• Menu
  • Product
  • Email
  • PDF
  • Order now
  • bq27530-G1 Battery Management Unit Impedance Track™ Fuel Gauge with MaxLife Technology for Use with the bq2416x Charger Controller

    • SLUSAL5C December   2012  – June 2016 BQ27530-G1

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • bq27530-G1 Battery Management Unit Impedance Track™ Fuel Gauge with MaxLife Technology for Use with the bq2416x Charger Controller
  1. 1 Features
  2. 2  Applications
  3. 3  Description
  4. 4 Revision History
  5. 5 Pin Configuration and Functions
  6. 6 Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Thermal Information
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Supply Current
    6. 6.6  Digital Input and Output DC Characteristics
    7. 6.7  Power-on Reset
    8. 6.8  2.5-V LDO Regulator
    9. 6.9  Internal Clock Oscillators
    10. 6.10 ADC (Temperature and Cell Measurement) Characteristics
    11. 6.11 Integrating ADC (Coulomb Counter) Characteristics
    12. 6.12 Data Flash Memory Characteristics
    13. 6.13 I2C-Compatible Interface Communication Timing Characteristics
    14. 6.14 Typical Characteristics
  7. 7 Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Functional Description
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power Modes
        1. 7.4.1.1 BAT INSERT CHECK Mode
        2. 7.4.1.2 NORMAL Mode
        3. 7.4.1.3 SLEEP Mode
      2. 7.4.2 SLEEP+ Mode
      3. 7.4.3 HIBERNATE Mode
    5. 7.5 Programming
      1. 7.5.1 Standard Data Commands
      2. 7.5.2 Control(): 0x00/0x01
      3. 7.5.3 Communications
        1. 7.5.3.1 I2C Interface
        2. 7.5.3.2 I2C Time Out
        3. 7.5.3.3 I2C Command Waiting Time
        4. 7.5.3.4 I2C Clock Stretching
  8. 8 Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 BAT Voltage Sense Input
        2. 8.2.2.2 SRP and SRN Current Sense Inputs
        3. 8.2.2.3 Sense Resistor Selection
        4. 8.2.2.4 TS Temperature Sense Input
        5. 8.2.2.5 Thermistor Selection
        6. 8.2.2.6 REGIN Power Supply Input Filtering
        7. 8.2.2.7 VCC LDO Output Filtering
      3. 8.2.3 Application Curves
  9. 9 Power Supply Recommendations
    1. 9.1 Power Supply Decoupling
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Sense Resistor Connections
      2. 10.1.2 Thermistor Connections
      3. 10.1.3 High-Current and Low-Current Path Separation
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 Community Resource
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information
  13. IMPORTANT NOTICE
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

bq27530-G1 Battery Management Unit Impedance Track™ Fuel Gauge with MaxLife Technology for Use with the bq2416x Charger Controller

1 Features

  • Battery Fuel Gauge and Charger Controller for 1-Cell Li-Ion Applications
  • Resides on System Main Board
  • Battery Fuel Gauge Based on Patented Impedance Track™ Technology
    • Models the Battery Discharge Curve for Accurate Time-to-Empty Predictions
    • Automatically Adjusts for Battery Aging, Battery Self-Discharge, and Temperature/Rate Inefficiencies
    • Low-Value Sense Resistor (5 mΩ to 20 mΩ)
  • Battery Charger Controller with Customizable Charge Profiles
    • Configurable Charge Voltage and Current based on Temperature
    • Optional State-Of-Health (SOH) and Multi-Level Based Charge Profiles
  • Host Free Autonomous Battery Management System
    • Reduced Software Overhead Allows for Easy Portability Across Platforms and Shorter OEM Design Cycles
    • Higher Safety and Security
  • Run Time Improvements
    • Longer Battery Runtime Leveraging Impedance Track Technology
    • Tighter Accuracy Controls for Charger Termination
    • Improved Recharged Thresholds
  • Intelligent Charging—Customized and Adaptive Charging Profiles
    • Charger Control Based on SOH
    • Temperature Level Charging (TLC)
  • Battery Charger Controller for bq2416x Single Cell Switchmode Battery Charger
    • Stand-Alone Charging Solution
  • 400-kHz I2C™ Interface for Connection to System Microcontroller Port
  • In a 15-Pin NanoFree™ Packaging

2 Applications

  • Smartphones, Feature Phones, and Tablets
  • Digital Still and Video Cameras
  • Handheld Terminals
  • MP3 or Multimedia Players

3 Description

The Texas Instruments bq27530-G1 system-side Li-Ion Battery Management Unit is a microcontroller peripheral that provides Impedance Track™ fuel gauging and charging control for single-cell Li-Ion battery packs. The device requires little system microcontroller firmware development. Together with bq2416x Single-Cell Switchmode Charger, the bq27530-G1 manages an embedded battery (non-removable) or a removable battery pack.

The bq27530-G1 uses the patented Impedance Track™ algorithm for fuel gauging, and provides information such as remaining battery capacity (mAh), state-of-charge (%), runtime-to-empty (min), battery voltage (mV), temperature (°C), and state-of-health (%).

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)
bq27530-G1 DSBGA (15) 2.61 mm × 1.96 mm
  1. For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

bq27530-G1 lusal5_TypApp.gif

4 Revision History

Changes from B Revision (January 2016) to C Revision

  • Changed Table 4, Key Data Flash Parameters for ConfigurationGo

Changes from A Revision (May 2015) to B Revision

  • Changed ESD Ratings Go

Changes from * Revision (December 2012) to A Revision

  • Changed the data sheet title From: Battery Management Unit Impedance Track™ Fuel Gauge for Use With the bq2416x Charger Controller To: Battery Management Unit Impedance Track™ Fuel Gauge with MaxLife Technology for Use With the bq2416x Charger ControllerGo
  • Added the ESD Ratings table, Detailed Description section, Feature Description section, Device Functional Modes section, Programming section, Application and Implementation section. Power Supply Recommendations section, Layout section, Device and Documentation Support section, Mechanical, Packaging, and Orderable Information sectionGo

5 Pin Configuration and Functions

YZF Package
15-Pin DSBGA
bq27530-G1 bq8035_ds_pinout.gif

Pin Functions

PIN TYPE(1) DESCRIPTION
NAME NO.
SRP A1 IA Analog input pin connected to the internal coulomb counter where SRP is nearest the PACK– connection. Connect to 5-mΩ to 20-mΩ sense resistor.
SRN B1 IA Analog input pin connected to the internal coulomb counter where SRN is nearest the Vss connection. Connect to 5-mΩ to 20-mΩ sense resistor.
VSS C1, C2 P Device ground
VCC D1 P Regulator output and bq27530-G1 power. Decouple with 1μF ceramic capacitor to Vss.
REGIN E1 P Regulator input. Decouple with 0.1-μF ceramic capacitor to Vss.
SOC_INT A2 I/O SOC state interrupts output. Open drain output.
BSCL B2 O Battery Charger clock output line for chipset communication. Push-pull output. Note: CE has an internal ESD protection diode connected to REGIN. Recommend maintaining VCE ≤ VREGIN under all conditions.
CE D2 I Chip Enable. Internal LDO is disconnected from REGIN when driven low.
BAT E2 I Cell-voltage measurement input. ADC input. Recommend 4.8V maximum for conversion accuracy.
SCL A3 I Slave I2C serial communications clock input line for communication with system (Master). Open-drain I/O. Use with 10kΩ pull-up resistor (typical).
SDA B3 I/O Slave I2C serial communications data line for communication with system (Master). Open-drain I/O. Use with 10kΩ pull-up resistor (typical).
BSDA C3 I/O Battery Charger data line for chipset communication. Push-pull output.
TS D3 IA Pack thermistor voltage sense (use 103AT-type thermistor). ADC input.
BI/TOUT E3 I/O Battery-insertion detection input. Power pin for pack thermistor network. Thermistor-multiplexer control pin. Use with pull-up resistor >1MΩ (1.8 MΩ typical).
(1) I/O = Digital input/output, IA = Analog input, P = Power connection

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VREGIN Regulator input range –0.3 to 5.5 5.5 V
–0.3 6 (2) V
VCE CE input pin –0.3 VREGIN + 0.3 V
VCC Supply voltage range –0.3 2.75 V
VIOD Open-drain I/O pins (SDA, SCL, SOC_INT) –0.3 5.5 V
VBAT BAT input pin –0.3 5.5 V
–0.3 6 (2) V
VI Input voltage range to all other pins
(BI/TOUT, TS, SRP, SRN, BSDA, BSCL)
–0.3 VCC + 0.3 V
TA Operating free-air temperature range –40 85 °C
Tstg Storage temperature range –65 150 °C
(1) Stresses beyond those listed as absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated as recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Condition not to exceed 100 hours at 25°C lifetime.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001, BAT pin(1) ±1500 V
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001, All other pins(1) ±2000
Charged device model(CDM), per JEDEC specification JESD22-C101(2) ±250
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Thermal Information

THERMAL METRIC(1) bq27530-G1 UNIT
YZF (DSBGA)
15 PINS
RθJA Junction-to-ambient thermal resistance 70 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 17 °C/W
RθJB Junction-to-board thermal resistance 20 °C/W
ψJT Junction-to-top characterization parameter 1 °C/W
ψJB Junction-to-board characterization parameter 18 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.4 Recommended Operating Conditions

TA = –40°C to 85°C, VREGIN = VBAT = 3.6 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
VREGIN Supply voltage No operating restrictions 2.8 4.5 V
No flash writes 2.45 2.8
CREGIN External input capacitor for internal LDO between REGIN and VSS Nominal capacitor values specified. Recommend a 5% ceramic X5R type capacitor located close to the device. 0.1 μF
CLDO25 External output capacitor for internal LDO between VCC and VSS 0.47 1 μF
tPUCD Power-up communication delay 250 ms

6.5 Supply Current

TA = 25°C and VREGIN = VBAT = 3.6 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ICC (1) Normal operating-mode current Fuel gauge in NORMAL mode
ILOAD > Sleep current
118 μA
ISLP+ (1) Sleep+ operating mode current Fuel gauge in SLEEP+ mode
ILOAD < Sleep current
62 μA
ISLP (1) Low-power storage-mode current Fuel gauge in SLEEP mode
ILOAD < Sleep current
23 μA
IHIB (1) Hibernate operating-mode current Fuel gauge in HIBERNATE mode
ILOAD < Hibernate current
8 μA
(1) Specified by design. Not production tested.

6.6 Digital Input and Output DC Characteristics

TA = –40°C to 85°C, typical values at TA = 25°C and VREGIN = 3.6 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOL Output voltage, low (SCL, SDA, SOC_INT, BSDA, BSCL) IOL = 3 mA 0.4 V
VOH(PP) Output voltage, high (BSDA, BSCL) IOH = –1 mA VCC – 0.5 V
VOH(OD) Output voltage, high (SDA, SCL, SOC_INT) External pullup resistor connected to VCC VCC – 0.5
VIL Input voltage, low (SDA, SCL) –0.3 0.6 V
Input voltage, low (BI/TOUT) BAT INSERT CHECK MODE active –0.3 0.6
VIH Input voltage, high (SDA, SCL) 1.2 V
Input voltage, high (BI/TOUT) BAT INSERT CHECK MODE active 1.2 VCC + 0.3
VIL(CE) Input voltage, low (CE) VREGIN = 2.8 to 4.5V 0.8 V
VIH(CE) Input voltage, high (CE) 2.65
Ilkg (1) Input leakage current (I/O pins) 0.3 μA
(1) Specified by design. Not production tested.

6.7 Power-on Reset

TA = –40°C to 85°C, typical values at TA = 25°C and VREGIN = 3.6 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIT+ Positive-going battery voltage input at VCC 2.05 2.15 2.20 V
VHYS Power-on reset hysteresis 115 mV

6.8 2.5-V LDO Regulator

TA = –40°C to 85°C, CLDO25 = 1 μF, VREGIN = 3.6 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIREG25 Regulator output voltage VCC 2.8 V ≤ VREGIN ≤ 4.5 V, IOUT ≤ 16 mA(1) 2.3 2.5 2.6 V
2.45 V ≤ VREGIN < 2.8 V (low battery), IOUT ≤ 3mA 2.3 V
(1) LDO output current, IOUT, is the total load current. LDO regulator should be used to power internal fuel gauge only.

6.9 Internal Clock Oscillators

TA = –40°C to 85°C, 2.4 V < VCC < 2.6 V; typical values at TA = 25°C and VCC = 2.5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fOSC High frequency oscillator 8.389 MHz
fLOSC Low frequency oscillator 32.768 kHz

6.10 ADC (Temperature and Cell Measurement) Characteristics

TA = –40°C to 85°C, 2.4 V < VCC < 2.6 V; typical values at TA = 25°C and VCC = 2.5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VADC1 Input voltage range (TS) VSS – 0.125 2 V
VADC2 Input voltage range (BAT) VSS – 0.125 5 V
VIN(ADC) Input voltage range 0.05 1 V
GTEMP Internal temperature sensor voltage gain –2 mV/°C
tADC_CONV Conversion time 125 ms
Resolution 14 15 bits
VOS(ADC) Input offset 1 mV
ZADC1 (1) Effective input resistance (TS) 8 MΩ
ZADC2 (1) Effective input resistance (BAT) bq27530-G1 not measuring cell voltage 8 MΩ
bq27530-G1 measuring cell voltage 100 kΩ
Ilkg(ADC) (1) Input leakage current 0.3 μA
(1) Specified by design. Not tested in production.

6.11 Integrating ADC (Coulomb Counter) Characteristics

TA = –40°C to 85°C, 2.4 V < VCC < 2.6 V; typical values at TA = 25°C and VCC = 2.5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VSR Input voltage range,
V(SRP) and V(SRN)
VSR = V(SRP) – V(SRN) –0.125 0.125 V
tSR_CONV Conversion time Single conversion 1 s
Resolution 14 15 bits
VOS(SR) Input offset 10 μV
INL Integral nonlinearity error ±0.007% ±0.034% FSR
ZIN(SR) (1) Effective input resistance 2.5 MΩ
Ilkg(SR)(1) Input leakage current 0.3 μA
(1) Specified by design. Not tested in production.

6.12 Data Flash Memory Characteristics

TA = –40°C to 85°C, 2.4 V < VCC < 2.6 V; typical values at TA = 25°C and VCC = 2.5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tDR (1) Data retention 10 Years
Flash-programming write cycles(1) 20,000 Cycles
tWORDPROG (1) Word programming time 2 ms
ICCPROG (1) Flash-write supply current 5 10 mA
tDFERASE (1) Data flash master erase time 200 ms
tIFERASE (1) Instruction flash master erase time 200 ms
tPGERASE (1) Flash page erase time 20 ms
(1) Specified by design. Not production tested

6.13 I2C-Compatible Interface Communication Timing Characteristics

TA = –40°C to 85°C, 2.4 V < VCC < 2.6 V; typical values at TA = 25°C and VCC = 2.5 V (unless otherwise noted)
MIN NOM MAX UNIT
tr SCL/SDA rise time 300 ns
tf SCL/SDA fall time 300 ns
tw(H) SCL pulse duration (high) 600 ns
tw(L) SCL pulse duration (low) 1.3 μs
tsu(STA) Setup for repeated start 600 ns
td(STA) Start to first falling edge of SCL 600 ns
tsu(DAT) Data setup time 100 ns
th(DAT) Data hold time 0 ns
tsu(STOP) Setup time for stop 600 ns
t(BUF) Bus free time between stop and start 66 μs
fSCL Clock frequency (1) 400 kHz
(1) If the clock frequency (fSCL) is > 100 kHz, use 1-byte write commands for proper operation. All other transactions types are supported at 400 kHz. (Refer to I2C Interface and I2C Command Waiting Time.)
bq27530-G1 i2c_timing_diagram.gif Figure 1. I2C-compatible Interface Timing Diagrams

6.14 Typical Characteristics

bq27530-G1 D001_SLUSBU6.gif
Figure 2. Regulator Output Voltage vs. Temperature
bq27530-G1 D003_SLUSBU6.gif
Figure 4. Low-Frequency Oscillator Frequency vs. Temperature
bq27530-G1 D002_SLUSBU6.gif
Figure 3. High-Frequency Oscillator Frequency vs. Temperature
bq27530-G1 D004_SLUSBU6.gif
Figure 5. Reported Internal Temperature Measurement vs. Temperature

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale