• Menu
  • Product
  • Email
  • PDF
  • Order now
  • TPS7A85 High-Current (4 A), High-Accuracy (1%), Low-Noise (4.4 µVRMS), LDO Voltage Regulator

    • SBVS267A January   2016  – February 2016 TPS7A85

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • TPS7A85 High-Current (4 A), High-Accuracy (1%), Low-Noise (4.4 µVRMS), LDO Voltage Regulator
  1. 1 Features
  2. 2 Applications
  3. 3 Description
  4. 4 Revision History
  5. 5 Pin Configurations and Functions
  6. 6 Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. 7 Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Low-Noise, High-PSRR Output
      2. 7.3.2  Integrated Resistance Network (ANY-OUT)
      3. 7.3.3  Bias Rail
      4. 7.3.4  Power-Good (PG) Function
      5. 7.3.5  Programmable Soft-Start
      6. 7.3.6  Internal Current Limit (ILIM)
      7. 7.3.7  Enable
      8. 7.3.8  Active Discharge Circuit
      9. 7.3.9  Undervoltage Lockout (UVLO)
      10. 7.3.10 Thermal Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operation with 1.1 V ≤ VIN < 1.4 V
      2. 7.4.2 Operation with 1.4 V ≤ VIN ≤ 6.5 V
      3. 7.4.3 Shutdown
  8. 8 Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1  Recommended Capacitor Types
      2. 8.1.2  Input and Output Capacitor Requirements (CIN and COUT)
      3. 8.1.3  Noise-Reduction and Soft-Start Capacitor (CNR/SS)
      4. 8.1.4  Feed-Forward Capacitor (CFF)
      5. 8.1.5  Soft-Start and In-Rush Current
      6. 8.1.6  Optimizing Noise and PSRR
        1. 8.1.6.1 Charge Pump Noise
      7. 8.1.7  ANY-OUT Programmable Output Voltage
      8. 8.1.8  ANY-OUT Operation
      9. 8.1.9  Increasing ANY-OUT Resolution for LILO Conditions
      10. 8.1.10 Current Sharing
      11. 8.1.11 Adjustable Operation
      12. 8.1.12 Sequencing Requirements
        1. 8.1.12.1 Sequencing with a Power-Good DC-DC Converter Pin
        2. 8.1.12.2 Sequencing with a Microcontroller (MCU)
      13. 8.1.13 Power-Good (PG) Operation
      14. 8.1.14 Undervoltage Lockout (UVLO) Operation
      15. 8.1.15 Dropout Voltage (VDO)
      16. 8.1.16 Behavior when Transitioning from Dropout into Regulation
      17. 8.1.17 Load Transient Response
      18. 8.1.18 Negatively-Biased Output
      19. 8.1.19 Reverse Current Protection
      20. 8.1.20 Power Dissipation (PD)
        1. 8.1.20.1 Estimating Junction Temperature
        2. 8.1.20.2 Recommended Area for Continuous Operation (RACO)
    2. 8.2 Typical Applications
      1. 8.2.1 Low-Input, Low-Output (LILO) Voltage Conditions
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Typical Application for a 5.0-V Rail
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
  9. 9 Power-Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Board Layout
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. 11.1.1.1 Evaluation Modules
        2. 11.1.1.2 Spice Models
      2. 11.1.2 Device Nomenclature
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information
  13. IMPORTANT NOTICE
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

TPS7A85 High-Current (4 A), High-Accuracy (1%), Low-Noise (4.4 µVRMS), LDO Voltage Regulator

1 Features

  • Low Dropout: 150 mV (typ) at 4 A
  • 1% (max) Accuracy Over Line, Load, and Temperature
  • Output Voltage Noise:
    • 4.4 µVRMS at 0.8-V Output
    • 8.4 µVRMS at 5.0-V Output
  • Input Voltage Range:
    • Without BIAS: 1.4 V to 6.5 V
    • With BIAS: 1.1 V to 6.5 V
  • ANY-OUT™ Operation:
    • Output Voltage Range: 0.8 V to 3.95 V
  • Adjustable Operation:
    • Output Voltage Range: 0.8 V to 5.0 V
  • Power-Supply Ripple Rejection:
    • 40 dB at 500 kHz
  • Excellent Load Transient Response
  • Adjustable Soft-Start In-Rush Control
  • Open-Drain Power-Good (PG) Output
  • Stable with a 47-µF or Larger Ceramic Output Capacitor
  • Operating Temperature Range:
    –40ºC to +125°C
  • 3.5-mm × 3.5-mm, 20-Pin VQFN

2 Applications

  • Digital Loads: SerDes, FPGAs, and DSPs
  • Instrumentation, Medical, and Audio
  • High-Speed Analog Circuits:
    • VCO, ADC, DAC, and LVDS
  • Imaging: CMOS Sensors and Video ASICs
  • Test and Measurement

3 Description

The TPS7A85 is a low-noise (4.4 µVRMS), low-dropout linear regulator (LDO) capable of sourcing 4 A with only 240 mV of maximum dropout. The device output voltage is pin-programmable from 0.8 V to 3.95 V and adjustable from 0.8 V to 5.0 V using an external resistor divider.

The combination of low-noise (4.4 µVRMS), high-PSRR, and high output current capability makes the TPS7A85 ideal to power noise-sensitive components such as those found in high-speed communications, video, medical, or test and measurement applications. The high performance of the TPS7A85 limits power-supply-generated phase noise and clock jitter, making this device ideal for powering high-performance serializer and deserializer (SerDes), analog-to-digital converters (ADCs), digital-to-analog converters (DACs), and RF components. Specifically, RF amplifiers benefit from the high-performance and 5.0-V output capability of the device.

For digital loads [such as application-specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs), and digital signal processors (DSPs)] requiring low-input voltage, low-output (LILO) voltage operation, the exceptional accuracy (0.75% over load and temperature), remote sensing, excellent transient performance, and soft-start capabilities of the TPS7A85 ensure optimal system performance.

The versatility of the TPS7A85 makes the device a component of choice for many demanding applications.

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (nom)
TPS7A85 VQFN (20) 3.50 mm × 3.50 mm
  1. For all available packages, see the orderable addendum at the end of the datasheet.

Powering RF Components

TPS7A85 7A85_front_1.gif

Powering Digital Loads

TPS7A85 7A85_front_2.gif

4 Revision History

Changes from * Revision (January 2016) to A Revision

  • Released to production Go

5 Pin Configurations and Functions

RGR Package
3.5-mm × 3.5-mm, 20-Pin VQFN
Top View
TPS7A85 po_bvs197.gif

Pin Functions

PIN DESCRIPTION
NAME NO. I/O
50mV 5 I ANY-OUT voltage setting pins. Connect these pins to ground, SNS, or leave floating. Connecting these pins to ground increases the output voltage, whereas connecting these pins to SNS increases the resolution of the ANY-OUT network but decreases the range of the network; multiple pins can be simultaneously connected to GND or SNS to select the desired output voltage. Leave these pins floating (open) when not in use. See the ANY-OUT Programmable Output Voltage section for additional details.
100mV 6
200mV 7
400mV 9
800mV 10
1.6V 11
BIAS 12 I BIAS supply voltage. This pin enables the use of low-input voltage, low-output (LILO) voltage conditions (that is, VIN = 1.2 V, VOUT = 1 V) to reduce power dissipation across the die. The use of a BIAS voltage improves dc and ac performance for VIN ≤ 2.2 V. A 10-µF capacitor or larger must be connected between this pin and ground. If not used, this pin must be left floating or tied to ground.
EN 14 I Enable pin. Driving this pin to logic high enables the device; driving this pin to logic low disables the device. If enable functionality is not required, this pin must be connected to IN. If enable functionality is required, VEN must always be high after VIN is established when a BIAS supply is used. See the Sequencing Requirements section for more details.
FB 3 I Feedback pin connected to the error amplifier. Although not required, a 10-nF feed-forward capacitor from FB to OUT (as close to the device as possible) is recommended to maximize ac performance. The use of a feed-forward capacitor can disrupt PG (power good) functionality. See the ANY-OUT Programmable Output Voltage and Adjustable Operation sections for more details.
GND 8, 18 — Ground pin. These pins must be connected to ground, the thermal pad, and each other with a low-impedance connection.
IN 15-17 I Input supply voltage pins. A 47-μF or larger ceramic capacitor (25 μF or greater of effective capacitance) from IN to ground is recommended to reduce the impedance of the input supply. Place the input capacitor as close to the input as possible. See the Input and Output Capacitor Requirements section for more details.
NR/SS 13 — Noise-reduction and soft-start pin. Connecting an external capacitor between this pin and ground reduces reference voltage noise and also enables the soft-start function. Although not required, a 10-nF or larger capacitor is recommended to be connected from NR/SS to GND (as close to the pin as possible) to maximize ac performance. See the Noise-Reduction and Soft-Start Capacitor section for more details.
OUT 1, 19, 20 O Regulated output pins. A 47-μF or larger ceramic capacitor (25 μF or greater of effective capacitance) from OUT to ground is required for stability and must be placed as close to the output as possible. Minimize the impedance from the OUT pin to the load. See the Input and Output Capacitor Requirements section for more details.
PG 4 O Active-high, power-good pin. An open-drain output indicates when the output voltage reaches 89.3% of the target. The use of a feed-forward capacitor can disrupt PG (power good) functionality. See the Power-Good (PG) Function section for more details.
SNS 2 I Output voltage sense input pin. This pin connects the internal R1 resistor to the output. Connect this pin to the load side of the output trace only if the ANY-OUT feature is used. If the ANY-OUT feature is not used, leave this pin floating. See the ANY-OUT Programmable Output Voltage and Adjustable Operation sections for more details.
Thermal pad — Connect the thermal pad to a large-area ground plane. The thermal pad is internally connected to GND.

6 Specifications

6.1 Absolute Maximum Ratings

over junction temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltage IN, BIAS, PG, EN –0.3 7.0 V
IN, BIAS, PG, EN (5% duty cycle, pulse duration = 200 µs) –0.3 7.5
SNS, OUT –0.3 VIN + 0.3(2)
NR/SS, FB –0.3 3.6
50mV, 100mV, 200mV, 400mV, 800mV, 1.6V –0.3 VOUT + 0.3
Current OUT Internally limited A
PG (sink current into device) 5 mA
Operating junction temperature, TJ –55 150 °C
Storage temperature, Tstg –55 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The absolute maximum rating is VIN + 0.3 V or 7.0 V, whichever is smaller.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over junction temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VIN Input supply voltage range 1.1 6.5 V
VBIAS Bias supply voltage range(1) 3.0 6.5 V
VOUT Output voltage range(2) 0.8 5 V
VEN Enable voltage range 0 VIN V
IOUT Output current 0 4 A
CIN Input capacitor 10 47 µF
COUT Output capacitor 47 47 || 10 || 10(3) µF
RPG Power-good pullup resistance 10 100 kΩ
CNR/SS NR/SS capacitor 10 nF
CFF Feed-forward capacitor 10 nF
R1 Top resistor value in feedback network for adjustable operation 12.1(4) kΩ
R2 Bottom resistor value in feedback network for adjustable operation 160(5) kΩ
TJ Operating junction temperature –40 125 °C
(1) BIAS supply is required when the VIN supply is below 1.4 V. Conversely, no BIAS supply is required when the VIN supply is higher than or equal to 1.4 V. A BIAS supply helps improve dc and ac performance for VIN ≤ 2.2 V.
(2) This output voltage range does not include device accuracy or accuracy of the feedback resistors.
(3) The recommended output capacitors are selected to optimize PSRR for the frequency range of 400 kHz to 700 kHz. This frequency range is a typical value for dc-dc supplies.
(4) The 12.1-kΩ resistor is selected to optimize PSRR and noise by matching the internal R1 value.
(5) The upper limit for the R2 resistor is to ensure accuracy by making the current through the feedback network much larger than the leakage current into the feedback node.

6.4 Thermal Information

THERMAL METRIC(1) TPS7A85 UNIT
RGR (VQFN)
20 PINS
RθJA Junction-to-ambient thermal resistance 35.4 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 47.6 °C/W
RθJB Junction-to-board thermal resistance 12.3 °C/W
ψJT Junction-to-top characterization parameter 0.5 °C/W
ψJB Junction-to-board characterization parameter 12.4 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 1.0 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Over operating junction temperature range (TJ = –40°C to +125°C), VIN = 1.4 V or VIN = VOUT(nom) + 0.5 V (whichever is greater), VBIAS = open, VOUT(nom) = 0.8 V(2), OUT connected to 50 Ω to GND(3), VEN = 1.1 V, CIN = 10 μF, COUT = 47 μF, CNR/SS without CFF, and PG pin pulled up to VIN with 100 kΩ, unless otherwise noted. Typical values are at TJ = 25°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN Input supply voltage range(1) 1.1 6.5 V
VBIAS Bias supply voltage range(1) VIN = 1.1 V 3.0 6.5 V
VFB Feedback voltage 0.8 V
VNR/SS NR/SS pin voltage 0.8 V
VUVLO1(IN) Input supply UVLO with BIAS VIN rising with VBIAS = 3.0 V 1.02 1.085 V
VHYS1(IN) VUVLO1(IN) hysteresis VBIAS = 3.0 V 320 mV
VUVLO2(IN) Input supply UVLO without BIAS VIN rising 1.31 1.39 V
VHYS2(IN) VUVLO2(IN) hysteresis 253 mV
VUVLO(BIAS) Bias supply UVLO VBIAS rising, VIN = 1.1 V 2.83 2.9 V
VHYS(BIAS) VUVLO(BIAS) hysteresis VIN = 1.1 V 290 mV
VOUT Output voltage Range Using the ANY-OUT pins 0.8 – 1.0% 3.95 + 1.0% V
Using external resistors(4) 0.8 – 1.0% 5.0 + 1.0%
Accuracy(4)(5) 0.8 V ≤ VOUT ≤ 5 V, 5 mA ≤ IOUT ≤ 4 A, over VIN –1.0% 1.0%
Accuracy with BIAS VIN = 1.1 V, 5 mA ≤ IOUT ≤ 4 A,
3.0 V ≤ VBIAS ≤ 6.5 V
–0.75% 0.75%
ΔVOUT/
ΔVIN
Line regulation IOUT = 5 mA, 1.4 V ≤ VIN ≤ 6.5 V 0.0035 mV/V
ΔVOUT/
ΔIOUT
Load regulation 5 mA ≤ IOUT ≤ 4 A, 3.0 V ≤ VBIAS ≤ 6.5 V,
VIN = 1.1 V
0.07 mV/A
5 mA ≤ IOUT ≤ 4 A 0.08
5 mA ≤ IOUT ≤ 4 A, VOUT = 5.0 V 0.4
VDO Dropout voltage VIN = 1.4 V, IOUT = 4 A, VFB = 0.8 V – 3% 215 320 mV
VIN = 5.5 V, IOUT = 4 A, VFB = 0.8 V – 3% 325 500
VIN = 1.1 V, VBIAS = 5.0 V,
IOUT = 4 A, VFB = 0.8 V – 3%
150 240
ILIM Output current limit VOUT forced at 0.9 × VOUT(nom),
VIN = VOUT(nom) + 0.4 V
4.7 5.2 5.7 A
ISC Short-circuit current limit RLOAD = 20 mΩ 1.0 A
IGND GND pin current VIN = 6.5 V, IOUT = 5 mA 2.8 4.0 mA
VIN = 1.4 V, IOUT = 4 A 4.8 6.0
Shutdown, PG = open, VIN = 6.5 V, VEN = 0.5 V 25 µA
IEN EN pin current VIN = 6.5 V, VEN = 0 V and 6.5 V –0.1 0.1 µA
IBIAS BIAS pin current VIN = 1.1 V, VBIAS = 6.5 V,
VOUT(nom) = 0.8 V, IOUT = 4 A
2.3 3.5 mA
VIL(EN) EN pin high-level input voltage
(enable device)
0 0.5 V
VIH(EN) EN pin low-level input voltage
(disable device)
1.1 6.5 V
VIT(PG) PG pin threshold For falling VOUT 82% × VOUT 88.3% × VOUT 93% × VOUT V
VHYS(PG) PG pin hysteresis For rising VOUT 1% × VOUT V
VOL(PG) PG pin low-level output voltage VOUT < VIT(PG), IPG = –1 mA
(current sunk into pin)
0.4 V
Ilkg(PG) PG pin leakage current VOUT > VIT(PG), VPG = 6.5 V 1 µA
INR/SS NR/SS pin charging current VNR/SS = GND, VIN = 6.5 V 4.0 6.2 9.0 µA
IFB FB pin leakage current VIN = 6.5 V –100 100 nA
PSRR Power-supply ripple rejection VIN – VOUT = 0.5 V,
IOUT = 4 A, CNR/SS = 100 nF, CFF = 10 nF, COUT =
47 μF || 10 μF || 10 μF
f = 10 kHz,
VOUT = 0.8 V,
VBIAS = 5.0 V
42 dB
f = 500 kHz, VOUT = 0.8 V, VBIAS = 5.0 V 39
f = 10 kHz,
VOUT = 3.3 V
40
f = 500 kHz, VOUT = 3.3 V 25
Vn Output noise voltage BW = 10 Hz to 100 kHz, VIN = 1.2 V,
VOUT = 0.8 V, VBIAS = 5.0 V, IOUT = 4 A,
CNR/SS = 100 nF, CFF = 10 nF,
COUT = 47 μF || 10 μF || 10 μF
4.4 μVRMS
BW = 10 Hz to 100 kHz,
VOUT = 5.0 V, IOUT = 4 A, CNR/SS = 100 nF,
CFF = 10 nF, COUT = 47 μF || 10 μF || 10 μF
8.4
Tsd Thermal shutdown temperature Shutdown, temperature increasing 160 °C
Reset, temperature decreasing 140
TJ Operating junction temperature –40 125 °C
(1) BIAS supply is required when the VIN supply is below 1.4 V. Conversely, no BIAS supply is required when the VIN supply is higher than or equal to 1.4 V. A BIAS supply helps improve dc and ac performance for VIN ≤ 2.2 V.
(2) VOUT(nom) is the calculated VOUT target value from the ANY-OUT in a fixed configuration. In an adjustable configuration, VOUT(nom) is the expected VOUT value set by the external feedback resistors.
(3) This 50-Ω load is disconnected when the test conditions specify an IOUT value.
(4) When the device is connected to external feedback resistors at the FB pin, external resistor tolerances are not included.
(5) The device is not tested under conditions where VIN > VOUT + 1.25 V and IOUT = 4 A, because the power dissipation is higher than the maximum rating of the package.

6.6 Typical Characteristics

at TA = 25°C, VIN = 1.4 V or VIN = VOUT(NOM) + 0.5 V (whichever is greater), VBIAS = open, VOUT(NOM) = 0.8 V, VEN = 1.1 V, COUT = 47 μF, CNR/SS = 0 nF, CFF = 0 nF, and PG pin pulled up to VIN with 100 kΩ (unless otherwise noted)
TPS7A85 PSRR_vs_Iout.gif
VIN = 1.2 V, VBIAS = 5 V,
COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF, CFF = 10 nF
Figure 1. PSRR vs Frequency and IOUT
TPS7A85 PSRR_vs_Vbias.gif
VIN = 1.4 V, IOUT = 1 A,
COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF, CFF = 10 nF
Figure 3. PSRR vs Frequency and VBIAS
TPS7A85 PSRR_vs_Vout_with_Bias.gif
VIN = VOUT + 0.4 V, VBIAS = 5.0 V, IOUT = 4 A,
COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF, CFF = 10 nF
Figure 5. PSRR vs Frequency and VOUT with Bias
TPS7A85 PSRR_vs_Cout.gif
VIN = 5.6 V, COUT = 47 μF || 10 μF || 10 μF,
CNR/SS = 10 nF, CFF = 10 nF
Figure 7. PSRR vs Frequency and COUT
TPS7A85 PSRR_vs_Vin_5Vout.gif
IOUT = 4 A, COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF,
CFF = 10 nF
Figure 9. PSRR vs Frequency and VIN for VOUT = 5.0 V
TPS7A85 Noise_vs_Vout_Iout.gif
VIN = VOUT + 0.4 V and VBIAS = 5 V for VOUT ≤ 2.2 V,
COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF, CFF = 10 nF
Figure 11. Output Voltage Noise vs Output Voltage
TPS7A85 Noise_vs_Vin.gif
IOUT = 1 A, COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF,
CFF = 10 nF
Figure 13. Output Noise vs Frequency and VIN
TPS7A85 Noise_vs_Cff.gif
VIN = VOUT + 0.4 V, VBIAS = 5 V, IOUT = 4 A,
COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF
Figure 15. Output Noise vs Frequency and CFF
TPS7A85 Startup_Vs_Cnr.gif
VIN = 1.2 V, VOUT = 0.9 V, VBIAS = 5.0 V, IOUT = 4 A,
COUT = 47 μF || 10 μF || 10 μF, CFF = 10 nF
Figure 17. Start-Up Waveform vs Time and CNR/SS
TPS7A85 Load_trans_vs_Vout_no_Bias.gif
IOUT, DC = 100 mA, COUT = 47 μF || 10 μF || 10 μF,
CNR/SS = CFF = 10 nF, slew rate = 1 A/μs
Figure 19. Load Transient Waveform vs Time and
VOUT without Bias
TPS7A85 Load_Trans_vs_Cout.gif
VIN = 1.2 V, VBIAS = 5.0 V, IOUT = 100 mA to 4 A,
CNR/SS = CFF = 10 nF, slew rate = 1 A/μs
Figure 21. Load Transient Waveform vs Time and COUT
(VOUT = 0.9 V)
TPS7A85 D001_SBVS267.gif
IOUT = 4 A, VBIAS = 0 V
Figure 23. Dropout Voltage vs Input Voltage without Bias
TPS7A85 D003_SBVS267.gif
VIN = 1.4 V, VBIAS = 0 V
Figure 25. Dropout Voltage vs Output Current without Bias
TPS7A85 D005_SBVS267.gif
VIN = 5.5 V
Figure 27. Dropout Voltage vs Output Current (High VIN)
TPS7A85 D006_SBVS267.gif
Figure 29. Load Regulation (0.8-V Output)
TPS7A85 D010_SBVS267.gif
Figure 31. Load Regulation (5-V Output)
TPS7A85 D012_SBVS267.gif
VIN = 1.1 V, IOUT = 5 mA
Figure 33. Line Regulation vs Bias Voltage
TPS7A85 D015_SBVS267.gif
IOUT = 5 mA
Figure 35. Ground Pin Current vs Input Voltage
TPS7A85 D017_SBVS267.gif
Figure 37. Shutdown Current vs Input Voltage
TPS7A85 D019_SBVS267.gif
Figure 39. NR/SS Charging Current vs Input Voltage
TPS7A85 D022_SBVS267.gif
VIN = 1.1 V
Figure 41. VBIAS UVLO vs Temperature
TPS7A85 D024_SBVS267.gif
Figure 43. PG Voltage vs PG Current Sink
TPS7A85 D026_SBVS267.gif
Figure 45. PG Threshold vs Temperature
TPS7A85 PSRR_vs_Vin_with_Bias.gif
IOUT = 4 A, VBIAS = 5 V,
COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF, CFF = 10 nF
Figure 2. PSRR vs Frequency and VIN with Bias
TPS7A85 PSRR_vs_VIN.gif
IOUT = 1 A,
COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF, CFF = 10 nF
Figure 4. PSRR vs Frequency and VIN
TPS7A85 PSRR_vs_Vin_3p3Vout.gif
IOUT = 4 A, COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF,
CFF = 10 nF
Figure 6. PSRR vs Frequency and VIN for VOUT = 3.3 V
TPS7A85 PSRR_vs_Iout_5Vout.gif
VIN = VOUT + 0.4 V, VOUT = 1 V, IOUT = 4 A,
COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF, CFF = 10 nF
Figure 8. PSRR vs Frequency and IOUT for VOUT = 5.0 V
TPS7A85 7a85_Bias_PSRR.gif
VIN = VOUT + 0.4 V, VOUT = 1 V, IOUT = 4 A,
COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF, CFF = 10 nF
Figure 10. VBIAS PSRR vs Frequency
TPS7A85 Noise_vs_Vout.gif
VIN = VOUT + 0.4 V and VBIAS = 5 V for VOUT ≤ 2.2 V, IOUT = 4 A, COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF, CFF = 10 nF
Figure 12. Output Noise vs Frequency and VOUT
TPS7A85 Noise_vs_Cnr.gif
VIN = VOUT + 0.4 V, VBIAS = 5 V, IOUT = 4 A,
COUT = 47 μF || 10 μF || 10 μF, CFF = 10 nF
Figure 14. Output Noise vs Frequency and CNR/SS
TPS7A85 Noise_vs_Cnr_Cff_5Vout.gif
VIN = 5.6 V, IOUT = 4 A, COUT = 47 μF || 10 μF || 10 μF,
CFF = 10 nF
Figure 16. Output Noise at 5.0-V Output vs CNR/SS and CFF
TPS7A85 Load_trans_vs_Vout_with_Bias.gif
VIN = VOUT + 0.3 V, VBIAS = 5 V, IOUT, DC = 100 mA, slew rate = 1 A/μs, CNR/SS = CFF = 10 nF, COUT = 47 μF || 10 μF || 10 μF
Figure 18. Load Transient Waveform vs Time and
VOUT with Bias
TPS7A85 load_trans_vs_SR_5Vout.gif
VOUT = 5 V, IOUT, DC = 100 mA, IOUT = 100 mA to 4 A,
COUT = 47 μF || 10 μF || 10 μF, CNR/SS = CFF = 10 nF
Figure 20. Load Transient Waveform vs Time and
Slew Rate
TPS7A85 Load_trans_vs_preload.gif
VIN = 1.2 V, VBIAS = 5.0 V, COUT = 47 μF || 10 μF || 10 μF,
CNR/SS = CFF = 10 nF, slew rate = 1 A/μs
Figure 22. Load Transient Waveform vs Time and DC Load
(VOUT = 0.9 V)
TPS7A85 D002_SBVS267.gif
IOUT = 4 A, VBIAS = 6.5 V
Figure 24. Dropout Voltage vs Input Voltage with Bias
TPS7A85 D004_SBVS267.gif
VIN = 1.1 V, VBIAS = 3 V
Figure 26. Dropout Voltage vs Output Current with Bias
TPS7A85 Load_reg_vs_Vout.gif
IOUT = 100 mA to 4 A
Figure 28. Load Regulation vs Output Voltage
TPS7A85 D008_SBVS267.gif
Figure 30. Load Regulation (3.3-V Output)
TPS7A85 D011_SBVS267.gif
IOUT = 5 mA
Figure 32. Line Regulation without Bias
TPS7A85 D014_SBVS267.gif
IOUT = 5 mA
Figure 34. Line Regulation (5-V Output)
TPS7A85 D016_SBVS267.gif
VIN = 1.1 V, IOUT = 5 mA
Figure 36. Bias Pin Current vs Bias Voltage
TPS7A85 D018_SBVS267.gif
VIN = 1.1 V
Figure 38. Shutdown Current vs Bias Voltage
TPS7A85 UVLO_Vin.gif
Figure 40. VIN UVLO vs Temperature
TPS7A85 D023_SBVS267.gif
Figure 42. Enable Threshold vs Temperature
TPS7A85 D025_SBVS267.gif
VIN = 6.5 V
Figure 44. PG Voltage vs PG Current Sink

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale