Issac Hsu
Advanced automotive headlights require dynamic lighting functionality to achieve road-safety-enhancing features like adaptive driving beam and adaptive front lighting systems. These features use LED matrix managers (LMMs) to perform dynamic brightness changes on individual LED pixels. The LED current of a headlight with normal brightness ranges from 350 mA to above 1 A. For such kind of current level, the board size built with traditional devices tend to be big. The trend of headlight is moving for more channels of dynamic lighting functions, there is a need to have a high-power-density DC/DC buck LED driver that supports dynamic load operations for further miniaturization of headlight driver systems.
Let’s review the electronic control unit (ECU) requirements for dynamic headlights implemented with LMMs. Because the LED stack or total string voltage changes dynamically with different road environments, it’s best if the current-providing LED drivers use the smallest possible capacitors. From [1], a boost-into-hysteretic buck architecture is the most optimal choice for ECUs. A buck converter provides a continuous output current to the LED in order to minimize the output capacitances, as shown in Figure 1.
A hysteretic control method best supports the dynamic brightness changes of LEDs, as shown in Figure 2.
The nature of hysteretic operation is that the switching frequency will change according to the ratio of the output voltage and input voltage, as shown in Figure 3 and Figure 4, respectively.
For a hysteretic-controlled buck LED driver, the switching frequency changes according to the relationship between the input voltage and the output voltage. A changing switching frequency is sometimes not desirable, especially when trying to minimize electromagnetic interference (EMI). Most designs require a fixed switching frequency so that passive components can tackle the EMI generated around that switching frequency.
Constant on-time control is a hysteretic-based control scheme that provides pseudo-fixed-frequency operation. The duty cycle of the switching frequency is the ratio of the output voltage to the input voltage. If you can control the on time of the switching metal-oxide semiconductor field-effect transistor (MOSFET) such that it is proportional to the ratio of the output voltage to input voltage, then in theory, the switching frequency of the LED driver would stay the same.
Figure 5 and Figure 6 are conceptual block diagrams of a constant on-time-controlled LED driver and the inductor current waveform.
Since the on time is controlled according to the VIN and VOUT ratio, the duty cycle changes with a defined valley current limit. Therefore, the switching frequency is kept nearly constant, as shown in Figure 6.
A typical headlight ECU has an average of six to eight channels of output for different light uses: high beam, low beam, daytime running lights, position lights, turn indicators, fog lamps and so on. Figure 7 is a typical block diagram of an ECU. The total output power for such an ECU ranges from 60 W to 120 W. These specifications necessitate a small-sized yet efficient ECU solution – one that can fit in a tight spot within the car body without generating too much heat.
The TPS92520-Q1 monolithic synchronous dual-channel constant on-time DC/DC buck LED driver helps reduce ECU solution size and provides high power-conversion efficiency. It has a programmable switching frequency with up to 2.2-MHz operation. It accepts Serial Peripheral Interface commands from a microcontroller, thus minimizing the number of passive components around the device for parametric setup.
Integrating all four N-channel MOSFETs in the device not only saves space, but also improves power-conversion efficiency because MOSFETs provide a lower turn-on drain-to-source resistance (RDSON). More importantly, the device operates at above 1.8 MHz and reduces the physical size of the inductors. With two buck channels in one package, the number of devices to implement the ECU is half the number of channels; for example, three devices for six channels and four devices for eight channels.
In conclusion, a modern headlight ECU which supports dynamic lighting function requires buck LED drivers. With more and more channels having dynamic lighting functions, high-power-density LED drivers are required. High-power-density LED drivers (such as TPS92520-Q1) help implementing small-size, high performance headlight ECUs.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated