• Menu
  • Product
  • Email
  • PDF
  • Order now
  • CC1352P7 SimpleLink™ High-Performance Multi-Band Wireless MCU With Integrated Power Amplifier

    • SWRS251A May   2021  – November 2021 CC1352P7

      PRODUCTION DATA  

  • CONTENTS
  • SEARCH
  • CC1352P7 SimpleLink™ High-Performance Multi-Band Wireless MCU With Integrated Power Amplifier
  1. 1 Features
  2. 2 Applications
  3. 3 Description
    1. 3.1 Functional Block Diagram
  4. 4 Revision History
  5. 5 Device Comparison
  6. 6 Terminal Configuration and Functions
    1. 6.1 Pin Diagram – RGZ Package (Top View)
    2. 6.2 Signal Descriptions – RGZ Package
    3. 6.3 Connections for Unused Pins and Modules
  7. 7 Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Power Supply and Modules
    5. 7.5  Power Consumption - Power Modes
    6. 7.6  Power Consumption - Radio Modes
    7. 7.7  Nonvolatile (Flash) Memory Characteristics
    8. 7.8  Thermal Resistance Characteristics
    9. 7.9  RF Frequency Bands
    10. 7.10 861 MHz to 1054 MHz - Receive (RX)
    11. 7.11 861 MHz to 1054 MHz - Transmit (TX) 
    12. 7.12 861 MHz to 1054 MHz - PLL Phase Noise Wideband Mode
    13. 7.13 861 MHz to 1054 MHz - PLL Phase Noise Narrowband Mode
    14. 7.14 Bluetooth Low Energy - Receive (RX)
    15. 7.15 Bluetooth Low Energy - Transmit (TX)
    16. 7.16 Zigbee and Thread - IEEE 802.15.4-2006 2.4 GHz (OQPSK DSSS1:8, 250 kbps) - RX
    17. 7.17 Zigbee and Thread - IEEE 802.15.4-2006 2.4 GHz (OQPSK DSSS1:8, 250 kbps) - TX
    18. 7.18 Timing and Switching Characteristics
      1. 7.18.1 Reset Timing
      2. 7.18.2 Wakeup Timing
      3. 7.18.3 Clock Specifications
        1. 7.18.3.1 48 MHz Crystal Oscillator (XOSC_HF)
        2. 7.18.3.2 48 MHz RC Oscillator (RCOSC_HF)
        3. 7.18.3.3 2 MHz RC Oscillator (RCOSC_MF)
        4. 7.18.3.4 32.768 kHz Crystal Oscillator (XOSC_LF)
        5. 7.18.3.5 32 kHz RC Oscillator (RCOSC_LF)
      4. 7.18.4 Synchronous Serial Interface (SSI) Characteristics
        1. 7.18.4.1 Synchronous Serial Interface (SSI) Characteristics
        2.       40
      5. 7.18.5 UART
        1. 7.18.5.1 UART Characteristics
    19. 7.19 Peripheral Characteristics
      1. 7.19.1 ADC
        1. 7.19.1.1 Analog-to-Digital Converter (ADC) Characteristics
      2. 7.19.2 DAC
        1. 7.19.2.1 Digital-to-Analog Converter (DAC) Characteristics
      3. 7.19.3 Temperature and Battery Monitor
        1. 7.19.3.1 Temperature Sensor
        2. 7.19.3.2 Battery Monitor
      4. 7.19.4 Comparators
        1. 7.19.4.1 Low-Power Clocked Comparator
        2. 7.19.4.2 Continuous Time Comparator
      5. 7.19.5 Current Source
        1. 7.19.5.1 Programmable Current Source
      6. 7.19.6 GPIO
        1. 7.19.6.1 GPIO DC Characteristics
    20. 7.20 Typical Characteristics
      1. 7.20.1 MCU Current
      2. 7.20.2 RX Current
      3. 7.20.3 TX Current
      4. 7.20.4 RX Performance
      5. 7.20.5 TX Performance
      6. 7.20.6 ADC Performance
  8. 8 Detailed Description
    1. 8.1  Overview
    2. 8.2  System CPU
    3. 8.3  Radio (RF Core)
      1. 8.3.1 Proprietary Radio Formats
      2. 8.3.2 Bluetooth 5.2 Low Energy
      3. 8.3.3 802.15.4 (Thread, Zigbee, 6LoWPAN)
    4. 8.4  Memory
    5. 8.5  Sensor Controller
    6. 8.6  Cryptography
    7. 8.7  Timers
    8. 8.8  Serial Peripherals and I/O
    9. 8.9  Battery and Temperature Monitor
    10. 8.10 µDMA
    11. 8.11 Debug
    12. 8.12 Power Management
    13. 8.13 Clock Systems
    14. 8.14 Network Processor
  9. 9 Application, Implementation, and Layout
    1. 9.1 Reference Designs
    2. 9.2 Junction Temperature Calculation
  10. 10Device and Documentation Support
    1. 10.1 Device Nomenclature
    2. 10.2 Tools and Software
      1. 10.2.1 SimpleLink™ Microcontroller Platform
    3. 10.3 Documentation Support
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  11. 11Mechanical, Packaging, and Orderable Information
  12. IMPORTANT NOTICE
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

CC1352P7 SimpleLink™ High-Performance Multi-Band Wireless MCU With Integrated Power Amplifier

1 Features

Wireless microcontroller

  • Powerful 48-MHz Arm® Cortex®-M4F processor
  • 704KB flash program memory
  • 256KB of ROM for protocols and library functions
  • 8KB of cache SRAM
  • 144KB of ultra-low leakage SRAM with parity for high-reliability operation
  • Dual-band Sub-1 GHz and 2.4 GHz operation
  • Dynamic multiprotocol manager (DMM) driver
  • Programmable radio includes support for 2-(G)FSK, 4-(G)FSK, MSK, OOK, Bluetooth® 5.2 Low Energy, IEEE 802.15.4 PHY and MAC
  • Supports over-the-air upgrade (OTA)

Ultra-low power sensor controller

  • Autonomous MCU with 4KB of SRAM
  • Sample, store, and process sensor data
  • Fast wake-up for low-power operation
  • Software defined peripherals; capacitive touch, flow meter, LCD

Low power consumption

  • MCU consumption:
    • 2.63 mA active mode, CoreMark
    • 55 μA/MHz running CoreMark
    • 0.8 μA standby mode, RTC, 144KB RAM
    • 0.1 μA shutdown mode, wake-up on pin
  • Ultra low-power sensor controller consumption:
    • 25.2 μA in 2 MHz mode
    • 701 μA in 24 MHz mode
  • Radio Consumption:
    • 5.4 mA RX at 868 MHz
    • 6.4 mA RX at 2.4 GHz
    • 21 mA TX at +10 dBm at 2.4 GHz
    • 24.9 mA TX at +14 dBm at 868 MHz
    • 64 mA TX at +20 dBm at 915 MHz
    • 101 mA TX at +20 dBm at 2.4 GHz

Wireless protocol support

  • Thread, Zigbee®, Matter
  • Bluetooth® 5.2 Low Energy
  • Wi-SUN®
  • mioty®
  • Amazon Sidewalk
  • Wireless M-Bus
  • SimpleLink™ TI 15.4-stack
  • 6LoWPAN
  • Proprietary systems

High performance radio

  • -121 dBm for 2.5-kbps long-range mode
  • -110 dBm at 50 kbps, 802.15.4, 868 MHz
  • -104 dBm for Bluetooth® Low Energy 125-kbps
  • Output power up to +20 dBm with temperature compensation

Regulatory compliance

  • Suitable for systems targeting compliance with these standards:
    • ETSI EN 300 220 Receiver Cat. 1.5 and 2, EN 300 328, EN 303 131, EN 303 204, EN 300 440 Cat. 2 and 3
    • FCC CFR47 Part 15
    • ARIB STD-T108 and STD-T66

MCU peripherals

  • Digital peripherals can be routed to any GPIO
  • Four 32-bit or eight 16-bit general-purpose timers
  • 12-bit ADC, 200 kSamples/s, 8 channels
  • 8-bit DAC
  • Two comparators
  • Programmable current source
  • Two UART, two SSI, I2C, I2S
  • Real-time clock (RTC)
  • Integrated temperature and battery monitor

Security enablers

  • AES 128- and 256-bit cryptographic accelerator
  • ECC and RSA public key hardware accelerator
  • SHA2 Accelerator (full suite up to SHA-512)
  • True random number generator (TRNG)

Development tools and software

  • LP-CC1352P7 Development Kits
  • SimpleLink™ CC13xx and CC26xx Software Development Kit (SDK)
  • SmartRF™ Studio for simple radio configuration
  • Sensor Controller Studio for building low-power sensing applications
  • SysConfig system configuration tool

Operating range

  • On-chip buck DC/DC converter
  • 1.8-V to 3.8-V single supply voltage
  • -40 to +105°C

Package

  • 7-mm × 7-mm RGZ VQFN48 (26 GPIOs)
  • RoHS-compliant package

2 Applications

  • Grid infrastructure
    • Smart Meters – electricity meter, water meter, gas meter and heat cost allocator
    • Grid communications – wireless communications
    • EV charging infrastructure – AC charging (pile) station
    • Other alternative energy – energy harvesting
  • Building automation
    • Building security systems – motion detector, door and window sensor, glass break detector, panic button, electronic smart lock and IP network camera
    • HVAC systems – thermostat, environmental sensor andHVAC controller
    • Fire safety – smoke and head detector, gas detector and fire alarm control panel
  • Retail Automation
    • Retail automation & payment applications – electronic shelf labels and portable POS terminal
  • Personal Electronics
    • RF remote controls
    • Smart Speakers, Smart Displays and Set-top box
    • Gaming and electronic and robotic toys
    • Wearables (non-medical), smart trackers, smart clothing and smartwatch
  • Wireless Modules
    • Wireless third party modules including Bluetooth Low Energy, Thread, Zigbee, Matter, Wi-SUN®, Amazon Sidewalk, mioty® and multi-protocol
    • Wireless communications modules

3 Description

The SimpleLink™CC1352P7 device is a multiprotocol and multi-band Sub-1 GHz and 2.4-GHz wireless microcontroller (MCU) supporting Thread, Zigbee®, Bluetooth® 5.2 Low Energy, IEEE 802.15.4g, IPv6-enabled smart objects (6LoWPAN), mioty®, Wi-SUN®, proprietary systems, including the TI 15.4-Stack (Sub-1 GHz and 2.4 GHz), and concurrent multiprotocol through a Dynamic Multiprotocol Manager (DMM) driver. The CC1352P7 is based on an Arm® Cortex® M4F main processor and optimized for low-power wireless communication and advanced sensing in grid infrastructure, building automation, retail automation, personal electronics and medical applications.

The CC1352P7 has a software defined radio powered by an Arm® Cortex®-M0, which allows support for multiple physical layers and RF standards. CC1352P7 supports operation in 287 to 351-MHz, 359 to 527-MHz, 861 to 1054-MHz, 1076 to 1315-MHz, and 2360 to 2500-MHz frequency bands. PHY and frequency band switching can be done runtime through a dynamic multiprotocol manager (DMM) driver. The CC1352P7 has an efficient built-in PA that supports +10 dBm TX at 21 mA and +20 dBm TX at 101 mA in the 2.4-GHz band, and +20 dBm TX at 64 mA in the Sub-1 GHz band.

The CC1352P7 has a low sleep current of 0.9 μA with RTC and 144KB RAM retention. In addition to the main Cortex® M4F processor, the device also has an autonomous ultra-low power Sensor Controller CPU with fast wake-up capability. As an example, the sensor controller is capable of 1-Hz ADC sampling at 1-μA system current.

The CC1352P7 has Low SER (Soft Error Rate) FIT (Failure-in-time) for long operational lifetime. Always-on SRAM parity minimizes risk for corruption due to potential radiation events. Consistent with many customers’ 10 to 15 years or longer life cycle requirements, TI has a product life cycle policy with a commitment to product longevity and continuity of supply.

The CC1352P7 device is part of the SimpleLink™ MCU platform, which consists of Wi-Fi®, Bluetooth® Low Energy, Thread, Zigbee, Wi-SUN®, Amazon Sidewalk, mioty®, Sub-1 GHz MCUs, and host MCUs. CC1352P7 is part of a scalable portfolio with flash sizes from 32KB to 704KB with pin-to-pin compatible package options. The common SimpleLink™CC13xx and CC26xx Software Development Kit (SDK) and SysConfig system configuration tool supports migration between devices in the portfolio. A comprehensive number of software stacks, application examples and SimpleLink™ Academy training sessions are included in the SDK. For more information, visit wireless connectivity.

Device Information
PART NUMBER(1) PACKAGE BODY SIZE (NOM)
CC1352P74T0RGZR VQFN (48) 7.00 mm × 7.00 mm
(1) For the most current part, package, and ordering information for all available devices, see the Package Option Addendum in Section 11, or see the TI website.

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale