• Menu
  • Product
  • Email
  • PDF
  • Order now
  • ESD Fundamentals, Part 3: Clamping Voltage

    • SSZT858 December   2017 ESD122

       

  • CONTENTS
  • SEARCH
  • ESD Fundamentals, Part 3: Clamping Voltage
  1.   1
  2.   2
    1.     3
    2.     Additional Resources
  3. IMPORTANT NOTICE
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content
Technical Article

ESD Fundamentals, Part 3: Clamping Voltage

Matthew Xiong

In the second installment of this series, I went over the basics of the International Electrotechnical Commission (IEC) 61000-4-2 rating for electrostatic discharge (ESD) diodes.

One comment that I frequently hear from circuit designers after an ESD failure is, “I used an ESD protection diode that was rated for 30kV contact and 30kV air-gap IEC 61000-4-2 ESD. Why did my system still fail? A 30kV/30kV rating is way above the recommended 8kV/15kV rating!”

While the IEC 61000-4-2 rating is important, it is not the only factor that you need to consider when selecting an ESD diode. The IEC 61000-4-2 rating only tells you how much voltage the ESD diode itself can withstand. The rating gives no indication of whether the downstream circuitry will be protected. To understand that, you would need to look at the clamping voltage of the diode.

A protection diode placed in parallel with the circuit protects that circuit from ESD. When an ESD strike occurs, the diode will promptly break down and steer “all” of the ESD current to ground, thus protecting the circuit downstream. I put “all” in parentheses because the only way all of the ESD current would flow through the ESD diode is if the diode had zero impedance. In the real world, all ESD diodes have some small resistance, called the dynamic resistance (RDYN). RDYN will cause a voltage drop across a conducting diode; since the protected integrated circuit (IC) is in parallel, you will see that same voltage drop across the protected IC (Figure 1). This voltage drop is known as the clamping voltage.

GUID-258B492F-DD57-44B7-81E4-6574A1F61C94-low.png Figure 1 Clamping Voltage of an ESD Diode

The clamping voltage of an ESD diode will ultimately determine whether or not a downstream IC will be protected against ESD strikes. Although it is one of the most important specifications, it is also probably the hardest to find on a data sheet. The easiest way to determine the true clamping voltage of a diode when exposed to an IEC ESD strike is to look at the transmission line pulse (TLP) response curve. Figure 2 is an example of the ESD122 TLP response curve, which shows the device’s relationship between current and voltage. As you can see, when the current flowing through the device increases, the voltage across the device increases at an almost linear rate.

GUID-B8F261B5-10F0-428F-B925-8C113C980938-low.png Figure 2 TLP Response Curve for the ESD122

The TLP is useful because it has similar characteristics to an IEC 61000-4-2 ESD strike. As a result, you can correlate TLP current with IEC ESD:

  • A 2kV IEC strike = 4A TLP.
  • A 4kV IEC strike = 8A TLP.
  • A 6kV IEC strike = 12A TLP.
  • A 8kV IEC strike = 16A TLP.

With this information, you can extrapolate from the TLP response curve in Figure 2 that the ESD122 will have a clamping voltage of ~13.5V during an 8kV IEC 61000-4-2 ESD strike. In other words, you can expect the downstream circuit to be exposed to 13.5V for approximately 100ns when an 8kV IEC strike occurs.

As a general rule, the lower the clamping voltage, the better the protection performance, so look for the TLP curve the next time you select an ESD diode. Read part four of the ESD Fundamentals technical article series, "ESD fundamentals, part 4: ESD capacitance, where we go over the significance of the ESD protection diode’s capacitance."

Additional Resources

  • View all articles in the ESD Fundamentals technical article series.
  • For more information about TI’s low clamping solutions, check out he application report, “Picking ESD Diodes for Ultra High-Speed Data Lines.”
  • Read the application brief, "High-Speed Layout Guidelines for Signal Conditioners and USB Hubs."

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 

Copyright © 2023, Texas Instruments Incorporated

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale