SCAS123B - MARCH 1990 - REVISED APRIL 1996

 Members of the Texas Instruments Widebus™ Family 3-State True Outputs 		WD PACKAGE DL PACKAGE VIEW)
Full Parallel Access for Loading		748] 1CLK
 Flow-Through Architecture Optimizes PCB Layout 	1Q1 [2 1Q2 [3	47] 1D1 46] 1D2
 Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise 	GND [4 1Q3 [5	45 GND 44 1D3
 EPIC[™] (Enhanced-Performance Implanted CMOS) 1-µm Process 	1Q4[6 V _{CC} [7 1Q5[8	43] 1D4 42] V _{CC} 41] 1D5
 500-mA Typical Latch-Up Immunity at 125°C 	1Q5 [8 1Q6 [9 GND [10	40 1D5 40 39 GND
 Package Options Include Plastic 300-mil Shrink Small-Outline (DL) Packages Using 	1Q7 [11 1Q8 [12	38 1D7 37 1D8
25-mil Center-to-Center Pin Spacings and 380-mil Fine-Pitch Ceramic Flat (WD) Packages Using 25-mil Center-to-Center	2Q1 [13 2Q2 [14	36 2D1 35 2D2
Pin Spacings	GND [15 2Q3 [16	34 GND 33 2D3
description	2Q4 [17	32 2D4
The 'AC16374 are 16-bit edge-triggered D-type flip-flops with 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are	V _{CC} 18 2Q5 19 2Q6 20 GND 21 2Q7 22	31 V _{CC} 30 2D5 29 2D6 28 GND 27 2D7
particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.	2Q7 22 2Q8 23 2OE 24	26 2D7 26 2D8 25 2CLK

The 'AC16374 can be used as two 8-bit flip-flops or one 16-bit flip-flop. On the positive transition of the clock (CLK) input, the Q outputs of the flip-flop take on the logic levels set up at the data (D) inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly.

OE does not affect the internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The 74AC16374 is packaged in TI's shrink small-outline package, which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The 54AC16374 is characterized for operation over the full military temperature range of –55°C to 125°C. The 74AC16374 is characterized for operation from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

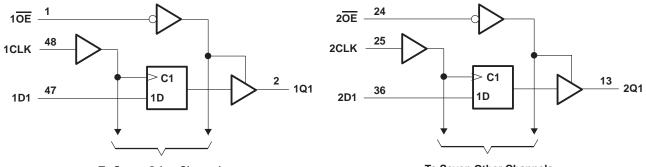
UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1996, Texas Instruments Incorporated

54AC16374, 74AC16374 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS SCAS123B – MARCH 1990 – REVISED APRIL 1996

	FUNCT	ION TAI	BLE
	INPUTS	OUTPUT	
OE	CLK	D	Q
L	\uparrow	Н	Н
L	\uparrow	L	L
L	Х	Х	Q ₀
L	\downarrow	Х	Q ₀ Q ₀
н	Х	Х	Z

logic symbol[†]


1 <mark>0E</mark>	1	1EN			
1CLK	48	-> C1			
	24				
20E	25	2EN			
2CLK		-> C2			
1D1	47	 1D	1 ▽	2	1Q1
1D2	46		1 v	3	1Q2
1D2	44			5	1Q2
1D3	43			6	1Q3
1D5	41			8	1Q5
1D5	40			9	1Q5
1D7	38			11	1Q7
1D7	37			12	1Q8
2D1	36	2D	2 ▽	13	2Q1
2D1 2D2	35	20	2 ∨	14	2Q1
2D2 2D3	33			16	2Q2 2Q3
2D3 2D4	32			17	2Q3
2D4 2D5	30			19	2Q4 2Q5
2D5 2D6	29			20	2Q5 2Q6
	27			22	
2D7 2D8	26			23	2Q7 2Q8
200					240

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCAS123B - MARCH 1990 - REVISED APRIL 1996

logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)0	.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Note 1)0	.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC})	±20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±50 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through V _{CC} or GND	±400 mA
Maximum power package dissipation at $T_A = 55^{\circ}C$ (in still air)(see Note 2): DL package	1.2 W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

SCAS123B - MARCH 1990 - REVISED APRIL 1996

recommended operating conditions (see Note 3)

			54	IAC1637	'4	74	AC1637	4	LINUT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage		3	5	5.5	3	5	5.5	V
		V _{CC} = 3 V	2.1			2.1			
VIH	High-level input voltage	V _{CC} = 4.5 V	3.15			3.15			V
		V _{CC} = 5.5 V	3.85			3.85			
		V _{CC} = 3 V			0.9			0.9	
VIL	Low-level input voltage	V _{CC} = 4.5 V		4	1.35			1.35	V
		V _{CC} = 5.5 V		EL.	1.65			1.65	
VI	Input voltage		0	22	VCC	0		VCC	V
VO	Output voltage		0	5	VCC	0		VCC	V
		V _{CC} = 3 V	2	3	-4			-4	
IOH	High-level output current	$V_{CC} = 4.5 V$	R		-24			-24	mA
		V _{CC} = 5.5 V			-24			-24	
		V _{CC} = 3 V			12			12	
IOL	Low-level output current	V _{CC} = 4.5 V			24			24	mA
		V _{CC} = 5.5 V			24			24	
$\Delta t/\Delta v$	Input transition rise or fall rate		0		10	0		10	ns/V
Тд	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER		N.	Т	4 = 25°C	;	54AC1	6374	74AC1	6374	UNIT
PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
		3 V	2.9			2.9		2.9		
	I _{OH} = -50 μA	4.5 V	4.4			4.4		4.4		
		5.5 V	5.4			5.4		5.4		
VOH	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48		2.48		V
		4.5 V	3.94			3.8		3.8		
	$I_{OL} = -24 \text{ mA}$	5.5 V	4.94			4.8		4.8		
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85	~	3.85		
		3 V			0.1		0.1		0.1	
	I _{OL} = 50 μA	4.5 V			0.1		0.1		0.1	
		5.5 V			0.1	Q	0.1		0.1	
VOL	I _{OL} = 12 mA	3 V			0.36	S	0.44		0.44	V
	I _{OL} = 24 mA	4.5 V			0.36	0	0.44		0.44	
		5.5 V			0.36	4	0.44		0.44	
	I _{OL} = 75 mA [†]	5.5 V					1.65		1.65	
Ц	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1		±1	μΑ
loz	$V_{O} = V_{CC}$ or GND	5.5 V			±0.5		±5		±5	μΑ
Icc	$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	5.5 V			8		80		80	μΑ
Ci	$V_I = V_{CC}$ or GND	5 V		3						pF
Co	$V_{O} = V_{CC}$ or GND	5 V		11						pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCAS123B - MARCH 1990 - REVISED APRIL 1996

timing requirements over recommended operating free-air temperature range V_{CC} = 3.3 V ± 0.3 V (unless otherwise noted) (see Figure 1)

			T _A = 2	25°C	54AC1	6374	74AC1	6374	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
fclock	Clock frequency	_	0	60	0	60	0	60	MHz
tw	Pulse duration	CLK high or low	8.3		8.3	12.0	8.3		ns
t _{su}	Setup time, data before CLK [↑]		7.5		7.5	, Nr	7.5		ns
th	Hold time, data after CLK^\uparrow		0		0		0		ns

timing requirements over recommended operating free-air temperature range $V_{CC} = 5 V \pm 0.5 V$ (unless otherwise noted) (see Figure 1)

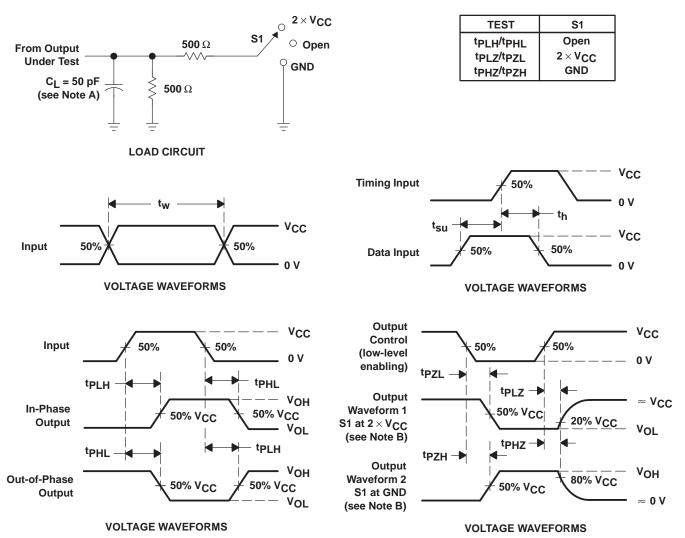
			T _A = 2	25°C	54AC1	6374	74AC1	6374	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
fclock	Clock frequency		0	100	0	100	0	100	MHz
tw	Pulse duration	CLK high or low	5		5	h.C	5		ns
t _{su}	Setup time, data before CLK↑		5		5	11v	5		ns
th	Hold time, data after CLK^\uparrow		0		0		0		ns

switching characteristics over recommended operating free-air temperature range V_{CC} = 3.3 V ± 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	T _A = 25°C		54AC16374		74AC16374		UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
f _{max}			60			60	1	60		MHz
^t PLH	CLK	Q	4.9	12.2	15	4.9	17	4.9	17	ns
^t PHL	CLK	Q	4.8	11.9	14.3	4.8	15.7	4.8	15.7	115
^t PZH	OE	Q	4.3	11.9	14.7	4.3	16.8	4.3	16.8	50
^t PZL	ÛE	Q	5.3	15.5	18.7	5.3	21.2	5.3	21.2	ns
^t PHZ	OE	Q	4	7.3	9	64	9.8	4	9.8	-
^t PLZ	OE	Q	3.8	7.1	8.8	2 3.8	9.4	3.8	9.4	ns

switching characteristics over recommended operating free-air temperature range V_{CC} = 5 $\breve{V} \pm 0.5 V$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	Т	_A = 25°C	;	54AC1	6374	74AC1	6374	UNIT
FARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
f _{max}			100			100	1	100		MHz
^t PLH	CLK	Q	3.8	7.6	9.5	3.8	10.8	3.8	10.8	ns
^t PHL	CLK	Q	3.8	7.6	9.5	3.8	10.6	3.8	10.6	115
^t PZH	OE	Q	3.2	7.2	9	3.2	10.2	3.2	10.2	ns
^t PZL	ÛE	Q	3.8	8.7	10.7	3.8	12.1	3.8	12.1	115
^t PHZ	OE	Q	3.7	6	7.5	3.7	8.2	3.7	8.2	-
^t PLZ	OE	Ŷ	3.5	5.8	7.3	3 .5	7.9	3.5	7.9	ns


operating characteristics, V_{CC} = 5 V, T_A = 25°C

	PARAMETER	TEST CO	TYP	UNIT		
	Power dissipation capacitance per flip-flop	Outputs enabled	$C_1 = 50 \text{pF},$	f = 1 MHz	49	5 5
Cpd	rower dissipation capacitance per hip-hop	Outputs disabled	C_ = 50 pr,		32	рF

PRODUCT PREVIEW information concerns products in the formative or design_phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCAS123B - MARCH 1990 - REVISED APRIL 1996

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

- Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_r = 3 ns, t_f = 3 ns.

D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
74AC16374DL	Obsolete	Production	SSOP (DL) 48	-	-	Call TI	Call TI	-40 to 85	AC16374
74AC16374DLR	Active	Production	SSOP (DL) 48	1000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AC16374
74AC16374DLR.A	Active	Production	SSOP (DL) 48	1000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AC16374

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

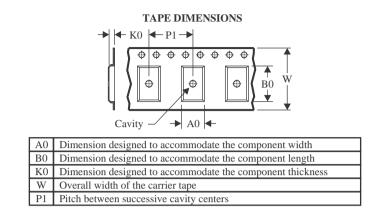
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

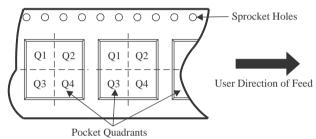
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



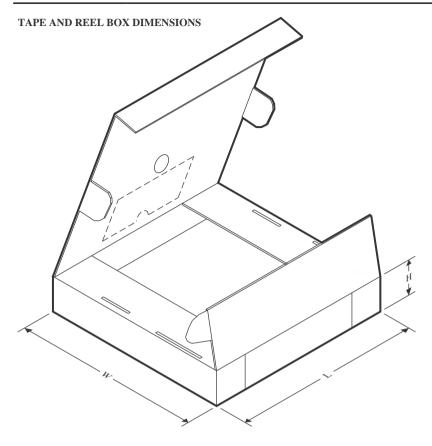
Texas


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

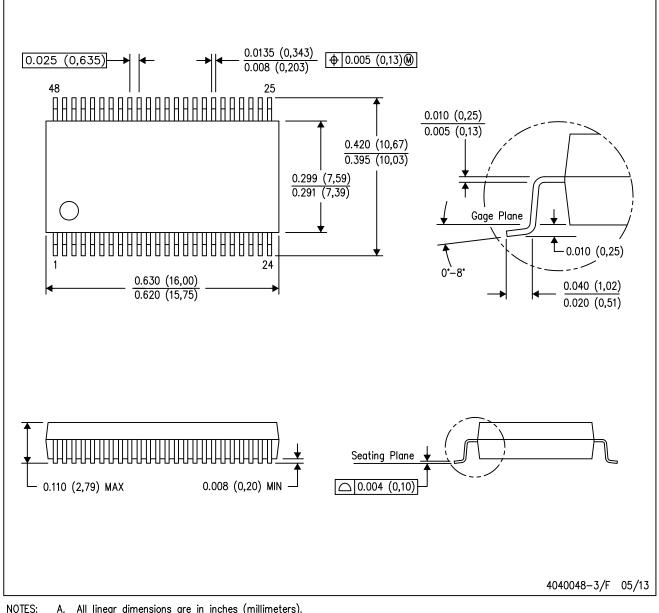
*All dimensions are nomina	al
----------------------------	----


ſ	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	74AC16374DLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

24-Jul-2025



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
74AC16374DLR	SSOP	DL	48	1000	356.0	356.0	53.0	

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated