• Menu
  • Product
  • Email
  • PDF
  • Order now
  • Selection of Single-Cell Buck Narrow VDC Switching Battery Chargers

    • SLUAAM6 November   2022 BQ24190 , BQ24192 , BQ24192I , BQ24195 , BQ24195L , BQ24196 , BQ24292I , BQ24295 , BQ24296 , BQ24297 , BQ24298 , BQ25600 , BQ25600D , BQ25601 , BQ25601D , BQ25606 , BQ25611D , BQ25616 , BQ25618 , BQ25619 , BQ25620 , BQ25622 , BQ25890 , BQ25890H , BQ25892 , BQ25895 , BQ25896 , BQ25898 , BQ25898D

       

  • CONTENTS
  • SEARCH
  • Selection of Single-Cell Buck Narrow VDC Switching Battery Chargers
  1.   Abstract
  2.   Trademarks
  3. 1Introduction
    1. 1.1 Input Current Limit Detection
    2. 1.2 Control Methodology Host Controlled vs Stand-Alone
    3. 1.3 Battery Monitoring and Protection
    4. 1.4 Boost Mode On-The-Go (OTG) Output
  4. 2Stand-Alone Single-Cell Switching Battery Chargers
  5. 3I2C-Controlled 3.9 V – 14 V Single-Cell Switching Battery Chargers With Battery Monitoring (BQ2589x and BQ25898x)
  6. 4I2C-Controlled 3.9 V – 17 V VBUS Single-Cell Switching Battery Chargers (BQ2419x)
  7. 5I2C-Controlled 3.9 V – 6.2 V VBUS Single-Cell Switching Battery Chargers (BQ2429x)
  8. 6I2C-Controlled 3.9 V – 13.5 V VBUS Single-Cell Switching Battery Chargers (BQ2560x and BQ2561x)
  9. 7I2C-Controlled 3.9 V – 18 V VBUS Single-Cell Switching Battery Chargers (BQ2562x)
  10. 8Summary
  11. 9References
  12. IMPORTANT NOTICE
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

APPLICATION NOTE

Selection of Single-Cell Buck Narrow VDC Switching Battery Chargers

Abstract

This application report provides a general single-cell charge selection guidance and comparison among BQ2419x, BQ2429x, BQ2589x, BQ25898x, BQ2560x, BQ2561x, and BQ2562x single-cell switching battery charge devices with Narrow Voltage DC (NVDC) Power Path Management. The document presents the main differences and describes the key features of each part. The summary also includes the comparison across various charger product families. This information provided hereby can assist design engineers with making good choices for their single-cell switching battery charging applications.

Trademarks

All trademarks are the property of their respective owners.

1 Introduction

Besides the common charger parameters such as the input voltage range, the battery charge voltage limit, the maximum charging current, the package size and so on, a single-cell charger designer needs to consider system-level architecture including but not limit to the input current limit detection scheme, the system control methodology, the system monitoring and protection scheme and boost mode operation.

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale