• Menu
  • Product
  • Email
  • PDF
  • Order now
  • How to Reduce the Size of Your 13-W PoE PD Solution

    • SSZT458 june   2019 TPS23753 , TPS23753A , TPS23755 , TPS23758

       

  • CONTENTS
  • SEARCH
  • How to Reduce the Size of Your 13-W PoE PD Solution
  1.   1
  2.   2
    1.     3
    2.     Additional Resources
  3. IMPORTANT NOTICE
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content
Technical Article

How to Reduce the Size of Your 13-W PoE PD Solution

Artem Rogachev

GUID-7F7116EC-C273-4073-8F4C-AB7EC815A49D-low.png

You just got a big product out the door and are enjoying some well-deserved downtime when your product manager decides to swing by. Surprise, surprise: he wants the next-generation product to have more features and a smaller form factor. Luckily, you may be able to squeeze out some area from your Power over Ethernet (PoE) powered device (PD) solution.

If you’re after power density, consider the following when choosing a new PoE PD controller:

  • Does it integrate a PoE PD front end and a DC/DC controller? Does it have an integrated PD field-effect transistor (FET) and an integrated switching FET? Higher integration will usually save board space and streamline the supply chain, since fewer components need to be purchased and planned for.  For a robust solution consider a 100-V PD FET and a 150-V switching FET.  This will provide margin against variation of the clamping voltage of the input TVS and the ringing of the switching node in the Flyback.
  • Does the PoE PD controller offer primary side regulation (PSR)? PSR is a crucial feature that will enable you to remove the optocoupler and shunt reference, along with the diodes and resistor capacitors used for soft start.
  • Does it offer spread-spectrum frequency dithering (SSFD)? This feature reduces electromagnetic interference (EMI) by spreading the noise in a broader frequency band.  SSFD typically results in a reduction of 4-6 dB at the fundamental switching frequency and 10-20 dB for higher-frequency harmonics, enabling a ~2x reduction in the high-voltage common-mode capacitors, which are usually big and expensive.
  • Does the PoE PD controller operate in continuous conduction mode (CCM) or discontinuous conduction mode? CCM has lower peak currents, which enables you to use lower input and output capacitors and injects less noise, thus requiring smaller filtering components.
  • Does it feature advanced startup? This feature provides full current to the DC/DC controller during the soft-start phase before the auxiliary winding is fully up. Advanced startup allows you to reduce the VCC capacitor from ~22 µF to 1 µF, enabling the use of a ceramic capacitor, which is smaller and more reliable.

TI’s newly released TPS23755 is a Type 1 (limited to 13W of input power) PoE PD device that checks all of the above boxes.

Figure 1 shows a visual comparison between a 12-V, 1-A solution for the TPS23753A vs. the new TPS23755 solution. Note that the figure does not include the EMI filter. The TPS23753A operates in CCM mode and integrates the PoE PD (integrated FET) with a DC/DC controller. The TPS23755 adds the integrated switching FET, PSR, advanced startup and SSFD.

GUID-C842106D-6248-4147-9DAD-0DD5249D0925-low.png Figure 1 Board Space Comparison for TPS23755 vs. TPS23753

To appease your product manager and squeeze out some area from your PoE PD solution, consider evaluating TI’s TPS23755 evaluation module for IEEE 802.3at Type 1 PoE PD applications and “IEEE 802.3at Type-1 PoE and 12-V adapter input to point of load reference design for IP network camera” to get started with your Type 1 PoE design. For applications requiring 5V output consider evaluating TI’s TPS23758 evaluation module for IEEE 802.3at Type 1 PoE PD applications.

Additional Resources

  • Watch these videos:
    • “Understanding Advanced Startup in TI's Power over Ethernet Powered Devices (PoE PD).”
    • “Introduction to the PoE Certification Program.”
  • Read the short article, “Would you like a logo to go with your PoE system?”
  • Read the application note, “Practical Guidelines to Designing an EMI Compliant PoE Powered Device with Isolated Flyback.”

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 

Copyright © 2023, Texas Instruments Incorporated

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale