• Menu
  • Product
  • Email
  • PDF
  • Order now
  • 电池管理系统创新如何提高电动汽车采用率

    • ZHCY185 December   2022 BQ79731-Q1

       

  • CONTENTS
  • SEARCH
  • 电池管理系统创新如何提高电动汽车采用率
  1.   内容概览
  2.   Authors
  3.   3
  4.   BMS 的工作原理及行业趋势
  5.   新的电池化学物质
  6.   无线 BMS
  7.   电池容量和电池运行状况的高级估算
  8.   电芯监控单元 (CSU) 详细介绍
  9.   传统与智能电池接线盒 (BJB) 的比较
  10.   BJB 详细介绍
  11.   电池控制单元 (BCU) 详细介绍
  12.   创建全面的电池测试环境生态系统
  13.   结论
  14.   附加资源
  15. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

MARKETING WHITE PAPER

电池管理系统创新如何提高电动汽车采用率

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。
要在未来实现全电动化,需要进行电动动力总成系统创新,其中包括 BMS、车载充电器和直流/直流转换器以及牵引逆变器。这些系统的核心是使电气化成为可能的半导体元件。

内容概览

随着混合动力汽车 (HEV) 和电动汽车 (EV) 的广泛采用,电池管理系统 (BMS) 也在不断发展。本文深入探讨了影响 BMS 开发的趋势,以及主要子系统如何协同工作来提高安全性和效率。
1 BMS 的工作原理及行业趋势
回顾集成三个主要 BMS 子系统如何实现安全、高效的电池包,并探索新的电池化学物质和 BMS 趋势(包括无线 BMS)。
2 电池容量和电池运行状况的高级估算
电池剩余电量的准确估算对剩余续航里程有直接影响。详细了解电芯监控单元 (CSU) 及其如何提供越来越详细的电芯状态测量,从而充分发挥电池包的优势。
3 传统与智能电池接线盒 (BJB) 的比较
了解器件创新如何推动向更加现代化的架构(即智能 BJB)转变,并了解电池控制单元 (BCU) 作为通信接口的作用。

Authors

Mark Ng
Sector general manager
HEV/EV powertrain
Issac Hsu
Marketing manager
Battery management systems
Taylor Vogt
Applications manager
Battery management systems

BMS 可保护电池免受损坏,通过智能充电和放电算法延长电池寿命,预测电池剩余寿命并使电池保持正常运行状态。锂离子电池电芯面临着巨大的挑战,需要借助精密的电子控制系统来应对。此外,还存在因火灾和爆炸造成伤害的重大风险。因此,BMS 需要借助先进的器件来满足所有性能、安全和成本指标。

一般而言,每个设计人员都要努力攻克的三个主要 BMS 挑战是尽可能提高续航里程、降低成本和增强安全性。

解决其中一个挑战可能会对另一个挑战产生不利影响。在本白皮书中,我们将探讨同时解决这三个挑战的几个新趋势。

BMS 的工作原理及行业趋势

分布式 BMS 架构(图 1)具有模块化结构,通常包括三个主要子系统:电芯监控单元 (CSU)、电池控制单元 (BCU) 和电池断连单元 (BDU)。

GUID-20221206-SS0I-BCZW-7KQ0-GSGV4QJPLTVG-low.png图 1 典型的 BMS 架构。

这些子系统具有不同的行业名称,如表 1 中所列,因此为各种名称和首字母缩写词设置基准将很有帮助。

表 1 BMS 子系统在业内的常见首字母缩写词。
子系统名称 也称为: 首字母缩写词
电芯监控单元 电芯监控电路
电芯监测单元
CSU
CSC
CMU
电池控制单元 电池电气控制器
电池电量控制模块
电池管理单元
BCU
BEC
BECM
BMU
电池断连单元 电池接线盒 BDU
BJB

CSU 通过检测每个电芯的电压和温度来收集所有电池电芯的参数信息。CSU 通过执行电芯均衡来帮助补偿电池电芯之间的不一致性。BCU 必须包含来自 CSU 的参数信息,还必须检测电池包的电压和电流以执行电池包管理。BCU 根据收集的所有电压、电流和温度数据,负责参照每个电池电芯的整体状况分配电池的充放电方式。通过计算荷电状态、功率状态和运行状况来持续监测电池的状况。智能保护控制也是 BCU 的一项重要功能,因为它必须执行绝缘监测,在发生碰撞或短路时控制接触器,持续监测温度传感器并执行诊断,从而检查所有输入参数是否确实有效。信息通过控制器局域网 (CAN) 通信传输到汽车控制单元或电子控制单元。

新的电池化学物质

锂离子可以指一系列的化学物质;但它最终构成基于金属氧化物阴极和石墨阳极充电和放电反应的电池。两种较为常见的锂离子化学物质是镍锰钴 (NMC) 和磷酸铁锂 (LFP)。

NMC 是主要的化学物质,因为它具有出色的能量密度,这对续航里程有直接影响。然而,随着近年来对镍和钴的需求激增,汽车制造商正在采取策略来应对市场动荡。镍和钴也很稀有,难以从地球上提取。

虽然 LFP 仍属于占少数的化学物质且能量密度较低,但它具有显著优势。LFP 不含昂贵且稀有的镍和钴元素,因此成本会更低。它还具有较长的生命周期,因此可延长电池的使用寿命。与镍和钴电池相比,LFP 电池也更稳定,更不容易起火,需要的保护更少。

因此,LFP 可能会成为大容量汽车领域的主要化学物质,在该领域,续航里程不如经济实惠性、安全性或环保性(不使用钴和镍)那么重要。LFP 需要十分精确的电池监测技术,因为它具有非常平缓的放电曲线。阅读 BMS 的下一个目标是什么?更安全、更经济实惠的电动汽车一文,了解如何使用先进的半导体实现适用于新兴电池化学物质的 BMS 架构。

与此同时,一些供应商正在研究如何使用成本更低的钠离子电芯来与 LFP 竞争。

与使用液态电解液的传统锂离子电池不同,固态电池使用由玻璃、陶瓷、固态聚合物或硫化物组成的固体电解液,因此而得名。鉴于固态电池固有的性能优势:更高的能量密度;更高的可靠性和抗老化特性;显著加快的充电速度以及更高的安全性(最重要),多家汽车制造商正在开展固态电池研究。液态电解液在高温下会变得易燃。固态电解液具有更高的热稳定性,进而可限制火灾或爆炸的风险。

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale