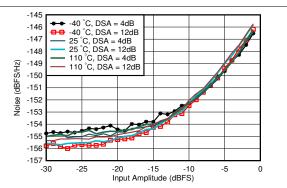
図 5-90. RX 未較正積分位相誤差と DSA 設定との関係 (1.75GHz)

1.8GHz 整合あり、 f_{IN} = 2610MHz、 A_{IN} = -3dBFS


図 5-92. RX 出力 FFT (1.75GHz)

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ) を送信



T_A = +25℃、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件:出力サンプル レート = 491.52MSPS (6 でデシメーション)、f_{REF} = 491.52MHz の PLL クロック モード、A_{IN} = -3dBFS、DSA 設定 = 4dB。

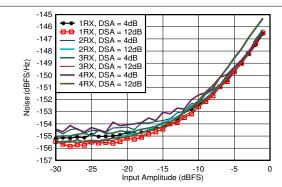
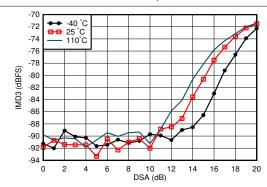

1.8GHz 整合あり、トーンからのオフセット 12.5MHz

図 5-93. RX ノイズ スペクトル密度と温度との関係 (1.75GHz)



1.8GHz 整合あり、DSA 設定 = 12dB、トーンから 12.5MHz オフ セット

図 5-94. RX ノイズ スペクトル密度と入力振幅との関係 (各種温度、 1.75GHz)

1.8GHz 整合あり、トーンからのオフセット 12.5MHz

1.8GHz 整合あり、各トーンは -7dBFS、トーン間隔 = 20MHz

図 5-95. RX ノイズ スペクトル密度と入力振幅との関係 (各種チャネル、1.75GHz)

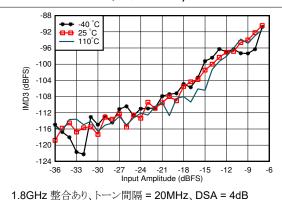
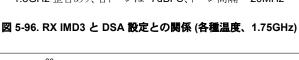
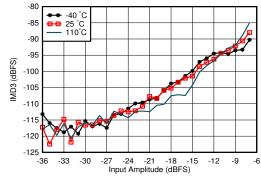
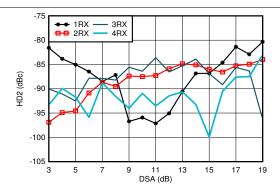




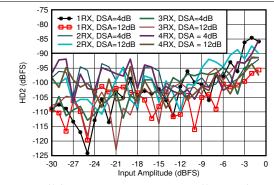
図 5-97. RX IMD3 と入力レベルとの関係 (各種温度、1.75GHz)



1.8GHz 整合あり、トーン間隔 = 20MHz、DSA = 12dB

図 5-98. RX IMD3 と入力レベルとの関係 (各種温度、1.75GHz)

T_A = +25℃、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件: 出力サンプル レート = 491.52MSPS (6 でデシメーション)、f_{REF} = 491.52MHz の PLL クロック モード、A_{IN} = -3dBFS、DSA 設定 = 4dB。



1.8GHz 整合あり、f_{in} = 1900MHz、HD2 調整後に測定、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

-72 -40°C — 110°C -77 -82 -82 -87 -92 -97 -102 3 5 7 9 11 13 15 17 19 DSA (dB)

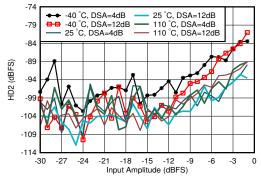

1.8GHz 整合あり、 f_{in} = 1900MHz、HD2 調整後に測定、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

図 5-99. RX HD2 と DSA 設定との関係 (各種チャネル、1.9GHz)

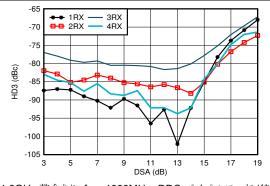
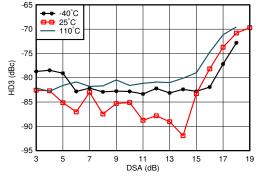

1.8GHz 整合あり、 f_{in} = 1900MHz、HD2 調整後に測定、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

図 5-100. RX HD2 と DSA 設定との関係 (各種温度、1.9GHz)

1.8GHz 整合あり、f_{in} = 1900MHz、HD2 調整後に測定、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

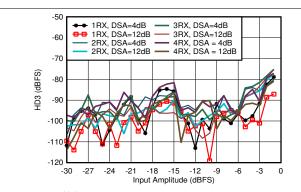

図 5-101. RX HD2 と入力振幅との関係 (各種チャネル、1.9GHz)

1.8GHz 整合あり、f_{in} = 1900MHz、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

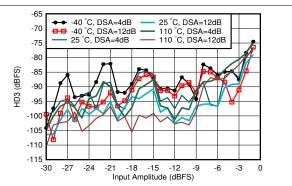
図 5-103. RX HD3 と DSA 設定との関係 (各種チャネル、1.9GHz)

図 5-102. RX HD2 と入力振幅との関係 (各種温度、1.9GHz)

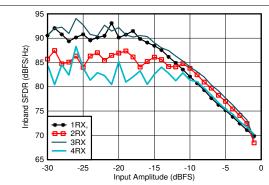
1.8GHz 整合あり、f_{in} = 1900MHz、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)


図 5-104. RX HD3 と DSA 設定との関係 (各種温度、1.9GHz)

Copyright © 2025 Texas Instruments Incorporated


資料に関するフィードバック(ご意見やお問い合わせ) を送信

T_A = +25℃、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件: 出力サンプル レート = 491.52MSPS (6 でデシメーション)、f_{REF} = 491.52MHz の PLL クロック モード、A_{IN} = -3dBFS、DSA 設定 = 4dB。



1.8GHz 整合あり、f_{in} = 1900MHz、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

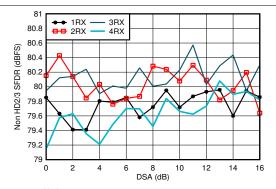

1.8GHz 整合あり、f_{in} = 1900MHz、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

図 5-105. RX HD3 と入力レベルとの関係 (各種チャネル、1.9GHz)

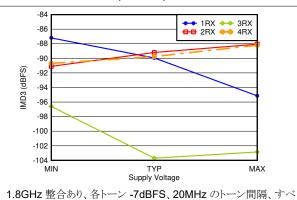

1.8GHz 整合あり、1/3 にデシメーション

図 5-106. RX HD3 と入力レベルとの関係 (各種温度、1.9GHz)

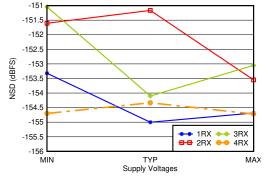

1.8GHz 整合あり

図 5-107. RX 帯域内 SFDR (±400MHz) と入力振幅との関係 (1.75GHz)

ての電源電圧は推奨動作条件の最小値、代表値、最大値

図 5-108. RX (HD2/3 を除く) と DSA 設定との関係 (1.75GHz)

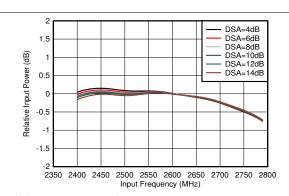
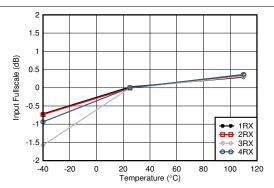

1.8GHz 整合あり、12.5MHz オフセット、すべての電源電圧は推 奨動作条件の最小値、代表値、最大値

図 5-109. RX IMD3 と電源電圧との関係 (各種チャネル、1.75GHz)

図 5-110. RX ノイズ スペクトル密度と電源電圧との関係 (各種チャネル、1.75GHz)


5.12.4 RX 代表的特性: 2.6GHz

T_A = +25℃、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件: 出力サンプル レート = 491.52MSPS (1/6 にデシメーション)、f_{REF} = 491.52MHz の PLL クロック モード、A_{IN} = -3dBFS、DSA 設定 = 4dB

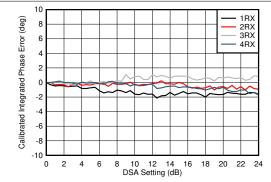

整合あり、各 DSA 設定について 2.6GHz の電力で正規化

図 5-111. RX 帯域内ゲイン平坦性 (f_{IN} = 2600MHz)

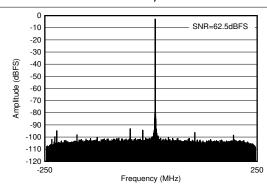
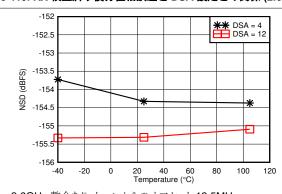

2.6GHz 整合あり、各チャネルについて 25°Cのフルスケールで正 規化

図 5-112. RX 入力フルスケールと温度との関係 (各種チャネル、 2.6GHz)


2.6GHz 整合あり

積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

2.6GHz 整合あり、 f_{IN} = 2610MHz、 A_{IN} = -3dBFS

図 5-113. RX 較正済み積分位相誤差と DSA 設定との関係 (2.6GHz)

2.6GHz 整合あり、トーンからのオフセット 12.5MHz

図 5-115. RX ノイズ スペクトル密度と温度との関係 (2.6GHz)

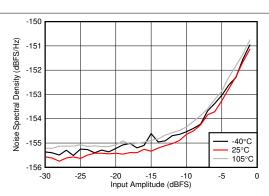
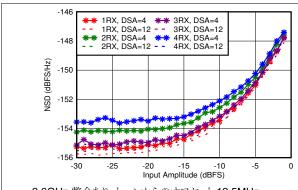
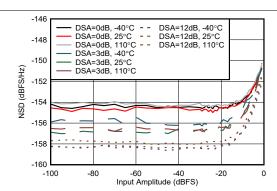


図 5-114. RX 出力 FFT (2.6GHz)

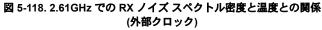
2.6GHz 整合あり、DSA 設定 = 12dB、トーンから 12.5MHz オフセット

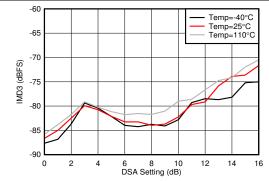

図 5-116. RX ノイズ スペクトル密度と入力振幅との関係 (各種温度、2.6GHz)

Copyright © 2025 Texas Instruments Incorporated

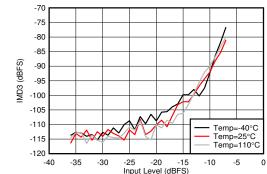

資料に関するフィードバック(ご意見やお問い合わせ) を送信

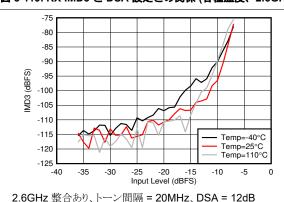
 T_A = +25°C、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件: 出力サンプル レート = 491.52MSPS (1/6 にデシメーション)、 f_{REF} = 491.52MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 4dB


2.6GHz 整合あり、トーンからのオフセット 12.5MHz



トーンから 50MHz のオフセット、外部クロック モード


図 5-117. RX ノイズ スペクトル密度と入力振幅との関係 (各種チャネル、2.6GHz)



2.6GHz 整合あり、各トーンは -7dBFS、トーン間隔 = 20MHz

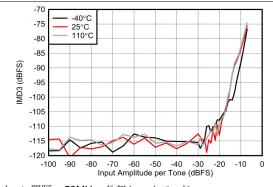

2.6GHz 整合あり、トーン間隔 = 20MHz、DSA = 4dB

図 5-119. RX IMD3 と DSA 設定との関係 (各種温度、2.6GHz)

図 5-120. RX IMD3 と入力レベルとの関係 (各種温度、2.6GHz)

トーン間隔 = 50MHz、外部クロック モード

図 5-121. RX IMD3 と入力レベルとの関係 (各種温度、2.6GHz) 図 5-122. 2.6GHz での RX IMD3 と入力レベルとの関係 (外部クロック)

 T_A = +25°C、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件: 出力サンプル レート = 491.52MSPS (1/6 にデシメーション)、 f_{REF} = 491.52MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 4dB

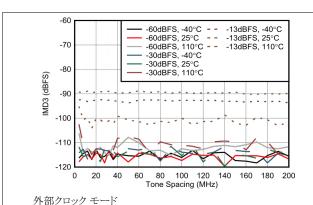
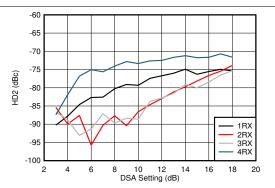
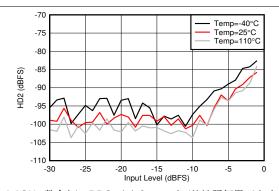
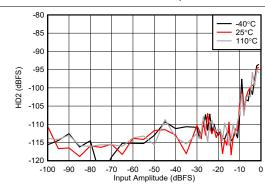
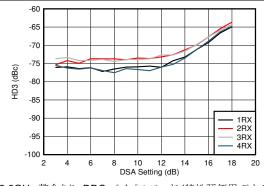




図 5-123. 2.6GHz での RX IMD3 とトーン間隔との関係 (外部クロック)

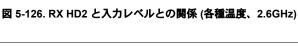


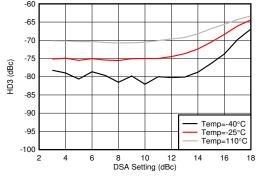
2.6GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

図 5-124. RX HD2 と DSA 設定との関係 (各種チャネル、2.6GHz)



2.6GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

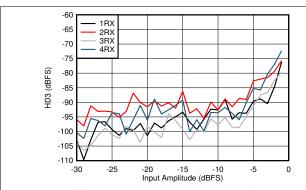

外部クロック モード


図 5-125. RX HD2 と入力レベルとの関係 (各種温度、2.6GHz)

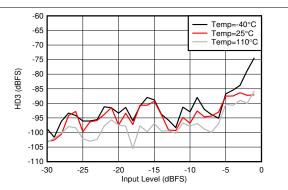
2.6GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

図 5-127. RX HD3 と DSA 設定との関係 (各種チャネル、2.6GHz)

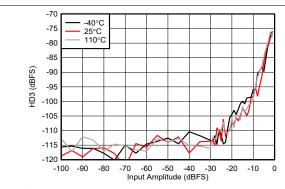
2.6GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)


図 5-128. RX HD3 と DSA 設定との関係 (各種温度、2.6GHz)

Copyright © 2025 Texas Instruments Incorporated


資料に関するフィードバック(ご意見やお問い合わせ) を送信

 T_A = +25°C、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件: 出力サンプル レート = 491.52MSPS (1/6 にデシメーション)、 f_{REF} = 491.52MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 4dB



2.6GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

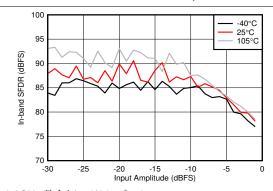

2.6GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

図 5-129. RX HD3 と入力レベルとの関係 (各種チャネル、2.6GHz)

外部クロック モード

図 5-130. RX HD3 と入力レベルとの関係 (各種温度、2.6GHz)

2.6GHz 整合あり、1/4 にデシメーション

図 5-131. RX HD3 と入力レベルとの関係 (各種温度、2.6GHz)

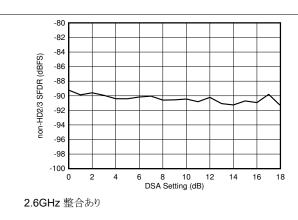
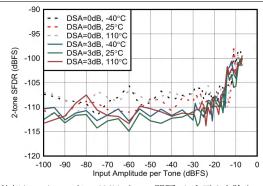
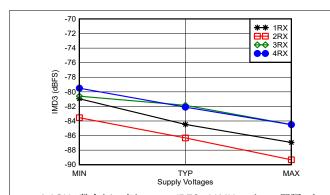
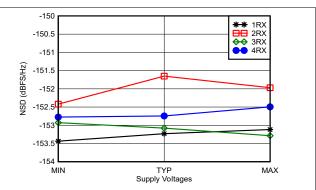



図 5-133. RX (HD2/3 を除く) と DSA 設定との関係 (2.6GHz)


図 5-132. RX 帯域内 SFDR (±300MHz) と入力振幅との関係 (各種温度、2.6GHz)

外部クロック モード、50MHzトーン間隔、3 次歪みを除く


図 5-134. 2.6GHz での RX 2 トーン SFDR と入力振幅との関係

 T_A = +25°C、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件: 出力サンプル レート = 491.52MSPS (1/6 にデシメーション)、 f_{REF} = 491.52MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 4dB

2.6GHz 整合あり、各トーン -7dBFS、20MHz のトーン間隔、すべての電源電圧は推奨動作条件の最小値、代表値、最大値

図 5-135. RX IMD3 と電源電圧との関係 (各種チャネル、2.6GHz)

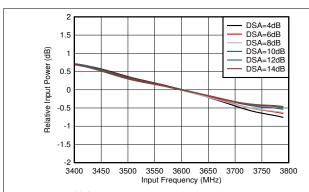
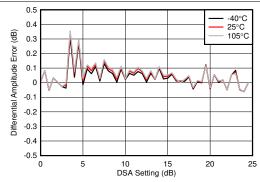
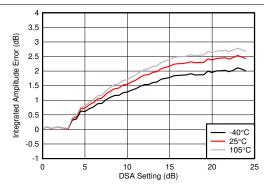

2.6GHz 整合あり、12.5MHz オフセット、すべての電源電圧は推 奨動作条件の最小値、代表値、最大値

図 5-136. RX ノイズ スペクトル密度と電源電圧との関係 (各種チャネル、2.6GHz)


5.12.5 RX 代表的特性: 3.5GHz

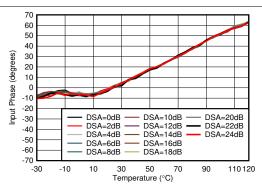
T_A = +25℃、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件: 出力サンプル レート = 491.52MSPS (1/6 にデシメーション)、f_{REF} = 491.52MHz の PLL クロック モード、A_{IN} = -3dBFS、DSA 設定 = 4dB

3.6GHz 整合あり、3.6GHz で正規化


図 5-137. RX 帯域内ゲイン平坦性 (f_{IN} = 3600MHz)

3.6GHz 整合あり

微分振幅誤差 = P_{IN}(DSA 設定 - 1) - P_{IN}(DSA 設定) + 1


図 5-139. RX 未較正微分振幅誤差と DSA 設定との関係 (3.6GHz)

3.6GHz 整合あり

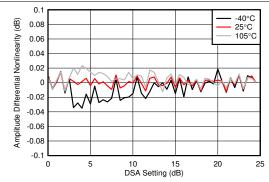
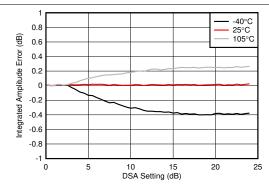

積分振幅誤差 = $P_{IN}(DSA$ 設定) - $P_{IN}(DSA$ 設定 = 0) + (DSA 設定)

図 5-141. RX 未較正積分振幅誤差と DSA 設定との関係 (3.6GHz)

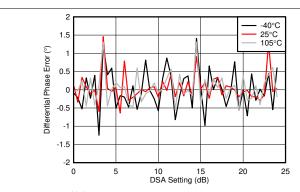
3.6GHz 整合あり、25℃の位相で正規化


図 5-138. RX 入力位相と温度との関係 (3.6GHz)

3.6GHz 整合あり

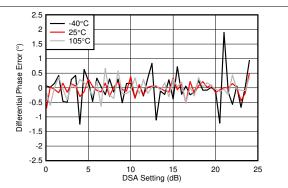
微分振幅誤差 = P_{IN}(DSA 設定 - 1) - P_{IN}(DSA 設定) + 1

図 5-140. RX 較正済み微分振幅誤差と DSA 設定との関係 (3.6GHz)



3.6GHz 整合あり

積分振幅誤差 = P_{IN} (DSA 設定) - P_{IN} (DSA 設定 = 0) + (DSA 設定)


図 5-142. RX 較正済み積分振幅誤差と DSA 設定との関係 (3.6GHz)

T_A = +25℃、ADC サンプリング レート = 2949.12GHz での代表値。 デフォルト条件: 出力サンプル レート = 491.52MSPS (1/6 にデ シメーション)、f_{REF} = 491.52MHz の PLL クロック モード、A_{IN} = -3dBFS、DSA 設定 = 4dB

3.6GHz 整合あり

微分位相誤差 = Phase_{IN}(DSA 設定 - 1) - Phase_{IN}(DSA 設定)

3.6GHz 整合あり


1.5

-0.5

Integrated Phase Error (°) 0.5

微分位相誤差 = Phase_{IN}(DSA 設定 - 1) - Phase_{IN}(DSA 設定)

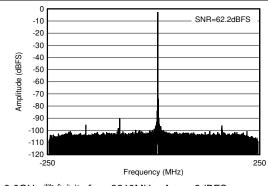
図 5-143. RX 未較正位相誤差と DSA 設定との関係 (3.6GHz)

3.6GHz 整合あり

積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

図 5-144. RX 較正済み微分位相誤差と DSA 設定との関係 (3.6GHz) 2.5 25°C 105°C

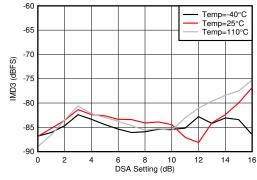
5


積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

10 15 DSA Setting (dB)

20

25

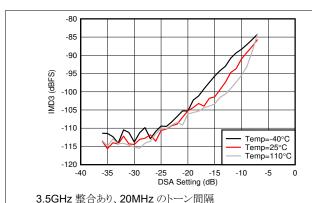

図 5-145. RX 未較正積分位相誤差と DSA 設定との関係 (3.6GHz)

3.6GHz 整合あり、 f_{IN} = 3610MHz、 A_{IN} = -3dBFS

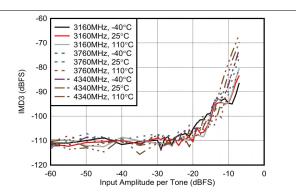
図 5-147. RX 出力 FFT (3.6GHz)

図 5-146. RX 較正済み積分位相誤差と DSA 設定との関係 (3.6GHz)

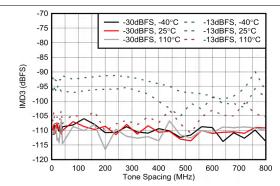
3.5GHz 整合あり、各トーンは -7dBFS、20MHz のトーン間隔


図 5-148. RX IMD3 と DSA 設定との関係 (各種温度、3.6GHz)

63


Product Folder Links: AFE7901

 T_A = +25°C、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件: 出力サンプル レート = 491.52MSPS (1/6 にデシメーション)、 f_{REF} = 491.52MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 4dB



3.5GHZ 登合めり、ZUMHZ のトーン间隔

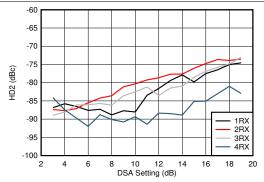

外部クロック モード、20MHz のトーン間隔、2x のデシメーション

図 5-149. RX IMD3 と入力レベルとの関係 (各種温度、3.6GHz)

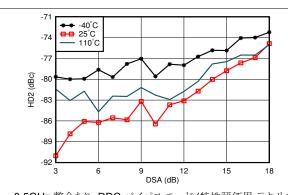
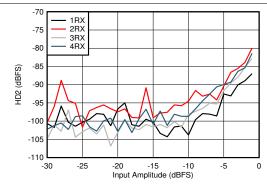

外部クロック モード イネーブル、2x のデシメーション

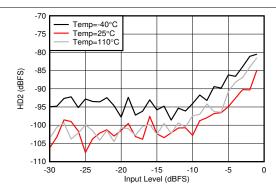
図 5-150. RX IMD3 と入力レベルとの関係

3.5GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)


図 5-151. RX IMD3 とトーン間隔との関係 (3.76GHz)

3.5GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

図 5-153. RX HD2 と DSA 設定との関係 (各種温度、3.6GHz)


図 5-152. RX HD2 と DSA 設定との関係 (各種チャネル、3.6GHz)

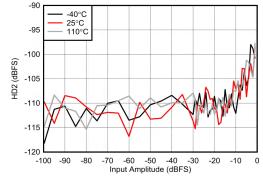
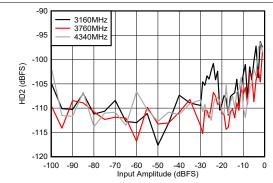

3.5GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

図 5-154. RX HD2 と入力レベルとの関係 (各種チャネル、3.6GHz)

 T_A = +25°C、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件: 出力サンプル レート = 491.52MSPS (1/6 にデシメーション)、 f_{REF} = 491.52MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 4dB


3.5GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

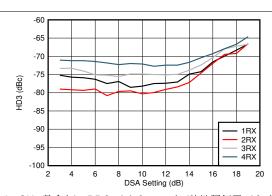
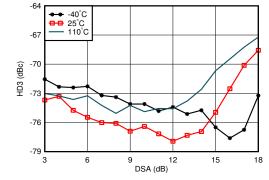

外部クロック モード イネーブル、2x のデシメーション

図 5-156. RX HD2 と入力レベルとの関係 (3.76GHz)

図 5-155. RX HD2 と入力レベルとの関係 (各種温度、3.6GHz)



外部クロックモード、25°C、2x でのデシメーション

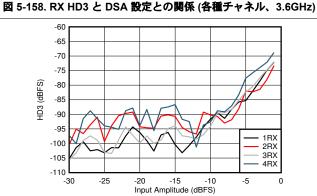
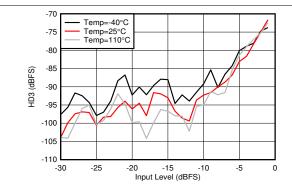

3.5GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

図 5-157. RX HD2 と入力レベルとの関係

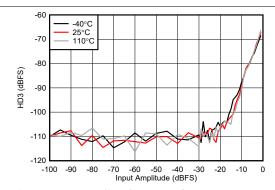
3.5GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

図 5-159. RX HD3 と DSA 設定との関係 (各種温度、3.6GHz)

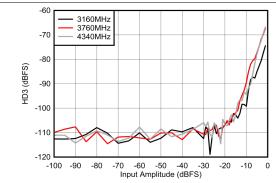
3.5GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)


図 5-160. RX HD3 と入力レベルとの関係 (各種チャネル、3.6GHz)

65


Product Folder Links: AFE7901

 T_A = +25°C、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件: 出力サンプル レート = 491.52MSPS (1/6 にデシメーション)、 f_{REF} = 491.52MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 4dB



3.5GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

外部クロック モード イネーブル、2x のデシメーション

図 5-161. RX HD3 と入力レベルとの関係 (各種温度、3.6GHz)

外部クロックモード、25°C、2x でのデシメーション

図 5-162. RX HD3 と入力レベルとの関係 (3.76GHz)

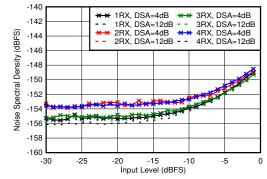
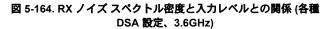



図 5-163. RX HD3 と入力レベルとの関係

3.5GHz 整合あり、トーンからのオフセット 12.5MHz

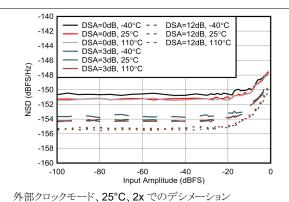


図 5-165. RX ノイズ スペクトル密度と入力レベルとの関係 (3.76GHz)

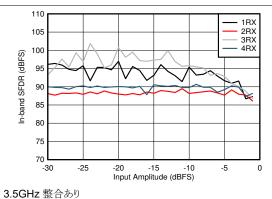
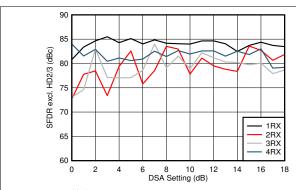
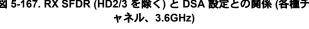
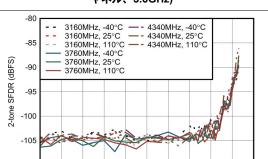



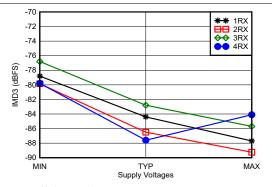

図 5-166. RX 帯域内 SFDR (±200MHz) と入力レベルとの関係 (各種 チャネル、3.6GHz)

T_A = +25℃、ADC サンプリング レート = 2949.12GHz での代表値。 デフォルト条件: 出力サンプル レート = 491.52MSPS (1/6 にデ シメーション)、 f_{REF} = 491.52MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 4dB



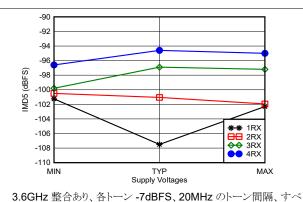

3.5GHz 整合あり

外部クロック モード、20MHzトーン間隔、3 次歪みを除く


図 5-167. RX SFDR (HD2/3 を除く) と DSA 設定との関係 (各種チ ャネル、3.6GHz)

外部クロック モード、20MHzトーン間隔、3次歪みを除く

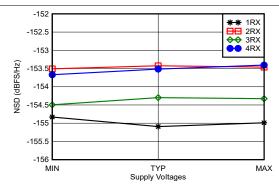
図 5-168. RX 2 トーン SFDR と入力振幅、各種 DSA 設定との関係



3.6GHz 整合あり、各トーン -7dBFS、20MHz のトーン間隔、すべ ての電源電圧は推奨動作条件の最小値、代表値、最大値

図 5-169. RX 2 トーン SFDR 、入力新億、周波数との関係 (3.7GHz)

-70 -60 -50 -40


Input Amplitude per Tone (dBFS)

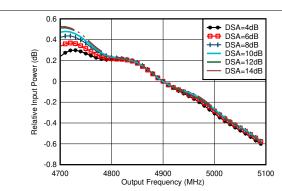
ての電源電圧は推奨動作条件の最小値、代表値、最大値

図 5-171. RX IMD5 と電源電圧との関係 (各種チャネル、3.6GHz)

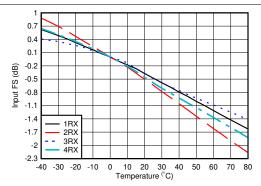
図 5-170. RX IMD3 と電源電圧との関係 (各種チャネル、3.6GHz)

3.6GHz 整合あり、-20dBFS のトーン、12.5MHz のオフセット周波 数、すべての電源電圧は推奨動作条件の最小値、代表値、最大

図 5-172. RX ノイズ スペクトル密度と電源電圧との関係 (各種チャ ネル、3.6GHz)


Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ) を送信


5.12.6 RX 代表的特性: 4.9GHz

 T_A = +25°C、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件: 出力サンプル レート = 491.52MSPS (1/6 にデシメーション)、 f_{REF} = 491.52MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 4dB

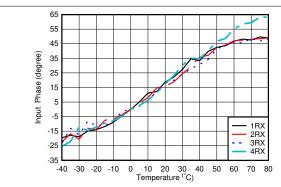
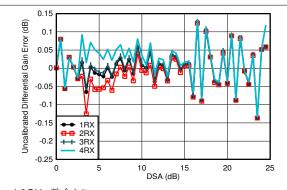

整合あり、各 DSA 設定について 4.9GHz の電力で正規化

図 5-173. RX 帯域内ゲイン平坦性 (f_{IN} = 4900MHz)



4.9GHz 整合あり、各チャネルについて 25°Cのフルスケールで正 規化

図 5-174. RX 入力フルスケールと温度との関係 (各種チャネル、 4.9GHz)

4.9GHz 整合あり、25℃の位相で正規化

4.9GHz 整合あり 微分振幅誤差 = P_{IN}(DSA 設定 - 1) - P_{IN}(DSA 設定) + 1

図 5-175. RX 入力位相と温度との関係 (各種 DSA、f_{OUT} = 4.9GHz)

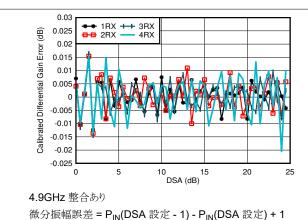
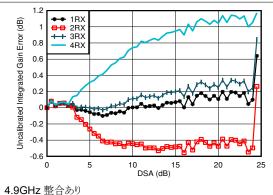
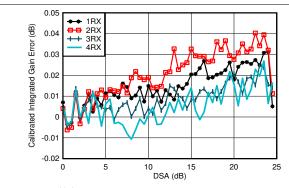
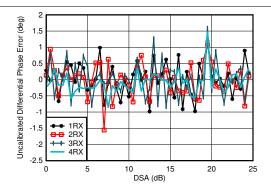



図 5-177. RX 較正済み微分振幅誤差と DSA 設定との関係 (4.9GHz)


図 5-176. RX 未較正微分振幅誤差と DSA 設定との関係 (4.9GHz)

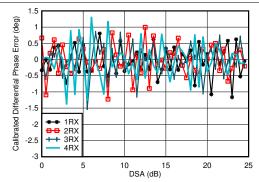
積分振幅誤差 = P_{IN}(DSA 設定) - P_{IN}(DSA 設定 = 0) + (DSA 設定) **(**


図 5-178. RX 未較正積分振幅誤差と DSA 設定との関係 (4.9GHz)

T_A = +25℃、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件: 出力サンプル レート = 491.52MSPS (1/6 にデシメーション)、f_{REF} = 491.52MHz の PLL クロック モード、A_{IN} = -3dBFS、DSA 設定 = 4dB

4.9GHz 整合あり

積分振幅誤差 = $P_{IN}(DSA$ 設定) - $P_{IN}(DSA$ 設定 = 0) + (DSA 設定)



4.9GHz 整合あり

微分位相誤差 = Phase_{IN}(DSA 設定 - 1) - Phase_{IN}(DSA 設定)

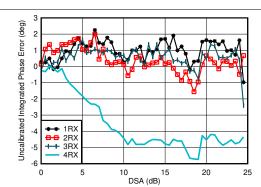
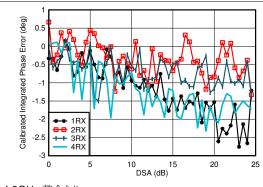

図 5-180. RX 未較正微分位相誤差と DSA 設定との関係 (4.9GHz)

図 5-179. RX 較正済み積分振幅誤差と DSA 設定との関係 (4.9GHz)

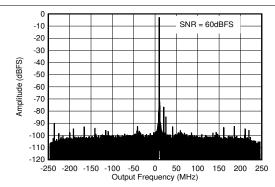
4.9GHz 整合あり


微分位相誤差 = Phase_{IN}(DSA 設定 - 1) - Phase_{IN}(DSA 設定)

4.9GHz 整合あり

積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

図 5-181. RX 較正済み微分位相誤差と DSA 設定との関係 (4.9GHz)



4.9GHz 整合あり

積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

図 5-183. RX 較正済み積分位相誤差と DSA 設定との関係 (4.9GHz)

図 5-182. RX 未較正積分位相誤差と DSA 設定との関係 (4.9GHz)

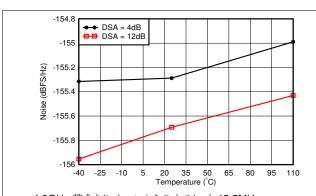
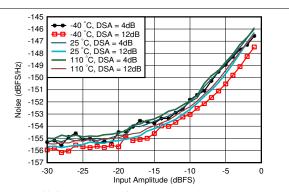

4.9GHz 整合あり、 f_{IN} = 4910MHz、 A_{IN} = -3dBFS

図 5-184. RX 出力 FFT (4.9GHz)

資料に関するフィードバック(ご意見やお問い合わせ)を送信



 T_A = +25°C、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件: 出力サンプル レート = 491.52MSPS (1/6 にデシメーション)、 f_{REF} = 491.52MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 4dB

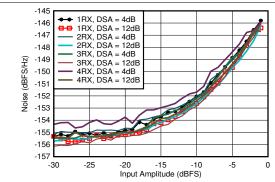
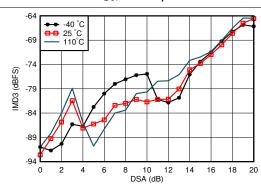

4.9GHz 整合あり、トーンからのオフセット 12.5MHz

図 5-185. RX ノイズ スペクトル密度と温度との関係 (4.9GHz)



4.9GHz 整合あり、DSA 設定 = 12dB、トーンから 12.5MHz オフセット

図 5-186. RX ノイズ スペクトル密度と入力振幅との関係 (各種温度、4.9GHz)

4.9GHz 整合あり、トーンからのオフセット 12.5MHz

4.9GHz 整合あり、各トーンは -7dBFS、トーン間隔 = 20MHz

図 5-187. RX ノイズ スペクトル密度と入力振幅との関係 (各種チャネル、4.9GHz)

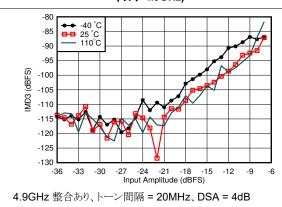
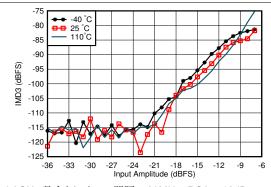
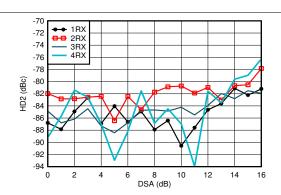



図 5-189. RX IMD3 と入力レベルとの関係 (各種温度、4.9GHz)

図 5-188. RX IMD3 と DSA 設定との関係 (各種温度、4.9GHz)

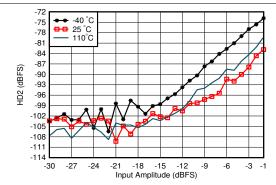


4.9GHz 整合あり、トーン間隔 = 20MHz、DSA = 12dB

図 5-190. RX IMD3 と入力レベルとの関係 (各種温度、4.9GHz)

Product Folder Links: AFE7901

T_A = +25℃、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件: 出力サンプル レート = 491.52MSPS (1/6 にデシメーション)、f_{REF} = 491.52MHz の PLL クロック モード、A_{IN} = -3dBFS、DSA 設定 = 4dB



4.9GHz 整合あり、HD2 調整後に測定、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

-70 -73 -40°C -76 -79 -82 -76 -79 -82 -85 -88 -91 -94 3 6 9 12 15 18 DSA (dB)

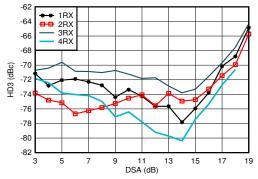

4.9GHz 整合あり、HD2 調整後に測定、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

図 5-191. RX HD2 と DSA 設定との関係 (各種チャネル、4.9GHz)

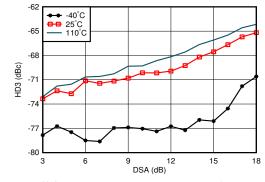
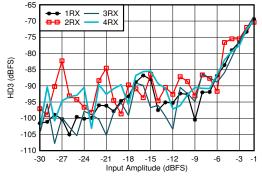

4.9GHz 整合あり、HD2 調整後に測定、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

図 5-192. RX HD2 と DSA 設定との関係 (各種温度、4.9GHz)

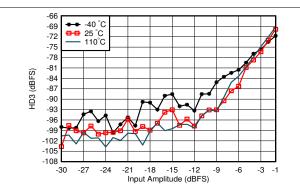
4.9GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)


図 5-193. RX HD2 と入力レベルとの関係 (各種温度、4.9GHz)

4.9GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

図 5-195. RX HD3 と DSA 設定との関係 (各種温度、4.9GHz)

図 5-194. RX HD3 と DSA 設定との関係 (各種チャネル、4.9GHz)



4.9GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

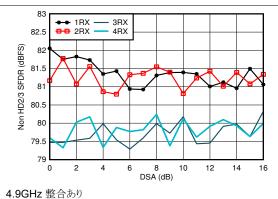
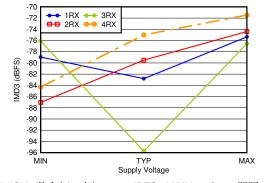
図 5-196. RX HD3 と入力レベルとの関係 (各種チャネル、4.9GHz)

 T_A = +25°C、ADC サンプリング レート = 2949.12GHz での代表値。デフォルト条件: 出力サンプル レート = 491.52MSPS (1/6 にデシメーション)、 f_{REF} = 491.52MHz の PLL クロック モード、 A_{IN} = -3dBFS、DSA 設定 = 4dB

4.9GHz 整合あり、DDC バイパス モード (特性評価用 テキサス・インスツルメンツ専用モード)

4.9GHz 整合あり、1/3 にデシメーション

図 5-197. RX HD3 と入力レベルとの関係 (各種温度、4.9GHz)

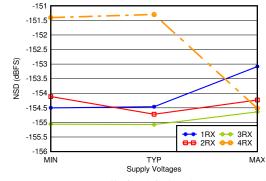
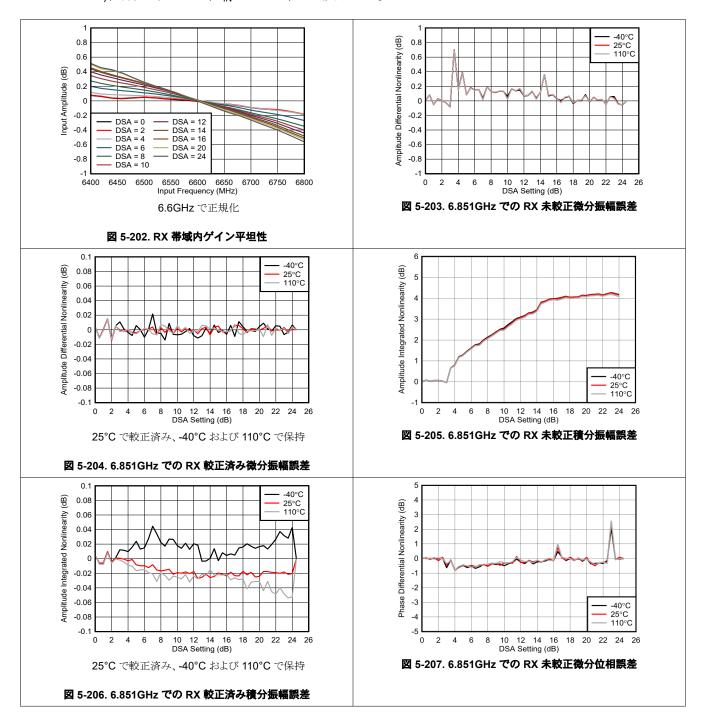

図 5-199. RX (HD2/3 を除く) と DSA 設定との関係 (4.9GHz)

図 5-198. RX 帯域内 SFDR (±400MHz) と入力振幅との関係 (各種チャネル、4.9GHz)

4.9GHz 整合あり、各トーン -7dBFS、20MHz のトーン間隔、すべての電源電圧は推奨動作条件の最小値、代表値、最大値

図 5-200. RX IMD3 と電源電圧との関係 (各種チャネル、4.9GHz)

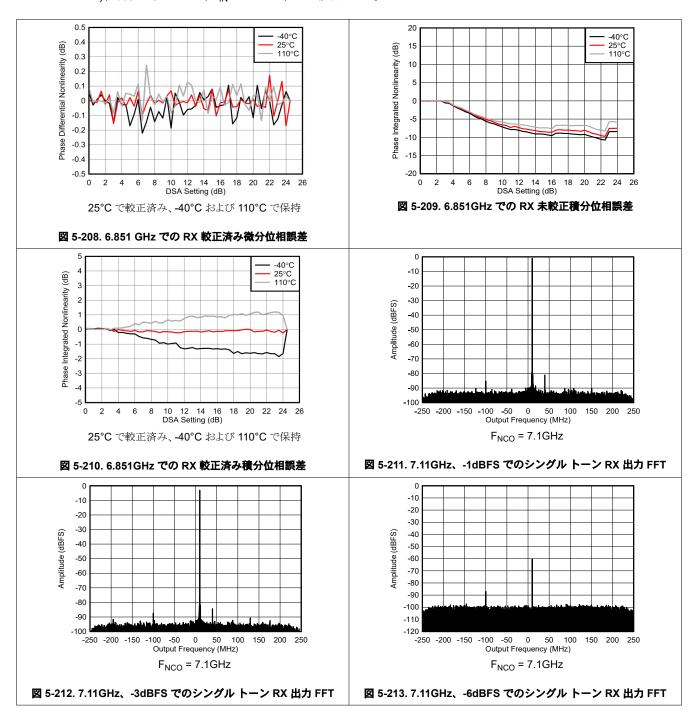


4.9GHz 整合あり、12.5MHz オフセット、すべての電源電圧は推奨動作条件の最小値、代表値、最大値

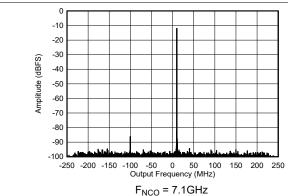
図 5-201. RX ノイズ スペクトル密度と電源電圧との関係 (各種チャネル、4.9GHz)

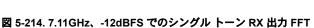
5.12.7 RX 代表的特性: 6.8GHz

 T_A = +25°C での標準値。 30MHz でのデフォルト条件。 ADC サンプリングレート= 3000MSPS、出力サンプルレート= 500MSPS (6x にデシメーション)、外部クロックモード、 A_{IN} = -3dBFS、 DSA 設定= 3dB。


Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信


73



 T_A = +25°C での標準値。 30MHz でのデフォルト条件。 ADC サンプリングレート= 3000MSPS、出力サンプルレート= 500MSPS (6x にデシメーション)、外部クロックモード、 A_{IN} = -3dBFS、 DSA 設定= 3dB。

 T_A = +25°C での標準値。 30MHz でのデフォルト条件。 ADC サンプリングレート= 3000MSPS、出力サンプルレート= 500MSPS (6x にデシメーション)、外部クロックモード、 A_{IN} = -3dBFS、 DSA 設定= 3dB。

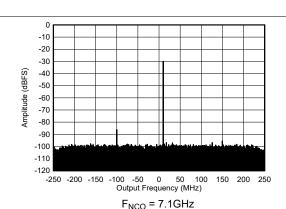
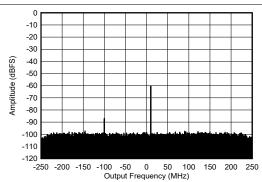
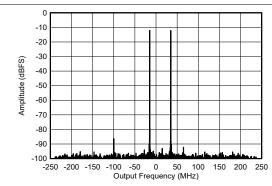




図 5-215. 7.11GHz、-30dBFS でのシングル トーン RX 出力 FFT

 $F_{NCO} = 7.1GHz7.1GHz$

F_{NCO} = 7.1GHz、50MHzトーン間隔

図 5-216. 7.1GHz、-60dBFS でのシングル トーン RX 出力 FFT

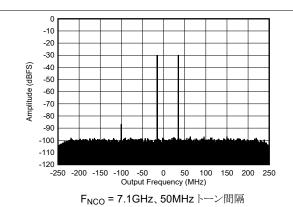
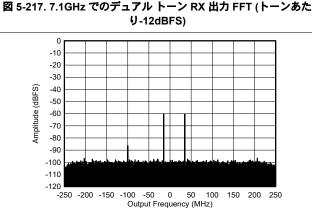
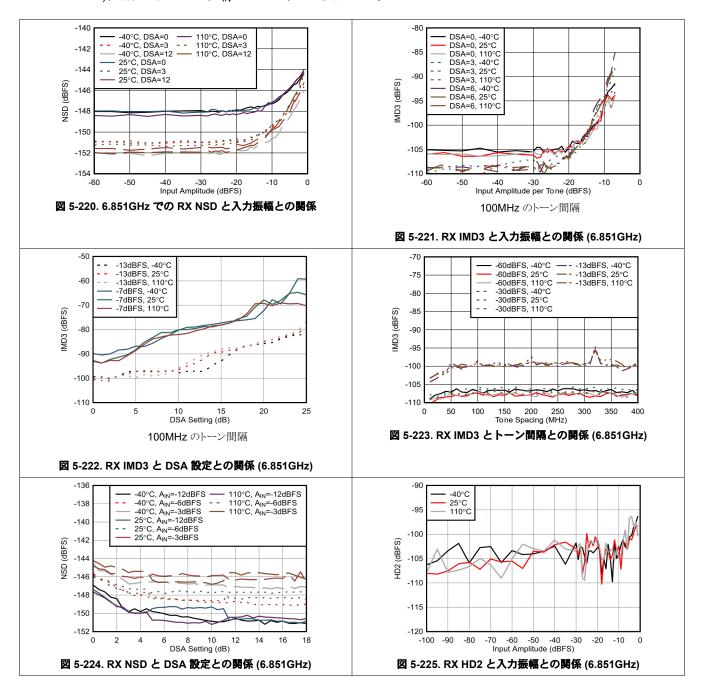



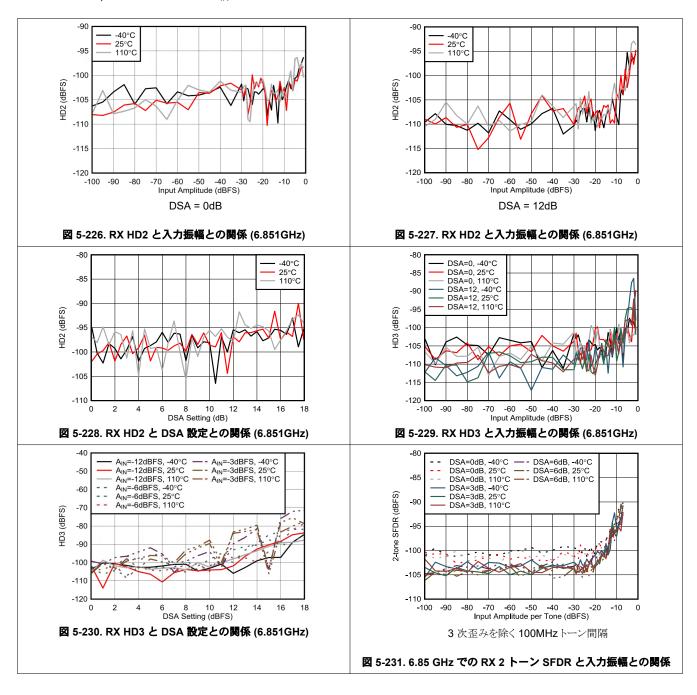
図 5-218. 7.1GHz でのデュアル トーン RX 出力 FFT (トーンあたり-30dBFS)

F_{NCO} = 7.1GHz、50MHzトーン間隔

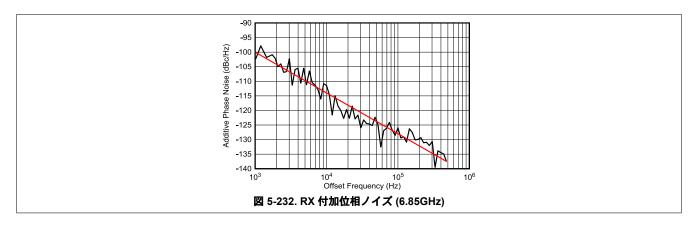
図 5-219. 7.1GHz でのデュアル トーン RX 出力 FFT (トーンあた り-60dBFS)


Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信


75

 T_A = +25°C での標準値。 30MHz でのデフォルト条件。 ADC サンプリングレート= 3000MSPS、出力サンプルレート= 500MSPS (6x にデシメーション)、外部クロックモード、 A_{IN} = -3dBFS、DSA 設定= 3dB。



 T_A = +25°C での標準値。 30MHz でのデフォルト条件。 ADC サンプリングレート= 3000MSPS、出力サンプルレート= 500MSPS (6x にデシメーション)、外部クロックモード、 A_{IN} = -3dBFS、 DSA 設定= 3dB。

 T_A = +25°C での標準値。 30MHz でのデフォルト条件。 ADC サンプリングレート= 3000MSPS、出力サンプルレート= 500MSPS (6x にデシメーション)、外部クロックモード、 A_{IN} = -3dBFS、 DSA 設定= 3dB。

T_A = +25℃での代表値、公称電源。 デフォルト条件: TX 入力データレート = 125MSPS、f_{DAC} = 6000MSPS (48x 補間)、インターリ ーブ モード、1 ^次ナイキスト ゾーン出力、f_{REF} = 500MHz による PLL クロックモード。 すべてのプロットにデフォルト条件を追加、A_{OUT} = -1dBFS、DSA = 0dB、Sin(x)/x イネーブル、DSA 較正済み。

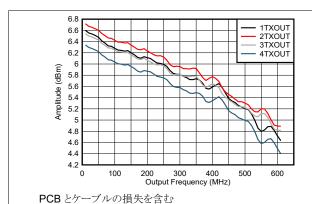
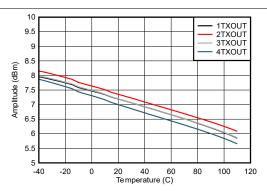
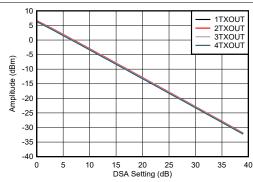




図 5-233. TX 出力フルスケールと出力周波数との関係: 5MHz~

PCB とケーブルの損失を含む

600MHz

PCB とケーブルの損失を含む

Temp = -40C Temp = -25C (dB) 0.08 Error (Temp = 105C 0.06 0.04 Gain 0.02 Differential -0.02 -0.04 Uncalibrated -0.06 -0.08 35 0 15 20 25 DSA Setting (dB) 40

図 5-234. 30MHz での TX 出力電力と温度との関係

図 5-235. 30MHz での TX 出力フルスケールと DSA 設定との関係

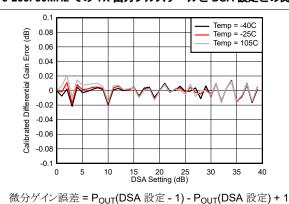


図 5-237. 30MHz での較正済み TX 差動ゲイン誤差 (DNL)

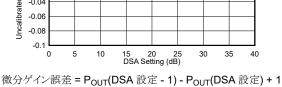
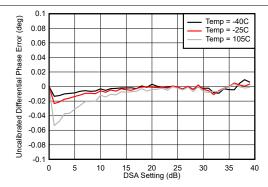



図 5-236. 30MHz での較正なし TX 差動ゲイン誤差 (DNL)

微分ゲイン誤差 = P_{OUT}(DSA 設定 - 1) - P_{OUT}(DSA 設定) + 1

図 5-238. 30MHz での較正済み TX 差動ゲイン誤差 (DNL)

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

79

Temp = -40C Temp = -25C Temp = 105C

5.12.8 TX 代表的特性: 30MHz~400MHz (続き)

T_A = +25℃での代表値、公称電源。 デフォルト条件: TX 入力データレート = 125MSPS、f_{DAC} = 6000MSPS (48x 補間)、インターリ ーブ モード、1 次ナイキスト ゾーン出力、f_{REF} = 500MHz による PLL クロックモード。 すべてのプロットにデフォルト条件を追加、A_{OUT} = -1dBFS、DSA = 0dB、Sin(x)/x イネーブル、DSA 較正済み。

0.5

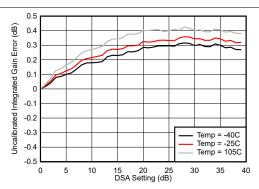
0.4 (dB)

0.3 Gain Error

0.2

0.1

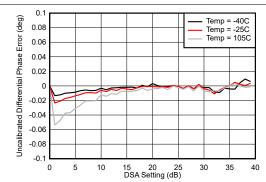
-0.1


-0.2 Calibrated I

-0.3

-0.4

-0.5


ntegrated

積分ゲイン誤差 = $P_{OUT}(DSA$ 設定) - $P_{OUT}(DSA$ 設定 = 0) + (DSA 設定)

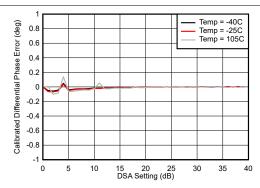

15 20 25 DSA Setting (dB) 0 5 10 35 積分ゲイン誤差 = P_{OUT}(DSA 設定) - P_{OUT}(DSA 設定 = 0) + (DSA 設定)

図 5-239. 30 MHz での較正なしの TX 積分ゲイン誤差 (INL)

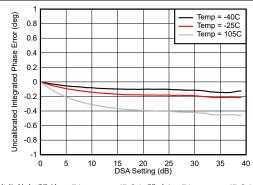
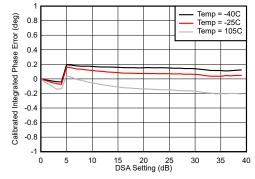

微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設 定)

図 5-240. 30MHz で較正済みの TX 積分ゲイン誤差 (INL)

微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設 定)


図 5-241. 30MHz での較正なし TX 微分位相誤差 (DNL)

積分位相誤差 = Phase_{OUT}(DSA 設定) - Phase_{OUT}(DSA 設定 =

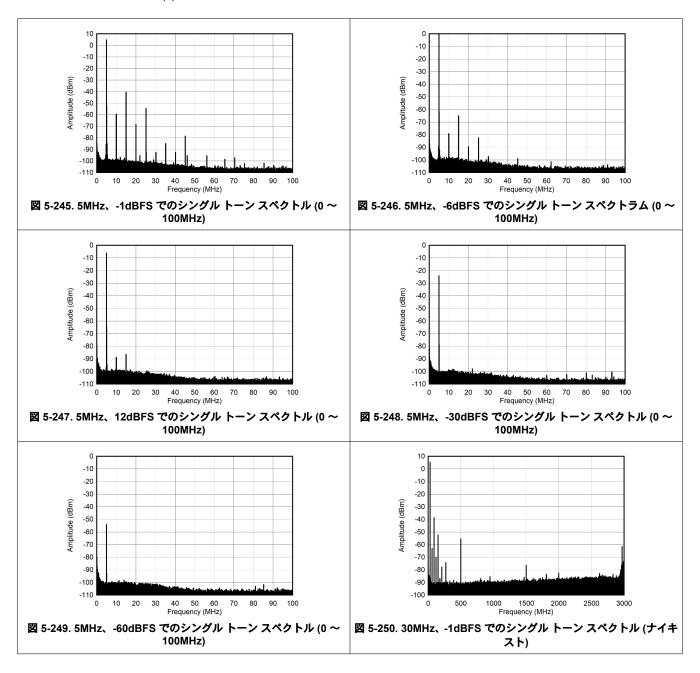
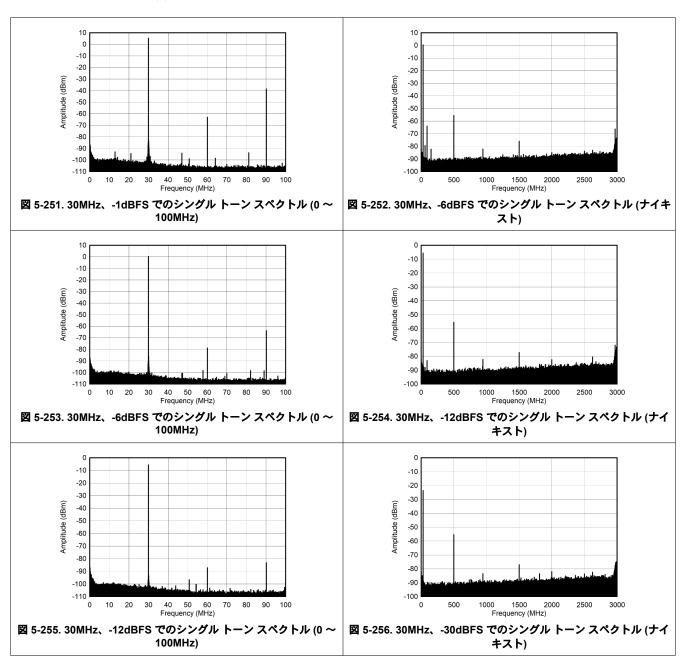

図 5-243. 30MHz での較正なしの TX 積分位相誤差 (INL)

図 5-242. 30MHz での較正済み TX 微分位相誤差 (DNL)



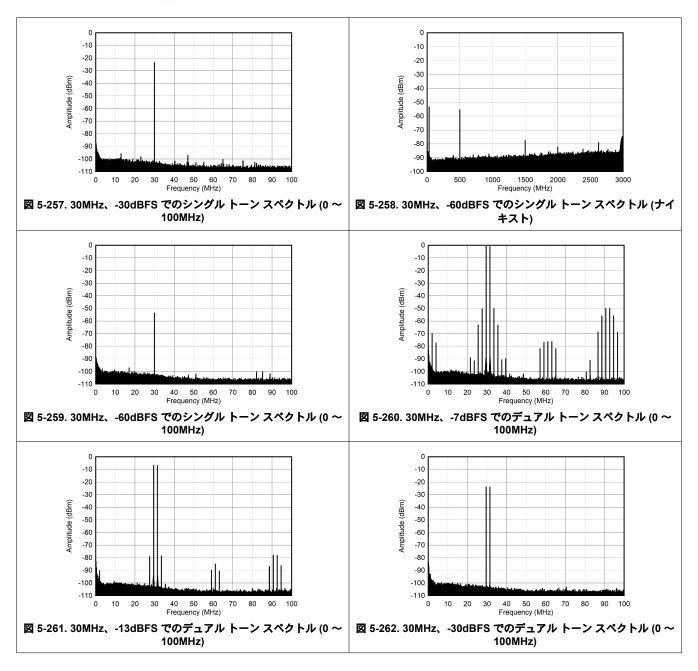
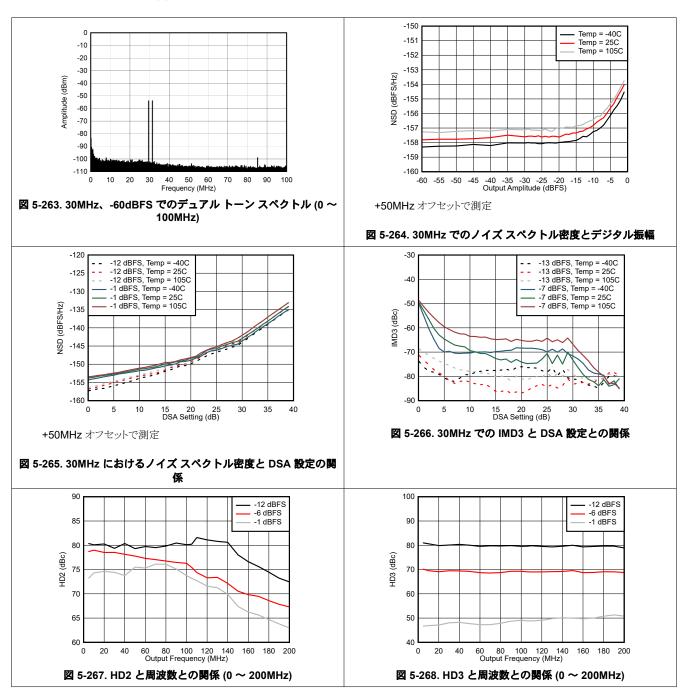
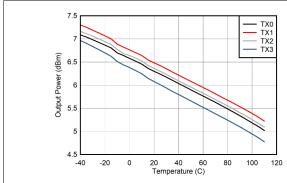
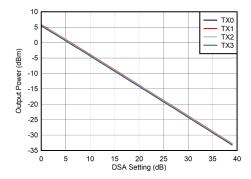

積分位相誤差 = Phase_{OUT}(DSA 設定) - Phase_{OUT}(DSA 設定 =

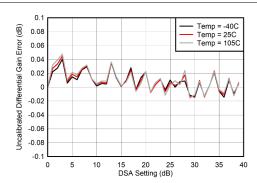
図 5-244. 30MHz での較正済みの TX 積分位相誤差 (INL)







 T_A = +25°Cでの代表値、公称電源。デフォルト条件: TX 入力データレート = 125MSPS、 f_{DAC} = 6000MSPS (48x 補間)、インターリーブ モード、1 $^{\infty}$ ナイキストゾーン出力、 f_{REF} = 500MHz による PLL クロックモード。すべてのプロットにデフォルト条件を追加、 A_{OUT} = -1dBFS、DSA = 0dB、Sin(x)/x イネーブル、DSA 較正済み。



PCB とケーブルの損失を含む

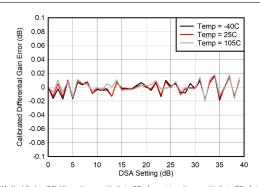

PCB とケーブルの損失を含む

図 5-269. 400MHz での TX 出力フルスケールと温度との関係

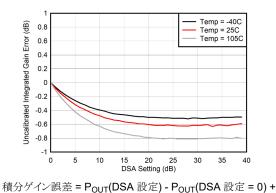
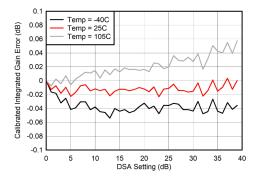

微分ゲイン誤差 = P_{OUT}(DSA 設定 - 1) - P_{OUT}(DSA 設定) + 1

図 5-270. 400MHz での TX 出力フルスケールと DSA 設定との関係

微分ゲイン誤差 = P_{OUT}(DSA 設定 - 1) - P_{OUT}(DSA 設定) + 1

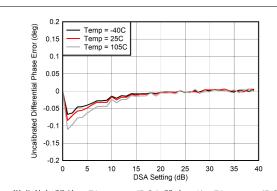

図 5-271. 400MHz でのキャリブレーションなし TX 差動ゲイン誤差 (DNL)

(DSA 設定)

図 5-273. 400MHz での較正なしの TX 積分ゲイン誤差 (INL)

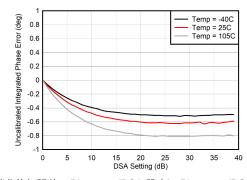
積分ゲイン誤差 = $P_{OUT}(DSA$ 設定) - $P_{OUT}(DSA$ 設定 = 0) + (DSA 設定)

図 5-274. 400MHz での較正済みの TX 積分ゲイン誤差 (INL)


Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ) を送信

85



 T_A = +25°Cでの代表値、公称電源。デフォルト条件: TX 入力データレート = 125MSPS、 f_{DAC} = 6000MSPS (48x 補間)、インターリーブ モード、1 $^{\circ}$ ナイキストゾーン出力、 f_{REF} = 500MHz による PLL クロックモード。すべてのプロットにデフォルト条件を追加、 A_{OUT} = -1dBFS、DSA = 0dB、Sin(x)/x イネーブル、DSA 較正済み。

微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設定)

図 5-275. 400MHz での較正なし TX 微分位相誤差 (DNL)

積分位相誤差 = $Phase_{OUT}(DSA$ 設定) - $Phase_{OUT}(DSA$ 設定 = 0)

図 5-277. 400MHz での較正なしの TX 積分位相誤差 (INL)

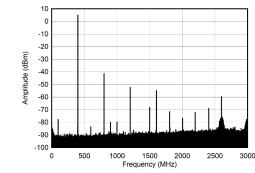
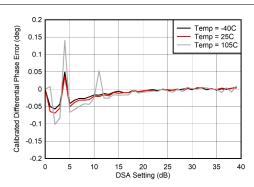
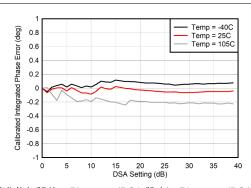




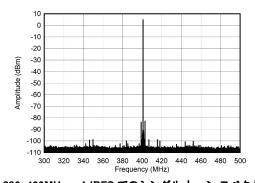
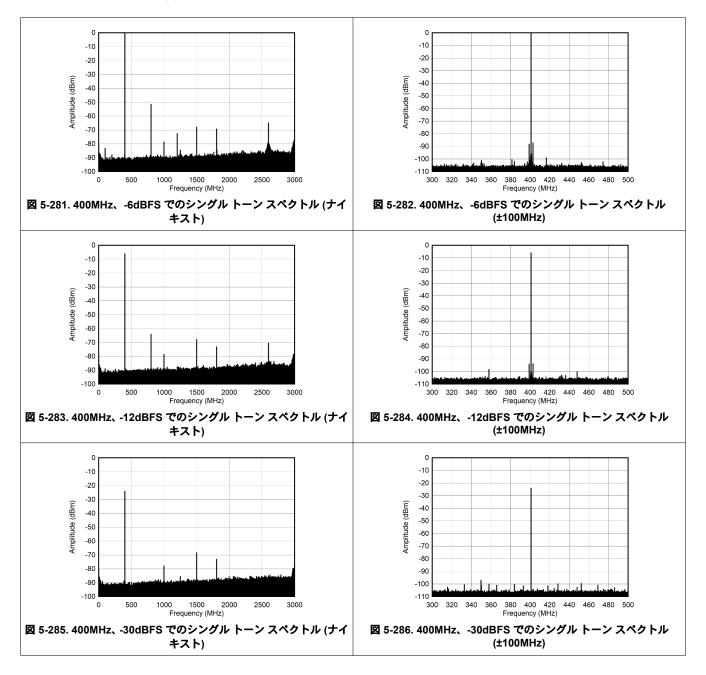
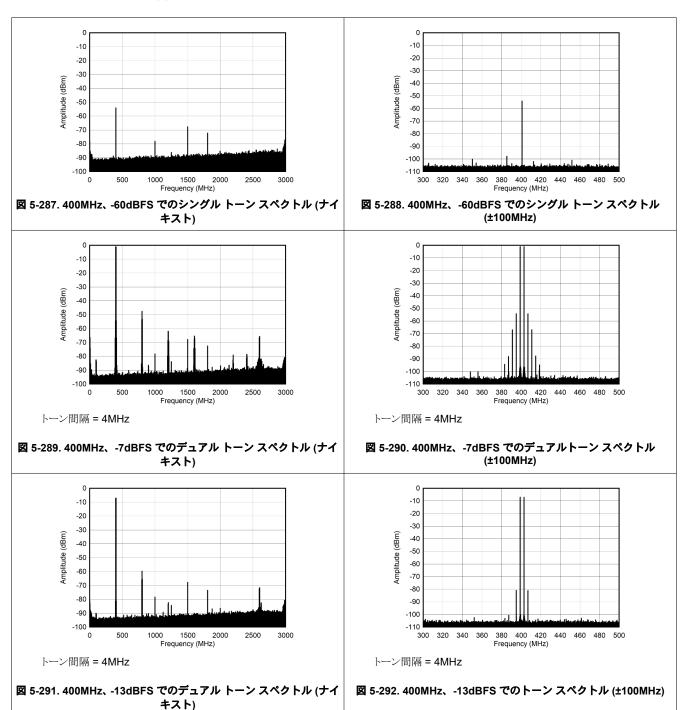
図 5-279. 400MHz、-1dBFS でのシングル トーン スペクトル (ナイ キスト)

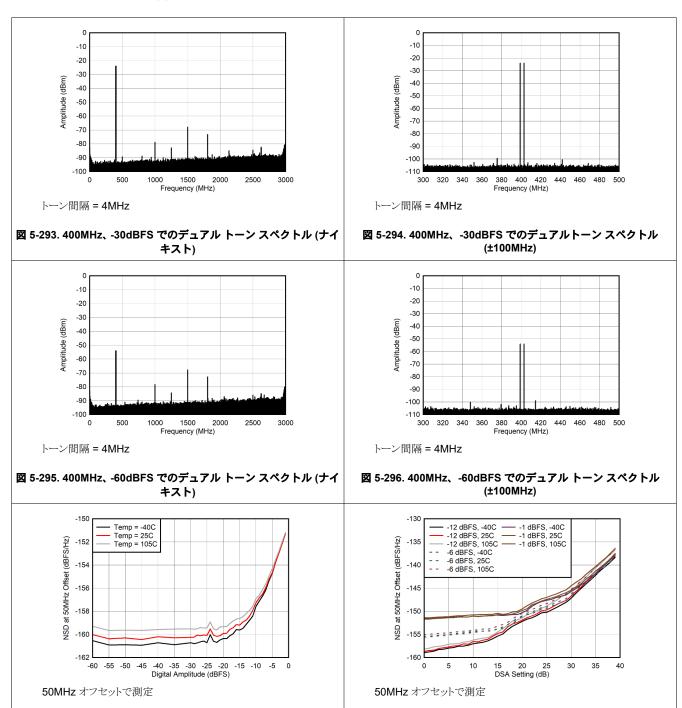
微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設定)

図 5-276. 400MHz で較正済み TX 微分位相誤差 (DNL)

積分位相誤差 = Phase_{OUT}(DSA 設定) - Phase_{OUT}(DSA 設定 = 0)

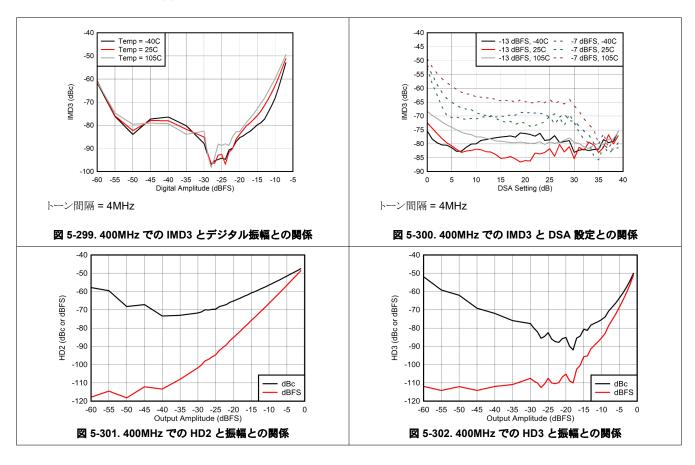
図 5-278. 400MHz での較正済みの TX 積分位相誤差 (INL)


図 5-280. 400MHz、-1dBFS でのシングル トーン スペクトル (-±100MHz)

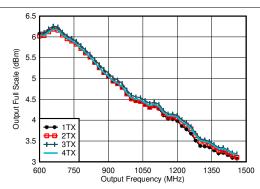
 T_A = +25°Cでの代表値、公称電源。デフォルト条件: TX 入力データレート = 125MSPS、 f_{DAC} = 6000MSPS (48x 補間)、インターリーブ モード、1 $^{\circ}$ ナイキストゾーン出力、 f_{REF} = 500MHz による PLL クロックモード。すべてのプロットにデフォルト条件を追加、 A_{OUT} = -1dBFS、DSA = 0dB、 $S_{IN}(x)/x$ イネーブル、DSA 較正済み。

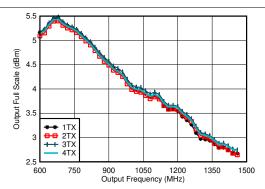
Copyright © 2025 Texas Instruments Incorporated


図 5-297. 400MHz でのノイズ スペクトル密度とデジタル振幅

資料に関するフィードバック(ご意見やお問い合わせ)を送信

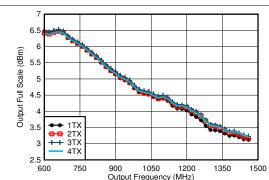
図 5-298. 400MHz でのノイズ スペクトル密度と DSA 設定の関係


89



5.12.9 TX 代表的特性: 800MHz

 T_A = +25°Cでの代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、 f_{DAC} = 11796.48MSPS、A インターリーブ モード、 A_{OUT} =-1dBFS、A 大イキストゾーン出力、内部 PLL、 A_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。



PCB とケーブルの損失を除く。 A_{out} = -0.5dFBS、DSA = 0、0.8GHz 整合あり。

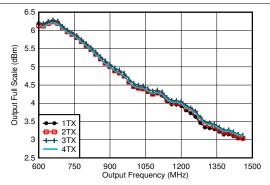

PCB とケーブルの損失を含む。 A_{out} = -0.5 dFBS、DSA = 0、 0.8GHz 整合あり

図 5-303. 5898.24MSPS での TX フルスケール、RF 周波数、チャネルとの関係、ストレート モード

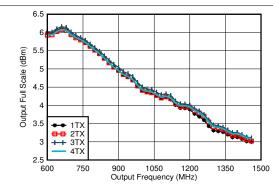
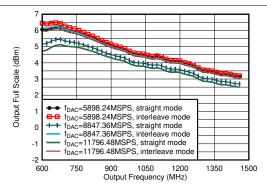

PCB とケーブルの損失を含む。A_{out} = -0.5 dFBS、DSA = 0、 0.8GHz 整合あり

図 5-304. 8847.36MSPS での TX フルスケールと RF 周波数とチャネルの関係、ストレート モード

PCB とケーブルの損失を含む。A_{out} = -0.5dFBS、DSA = 0、0.8GHz 整合あり


図 5-305. 5898.24MSPS での TX フルスケールと RF 周波数とチャネルの関係、インターリーブ モード

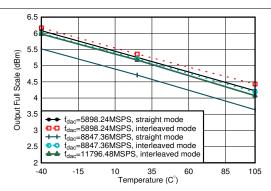
PCB とケーブルの損失を含む。 A_{out} = -0.5 dFBS、DSA = 0、 0.8GHz 整合あり

図 5-307. 11796.48MSPS での TX フルスケールと RF 周波数、チャネルとの関係、インターリーブ モード

図 5-306. 8847.36MSPS での TX フルスケールと RF 周波数とチャネルの関係、インターリーブ モード

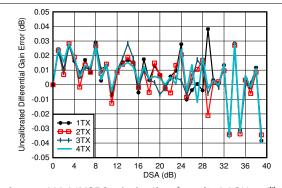
PCB とケーブルの損失を含む。A_{OUT} = -0.5 dFBS、DSA = 0、0.8GHz 整合あり

図 5-308. TX 出力フルスケールと出力周波数との関係


Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ) を送信

91



T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

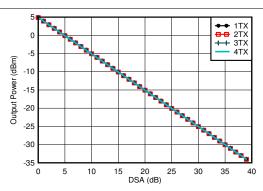

PCB とケーブルの損失を含む。 A_{OUT} = -0.5 dFBS、DSA = 0、0.8GHz 整合あり

図 5-309. TX 出力フルスケールと温度との関係

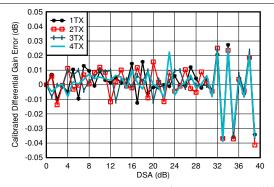
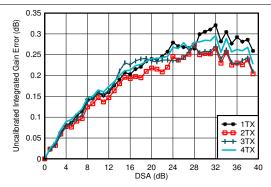

f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz で整合 微分ゲイン誤差 = P_{OUT}(DSA 設定 - 1) - P_{OUT}(DSA 設定) + 1

図 5-311. TX 未較正微分ゲイン誤差と DSA 設定との関係 (各種チャネル、0.85GHz)

 f_{DAC} = 11796.48MSPS、インターリーブ モード、 A_{out} = -0.5dFBS、0.8GHz に整合


図 5-310. TX 出力電力と DSA 設定との関係 (各種チャネル、 0.85GHz)

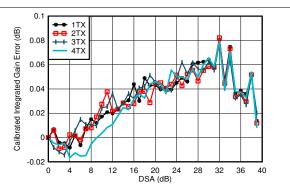
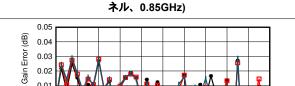
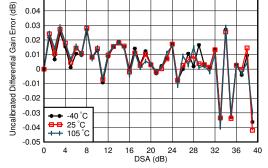

f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz で整合 微分ゲイン誤差 = P_{OUT}(DSA 設定 - 1) - P_{OUT}(DSA 設定) + 1

図 5-312. TX 較正済み微分ゲイン誤差と DSA 設定との関係 (各種チャネル、0.85GHz)

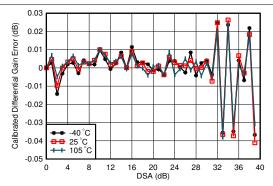
T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリ ーブ モード、 A_{OUT} =-1dBFS、1 $^{\circ}$ ナイキストゾーン出力、内部 PLL、 f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネー ブル、DSA 較正済み。




f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz で整合 積分ゲイン誤差 = P_{OUT}(DSA 設定) - P_{OUT}(DSA 設定 = 0) + DSA 設定

f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz で整合 積分ゲイン誤差 = P_{OUT}(DSA 設定) - P_{OUT}(DSA 設定 = 0) + DSA 設定

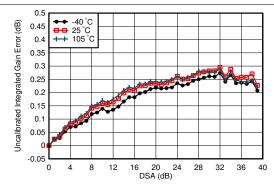
図 5-313. TX 未較正積分ゲイン誤差と DSA 設定との関係 (各種チャ



f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz で整合 微分ゲイン誤差 = P_{OUT}(DSA 設定 - 1) - P_{OUT}(DSA 設定) + 1

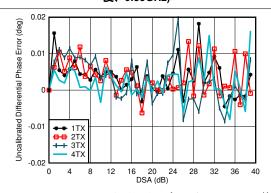
図 5-315. TX 未較正微分ゲイン誤差と DSA 設定との関係 (各種温 度、0.85GHz)

図 5-314. TX 較正済み積分ゲイン誤差と DSA 設定との関係 (各種チ ャネル、0.85GHz)



f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz で整合 微分ゲイン誤差 = P_{OUT}(DSA 設定 - 1) - P_{OUT}(DSA 設定) + 1

図 5-316. TX 較正済み微分ゲイン誤差と DSA 設定との関係 (各種温 度、0.85GHz)



T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

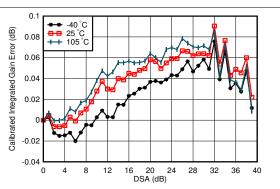

 f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz で整合 積分ゲイン誤差 = $P_{OUT}(DSA$ 設定) - $P_{OUT}(DSA$ 設定 = 0) + DSA 設定

図 5-317. TX 未較正積分ゲイン誤差と DSA 設定との関係 (各種温度、0.85GHz)

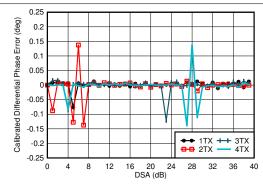
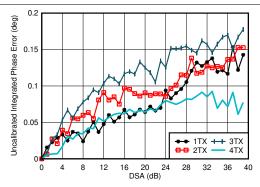

f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz で整合 微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設定)

図 5-319. TX 未較正微分位相誤差と DSA 設定との関係 (各種チャネル、0.85GHz)

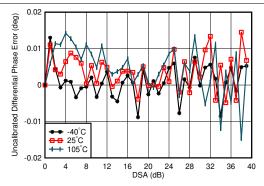
f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz で整合 積分ゲイン誤差 = P_{OUT}(DSA 設定) - P_{OUT}(DSA 設定 = 0) + DSA 設定

図 5-318. TX 較正済み積分ゲイン誤差と DSA 設定との関係 (各種温度、0.85GHz)



 f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz で整合 微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設定)

位相 DNL スパイクは、すべての DSA 設定で発生する可能性があります。


図 5-320. TX 較正済み微分位相誤差と DSA 設定との関係 (各種チャネル、0.85GHz)

 T_A = +25°Cでの代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、 f_{DAC} = 11796.48MSPS、インターリーブ モード、 A_{OUT} =-1dBFS、 1° ナイキストゾーン出力、内部 PLL、 f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

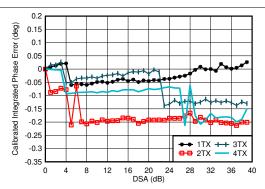

 f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz で整合 積分位相誤差 = Phase_{OUT}(DSA 設定) - Phase_{OUT}(DSA 設定 = 0)

図 5-321. TX 未較正積分位相誤差と DSA 設定との関係 (チャネル 1、0.85GHz)

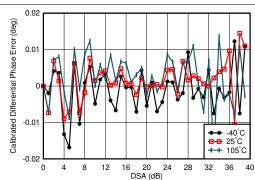
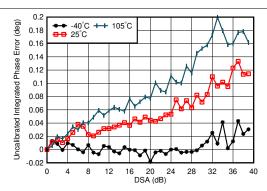

f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz で整合 微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設定) +1

図 5-323. TX 未較正微分位相誤差と DSA 設定との関係 (各種温度、 0.85GHz)

 f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz で整合 積分位相誤差 = Phase_{OUT}(DSA 設定) - Phase_{OUT}(DSA 設定 = 0)

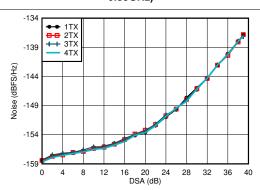
図 5-322. TX 較正済み積分位相誤差と DSA 設定との関係 (各種チャネル、0.85GHz)



 f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz で整合、全 DSA 設定にわたって 25°Cでの誤差が中央値であるチャネル 微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設定) +1

図 5-324. TX 較正済み微分位相誤差と DSA 設定との関係 (各種温度、0.85GHz)

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリ ーブ モード、 A_{OUT} =-1dBFS、1 $^{\circ}$ ナイキストゾーン出力、内部 PLL、 f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネー ブル、DSA 較正済み。



f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz で整合 積分位相誤差 = Phase_{OUT}(DSA 設定) - Phase_{OUT}(DSA 設定 =

Error (deg) -0.05 -0.1 Calibrated Integrated Phase -0.15-0.2 -0.25 -40°C +→ 105°C 25°C -0.3 16 20 3 DSA (dB) 24

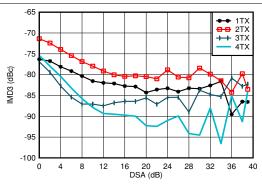

f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz で整合 積分位相誤差 = Phase_{OUT}(DSA 設定) - Phase_{OUT}(DSA 設定 =

図 5-325. TX 未較正積分位相誤差と DSA 設定との関係 (各種温度、 0.85GHz)

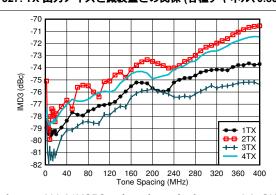
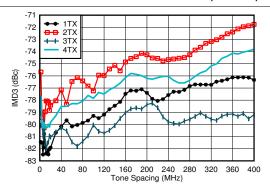

 f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz で整合、 $P_{OUT} = -13dBFS$

図 5-326. TX 較正済み積分位相誤差と DSA 設定との関係 (各種温 度、0.85GHz)

 f_{DAC} = 11796.48MSPS、インターリーブ モード、 f_{CENTER} = 0.85GHz、0.8GHz で整合、各トーン -13dBFS


図 5-327. TX 出力ノイズと減衰量との関係 (各種チャネル、0.85GHz)

 f_{DAC} = 5898.24MSPS, ארייר דייר, f_{CENTER} = 0.85GHz, 0.8GHz で整合、各トーン -13dBFS

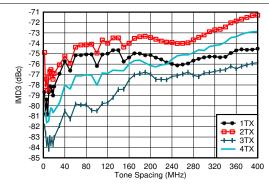
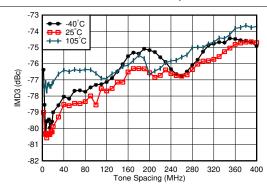

図 5-329. TX IMD3 とトーン間隔との関係 (各種チャネル、0.85GHz)│図 5-330. TX IMD3 とトーン間隔との関係 (各種チャネル、0.85GHz)

図 5-328. TX IMD3 と DSA 設定との関係 (0.85GHz)

 f_{DAC} = 8847.36MSPS、ストレート モード、 f_{CENTER} = 0.85GHz、 0.8GHz で整合、各トーン -13dBFS

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。



 f_{DAC} = 11796.48MSPS、インターリーブ モード、 f_{CENTER} = 0.85GHz、0.8GHz で整合、各トーン -13dBFS

-40°C -71 ⊕ 25°C + 105°C -72 -73 -74 IMD3 (dBc) -75 -76 -77 -78 -79 -80 160 200 240 280 Tone Spacing (MHz) 0 80 120 320 360 400

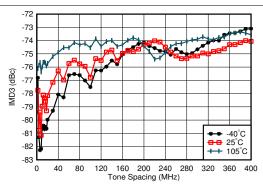

 f_{DAC} = 5898.24MSPS、ストレート モード、 f_{CENTER} = 0.85GHz、0.8GHz で整合、各トーン -13dBFS、ワースト チャネル

図 5-331. TX IMD3 とトーン間隔との関係 (各種チャネル、0.85GHz)

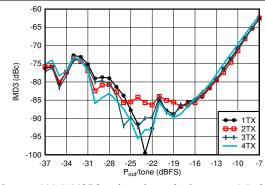
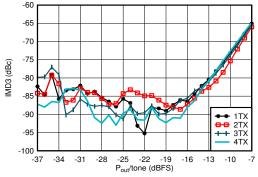

 f_{DAC} = 8847.36MSPS、ストレート モード、 f_{CENTER} = 0.85GHz、0.8GHz で整合、各トーン -13dBFS、ワースト チャネル

図 5-332. TX IMD3 とトーン間隔との関係 (各種温度、0.85GHz)

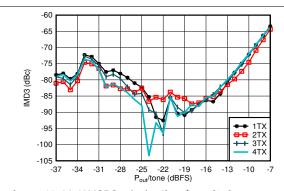
 f_{DAC} = 11796.48MSPS、ストレート モード、 f_{CENTER} = 0.85GHz、0.8GHz で整合、各トーン -13dBFS、ワースト チャネル


図 5-333. TX IMD3 とトーン間隔との関係 (各種温度、0.85GHz)

 f_{DAC} = 5898.24MSPS、ストレート モード、 f_{CENTER} = 0.85GHz、 $f_{SPACING}$ = 20MHz、0.8GHz で整合

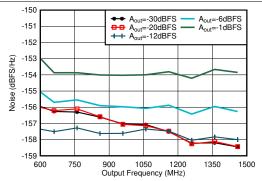
図 5-335. TX IMD3 とデジタル レベルとの関係 (0.85GHz)

図 5-334. TX IMD3 とトーン間隔との関係 (各種温度、0.85GHz)



 f_{DAC} = 8847.36MSPS、ストレート モード、 f_{CENTER} = 0.85GHz、 $f_{SPACING}$ = 20MHz、0.8GHz で整合

図 5-336. TX IMD3 とデジタル レベルとの関係 (0.85GHz)



 T_A = +25°Cでの代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、 f_{DAC} = 11796.48MSPS、インターリーブ モード、 A_{OUT} =-1dBFS、 1° ナイキストゾーン出力、内部 PLL、 f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

 f_{DAC} = 11796.48MSPS、インターリーブ モード、 f_{CENTER} = 0.85GHz、 $f_{SPACING}$ = 20MHz、0.8GHz で整合

図 5-337. TX IMD3 とデジタル レベルとの関係 (0.85GHz)

0.8GHz で整合、シングルトーン、f_{DAC} = 11.79648GSPS、インターリーブ モード、40MHz オフセット、DSA = 0dB

図 5-338. TX シングルトーン出力ノイズと周波数との関係 (各種振幅、0.85GHz)

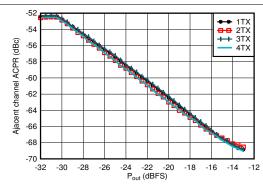


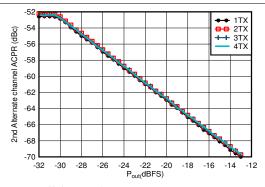
図 5-339. TX 20MHz LTE 出力スペクトル (0.85GHz)

TM1.1, $P_{OUT\ RMS} = -13dBFS$

-52

-70

0.8GHz で整合、シングル キャリア 20MHz BW TM1.1 LTE

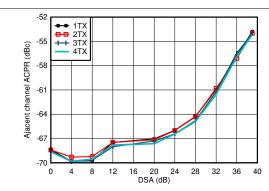


0.8GHz で整合、シングル キャリア 20MHz BW TM1.1 LTE

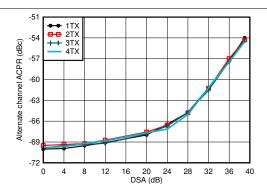
-28

図 5-341. TX 20MHz LTE alt-ACPR とデジタル レベルとの関係 (0.85GHz)

図 5-340. TX 20MHz LTE ACPR とデジタル レベルとの関係 (0.85GHz)

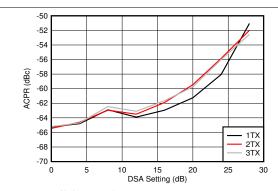


0.8GHz で整合、シングル キャリア 20MHz BW TM1.1 LTE


図 5-342. 0.85GHz での TX 20MHz LTE alt2-ACPR とデジタル レベルとの関係

Product Folder Links: AFE7901

 T_A = +25°Cでの代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、 f_{DAC} = 11796.48MSPS、インターリーブ モード、 A_{OUT} =-1dBFS、 1° ナイキストゾーン出力、内部 PLL、 f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。


0.8GHz で整合、シングル キャリア 20MHz BW TM1.1 LTE

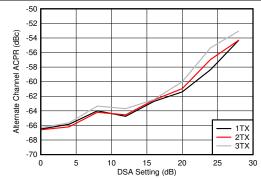

0.8GHz で整合、シングル キャリア 20MHz BW TM1.1 LTE

図 5-343. TX 20MHz LTE ACPR と DSA 設定との関係 (0.85GHz)

0.8GHz で整合、シングル キャリア 100MHz BW TM1.1 NR

0.8GHz で整合、シングル キャリア 100MHz BW TM1.1 NR

図 5-345. TX 100MHz NR ACPR と DSA 設定との関係 (0.85GHz)

図 5-346. TX 100MHz NR alt-ACPR と DSA 設定との関係 (0.85GHz)

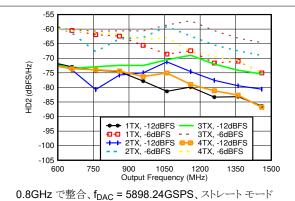
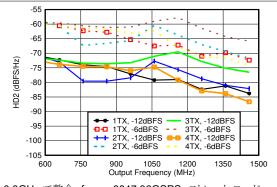
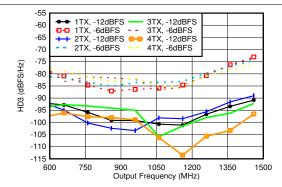
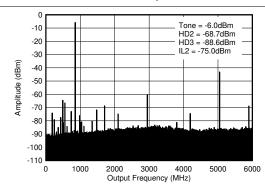



図 5-347. TX HD2 と出力周波数との関係 (各種デジタル振幅、 0.85GHz)



0.8GHz で整合、 f_{DAC} = 8847.36GSPS、ストレート モード。

図 5-348. TX HD2 と出力周波数との関係 (各種デジタル振幅、 0.85GHz)



T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

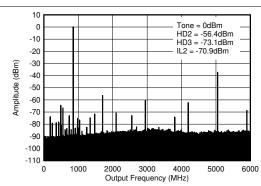

0.8GHz で整合、 f_{DAC} = 5898.24MSPS、ストレート モード、高調 波周波数での出力電力で正規化。

図 5-349. TX HD3 と出力周波数との関係 (各種デジタル振幅、 0.85GHz)

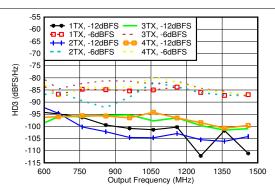

 f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz 整合あり、PCB とケーブルの損失を含む。ILn = f_{S}/n ± f_{OUT} 。

図 5-351. TX シングル トーン (-12dBFS) 出力スペクトル (0~f_{DAC}、 0.85GHz)

 f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz 整合あり、 PCB とケーブルの損失を含む。 $ILn = f_S/n \pm f_{OUT}$ 。

図 5-353. TX シングル トーン (-6dBFS) 出力スペクトル (0~f_{DAC}、 0.85GHz)

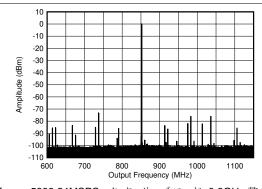
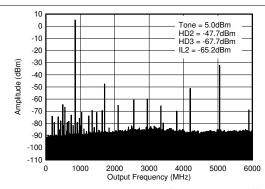
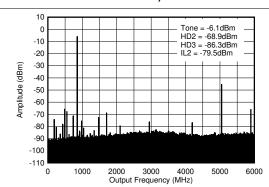

0.8GHz で整合、 f_{DAC} = 8847.36MSPS、ストレート モード、高調波周波数での出力電力で正規化。

図 5-350. TX HD3 と出力周波数との関係 (各種デジタル振幅、 0.85GHz)

f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz 整合あり、 PCB とケーブルの損失を含む。


図 5-352. 0.85GHz での TX シングル トーン (-12dBFS) 出力スペクトル (±300MHz)

f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz 整合あり、 PCB とケーブルの損失を含む。


図 5-354. 0.85GHz での TX シングル トーン (-6dBFS) 出力スペク トル (±300MHz)

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

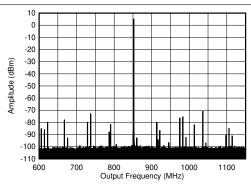

 f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz 整合あり、 PCB とケーブルの損失を含む。 $ILn = f_S/n \pm f_{OUT}$ 。

図 5-355. TX シングル トーン (-1dBFS) 出力スペクトル (0~f_{DAC}、 0.85GHz)

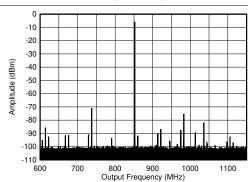
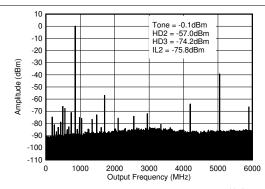

 f_{DAC} = 5898.24MSPS、ストレート モード、0.8GHz 整合あり、PCB とケーブルの損失を含む。 $ILn = f_S/n \pm f_{OUT}$ (デジタル クロックとの ミキシングに起因)。

図 5-357. TX シングル トーン (-12dBFS) 出力スペクトル (0~f_{DAC}、 0.85GHz)

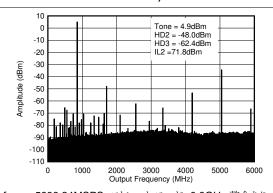
 f_{DAC} = 5898.24MSPS、インターリーブ モード、0.8GHz 整合あり、PCB とケーブルの損失を含む。

図 5-356. 0.85GHz での TX シングル トーン (-1dBFS) 出力スペク トル (±300MHz)



f_{DAC} = 5898.24MSPS、ストレート モード、0.8GHz 整合あり、PCB とケーブルの損失を含む

図 5-358. 0.85GHz での TX シングル トーン (-12dBFS) 出力スペク トル (±300MHz)



 T_A = +25°Cでの代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、 f_{DAC} = 11796.48MSPS、インターリーブ モード、 A_{OUT} =-1dBFS、 1° ナイキストゾーン出力、内部 PLL、 f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

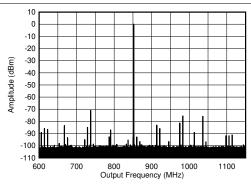

 f_{DAC} = 5898.24MSPS、ストレート モード、0.8GHz 整合あり、PCB とケーブルの損失を含む。 $ILn = f_S/n \pm f_{OUT}$ (デジタル クロックとの ミキシングに起因)。

図 5-359. TX シングル トーン (-6dBFS) 出力スペクトル (0~f_{DAC}、 0.85GHz)

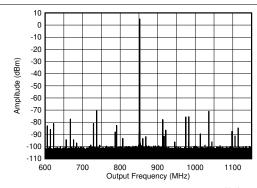
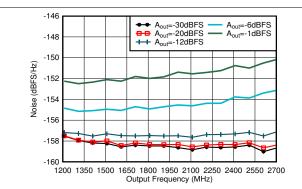
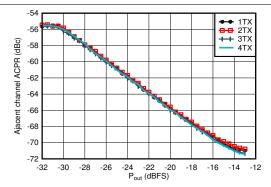

 f_{DAC} = 5898.24MSPS、ストレート モード、0.8GHz 整合あり、PCB とケーブルの損失を含む。 $ILn = f_S/n \pm f_{OUT}$ (デジタル クロックとの ミキシングに起因)。

図 5-361. TX シングル トーン (-1dBFS) 出力スペクトル (0~f_{DAC}、 0.85GHz)

 f_{DAC} = 5898.24MSPS、ストレート モード、0.8GHz 整合あり、PCB とケーブルの損失を含む


図 5-360. 0.85GHz での TX シングル トーン (-6dBFS) 出力スペク トル (±300 MHz)

 f_{DAC} = 5898.24MSPS、ストレート モード、0.8GHz 整合あり、PCB とケーブルの損失を含む


図 5-362. 0.85GHz での TX シングル トーン (-1dBFS) 出力スペクトル (±300 MHz)

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

1.8GHz で整合、シングルトーン、f_{DAC} = 11.79648GSPS、インターリーブ モード、40MHz オフセット

図 5-363. TX シングルトーン出力ノイズと周波数との関係 (各種振幅、1.8GHz)

1.8GHz で整合、シングル キャリア 20MHz BW TM1.1 LTE

図 5-365. TX 20MHz LTE ACPR とデジタル レベルとの関係 (1.8425GHz)

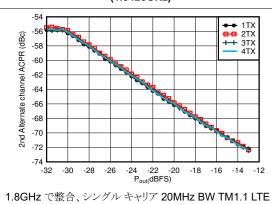
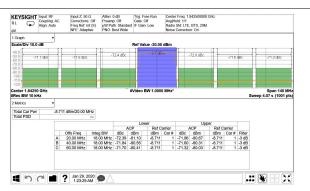
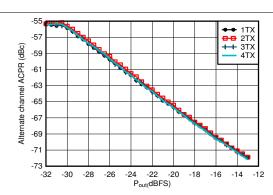




図 5-367. 1.8425GHz での TX 20MHz LTE alt2-ACPR とデジタル レベルとの関係

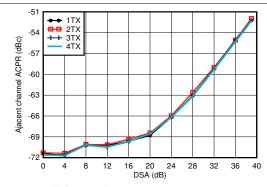
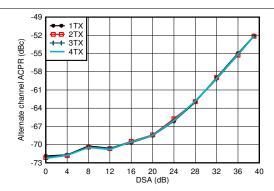

TM1.1, $P_{OUT_RMS} = -13dBFS$

図 5-364. TX 20MHz LTE 出力スペクトル (1.8425GHz)

1.8GHz で整合、シングル キャリア 20MHz BW TM1.1 LTE

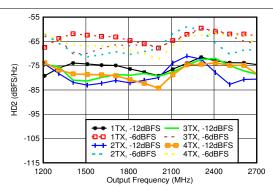
図 5-366. TX 20MHz LTE alt-ACPR とデジタル レベルとの関係 (1.8425GHz)

1.8GHz で整合、シングル キャリア 20MHz BW TM1.1 LTE


図 5-368. TX 20MHz LTE ACPR と DSA 設定との関係 (1.8GHz)

103

Product Folder Links: AFE7901



 T_A = +25°Cでの代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、 f_{DAC} = 11796.48MSPS、インターリーブ モード、 A_{OUT} =-1dBFS、 1° ナイキストゾーン出力、内部 PLL、 f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

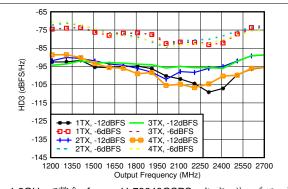
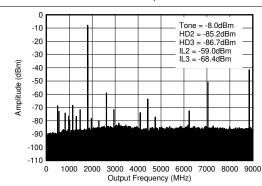
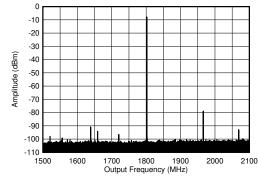

1.8GHz で整合、シングル キャリア 20MHz BW TM1.1 LTE

図 5-369. TX 20MHz LTE alt-ACPR と DSA 設定との関係 (1.8GHz)



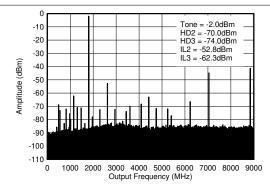
1.8GHz で整合、 f_{DAC} = 11.79648GSPS、インターリーブ モード、 高調波周波数での出力電力で正規化

図 5-370. TX HD2 と出力周波数との関係 (各種デジタル振幅、 1.8GHz)



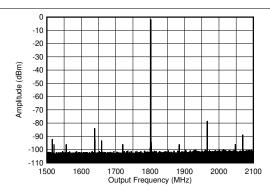
1.8GHz で整合、 f_{DAC} = 11.79648GSPS、インターリーブ モード、高調波周波数での出力電力で正規化

 f_{DAC} = 8847.36MSPS、インターリーブ モード、1.8GHz 整合あり、PCB とケーブルの損失を含む。 $ILn = f_S/n \pm f_{OUT}$ 。


図 5-371. TX HD3 と出力周波数との関係 (各種デジタル振幅、 1.8GHz)

 f_{DAC} = 8847.36MSPS、インターリーブ モード、1.8GHz 整合あり、 PCB とケーブルの損失を含む。

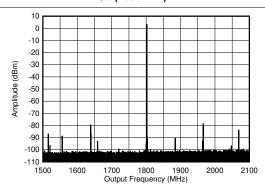
図 5-373. 1.8GHz での TX シングル トーン (-12dBFS) 出力スペクトル (±300MHz)


図 5-372. TX シングル トーン (-12dBFS) 出力スペクトル (0〜f_{DAC}、 1.8GHz)

 f_{DAC} = 8847.36MSPS、インターリーブ モード、1.8GHz 整合あり、 PCB とケーブルの損失を含む。 $ILn = f_S/n \pm f_{OUT}$ 。

図 5-374. TX シングル トーン (-6dBFS) 出力スペクトル (0~f_{DAC}、 1.8GHz)

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。


 f_{DAC} = 8847.36MSPS、インターリーブ モード、1.8GHz 整合あり、 PCB とケーブルの損失を含む。

 f_{DAC} = 8847.36MSPS、インターリーブ モード、1.8GHz 整合あり、 PCB とケーブルの損失を含む。 $ILn = f_S/n \pm f_{OUT}$ 。

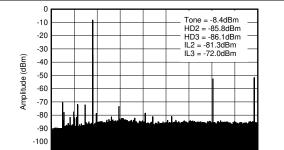

図 5-376. TX シングル トーン (-1dBFS) 出力スペクトル (0〜f_{DAC}、 1.8GHz)

図 5-375. 1.8GHz での TX シングル トーン (-6dBFS) 出力スペクト ル (±300MHz)

 f_{DAC} = 8847.36MSPS、インターリーブ モード、1.8GHz 整合あり、 PCB とケーブルの損失を含む。

図 5-377. 1.8GHz での TX シングル トーン (-1dBFS) 出力スペクト ル (±300MHz)

 f_{DAC} = 8847.36MSPS、ストレート モード、1.8GHz 整合あり、PCB とケーブルの損失を含む。 $ILn = f_S/n \pm f_{OUT}$ (デジタル クロックとの ミキシングに起因)。

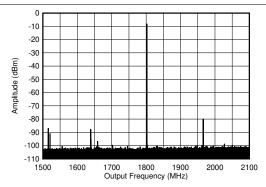
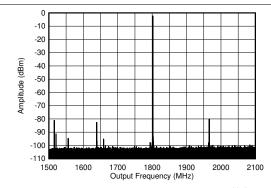

1000 2000 3000 4000 5000 6000 7000 8000 9000 Output Frequency (MHz)

図 5-378. TX シングル トーン (-12dBFS) 出力スペクトル (0~f_{DAC}、 1.8GHz)

105



T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

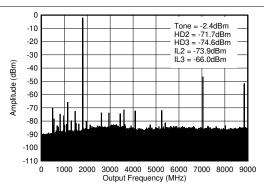

 f_{DAC} = 8847.36MSPS、ストレート モード、1.8GHz 整合あり、PCB とケーブルの損失を含む

図 5-379. 1.8GHz での TX シングル トーン (-12dBFS) 出力スペク トル (±300MHz)

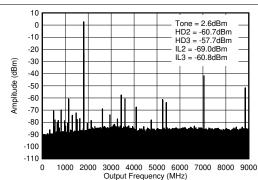

 f_{DAC} = 8847.36MSPS、ストレート モード、1.8GHz 整合あり、PCB とケーブルの損失を含む

図 5-381. 1.8GHz での TX シングル トーン (-6dBFS) 出力スペクト ル (±300MHz)

 f_{DAC} = 8847.36MSPS、ストレート モード、1.8GHz 整合あり、PCB とケーブルの損失を含む。 $ILn = f_S/n \pm f_{OUT}$ (デジタル クロックとの ミキシングに起因)。

図 5-380. TX シングル トーン (-6dBFS) 出力スペクトル (0〜f_{DAC}、 1.8GHz)

 f_{DAC} = 8847.36MSPS、ストレート モード、1.8GHz 整合あり、PCB とケーブルの損失を含む。 $ILn = f_S/n \pm f_{OUT}$ (デジタル クロックとの ミキシングに起因)。

図 5-382. TX シングル トーン (-1dBFS) 出力スペクトル (0~f_{DAC}、 1.8GHz)

 T_A = +25°Cでの代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、 f_{DAC} = 11796.48MSPS、インターリーブ モード、 A_{OUT} =-1dBFS、1 $^{\circ}$ 大ナイキストゾーン出力、内部 PLL、 f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

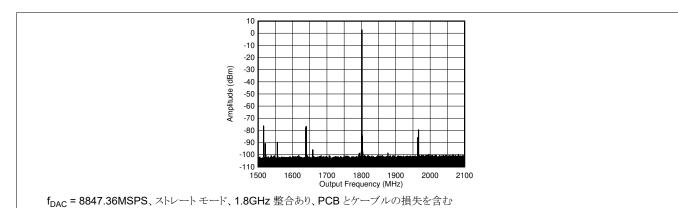
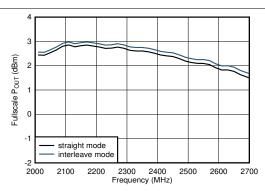
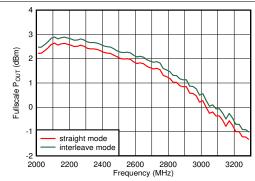


図 5-383. 1.8GHz での TX シングル トーン (-1dBFS) 出力スペクトル (±300MHz)

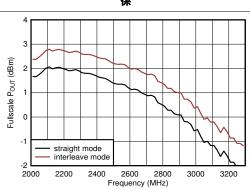

107

Product Folder Links: AFE7901



5.12.11 TX 代表的特性: 2.6GHz

 T_A = +25°Cでの代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、 f_{DAC} = 11796.48MSPS、インターリーブ モード、 A_{OUT} =-1dBFS、 1° ナイキストゾーン出力、内部 PLL、 f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。



PCB とケーブルの損失を含む。 A_{OUT} = -0.5dBFS、DSA = 0、2.6GHz 整合あり

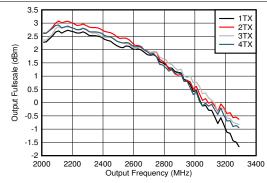

PCB とケーブルの損失を含む。 A_{OUT} = -0.5dBFS、DSA = 0、2.6GHz 整合あり

図 5-384. 5898.24MSPS での TX フルスケールと RF 周波数との関係

PCB とケーブルの損失を含む。 A_{OUT} = -0.5dBFS、DSA = 0、2.6GHz 整合あり

図 5-385. 8847.36MSPS での TX フルスケールと RF 周波数との関係

 f_{DAC} = 8847.36MSPS、インターリーブ モード、PCB およびケーブルの損失を含む、 A_{out} = -0.5dBFS、DSA = 0、2.6GHz 整合あり

図 5-386. TX フルスケールと RF 周波数との関係 (11796.48MSPS)

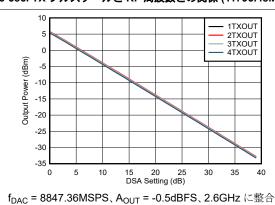
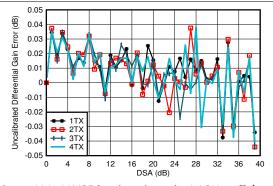
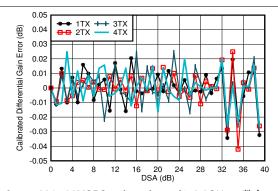
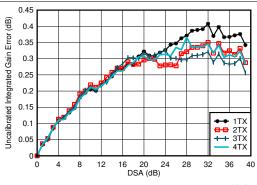



図 5-388. TX 出力電力と DSA 設定との関係 (各種チャネル、 2.6GHz)

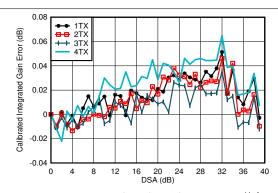

図 5-387. TX 出力フルスケールと出力周波数とチャネルとの関係

f_{DAC} = 8847.36MSPS、ストレート モード、2.6GHz で整合 微分ゲイン誤差 = P_{OUT}(DSA 設定 - 1) - P_{OUT}(DSA 設定) + 1

図 5-389. TX 未較正微分ゲイン誤差と DSA 設定との関係 (各種チャネル、2.6GHz)


T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

f_{DAC} = 8847.36MSPS、ストレート モード、2.6GHz で整合 微分ゲイン誤差 = P_{OUT}(DSA 設定 - 1) - P_{OUT}(DSA 設定) + 1


図 5-390. TX 較正済み微分ゲイン誤差と DSA 設定との関係 (各種チャネル、2.6GHz)

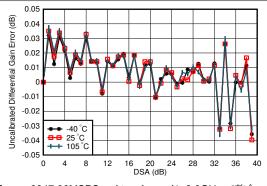
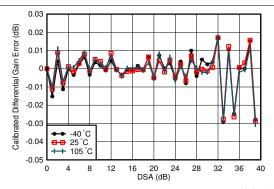

 f_{DAC} = 8847.36MSPS、ストレート モード、2.6GHz で整合 積分ゲイン誤差 = $P_{OUT}(DSA$ 設定) - $P_{OUT}(DSA$ 設定 = 0) + (DSA 設定)

図 5-391. TX 未較正積分ゲイン誤差と DSA 設定との関係 (各種チャネル、2.6GHz)

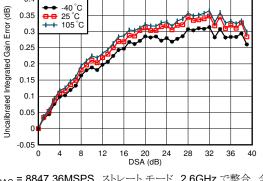
 f_{DAC} = 8847.36MSPS、ストレート モード、2.6GHz で整合 積分ゲイン誤差 = $P_{OUT}(DSA$ 設定) - $P_{OUT}(DSA$ 設定 = 0) + (DSA 設定)

図 5-392. TX 較正済み積分ゲイン誤差と DSA 設定との関係 (各種チャネル、2.6GHz)



 f_{DAC} = 8847.36MSPS、ストレート モード、2.6GHz で整合、全DSA 設定にわたって 25°Cでの誤差が中央値であるチャネル 微分ゲイン誤差 = P_{OUT} (DSA 設定 - 1) - P_{OUT} (DSA 設定) + 1

図 5-393. TX 未較正微分ゲイン誤差と DSA 設定との関係 (各種温度、2.6GHz)



T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

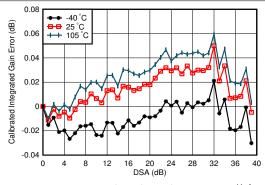

 f_{DAC} = 8847.36MSPS、ストレート モード、2.6GHz で整合、全DSA 設定にわたって 25°Cでの誤差が中央値であるチャネル 微分ゲイン誤差 = P_{OUT} (DSA 設定 - 1) - P_{OUT} (DSA 設定) + 1

図 5-394. TX 較正済み微分ゲイン誤差と DSA 設定との関係 (各種温度、2.6GHz)

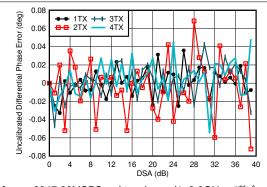
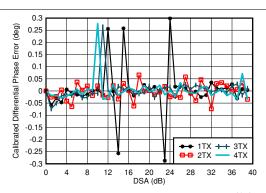
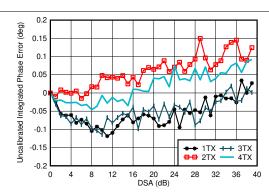

 f_{DAC} = 8847.36MSPS、ストレート モード、2.6GHz で整合、全DSA 設定にわたって 25℃での誤差が中央値であるチャネル積分ゲイン誤差 = $P_{OUT}(DSA$ 設定) - $P_{OUT}(DSA$ 設定 = 0) + (DSA 設定)

図 5-395. TX 未較正積分ゲイン誤差と DSA 設定との関係 (各種温度、2.6GHz)

 f_{DAC} = 8847.36MSPS、ストレート モード、2.6GHz で整合、全DSA 設定にわたって 25°Cでの誤差が中央値であるチャネル積分ゲイン誤差 = $P_{OUT}(DSA$ 設定) - $P_{OUT}(DSA$ 設定 = 0) + (DSA 設定)

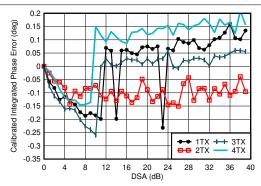

図 5-396. TX 較正済み積分ゲイン誤差と DSA 設定との関係 (各種温度、2.6GHz)

f_{DAC} = 8847.36MSPS、ストレート モード、2.6GHz で整合 微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設定)


図 5-397. TX 未較正微分位相誤差と DSA 設定との関係 (各種チャネル、2.6GHz)

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

 f_{DAC} = 8847.36MSPS、ストレート モード、2.6GHz で整合 微分位相誤差 = Phase_OUT(DSA 設定 - 1) - Phase_OUT(DSA 設定)


位相 DNL スパイクは、すべての DSA 設定で発生する可能性があります。

 f_{DAC} = 8847.36MSPS、ストレート モード、2.6GHz で整合積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

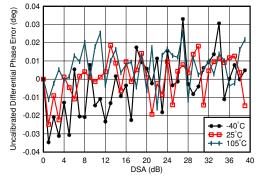
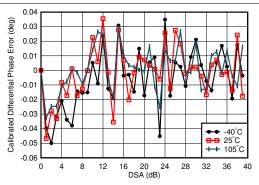

図 5-399. TX 未較正積分位相誤差と DSA 設定との関係 (チャネル 1、2.6GHz)

図 5-398. TX 較正済み微分位相誤差と DSA 設定との関係 (各種チャネル、2.6GHz)

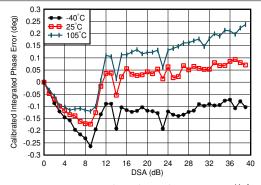
 f_{DAC} = 8847.36MSPS、ストレート モード、2.6GHz で整合 積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

図 5-400. TX 較正済み積分位相誤差と DSA 設定との関係 (各種チャネル、2.6GHz)



f_{DAC} = 8847.36MSPS、ストレート モード、2.6GHz で整合、全 DSA 設定にわたって 25℃での誤差が中央値であるチャネル 微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設 定)

図 5-401. TX 未較正微分位相誤差と DSA 設定との関係 (各種温度、 2.6GHz)



T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

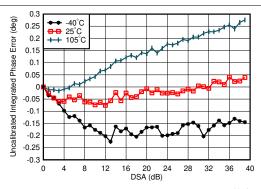

f_{DAC} = 8847.36MSPS、ストレート モード、2.6GHz で整合、全DSA 設定にわたって 25℃での誤差が中央値であるチャネル 微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設定)

図 5-402. TX 較正済み微分位相誤差と DSA 設定との関係 (各種温度、2.6GHz)

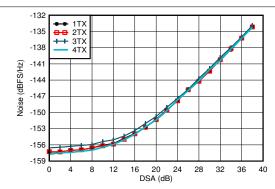
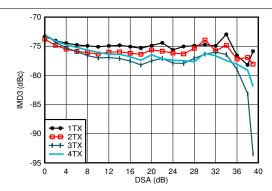

 f_{DAC} = 8847.36MSPS、ストレート モード、2.6GHz で整合、全DSA 設定にわたって 25°Cでの誤差が中央値であるチャネル積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

図 5-404. TX 較正済み積分位相誤差と DSA 設定との関係 (各種温度、2.6GHz)

 f_{DAC} = 8847.36MSPS、ストレート モード、2.6GHz で整合、全DSA 設定にわたって 25°Cでの誤差が中位の大きさのチャネル積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

図 5-403. TX 未較正積分位相誤差と DSA 設定との関係 (各種温度、 2.6GHz)

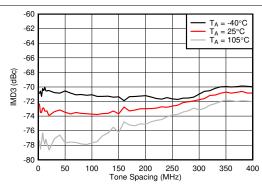


f_{DAC} = 8847.36MSPS、ストレート モード、2.6GHz で整合、P_{OUT} = -13dBFS

図 5-405. TX 出力ノイズと減衰量との関係 (各種チャネル、2.6GHz)

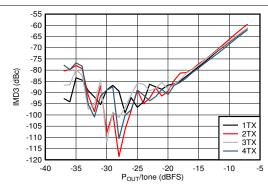
資料に関するフィードバック(ご意見やお問い合わせ)を送信

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリ ーブ モード、 A_{OUT} =-1dBFS、1 $^{\circ}$ ナイキストゾーン出力、内部 PLL、 f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネー ブル、DSA 較正済み。


 f_{DAC} = 8847.36MSPS, $Z \vdash V \vdash \vdash \exists \vdash \vdash \lor f_{CENTER}$ = 2.6GHz, 2.6GHz で整合、各トーン -13dBFS

-60 2TX 3TX 4TX -65 IMD3 (dBc) -70 -75 -80 0 50 100 150 200 250 300 350 Tone Spacing (MHz)

 f_{DAC} = 8847.36MSPS、 ストレート モード、 f_{CENTER} = 2.6GHz、 2.6GHz で整合、各トーン -13dBFS


図 5-406. TX IMD3 と DSA 設定との関係 (2.6GHz)

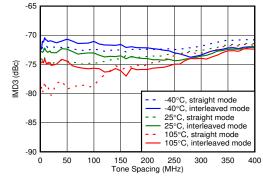
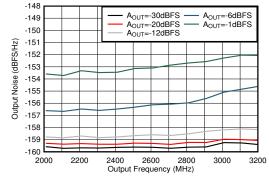

 f_{DAC} = 8847.36MSPS、 $A \vdash V \vdash \vdash \exists f_{CENTER} = 2.6GHz$. 2.6GHz で整合、各トーン -13dBFS、ワースト チャネル

図 5-407. TX IMD3 とトーン間隔との関係 (各種チャネル、2.6GHz)

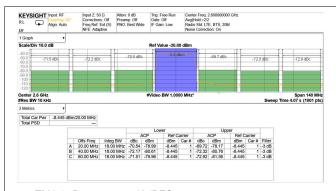
 $f_{DAC} = 8847.36MSPS$, $A \vdash V \vdash \vdash \exists \vdash \vdash \forall f_{CENTER} = 2.6GHz$, f_{SPACING} = 20MHz、2.6GHz で整合


図 5-408. TX IMD3 とトーン間隔との関係 (各種温度、2.6GHz)

 f_{DAC} = 8847.36MSPS, $Z \vdash V \vdash \vdash \exists \vdash \vdash \land f_{CENTER} = 2.6GHz$, 2.6GHz で整合、各トーン -13dBFS

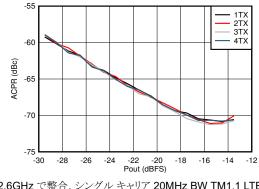
図 5-410. TX IMD3 とトーン間隔との関係 (各種温度)

図 5-409. TX IMD3 とデジタル レベルとの関係 (2.6GHz)

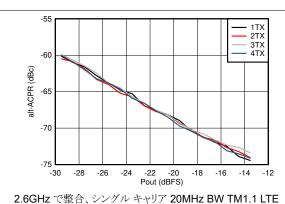


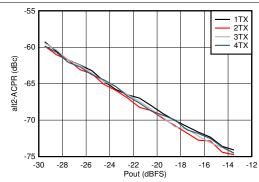
2.6GHz で整合、シングルトーン、f_{DAC} = 11.79648GSPS、インタ ーリーブ モード、40MHz オフセット

図 5-411. TX シングルトーン出力ノイズと周波数との関係 (各種振 幅、2.6GHz)



T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリ ーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネー ブル、DSA 較正済み。


TM1.1, $P_{OUT_RMS} = -13dBFS$


図 5-412. TX 20MHz LTE 出力スペクトル (バンド 41、2.6GHz)

2.6GHz で整合、シングル キャリア 20MHz BW TM1.1 LTE

図 5-413. TX 20MHz LTE ACPR とデジタル レベルとの関係 (2.6GHz)

2.6GHz で整合、シングル キャリア 20MHz BW TM1.1 LTE

図 5-414. TX 20MHz LTE alt-ACPR とデジタル レベルとの関係 (2.6GHz)

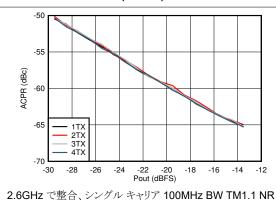
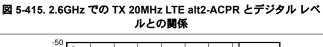
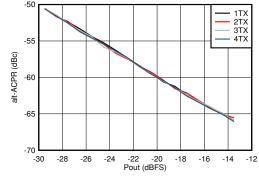
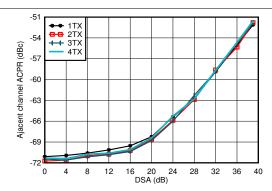
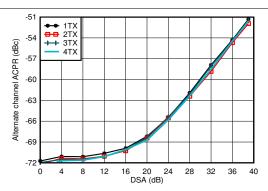




図 5-416. 2.6GHz での TX 100MHz NR ACPR とデジタル レベルと の関係

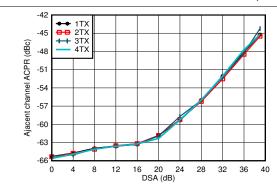


2.6GHz で整合、シングル キャリア 100MHz BW TM1.1 NR


図 5-417. 2.6GHz での TX 100MHz NR alt-ACPR とデジタル レベ ルとの関係

資料に関するフィードバック(ご意見やお問い合わせ)を送信

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。



2.6GHz で整合、シングル キャリア 20MHz BW TM1.1 LTE

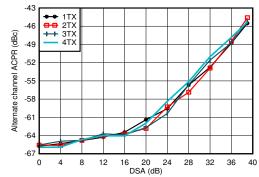

2.6GHz で整合、シングル キャリア 20MHz BW TM1.1 LTE

図 5-418. TX 20MHz LTE ACPR と DSA 設定との関係 (2.6GHz)

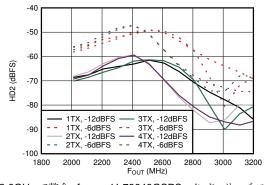
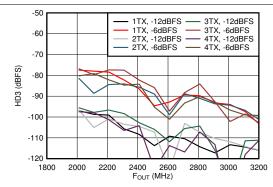

2.6GHz で整合、シングル キャリア 100MHz BW TM1.1 NR

図 5-419. TX 20MHz LTE alt-ACPR と DSA 設定との関係 (2.6GHz)

2.6GHz で整合、シングル キャリア 100MHz BW TM1.1 NR

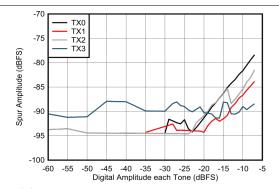

図 5-420. TX 100MHz NR ACPR と DSA 設定との関係 (2.6GHz)

2.6GHz で整合、 f_{DAC} = **11.79648GSPS**、インターリーブ モード、高調波周波数での出力電力で正規化

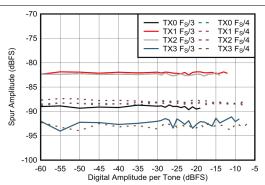
図 5-422. TX HD2 と出力周波数との関係 (各種デジタル振幅、 2.6GHz)

図 5-421. TX 100MHz NR alt-ACPR と DSA 設定との関係 (2.6GHz)

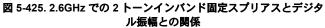
2.6GHz で整合、 f_{DAC} = **11.79648GSPS**、インターリーブ モード、高調波周波数での出力電力で正規化

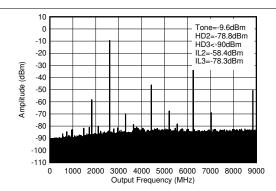

図 5-423. TX HD3 と出力周波数との関係 (各種デジタル振幅、 2.6GHz)

Copyright © 2025 Texas Instruments Incorporated


資料に関するフィードバック(ご意見やお問い合わせ) を送信

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリ ーブ モード、A_{OUT} =-1dBFS、1^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネー ブル、DSA 較正済み。




帯域内= 2600MHz \pm 600MHz、 f_{DAC} = 12GSPS、 F_{S} /3 および F_S/4 を含まず、外部クロック モード、非インターリーブ モード

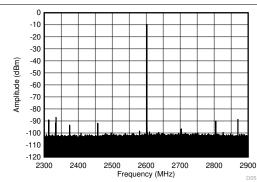
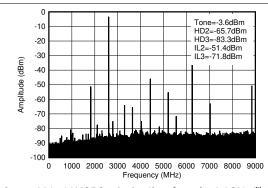

帯域内= 2600MHz ± 600MHz、f DAC = 12GSPS、外部クロックモ ード、非インターリーブモード

図 5-424. 2.6GHz での 2 トーン SFDR とデジタル振幅との関係

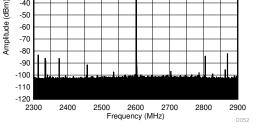

 f_{DAC} = 8847.36MSPS、インターリーブ モード、2.6GHz 整合あり、 PCB とケーブルの損失を含む。ILn = f_S/n ± f_{OUT}。

 f_{DAC} = 8847.36MSPS、インターリーブ モード、2.6GHz 整合あり、 PCB とケーブルの損失を含む

図 5-426. TX シングル トーン (-12dBFS) 出力スペクトル (0~f_{DAC}、 2.6GHz)

図 5-427. 2.6GHz での TX シングル トーン (-12dBFS) 出力スペク トル (±300MHz)

 f_{DAC} = 8847.36MSPS、インターリーブ モード、2.6GHz 整合あり、 PCB とケーブルの損失を含む。ILn = f_S/n ± f_{OUT}。

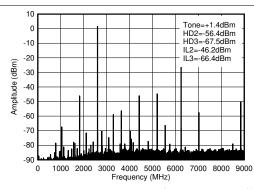

Product Folder Links: AFE7901

-10

-20

-30

-40

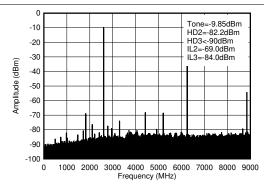


 f_{DAC} = 8847.36MSPS、インターリーブ モード、2.6GHz 整合あり、 PCB とケーブルの損失を含む

図 5-429. 2.6GHz での TX シングル トーン (-6dBFS) 出力スペクト ル (±300MHz)

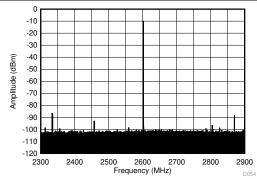
図 5-428. TX シングル トーン (-6dBFS) 出力スペクトル (0~f_{DAC}、 2.6GHz)

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。


 f_{DAC} = 8847.36MSPS、インターリーブ モード、2.6GHz 整合あり、 PCB とケーブルの損失を含む。 $ILn = f_S/n \pm f_{OUT}$ 。

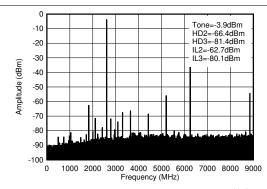
0 -10 -20 -30 -40 Amplitude -50 -60 -70 -80 -90 -100 -110 2500 2600 _. Frequency (MHz) 2300 2400 2700 2800 2900


 f_{DAC} = 8847.36MSPS、インターリーブ モード、2.6GHz 整合あり、 PCB とケーブルの損失を含む


図 5-430. TX シングル トーン (-1dBFS) 出力スペクトル (0~f_{DAC}、 2.6GHz)

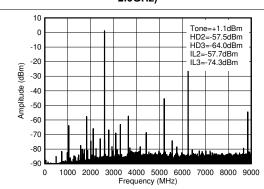
 f_{DAC} = 8847.36 MSPS、ストレート モード、2.6GHz 整合あり、 PCB とケーブルの損失を含む。 $ILn = f_S/n \pm f_{OUT}$ (デジタル クロックとのミキシングに起因)。

f_{DAC} = 8847.36MSPS、ストレート モード、2.6GHz 整合あり、PCB とケーブルの損失を含む


図 5-433. 2.6GHz での TX シングル トーン (-12dBFS) 出力スペク トル (±300MHz)

117

Product Folder Links: AFE7901



T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

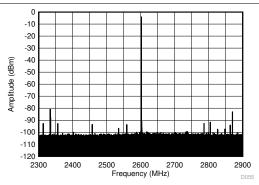

 f_{DAC} = 8847.36 MSPS、ストレート モード、2.6GHz 整合あり、 PCB とケーブルの損失を含む。 $ILn = f_S/n \pm f_{OUT}$ (デジタル クロックとのミキシングに起因)。

図 5-434. TX シングル トーン (-6dBFS) 出力スペクトル (0~f_{DAC}、 2.6GHz)

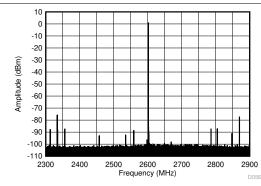
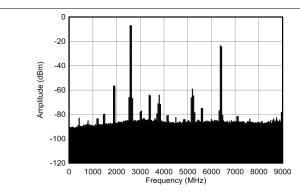
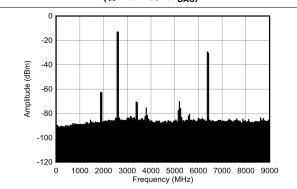

 f_{DAC} = 8847.36 MSPS、ストレート モード、2.6GHz 整合あり、 PCB とケーブルの損失を含む。 $ILn = f_S/n \pm f_{OUT}$ (デジタル クロックとのミキシングに起因)。

図 5-436. TX シングル トーン (-1dBFS) 出力スペクトル (0~f_{DAC}、 2.6GHz)

 f_{DAC} = 8847.36MSPS、ストレート モード、2.6GHz 整合あり、PCB とケーブルの損失を含む


図 5-435. 2.6GHz での TX シングル トーン (-6dBFS) 出力スペクト ル (±300MHz)

 f_{DAC} = 8847.36MSPS、ストレート モード、2.6GHz 整合あり、PCB とケーブルの損失を含む


図 5-437. 2.6GHz での TX シングル トーン (-1dBFS) 出力スペクトル (±300MHz)

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

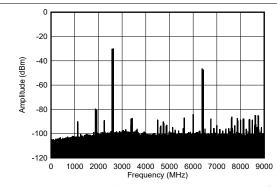

f_{DAC} = 9000MSPS、外部クロック モード、非インターリーブ モード

図 5-438. 2.6GHz での TX デュアルトーン出力スペクトル (各-7dBFS、0~_{DAC})

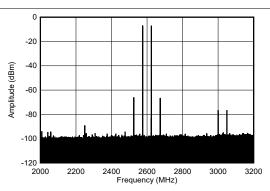

f_{DAC} = 9000MSPS、外部クロック モード、非インターリーブ モード

図 5-440. 2.6GHz での TX デュアルトーン出力スペクトル (各-13dBFS、0~_{DAC})

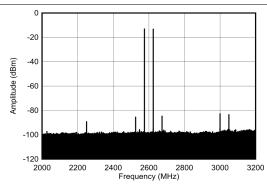

f_{DAC} = 9000MSPS、外部クロック モード、非インターリーブ モード

図 5-442. 2.6GHz での TX デュアルトーン出力スペクトル (各-30dBFS、0~_{DAC})

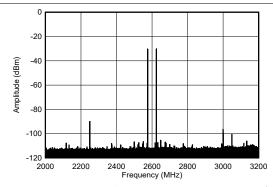
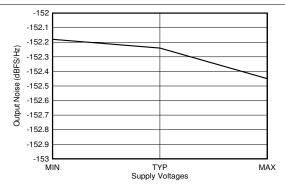

 f_{DAC} = 9000MSPS、外部クロック モード、非インターリーブ モード

図 5-439. 2.6GHz での TX デュアルトーン出力スペクトル (各 -7dBFS、±600MHz)

 f_{DAC} = 9000MSPS、外部クロック モード、非インターリーブ モード

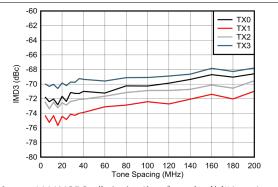
図 5-441. 2.6GHz での TX デュアルトーン出力スペクトル (各 -13dBFS、±600MHz)

f_{DAC} = 9000 MSPS、外部クロック モード、非インターリーブ モード

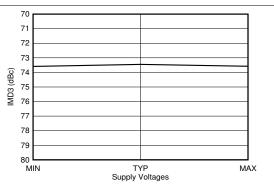

図 5-443. 2.6GHz での TX デュアルトーン出力スペクトル (各-30dBFS、±600MHz)

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

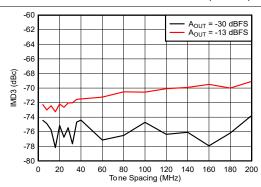


T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。



f_{DAC} = 11796.48MSPS、インターリーブ モード、2.6GHz 整合あり。トーンから 40MHz オフセット。出力電力 = -1dBFS。 すべての電源電圧に最小値、代表値、最大値がある。

図 5-444. 2.6GHz での TX 出力ノイズと電源電圧との関係



 f_{DAC} = 9000MSPS、非インターリーブ モード、外部クロック モード

f_{DAC} = 11796.48MSPS、インターリーブ モード、2.6GHz 整合あり。トーンから 40MHz オフセット。出力電力 = -13dBFS。 すべての電源電圧に最小値、代表値、最大値がある。

図 5-445. TX IMD3 と電源電圧との関係 (2.6GHz)

f_{DAC} = 9000MSPS、非インターリーブ モード、外部クロック モード

図 5-447. 2.6GHz での IMD3 とトーン間隔との関係 (各種チャネル)

図 5-446. 2.6GHz での IMD3 とトーン間隔との関係 (各種チャネル)

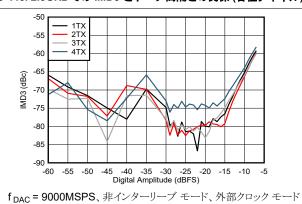
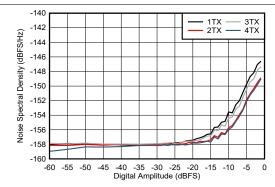


図 5-448. 2.6GHz での IMD3 とデジタル振幅との関係 (各種チャネ

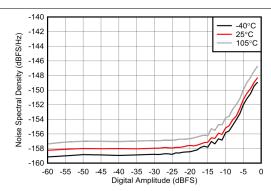
-60 -65 -70 -75 -80 -80 -85 -90 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 Digital Amplitude (dBFS)

-50

-55

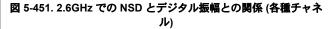

 f_{DAC} = 9000MSPS、 非インターリーブ モード、 外部クロック モード

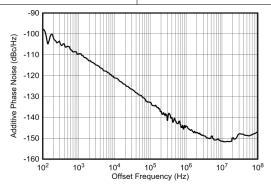
ル)


図 5-449. 2.6GHz での IMD3 とデジタル振幅との関係 (各種チャネル)

資料に関するフィードバック (ご意見やお問い合わせ) を送信

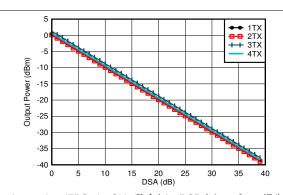
T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。




 f_{DAC} = 9000MSPS、 非インターリーブ モード、外部クロック モード、50MHz オフセット

 f_{DAC} = 9000MSPS、非インターリーブ モード、外部クロック モード、50MHz オフセット

図 5-450. 2.6GHz での NSD とデジタル振幅との関係 (各種チャネル、)



 f_{DAC} = f_{CLK} = 9000MSPS、非インターリーブ モード

図 5-452. 2.6GHz での外部クロック付加位相ノイズ



T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリ ーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0 dB、Sin (x)/x イネー ブル、DSA 較正済み。

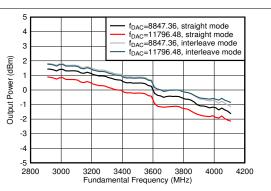

A_{out} = -0.5 dFBS、3.5GHz 整合あり、PCB とケーブルの損失を含 む。

図 5-453. TX 出力電力と DSA 設定との関係 (3.5GHz)

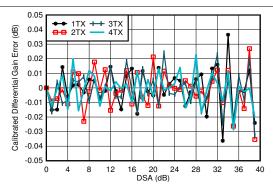
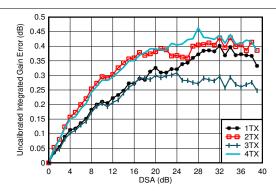

3.5GHz 整合あり、PCB とケーブルの損失を含む。 微分ゲイン誤差 = P_{OUT}(DSA 設定 - 1) - P_{OUT}(DSA 設定) + 1

図 5-455. TX 未較正微分ゲイン誤差と DSA 設定との関係 (各種チャ | 図 5-456. TX 較正済み微分ゲイン誤差と DSA 設定との関係 (各種チ ネル、3.5GHz)

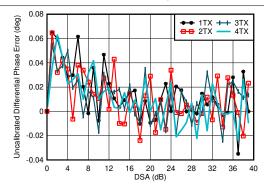
Aout = -0.5 dFBS、3.5GHz 整合あり、PCB とケーブルの損失を含

図 5-454. TX 出力電力と周波数との関係



3.5GHz 整合あり、PCB とケーブルの損失を含む。 微分ゲイン誤差 = P_{OUT}(DSA 設定 - 1) - P_{OUT}(DSA 設定) + 1

ャネル、3.5GHz)


資料に関するフィードバック(ご意見やお問い合わせ)を送信

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリ ーブ モード、 A_{OUT} =-1dBFS、1 $^{\circ}$ ナイキストゾーン出力、内部 PLL、 f_{REF} = 491.52MSPS、24x 補間、DSA = 0 dB、Sin (x)/x イネー ブル、DSA 較正済み。

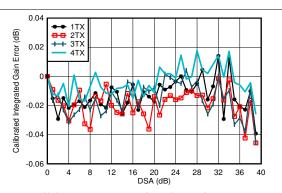

3.5GHz 整合あり、PCB とケーブルの損失を含む。 積分ゲイン誤差 = P_{OUT}(DSA 設定) - P_{OUT}(DSA 設定 = 0) + (DSA 設定)

図 5-457. TX 未較正積分ゲイン誤差と DSA 設定との関係 (各種チャ | 図 5-458. TX 較正済み積分ゲイン誤差と DSA 設定との関係 (各種チ ネル、3.5GHz)

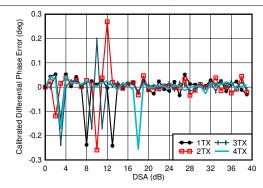
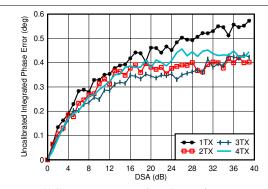

3.5GHz 整合あり、PCB とケーブルの損失を含む。 微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設

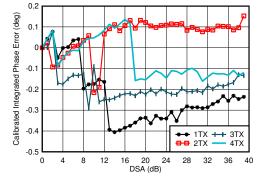
図 5-459. TX 未較正微分位相誤差と DSA 設定との関係 (各種チャネ ル、3.5GHz)

3.5GHz 整合あり、PCB とケーブルの損失を含む。 積分ゲイン誤差 = P_{OUT}(DSA 設定) - P_{OUT}(DSA 設定 = 0) + (DSA 設定)

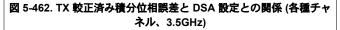
ャネル、3.5GHz)

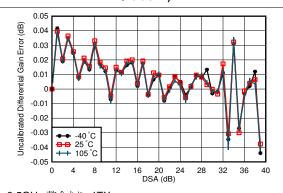


3.5GHz 整合あり、PCB とケーブルの損失を含む。 微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設 定)。 位相 DNL スパイクは、すべての DSA 設定で発生する可能 性があります。


図 5-460. TX 較正済み微分位相誤差と DSA 設定との関係 (各種チャ ネル、3.5GHz)

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0 dB、Sin (x)/x イネーブル、DSA 較正済み。




3.5GHz 整合あり、PCB とケーブルの損失を含む。 積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

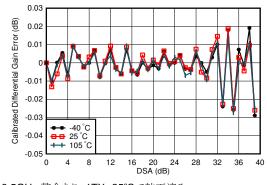

3.5GHz 整合あり、PCB とケーブルの損失を含む。 積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

図 5-461. TX 未較正積分位相誤差と DSA 設定との関係 (チャネル 1、3.5GHz)

3.5GHz 整合あり、1TX 微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設 定)

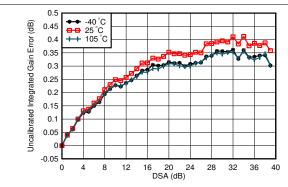
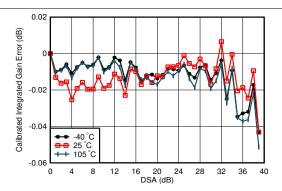

3.5GHz 整合あり、1TX、25℃で較正済み 微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設定)

図 5-463. TX 未較正微分ゲイン誤差と DSA 設定との関係 (各種温度、3.5GHz)

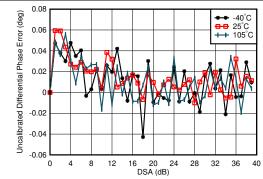
図 5-464. TX 較正済み微分ゲイン誤差と DSA 設定との関係 (各種温度、3.5GHz)


資料に関するフィードバック(ご意見やお問い合わせ)を送信

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリ ーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0 dB、Sin (x)/x イネー ブル、DSA 較正済み。

3.5GHz 整合あり、1TX

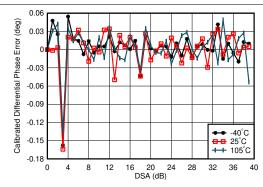
積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)



3.5GHz 整合あり、1TX、25℃で較正済み

積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

図 5-465. TX 未較正積分ゲイン誤差と DSA 設定との関係 (各種温

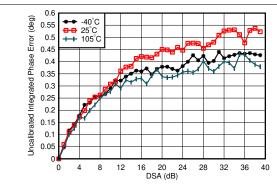


3.5GHz 整合あり、1TX

微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設 定)

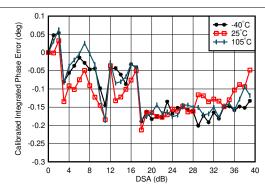
図 5-467. TX 未較正微分位相誤差と DSA 設定との関係 (各種温度、 3.5GHz)

図 5-466. TX 較正済み積分ゲイン誤差と DSA 設定との関係 (各種温 度、3.5GHz)


3.5GHz 整合あり、1TX、25℃で較正済み

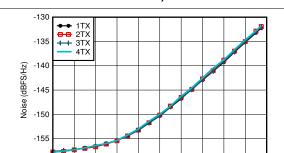
微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設 定)

図 5-468. TX 較正済み微分位相誤差と DSA 設定との関係 (各種温 度、3.5GHz)


 T_A = +25°Cでの代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、 f_{DAC} = 11796.48MSPS、インターリーブ モード、 A_{OUT} =-1dBFS、 1° ナイキストゾーン出力、内部 PLL、 f_{REF} = 491.52MSPS、24x 補間、DSA = 0 dB、Sin (x)/x イネーブル、DSA 較正済み。

3.5GHz 整合あり、1TX

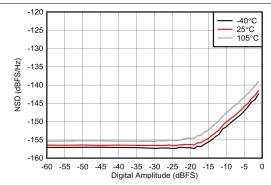
-160


積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

3.5GHz 整合あり、1TX、25℃で較正済み

積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

図 5-469. TX 未較正積分位相誤差と DSA 設定との関係 (各種温度、 3.5GHz)



A. f_{DAC} = 11796.48MSPS、インターリーブ モード、3.5GHz で整合、 A_{out} = -13dBFS。

DSA (dB)

32 36

図 5-470. TX 較正済み積分位相誤差と DSA 設定との関係 (各種温度、3.5GHz)

A. f_{DAC} = 12MSPS、外部クロック モード、非インターリーブ モード

図 5-471. TX NSD と DSA 設定との関係 (3.5GHz)

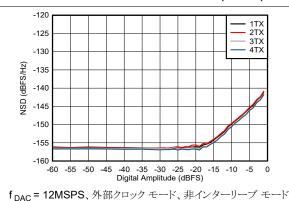
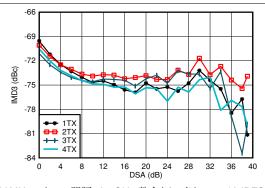
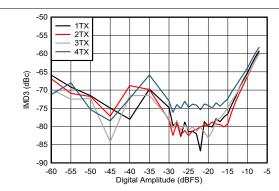
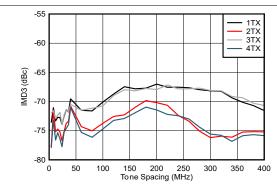



図 5-473. 3.75GHz での TX NSD とデジタル振幅、チャネルとの関係


図 5-472. 3.75GHz での TX NSD とデジタル振幅と温度との関係

20MHz のトーン間隔、3.5GHz 整合あり、各トーン -13dBFS、PCB とケーブルの損失を含む。


図 5-474. TX IMD3 と DSA 設定との関係 (3.5GHz)

 T_A = +25°Cでの代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、 f_{DAC} = 11796.48MSPS、インターリーブ モード、 A_{OUT} =-1dBFS、 1° ナイキストゾーン出力、内部 PLL、 f_{REF} = 491.52MSPS、24x 補間、DSA = 0 dB、Sin (x)/x イネーブル、DSA 較正済み。

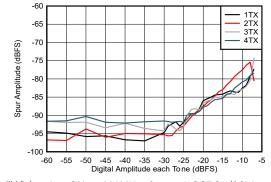

20MHz のトーン間隔、3.5GHz 整合あり

図 5-475. TX IMD3 とデジタル振幅との関係 (各種チャネル、 3.5GHz)

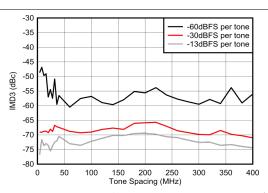

外部クロック モード、非インターリーブ モード

図 5-477. TX IMD3 とトーン間隔との関係 (各種チャネル、3.75GHz)

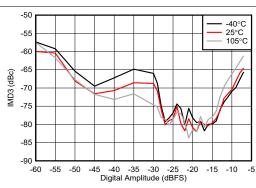

帯域内 = 3.75GHz \pm 600MHz、 f_{DAC} = 9 GSPS、外部クロックモード、非インターリーブモード。

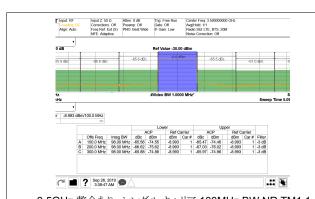
図 5-479. 3.75GHz での 2 トーン SFDR とデジタル振幅との関係

50MHz のトーン間隔、外部クロック モード、非インターリーブ・モード

図 5-476. 3.75GHz での TX IMD3 とトーン間隔との関係

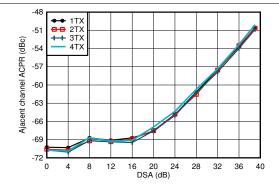
50MHz のトーン間隔、外部クロック モード、非インターリーブ・モード

図 5-478. 3.75GHz での TX IMD3 とデジタル振幅と温度との関係



3.5GHz 整合あり、シングル キャリア 20MHz BW TM1.1 LTE

図 5-480. TX 20MHz LTE 出力スペクトル (バンド 42、3.5GHz)



T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0 dB、Sin (x)/x イネーブル、DSA 較正済み。

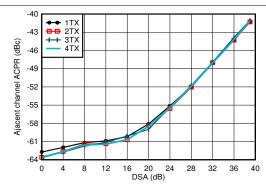

3.5GHz 整合あり、シングル キャリア 100MHz BW NR TM1.1

図 5-481. 3.5GHz での TX 100MHz NR 出力スペクトル (バンド 42)

3.5GHz 整合あり、シングル キャリア 20MHz BW NR TM1.1 LTE

図 5-483. TX 20MHz LTE ACPR と DSA 設定との関係 (3.5GHz)

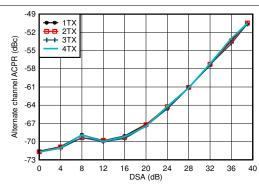

3.5GHz 整合あり、シングル キャリア 100MHz BW NR TM1.1

図 5-485. 3.5GHz での TX 100MHz NR ACPR と DSA 設定との関係

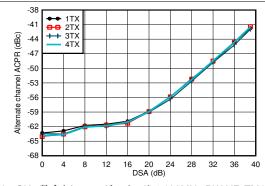
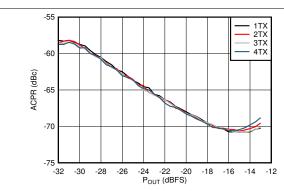

3.5GHz 整合あり、シングル キャリア 100MHz BW NR TM1.1

図 5-482. 3.45GHz および 3.75GHz での TX 2 キャリア 100MHz NR 出力スペクトラム

3.5GHz 整合あり、シングル キャリア 20MHz BW TM1.1 LTE


図 5-484. TX 20MHz LTE alt-ACPR と DSA 設定との関係 (3.5GHz)

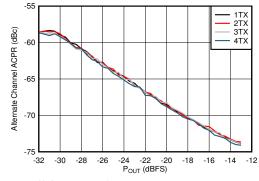
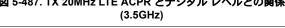
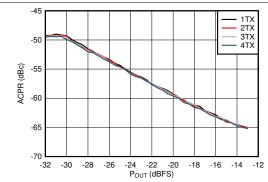

3.5GHz 整合あり、シングル キャリア 100MHz BW NR TM1.1

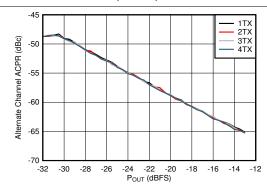
図 5-486. 3.5GHz での TX 100MHz NR alt-ACPR と DSA 設定との 関係

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリ ーブ モード、 A_{OUT} =-1dBFS、1 $^{\circ}$ ナイキストゾーン出力、内部 PLL、 f_{REF} = 491.52MSPS、24x 補間、DSA = 0 dB、Sin (x)/x イネー ブル、DSA 較正済み。




3.5GHz 整合あり、シングル キャリア 20MHz BW TM1.1 LTE

3.5GHz 整合あり、シングル キャリア 20MHz BW TM1.1 LTE


図 5-487. TX 20MHz LTE ACPR とデジタル レベルとの関係

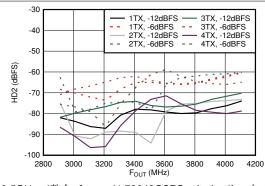
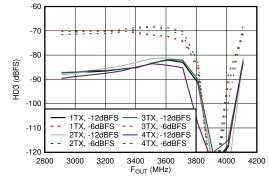

3.5GHz 整合あり、シングル キャリア 100MHz BW NR TM1.1

図 5-488. TX 20MHz LTE alt-ACPR とデジタル レベルとの関係 (3.5GHz)

3.5GHz 整合あり、シングル キャリア 100MHz BW NR TM1.1

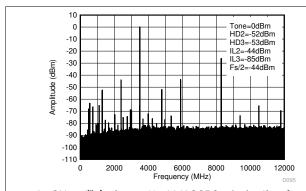

図 5-489. 3.5GHz での TX 100MHz NR ACPR とデジタル レベルと の関係

3.5GHz で整合、f_{DAC} = 11.79648GSPS、インターリーブ モード、 高調波周波数での出力電力で正規化

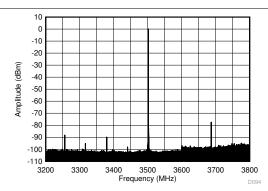
図 5-491. TX シングル トーン HD2 と周波数との関係 (各種デジタ ル レベル、3.5GHz)

図 5-490. 3.5GHz での TX 100MHz NR alt-ACPR とデジタル レベ ルとの関係

3.5GHz で整合、 f_{DAC} = 11.79648GSPS、インターリーブ モード、 高調波周波数での出力電力で正規化。ディップは、DC 付近での HD3 の低下に起因するものです。

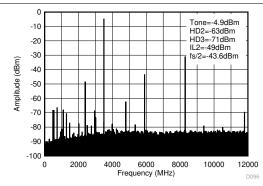

図 5-492. TX シングル トーン HD3 と周波数との関係 (各種デジタ ル レベル、3.5GHz)

Copyright © 2025 Texas Instruments Incorporated


資料に関するフィードバック(ご意見やお問い合わせ) を送信

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリ ーブ モード、A_{OUT} =-1dBFS、1^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0 dB、Sin (x)/x イネー ブル、DSA 較正済み。

3.5GHz で整合、 f_{DAC} = 11.79648GSPS、インターリーブ モード。



3.5GHz で整合、f_{DAC} = 11.79648GSPS、インターリーブ モード。

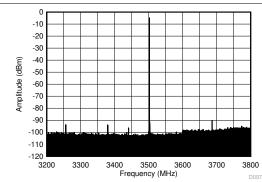

図 5-493. TX シングル トーン (-1dBFS) 出力スペクトル (0~f_{DAC}、 3.5GHz)

図 5-494. 3.5GHz での TX シングル トーン (-1dBFS) 出力スペクト ル (±300 MHz)

3.5GHz で整合、f_{DAC} = 11.79648GSPS、インターリーブ モード。

3.5GHz で整合、 f_{DAC} = 11.79648GSPS、インターリーブ モード。

図 5-495. TX シングル トーン (-6dBFS) 出力スペクトル (0~f_{DAC}、 3.5GHz)

図 5-496. 3.5GHz での TX シングル トーン (-6dBFS) 出力スペクト ル (±300 MHz)

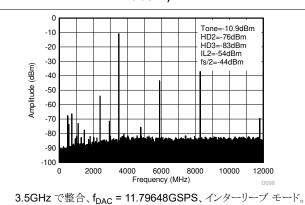
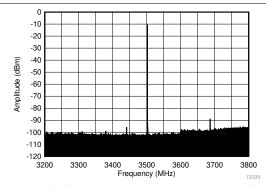



図 5-497. TX シングル トーン (-12dBFS) 出力スペクトル (0~f_{DAC}、 3.5GHz)

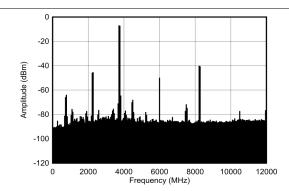
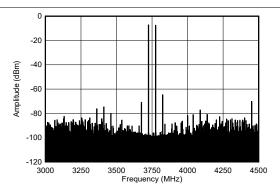
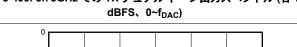

3.5GHz で整合、 f_{DAC} = 11.79648GSPS、インターリーブ モード。

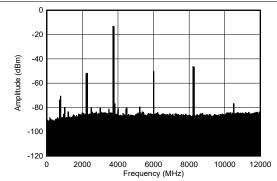
図 5-498. 3.5GHz での TX シングル トーン (-12dBFS) 出力スペク トル (±300 MHz)


資料に関するフィードバック(ご意見やお問い合わせ)を送信

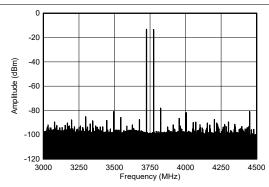
T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリ ーブ モード、A_{OUT} =-1dBFS、1^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0 dB、Sin (x)/x イネー ブル、DSA 較正済み。

Product Folder Links: AFE7901




3.5GHz で整合、50MHzトーン間隔、f_{DAC} = 12GSPS、非インタ ーリーブ モード。

3.5GHz で整合、50MHzトーン間隔、f_{DAC} = 12GSPS、非インタ ーリーブ モード。


図 5-499. 3.75GHz での TX デュアル トーン出力スペクトル (各-7

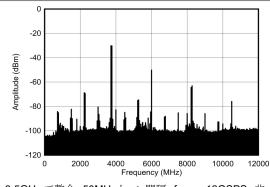
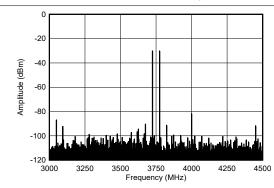

3.5GHz で整合、50MHzトーン間隔、f_{DAC} = 12GSPS、非インタ ーリーブ モード。

図 5-500. 3.75GHz での TX デュアルトーン出力スペクトル (各 -7 dBFS、±600MHz)

3.5GHz で整合、50MHzトーン間隔、f_{DAC} = 12GSPS、非インタ ーリーブ モード。

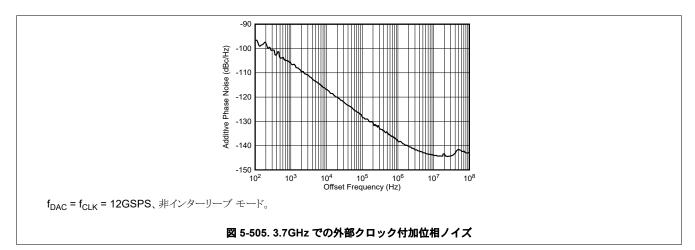

図 5-501. 3.75GHz での TX デュアル トーン出力スペクトル (各-13|図 5-502. 3.75GHz での TX デュアル トーン出力スペクトル (それぞ dBFS, 0~fDAC)

3.5GHz で整合、50MHzトーン間隔、f_{DAC} = 12GSPS、非インタ ーリーブ モード。

図 5-503. 3.75GHz での TX デュアル トーン出力スペクトル (各 -30dBFS、0~fDAC)

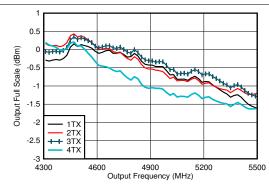
れ -13dBFS、±600MHz)

3.5GHz で整合、50MHzトーン間隔、f_{DAC} = 12GSPS、非インタ ーリーブ モード。

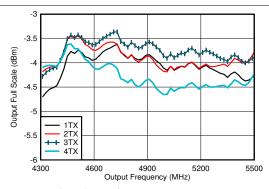

図 5-504. 3.75GHz での TX デュアルトーン出力スペクトル (各-30dBFS、±600MHz)

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信



 T_A = +25°Cでの代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、 f_{DAC} = 11796.48MSPS、インターリーブ モード、 A_{OUT} =-1dBFS、1 $^{\circ}$ 大ナイキストゾーン出力、内部 PLL、 f_{REF} = 491.52MSPS、24x 補間、DSA = 0 dB、Sin (x)/x イネーブル、DSA 較正済み。


T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

Product Folder Links: AFE7901

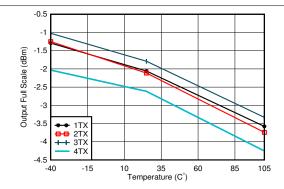

PCB とケーブルの損失を含む。 A_{out} = -0.5dBFS、DSA = 0、4.9GHz 整合あり

図 5-506. TX フルスケールと RF 周波数との関係 (各種チャネル、 11796.48MSPS)

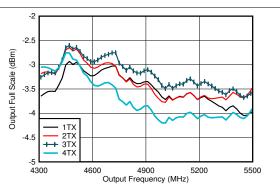

PCB とケーブルの損失を含む。A_{out} = -0.5dBFS、DSA = 0、4.9GHz 整合あり

図 5-508. TX フルスケールと RF 周波数とチャネルとの関係、 8847.36MSPS、ミックス モード、2 次ナイキスト ゾーン

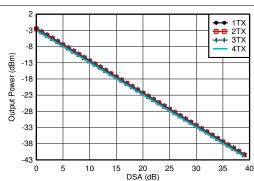

A_{out} = -0.5dBFS、4.9GHz 整合あり、PCB とケーブルの損失を含また。

図 5-510. 4.9GHz での TX フルスケール出力電力と温度、チャネル との関係

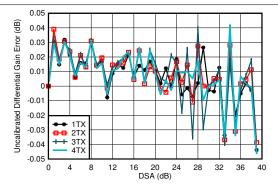
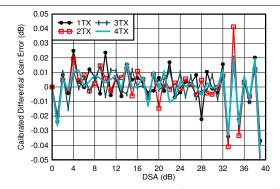

PCB とケーブルの損失を含む。 A_{out} = -0.5dBFS、DSA = 0、4.9GHz 整合あり

図 5-507. TX フルスケールと RF 周波数とチャネルとの関係、 5898.24MSPS、ミックス モード、2 次ナイキスト ゾーン

 f_{DAC} = 11796.48MSPS、 A_{out} = -0.5dBFS、4.9GHz 整合あり

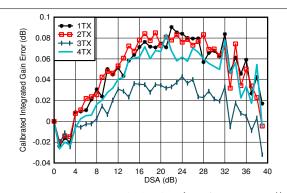
図 5-509. TX 出力電力と DSA 設定との関係 (各種チャネル、 4.9GHz)

f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合 微分ゲイン誤差 = P_{OUT}(DSA 設定 - 1) - P_{OUT}(DSA 設定) + 1


図 5-511. TX 未較正微分ゲイン誤差と DSA 設定との関係 (各種チャネル、4.9GHz)

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ) を送信



 T_A = +25°Cでの代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、 f_{DAC} = 11796.48MSPS、インターリーブ モード、 A_{OUT} =-1dBFS、 1° ナイキストゾーン出力、内部 PLL、 f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

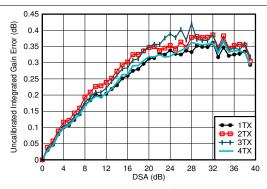

 f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合 微分ゲイン誤差 = $P_{OUT}(DSA$ 設定 - 1) - $P_{OUT}(DSA$ 設定) + 1

図 5-512. TX 較正済み微分ゲイン誤差と DSA 設定との関係 (各種チャネル、4.9GHz)

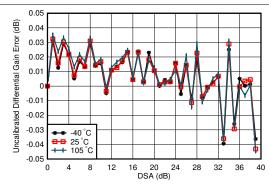
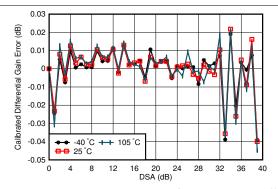

 f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合 積分ゲイン誤差 = $P_{OUT}(DSA$ 設定) - $P_{OUT}(DSA$ 設定 = 0) + (DSA 設定)

図 5-514. TX 較正済み積分ゲイン誤差と DSA 設定との関係 (各種チャネル、4.9GHz)

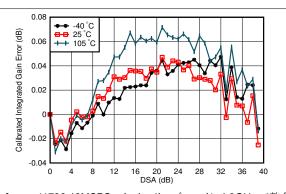
f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合 積分ゲイン誤差 = P_{OUT}(DSA 設定) - P_{OUT}(DSA 設定 = 0) + (DSA 設定)

図 5-513. TX 未較正積分ゲイン誤差と DSA 設定との関係 (各種チャネル、4.9GHz)



f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合 微分ゲイン誤差 = P_{OUT}(DSA 設定 - 1) - P_{OUT}(DSA 設定) + 1

図 5-515. TX 未較正微分ゲイン誤差と DSA 設定との関係 (各種温度、4.9GHz)


資料に関するフィードバック (ご意見やお問い合わせ) を送信

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリ ーブ モード、A_{OUT} =-1dBFS、1^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネー ブル、DSA 較正済み。

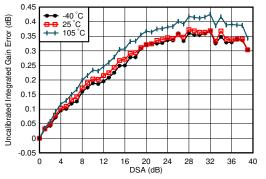
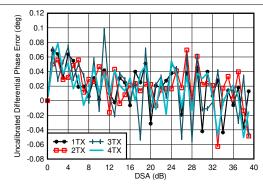

f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合 微分ゲイン誤差 = P_{OUT}(DSA 設定 - 1) - P_{OUT}(DSA 設定) + 1

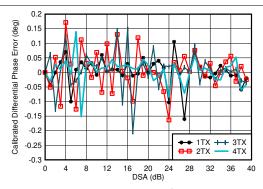
図 5-516. TX 較正済み微分ゲイン誤差と DSA 設定との関係 (各種温 度、4.9GHz)


f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合 積分ゲイン誤差 = P_{OUT}(DSA 設定) - P_{OUT}(DSA 設定 = 0) + (DSA 設定)

度、4.9GHz)

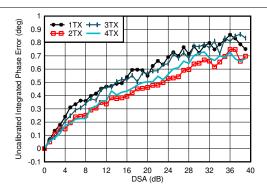
f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合 積分ゲイン誤差 = P_{OUT}(DSA 設定) - P_{OUT}(DSA 設定 = 0) + (DSA 設定)

図 5-517. TX 未較正積分ゲイン誤差と DSA 設定との関係 (各種温 度、4.9GHz)



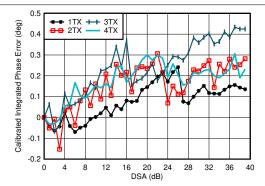
f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合 微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設

図 5-518. TX 較正済み積分ゲイン誤差と DSA 設定との関係 (各種温 | 図 5-519. TX 未較正微分位相誤差と DSA 設定との関係 (各種チャネ ル、4.9GHz)



T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

 f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合 微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設定)


位相 DNL スパイクは、すべての DSA 設定で発生する可能性があります。

 f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合 積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

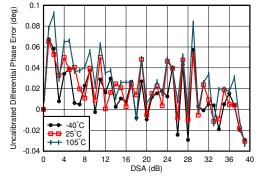
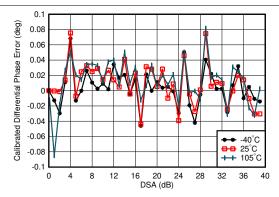
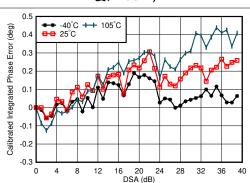

図 5-521. TX 未較正積分位相誤差と DSA 設定との関係 (チャネル 1、4.9GHz)

図 5-520. TX 較正済み微分位相誤差と DSA 設定との関係 (各種チャネル、4.9GHz)

 f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合 積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)


図 5-522. TX 較正済み積分位相誤差と DSA 設定との関係 (各種チャネル、4.9GHz)

f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合 微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設 定)


図 5-523. TX 未較正微分位相誤差と DSA 設定との関係 (各種温度、 4.9GHz)

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

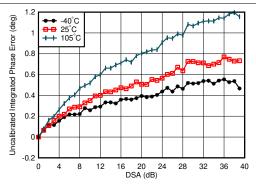

 f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合 微分位相誤差 = Phase_{OUT}(DSA 設定 - 1) - Phase_{OUT}(DSA 設定)

図 5-524. TX 較正済み微分位相誤差と DSA 設定との関係 (各種温度、4.9GHz)

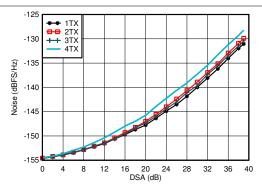
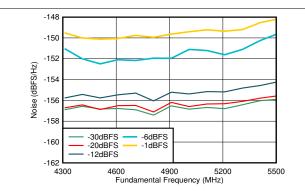

f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合 積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

図 5-526. TX 較正済み積分位相誤差と DSA 設定との関係 (各種温度、4.9GHz)

 f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合 積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

図 5-525. TX 未較正積分位相誤差と DSA 設定との関係 (各種温度、 4.9GHz)

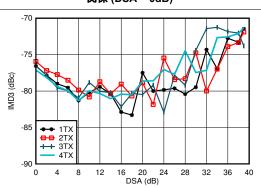
 f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合、 P_{OUT} = -13dBFS


図 5-527. TX 出力ノイズと減衰量との関係 (各種チャネル、4.9GHz)

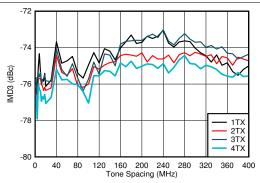
137


Product Folder Links: AFE7901

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリ ーブ モード、 A_{OUT} =-1dBFS、1 $^{\circ}$ ナイキストゾーン出力、内部 PLL、 f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネー ブル、DSA 較正済み。



 f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合、 $A_{out} = -13dBFS_{\circ}$


 f_{DAC} = 11796.48 MSPS、インターリーブ モード、4.9GHz で整 合、A_{OUT} = -13dBFS。

関係 (DSA = 0dB)

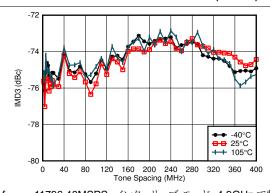
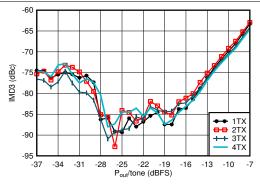

f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合、 f_{CENTER} = 4.9GHz、各トーン -13dBFS

図 5-528. 4.9GHz での TX NSD と出力周波数と、デジタル振幅との │ 図 5-529. 4.9GHz での TX NSD と出力周波数と、デジタル振幅との 関係 (DSA = 6dB)

f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合、 f_{CENTER} = 4.9GHz、各トーン -13dBFS


図 5-530. TX IMD3 と DSA 設定との関係 (4.9GHz)

 f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合、 f_{CENTER} = 4.9GHz、各トーン -13dBFS、ワースト チャネル

図 5-532. TX IMD3 とトーン間隔との関係 (各種温度、4.9GHz)

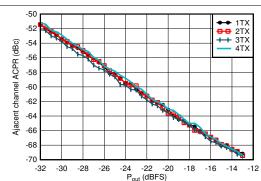
図 5-531. TX IMD3 とトーン間隔との関係 (各種チャネル、4.9GHz)

f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz で整合、 $f_{CENTER} = 4.9GHz$, $f_{SPACING} = 20MHz$

図 5-533. TX IMD3 とデジタル レベルとの関係 (4.9GHz)

Product Folder Links: AFE7901

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。



TM1.1, $P_{OUT_RMS} = -13dBFS$

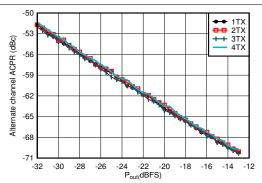

TM1.1, $P_{OUT RMS} = -13dBFS$

図 5-534. TX 20MHz LTE 出力スペクトル (4.9GHz)

4.9GHz で整合、シングル キャリア 20MHz BW TM1.1 LTE

図 5-535. 4.9GHz での TX 100MHz NR 出力スペクトル

4.9GHz で整合、シングル キャリア 20MHz BW TM1.1 LTE

図 5-536. TX 20MHz LTE ACPR とデジタル レベルとの関係 (4.9GHz)

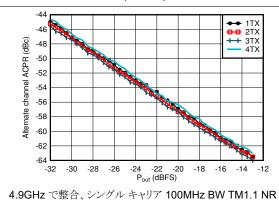
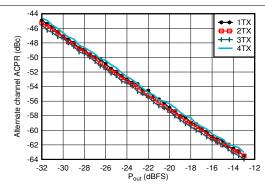
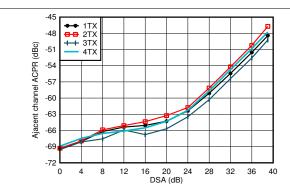



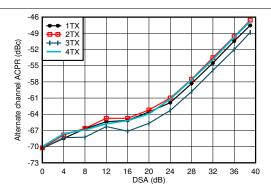
図 5-538. 4.9GHz での TX 100MHz NR ACPR とデジタル レベルと の関係

図 5-537. TX 20MHz LTE alt-ACPR とデジタル レベルとの関係 (4.9GHz)

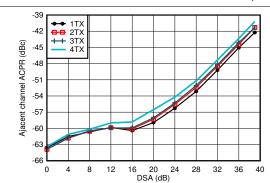
4.9GHz で整合、シングル キャリア 100MHz BW TM1.1 NR


図 5-539. 4.9GHz での TX 100MHz NR alt-ACPR とデジタル レベルとの関係

Copyright © 2025 Texas Instruments Incorporated


資料に関するフィードバック(ご意見やお問い合わせ)を送信

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。



4.9GHz で整合、シングル キャリア 20MHz BW TM1.1 LTE

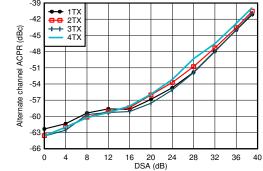

4.9GHz で整合、シングル キャリア 20MHz BW TM1.1 LTE

図 5-540. TX 20MHz LTE ACPR と DSA 設定との関係 (4.9GHz)

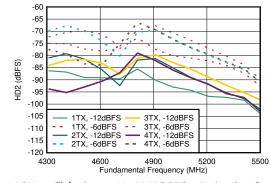
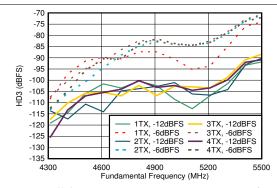

4.9GHz で整合、シングル キャリア 100MHz BW TM1.1 NR

図 5-541. TX 20MHz LTE alt-ACPR と DSA 設定との関係 (4.9GHz)

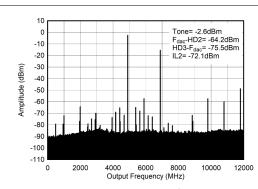
4.9GHz で整合、シングル キャリア 100MHz BW TM1.1 NR


図 5-542. TX 100MHz NR ACPR と DSA 設定との関係 (4.9GHz)

4.9GHz で整合、 f_{DAC} = **11.79648GSPS**、インターリーブ モード、高調波周波数での出力電力で正規化

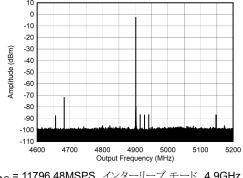
図 5-544. TX HD2 と出力周波数との関係 (各種デジタル振幅、 4.9GHz)

図 5-543. TX 100MHz NR alt-ACPR と DSA 設定との関係 (4.9GHz)



4.9GHz で整合、 f_{DAC} = **11.79648GSPS**、インターリーブ モード、高調波周波数での出力電力で正規化

図 5-545. TX HD3 と出力周波数との関係 (各種デジタル振幅、 4.9GHz)


資料に関するフィードバック(ご意見やお問い合わせ) を送信

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、f_{DAC} = 11796.48MSPS、インターリーブ モード、A_{OUT} =-1dBFS、1 ^次ナイキストゾーン出力、内部 PLL、f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

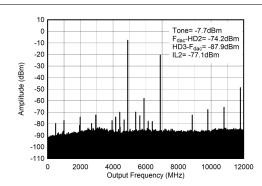

 f_{DAC} = 11796.48 MSPS、インターリーブ モード、4.9GHz 整合あり、PCB とケーブルの損失を含む。 $ILn = f_S/n \pm f_{OUT}$ 。

図 5-546. TX シングル トーン (-1dBFS) 出力スペクトル (0~f_{DAC}、 4.9GHz)

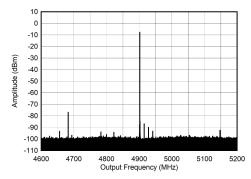
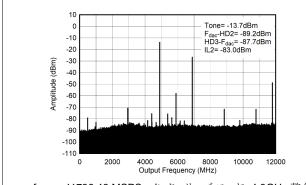

 f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz 整合あり、PCB とケーブルの損失を含む。

図 5-547. 4.9GHz での TX シングル トーン (-1dBFS) 出力スペクト ル (±300MHz)

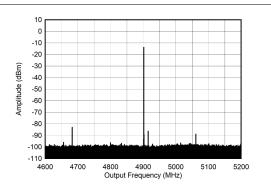
 f_{DAC} = 11796.48 MSPS、インターリーブ モード、4.9GHz 整合あり、PCB とケーブルの損失を含む。 $ILn = f_S/n \pm f_{OUT}$ 。

図 5-548. TX シングル トーン (-6dBFS) 出力スペクトル (0~f_{DAC}、 4.9GHz)



f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz 整合あり、PCB とケーブルの損失を含む。

図 5-549. 4.9GHz での TX シングル トーン (-6dBFS) 出力スペクト ル (±300MHz)



 T_A = +25°Cでの代表値、公称電源。特に記述のない限り、TX 入力データレート = 491.52MSPS、 f_{DAC} = 11796.48MSPS、インターリーブ モード、 A_{OUT} =-1dBFS、1 $^{\times}$ ナイキストゾーン出力、内部 PLL、 f_{REF} = 491.52MSPS、24x 補間、DSA = 0dB、Sin (x)/x イネーブル、DSA 較正済み。

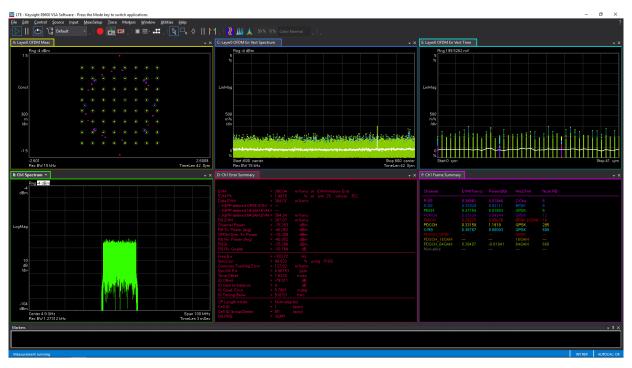

 f_{DAC} = 11796.48 MSPS、インターリーブ モード、4.9GHz 整合あり、PCB とケーブルの損失を含む。 $ILn = f_S/n \pm f_{OUT}$ 。

図 5-550. TX シングル トーン (-12dBFS) 出力スペクトル (0~f_{DAC}、 4.9GHz)

 f_{DAC} = 11796.48MSPS、インターリーブ モード、4.9GHz 整合あり、PCB とケーブルの損失を含む。

図 5-551. 4.9GHz での TX シングル トーン (-12dBFS) 出力スペク トル (±300MHz)

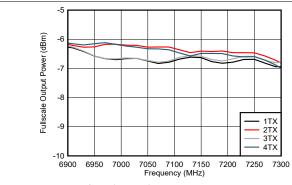

TM1.1, $P_{OUT RMS} = -13dBFS$

図 5-552. 4.9GHz での TX 20-MHz LTE エラー ベクトル振幅

資料に関するフィードバック(ご意見やお問い合わせ)を送信

5.12.14 TX 代表的特性: 7.1GHz

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 500MSPS、f_{DAC} = 9000MSPS、非インターリーブ モード、A_{OUT} =-1dBFS、2^次ナイキストゾーン出力、外部クロックモード、18x 補間、DSA = 0dB、Sin(x)/x イネーブル、DSA 較正済 み、7.1GHz 整合あり。

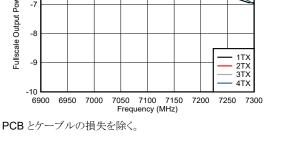
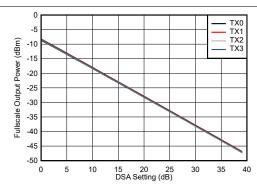



図 5-553. TX フルスケールと RF 周波数とチャネルとの関係

PCB とケーブルの損失を除く。

図 5-555. 7.1GHz での TX フルスケールと DSA 設定とチャネルと

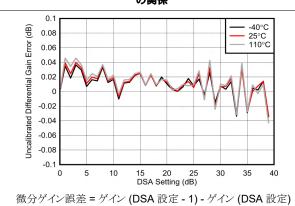
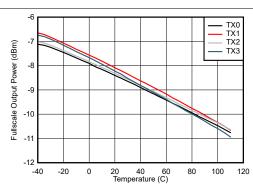
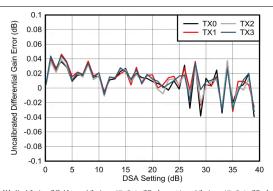




図 5-557. 7.1GHz での未較正微分ゲイン誤差と温度との関係

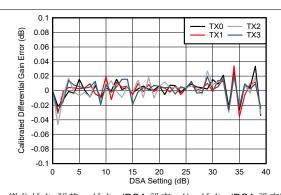

PCB とケーブルの損失を除く。

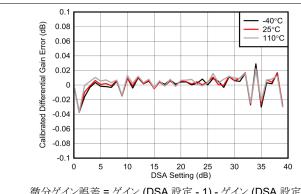
図 5-554. 7.1GHz での TX フルスケールと温度とチャネルとの関係

微分ゲイン誤差 = ゲイン (DSA 設定 - 1) - ゲイン (DSA 設定)

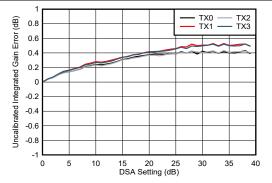
図 5-556. 7.1GHz での未較正ゲイン誤差とチャネルとの関係

微分ゲイン誤差 = ゲイン (DSA 設定 - 1) - ゲイン (DSA 設定)

図 5-558. 7.1GHz での較正済み微分ゲイン誤差とチャネルとの関係

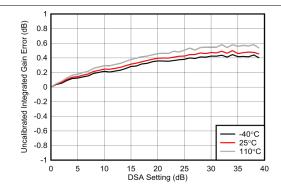

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信



5.12.14 TX 代表的特性: 7.1GHz (続き)

T_A = +25℃での代表値、公称電源。特に記述のない限り、TX 入力データレート = 500MSPS、f_{DAC} = 9000MSPS、非インターリーブ モード、A_{OUT} =-1dBFS、2^次ナイキストゾーン出力、外部クロックモード、18x 補間、DSA = 0dB、Sin(x)/x イネーブル、DSA 較正済 み、7.1GHz 整合あり。



微分ゲイン誤差 = ゲイン (DSA 設定 - 1) - ゲイン (DSA 設定)

積分ゲイン誤差 = ゲイン (DSA 設定) - ゲイン (DSA 設定 = 0)

図 5-559. 7.1GHz での較正済み微分ゲイン誤差と温度との関係

積分ゲイン誤差 = ゲイン (DSA 設定) - ゲイン (DSA 設定 = 0)

図 5-560. 7.1GHz での未較正積分ゲイン誤差とチャネルとの関係

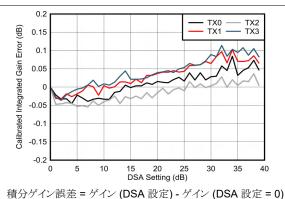


図 5-561. 7.1GHz での未較正積分ゲイン誤差と温度との関係

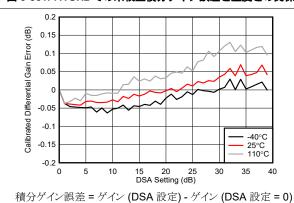
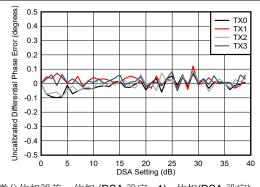
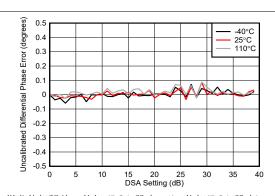
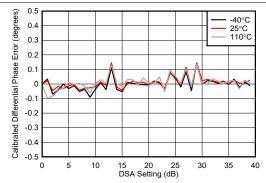



図 5-563. 7.1GHz での較正済み積分ゲイン誤差と温度との関係



微分位相誤差 = 位相 (DSA 設定 - 1) - 位相(DSA 設定)

図 5-564. 7.1GHz での未較正微分位相誤差とチャネルとの関係


資料に関するフィードバック (ご意見やお問い合わせ) を送信

 T_A = +25°Cでの代表値、公称電源。特に記述のない限り、TX 入力データレート = 500MSPS、 f_{DAC} = 9000MSPS、非インターリーブモード、 A_{OUT} =-1dBFS、 2^{∞} ナイキストゾーン出力、外部クロックモード、18x 補間、DSA = 0dB、Sin(x)/x イネーブル、DSA 較正済み、7.1GHz 整合あり。

微分位相誤差 = 位相 (DSA 設定 - 1) - 位相(DSA 設定)

図 5-565. 7.1GHz での未較正微分位相誤差と温度との関係

微分位相誤差 = 位相 (DSA 設定 - 1) - 位相(DSA 設定)

図 5-567. 7.1GHz での較正済み微分位相誤差と温度との関係

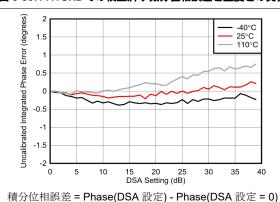
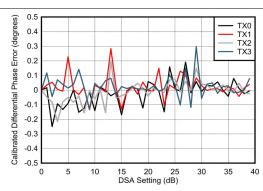
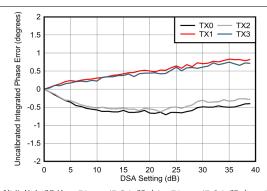




図 5-569. 7.1GHz での未較正積分位相誤差と温度との関係

微分位相誤差 = 位相 (DSA 設定 - 1) - 位相(DSA 設定)

図 5-566. 7.1GHz での較正済み微分位相誤差とチャネルとの関係

積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

図 5-568. 7.1GHz での未較正積分位相誤差とチャネルとの関係

積分位相誤差 = Phase(DSA 設定) - Phase(DSA 設定 = 0)

図 5-570. 7.1GHz での較正済み積分位相誤差とチャネルとの関係

145

Product Folder Links: AFE7901

 T_A = +25°Cでの代表値、公称電源。特に記述のない限り、TX 入力データレート = 500MSPS、 f_{DAC} = 9000MSPS、非インターリーブモード、 A_{OUT} =-1dBFS、 2^{∞} ナイキストゾーン出力、外部クロックモード、18x 補間、DSA = 0dB、Sin(x)/x イネーブル、DSA 較正済み、7.1GHz 整合あり。

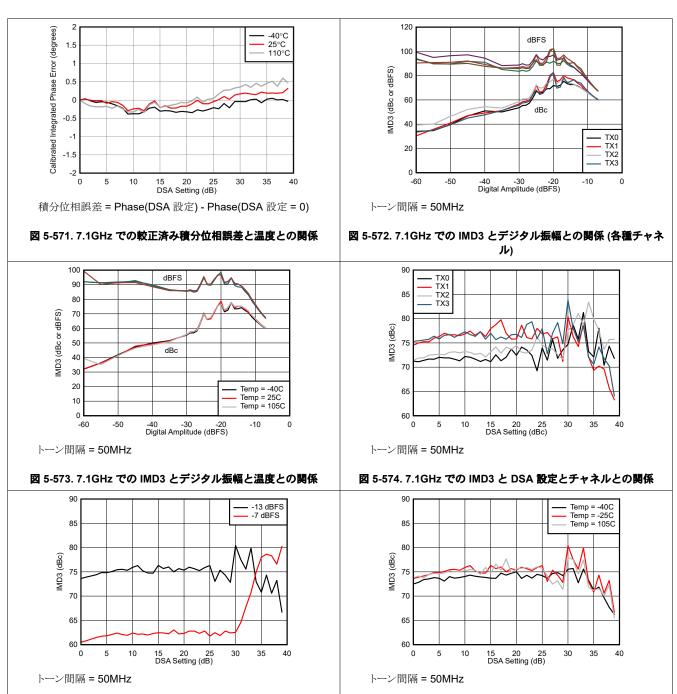
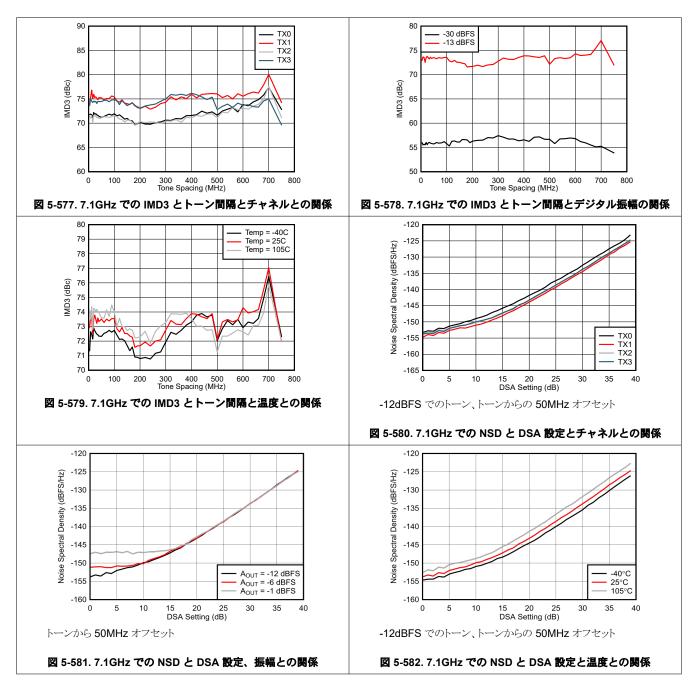
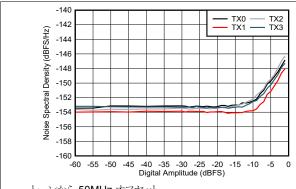



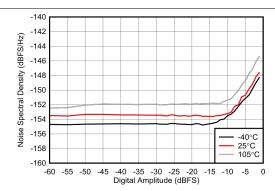
図 5-575. 7.1GHz での IMD3 と DSA 設定とデジタル振幅との関係

図 5-576. 7.1GHz での IMD3 と DSA 設定と温度との関係

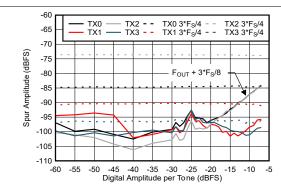
 T_A = +25°Cでの代表値、公称電源。特に記述のない限り、TX 入力データレート = 500MSPS、 f_{DAC} = 9000MSPS、非インターリーブモード、 A_{OUT} =-1dBFS、 $2^{\frac{(x)}{2}}$ ナイキストゾーン出力、外部クロックモード、18x 補間、DSA = 0dB、Sin(x)/x イネーブル、DSA 較正済み、7.1GHz 整合あり。


Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信


147

 T_A = +25°Cでの代表値、公称電源。特に記述のない限り、TX 入力データレート = 500MSPS、 f_{DAC} = 9000MSPS、非インターリーブ モード、 A_{OUT} =-1dBFS、 2^{χ} ナイキストゾーン出力、外部クロックモード、18x 補間、DSA = 0dB、Sin(x)/x イネーブル、DSA 較正済 み、7.1GHz 整合あり。



トーンから 50MHz オフセット。

トーンから 50MHz オフセット。

図 5-583. 7.1GHz での NSD とデジタル振幅とチャネルとの関係

帯域内 = 7100MHz ± 600 MHz (IMD3 成分を除く)、 $3 \times F_8/4$ スプリアスは含まれておらず、個別に表示されています

図 5-584. 7.1GHz での NSD とデジタル振幅と温度との関係

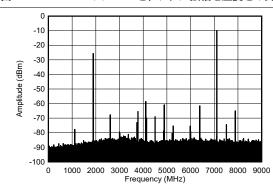


図 5-586. 7.1GHz、-1dBFS でのシングル トーン出力スペクトラム (0 - F_{DAC})

図 5-585. 7.1GHz での 2 トーン SFDR とデジタル振幅との関係

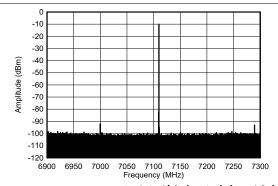


図 5-587. 7.1GHz、-1dBFS でのシングル トーン出力スペクトラム (帯域内)

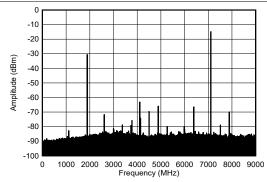
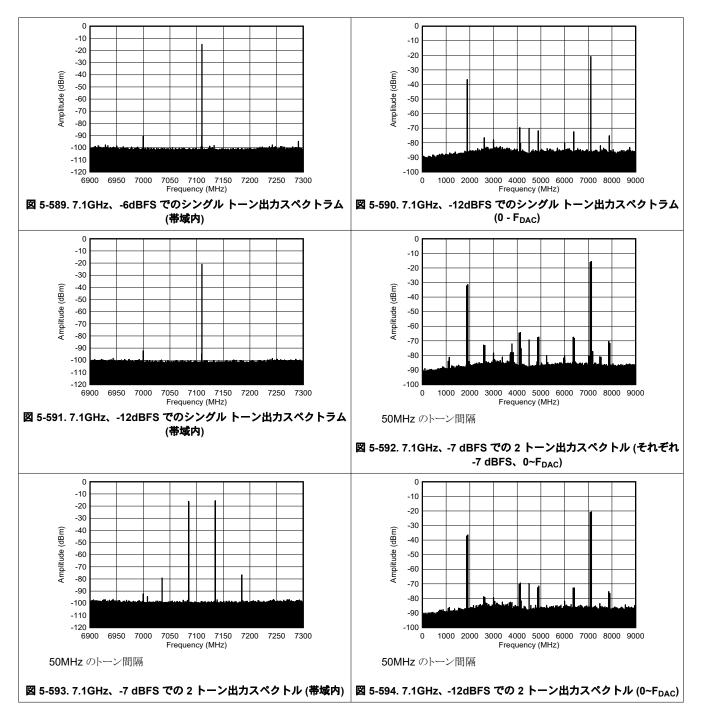



図 5-588. 7.1GHz、-6dBFS でのシングル トーン出力スペクトラム (0 - F_{DAC})

 T_A = +25°Cでの代表値、公称電源。特に記述のない限り、TX 入力データレート = 500MSPS、 f_{DAC} = 9000MSPS、非インターリーブモード、 A_{OUT} =-1dBFS、 2^{∞} ナイキストゾーン出力、外部クロックモード、18x 補間、DSA = 0dB、Sin(x)/x イネーブル、DSA 較正済み、7.1GHz 整合あり。

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

149

 T_A = +25°Cでの代表値、公称電源。特に記述のない限り、TX 入力データレート = 500MSPS、 f_{DAC} = 9000MSPS、非インターリーブモード、 A_{OUT} =-1dBFS、 $2^{\frac{(n+1)^2}{2}}$ ない、外部クロックモード、18x 補間、DSA = 0dB、Sin(x)/x イネーブル、DSA 較正済み、7.1GHz 整合あり。

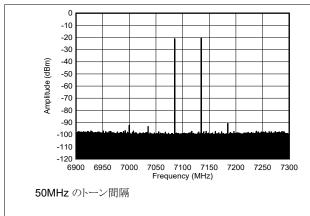


図 5-595. 7.1GHz での 2 トーン出力スペクトル (各-12dBFS、帯域内)

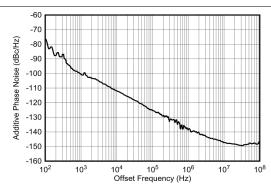
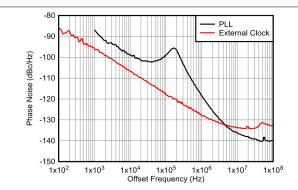



図 5-596. 7.1GHz での外部クロック追加位相ノイズ

5.12.15 PLL およびクロックの代表的特性

TX 出力で測定、20 x log10 で 12GHz に正規化 (12GHz/F_{OUT})

図 5-597. 位相ノイズとオフセット周波数との関係 (PLL、外部クロック、12GHz)

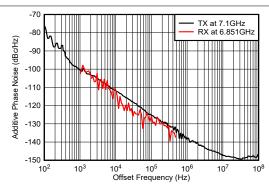
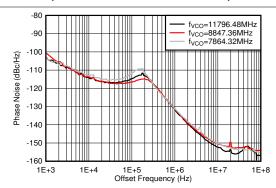
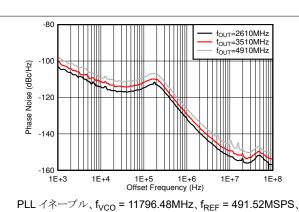



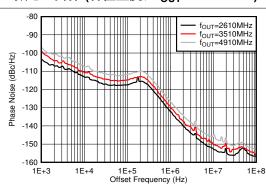
図 5-598. 7GHz での TX と RX 付加位相ノイズとの関 係



PLL イネーブル、f_{REF} = 491.52MSPS、2TXOUT で測定

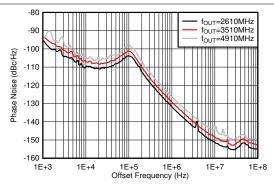
-90 -40°C 110°C -100 -110 -120 -130 -140 -150 1E+5 1E+6 Offset Frequency (Hz) 1E+3 1E+8

PLL イネーブル、f_{VCO} = 11796.48MHz、f_{REF} = 491.52MSPS、 2TXOUT で測定


図 5-599. 位相ノイズとオフセット周波数との関係 (各 種 f_{VCO} 、 $f_{OUT} = 2610MHz$)

2TXOUT で測定

数との関係 (各種 f_{OUT}、25℃)


図 5-600. 12GHz VCO の位相ノイズとオフセット周波 数との関係 (各種温度、f_{OUT} = 1910MHz)

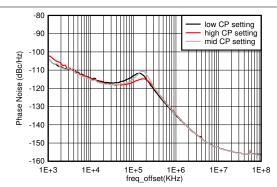
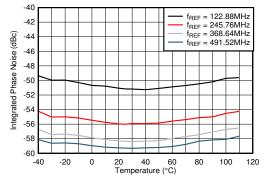

PLL イネーブル、 f_{VCO} = 11796.48MHz、 f_{REF} = 491.52MSPS、 2TXOUT で測定

図 5-601. 12GHz VCO の位相ノイズとオフセット周波 | 図 5-602. 12GHz VCO の位相ノイズとオフセット周波 数との関係 (各種 f_{OUT}、-40℃)



PLL イネーブル、 $f_{VCO} = 11796.48 MHz$ 、 $f_{REF} = 491.52 MSPS$ 、 2TXOUT で測定

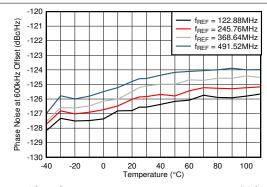

PLL イネーブル、 $f_{VCO} = 11796.48 MHz$ 、 $f_{REF} = 491.52 MSPS$ 、 2TXOUT で測定

図 5-603. 12GHz VCO の位相ノイズとオフセット周波 | 図 5-604. 12GHz VCO の位相ノイズとオフセット周波 数との関係 (各種 f_{OUT}、110℃)

PLL イネーブル、 f_{VCO} = 11796.48MHz、 $1kHz\sim100MHz$ 、片側 積分帯域幅、2TXOUT で測定

数との関係 (各種 CP 設定、f_{OUT} = 2.6GHz)

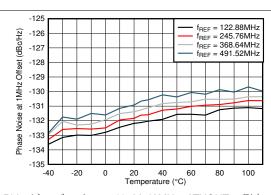
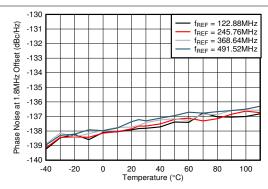

PLL イネーブル、f_{VCO} = 11796.48MHz、2TXOUT で測定

図 5-605. 12GHz VCO の積分位相ノイズと温度との関 係 (各種 f_{REF}、f_{OUT} = 2.6GHz)

図 5-607. 12GHz VCO の位相ノイズと温度との関係


図 5-606. 12GHz VCO の位相ノイズと温度との関係 (各種 f_{REF}、f_{OUT} = 2.6GHz、600kHz オフセット)

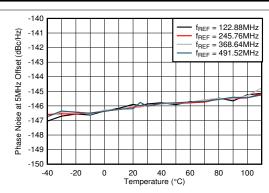
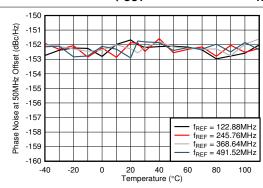

PLL イネーブル、f_{VCO} = 11796.48MHz、2TXOUT で測定

図 5-608. 1MHz オフセット時の 12GHz VCO の位相 ノイズと温度の関係 (f_{OUT} = 2.6GHz のとき f_{REF})

(各種 f_{REF}、f_{OUT} = 2.6GHz、800kHz オフセット)



PLL イネーブル、f_{VCO} = 11796.48MHz、2TXOUT で測定

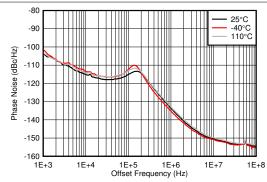

PLL イネーブル、f_{VCO} = 11796.48MHz、2TXOUT で測定

図 5-609. 1.8MHz オフセット時の 12GHz VCO の位相 ノイズと温度の関係 (f_{OUT} = 2.6GHz のとき f_{REF})

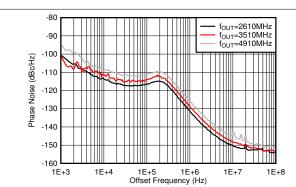

PLL イネーブル、f_{VCO} = 11796.48MHz、2TXOUT で測定

図 5-610. 5MHz オフセット時の 12GHz VCO の位相 ノイズと温度の関係 (f_{OUT} = 2.6GHz のとき f_{REF})

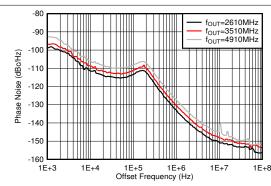

PLL イネーブル、 f_{VCO} = 9830.4MHz、 f_{REF} = 491.52MSPS、 2TXOUT で測定

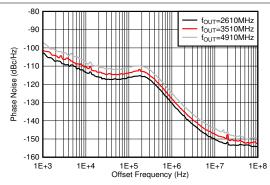
図 5-611. 50MHz オフセット時の 12GHz VCO の位相 ノイズと温度の関係 (f_{OUT} = 2.6GHz のとき f_{REF})

PLL イネーブル、 f_{VCO} = 9830.4MHz、 f_{REF} = 491.52MSPS、 2TXOUT で測定

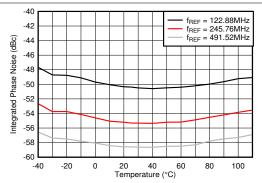
図 5-612. 10GHz VCO の位相ノイズとオフセット周波 数との関係 (各種温度、f_{OUT} = 1910MHz)

PLL イネーブル、 f_{VCO} = 9830.4MHz、 f_{REF} = 491.52MSPS、 2TXOUT で測定

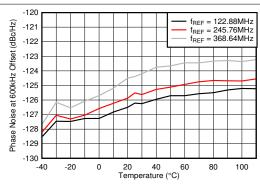
数との関係 (各種 f_{OUT}、25℃)


図 5-613. 10GHz VCO の位相ノイズとオフセット周波 | 図 5-614. 10GHz VCO の位相ノイズとオフセット周波 数との関係 (各種 f_{OUT}、-40℃)

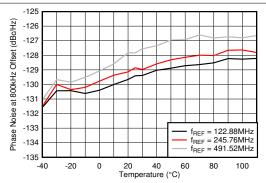
Copyright © 2025 Texas Instruments Incorporated


資料に関するフィードバック(ご意見やお問い合わせ) を送信

153



PLL イネーブル、 f_{VCO} = 9830.4MHz、 f_{REF} = 491.52MSPS、 2TXOUT で測定


PLL イネーブル、 f_{VCO} = 9830.4MHz、 $1kHz \sim 100MHz$ 、片側積 分帯域幅、2TXOUT で測定

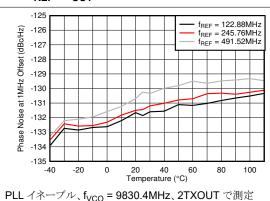
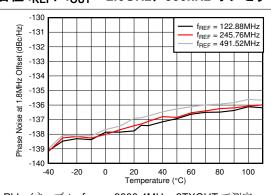
数との関係 (各種 f_{OUT}、110℃)

PLL イネーブル、f_{VCO} = 9830.4MHz、2TXOUT で測定

図 5-615. 10GHz VCO の位相ノイズとオフセット周波 | 図 5-616. 10GHz VCO の積分位相ノイズと温度との関 係 (各種 f_{REF}、f_{OUT} = 2.6GHz)

PLL イネーブル、f_{VCO} = 9830.4MHz、2TXOUT で測定

図 5-617. 10GHz VCO の位相ノイズと温度との関係 (各種 f_{REF}、f_{OUT} = 2.6GHz、600kHz オフセット)

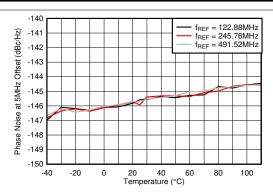
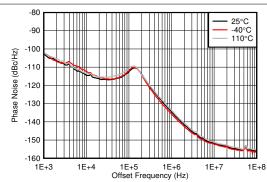

図 5-619. 10GHz VCO の位相ノイズと温度との関係 (各種 f_{REF}、f_{OUT} = 2.6GHz、1MHz オフセット)

図 5-618. 10GHz VCO の位相ノイズと温度との関係 (各種 f_{REF}、f_{OUT} = 2.6GHz、800kHz オフセット)

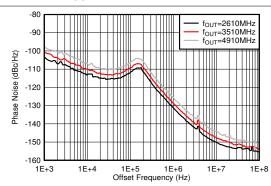
PLL イネーブル、f_{VCO} = 9830.4MHz、2TXOUT で測定

図 5-620. 10GHz VCO の位相ノイズと温度との関係 (各種 f_{REF}、f_{OUT} = 2.6GHz、1.8MHz オフセット)


PLL イネーブル、f_{VCO} = 9830.4MHz、2TXOUT で測定

-150 (dBc/Hz) -151 -152 -153 Noise at 50MHz Offset -154 -155 -156 -157 -158 f_{REF} = 122.88MHz $f_{REF} = 122.88MHz$ $f_{REF} = 245.76MHz$ $f_{REF} = 491.52MHz$ -159 -40 Temperature (°C)

PLL イネーブル、f_{VCO} = 9830.4MHz、2TXOUT で測定


図 5-621. 10GHz VCO の位相ノイズと温度との関係

(各種 f_{REF}、f_{OUT} = 2.6GHz、5MHz オフセット)

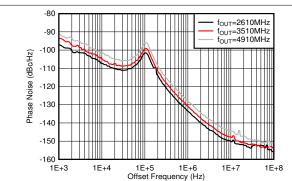

PLL イネーブル、 f_{VCO} = 8847.36MHz、 f_{REF} = 491.52MSPS、 2TXOUT で測定

図 5-622. 10GHz VCO の位相ノイズと温度との関係 (各種 f_{REF}、f_{OUT} = 2.6GHz、50MHz オフセット)

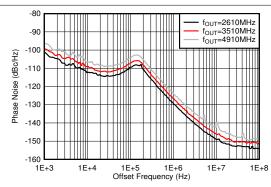

PLL イネーブル、 f_{VCO} = 8847.36MHz、 f_{REF} = 491.52MSPS、 2TXOUT で測定

図 5-623. 9GHz VCO の位相ノイズとオフセット周波 数との関係 (各種温度、f_{OUT} = 1910MHz)

PLL イネーブル、 f_{VCO} = 8847.36MHz、 f_{REF} = 491.52MSPS、 2TXOUT で測定

図 5-624. 9GHz VCO の位相ノイズとオフセット周波 数との関係 (各種 f_{OUT}、25℃)

PLL イネーブル、 f_{VCO} = 8847.36MHz、 f_{REF} = 491.52MSPS、 2TXOUT で測定

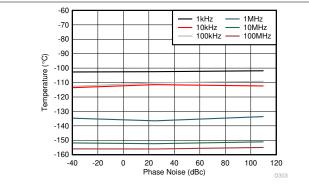
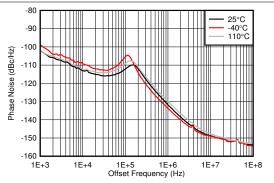

図 5-625. 9GHz VCO の位相ノイズとオフセット周波 数との関係 (各種 f_{OUT}、-40℃)

図 5-626. 9GHz VCO の位相ノイズとオフセット周波 数との関係 (各種 f_{OUT}、110℃)

155


Product Folder Links: AFE7901

PLL イネーブル、 f_{VCO} = 8847.36MHz、 f_{REF} = 491.52MSPS、最小 LPF BW、2TXOUT で測定

図 5-627. 9GHz VCO の位相ノイズと温度との関係 (各種オフセット周波数、f_{OUT} = 2.6GHz)

PLL イネーブル、 f_{VCO} = 7864.32MHz、 f_{REF} = 491.52MSPS、2TXOUT で測定

図 5-628. 8GHz VCO の位相ノイズとオフセット周波 数との関係 (各種温度、f_{OUT} = 1910MHz)

6 デバイスおよびドキュメントのサポート

6.1 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。

6.2 サポート・リソース

テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。

6.3 商標

テキサス・インスツルメンツ E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。

6.4 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

6.5 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

7 改訂履歴

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Changes from APRIL 20, 2023 to JUNE 13, 2023 (from Revision * (April 2023) to Revision A (June 2023)) Page ・ 「製品情報」表に注 2 を追加 1 ・ TX クロックディザ イネーブルからすべての TX 代表的特性の説明を削除 79 ・ 1 次ナイキストゾーン出力を 2 次ナイキストゾーン出力に変更 143

8 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、指定のデバイスに使用できる最新のデータです。このデータは、予告なく、このドキュメントを改訂せずに変更される場合があります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

157

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated www.ti.com 7-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
AFE7901IABJ	Active	Production	FCBGA (ABJ) 400	90 JEDEC TRAY (5+1)	Yes	SNAGCU	Level-3-260C-168 HR	-40 to 85	AFE7901I
AFE7901IABJ.B	Active	Production	FCBGA (ABJ) 400	1 JEDEC TRAY (5+1)	-	Call TI	Call TI	-40 to 85	
AFE7901IALK	Active	Production	FCBGA (ALK) 400	90 JEDEC TRAY (5+1)	No	SNPB	Level-3-220C-168 HR	-40 to 85	AFE7901 SNPB
AFE7901IALK.B	Active	Production	FCBGA (ALK) 400	90 JEDEC TRAY (5+1)	-	Call TI	Call TI	-40 to 85	

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

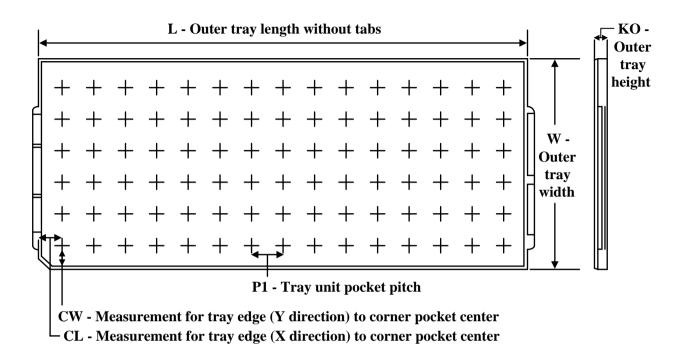
⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

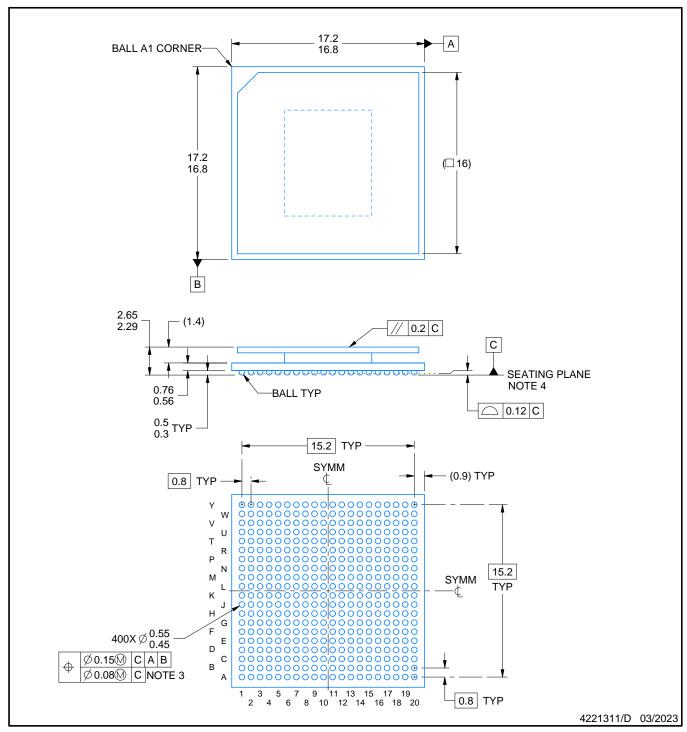
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


PACKAGE OPTION ADDENDUM

www.ti.com 7-Nov-2025

www.ti.com 18-Jul-2025

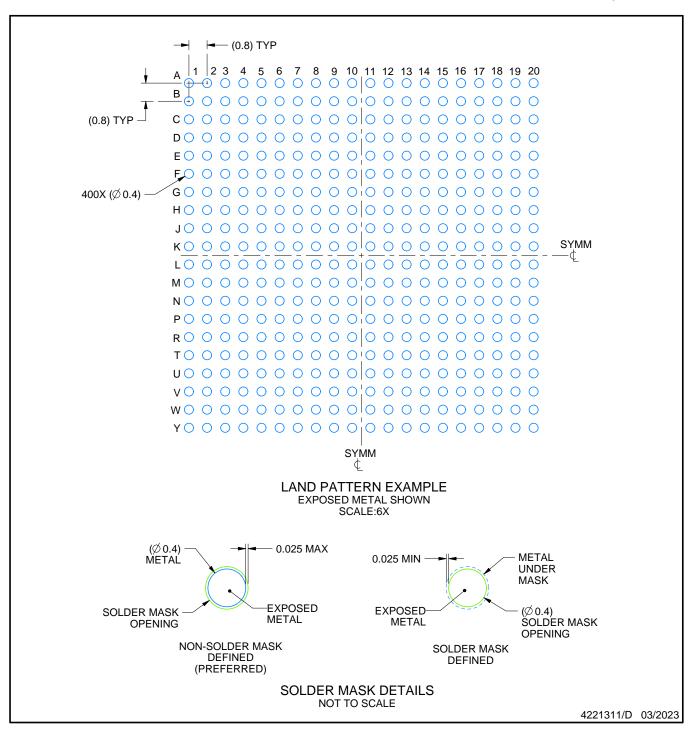
TRAY



Chamfer on Tray corner indicates Pin 1 orientation of packed units.

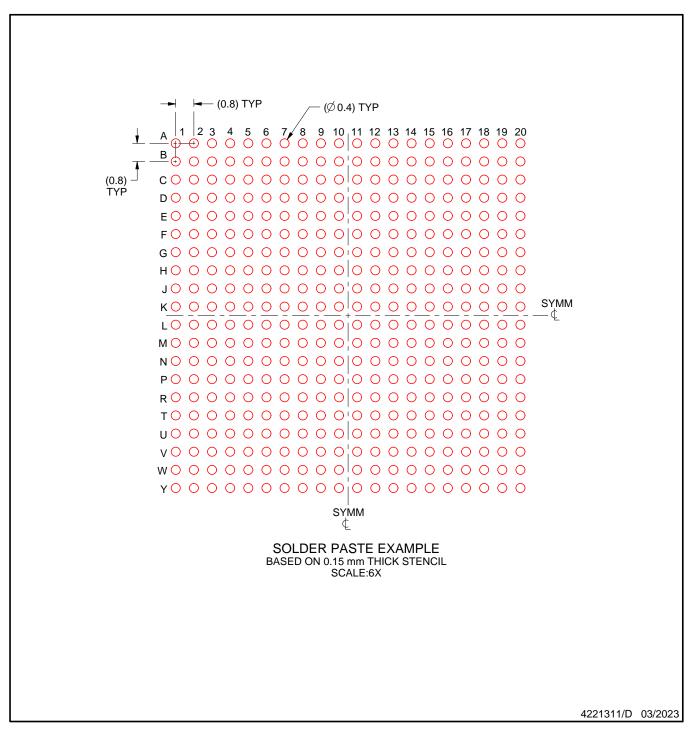
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	Κ0 (μm)	P1 (mm)	CL (mm)	CW (mm)
AFE7901IABJ	ABJ	FCBGA	400	90	6 x 15	150	315	135.9	7620	19.5	21	19.2
AFE7901IABJ	ABJ	FCBGA	400	90	6 x 15	150	315	135.9	7620	19.5	21	19.2
AFE7901IALK	ALK	FCBGA	400	90	6 x 15	150	315	135.9	7620	19.5	21	19.2
AFE7901IALK	ALK	FCBGA	400	90	6 x 15	150	315	135.9	7620	19.5	21	19.2



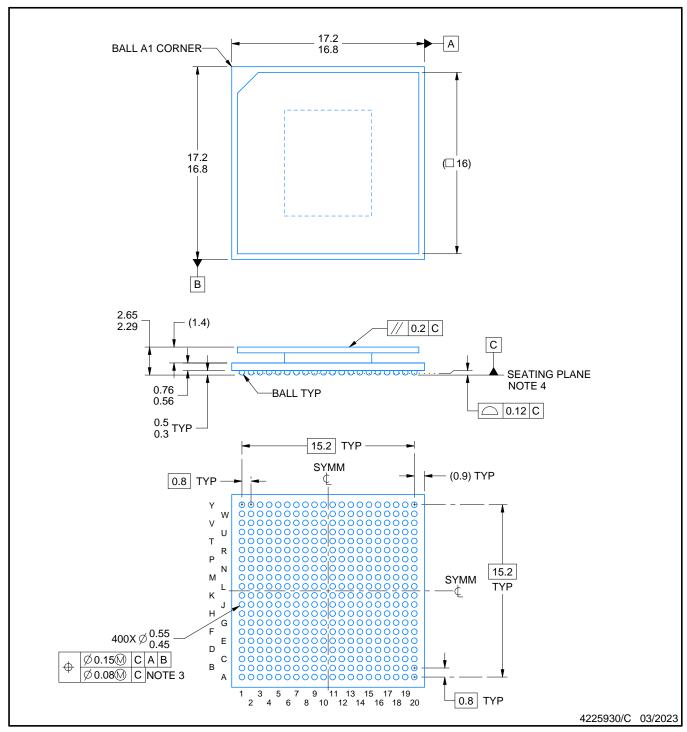
NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. Dimension is measured at the maximum solder ball diameter, parallel to primary datum C.
- 4. Primary datum C and seating plane are defined by the spherical crowns of the solder balls.
- 5. The lids are electrically floating (e.g. not tied to GND).



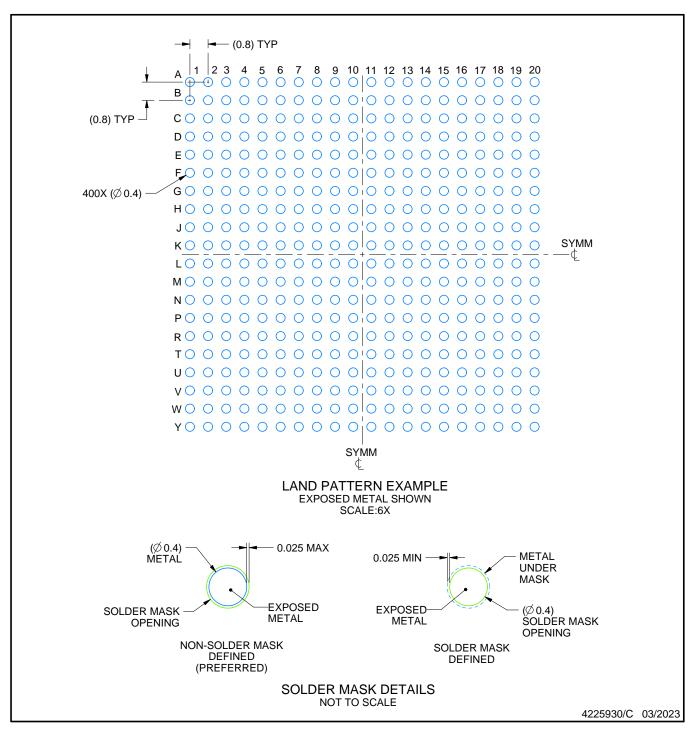
NOTES: (continued)

Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.For more information, see Texas Instruments literature number SPRU811 (www.ti.com/lit/spru811).



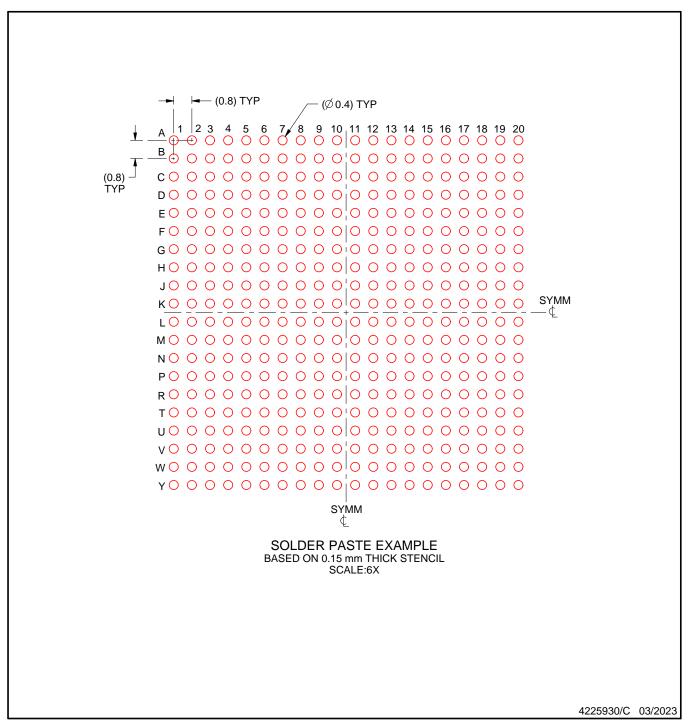
NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. Dimension is measured at the maximum solder ball diameter, parallel to primary datum C.
- 4. Primary datum C and seating plane are defined by the spherical crowns of the solder balls.
- 5. Pb-Free die bump and SnPb solder ball.
- 6. The lids are electrically floating (e.g. not tied to GND).



NOTES: (continued)

Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.For more information, see Texas Instruments literature number SPRU811 (www.ti.com/lit/spru811).

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日: 2025 年 10 月