Errata

IWRL6432AOP 器件勘误表

摘要

本文档介绍了功能规格的已知例外情况(公告)。本文档也包含了使用说明。使用说明中介绍了器件行为可能与假定或记录的行为不匹配的情况。这可能包括影响器件性能或功能正确性的行为。

内容

1 简介	2
2 器件命名规则	
3 器件标识	
4 器件型号/修订版对应关系公告	
5 功能规范的已知设计异常	
6 商标	
修订历史记录	
图4/0天七米	. 17

1 简介

本文档介绍了德州仪器 (TI) CMOS 雷达器件 (IWRL6432AOP) 的功能和性能规范的已知异常

2 器件命名规则

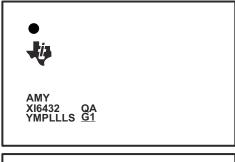
为了标示所处的产品开发周期阶段,德州仪器 (TI) 为所有雷达/毫米波传感器器件的零件号分配了前缀。每个雷达 器件具有以下两种前缀之一: XIx 或 IWRLx (例如: XI6432 QGAMY)。这些前缀代表了产品开发的发展阶段, 即从工程原型 (XI) 直到完全合格的量产器件 (IWRL)。

器件开发进化流程:

试验器件不一定代表最终器件的电气规格,并且可能不使用生产封装流程。

IWRL — 完全合格的器件芯片量产版本。

XI 器件在供货时附带如下免责声明:


"开发产品用于内部评估用途。"

由于这些器件的预期最终使用故障率仍未确定,德州仪器 (TI) 建议不要将这些器件用于任何生产系统。

www.ti.com.cn
器件标识

3 器件标识

图 3-1 展示了 IWRL6432AOP 雷达器件的封装符号示例。

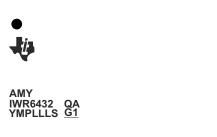


图 3-1. 器件产品标识示例

此标识编号包含以下信息:

- 第1行:TI标识
- 第1行: AMY = 封装标识符
- **第2行**:器件编号
- 第2行:安全级别和安全等级
 - Q = 符合非功能安全标准
 - A = 经认证的引导
- 第3行:批次追踪代码
 - YM = 年/月代码
 - P = 辅助站点代码
 - LLL = 组装批次
 - S=主站点代码
 - G1 = "绿色"封装版本(必须带下划线)

4 器件型号/修订版对应关系公告

表 4-1. 器件型号/修订版对应关系公告

公告编号	公告标题——	IWRL6432AOP	
		ES2.0	
模拟/毫米波			
ANA #51	连续波流 CZ 模式: RX 输出代码每 20.97152 毫秒突然跳变一次	х	
ANA#54	由于 TX 与 RX 的耦合,RX ADC 存在饱和风险	Х	
ANA#57	在存在强近距离反射源的情况下,在 60GHz 出现 SNR 劣化	Х	
	数字子系统		
DIG #1	ePWM: 斩波运行模式期间存在干扰	х	
DIG #3	限制了 UART 波特率	Х	
DIG #4	RS232 自动波特率功能不支持修整后的 ROCSC 差异。	Х	
DIG #5	启用 SPI 智能空闲模式后,不支持通过内部总线访问 SPI 来传输数据。	Х	
DIG #6	CRC: 不支持 CRC 8 位数据宽度以及 CRC8-SAE-J1850 和 CRC8-H2F 在 CAN 模块中的潜在用途	Х	
DIG #8	共享 RAM 时钟门控默认值	Х	
DIG #9	无法从 RS232 访问 TOP_IO_MUX 寄存器空间来进行调试。	х	
DIG #10	帧停止 API 出现错误行为	Х	
DIG #15	如果 metaimage 为 2K 的倍数,引导将会失败	Х	
DIG #16	通过 SPI 传输小于 8k 的映像时引导失败	Х	

5 功能规范的已知设计异常

受影响的修订版

IWRL6432AOP ES2.0

详细信息

在连续波流 CZ 模式下, Rx 数据显示输出代码每 20.97152 毫秒突然跳变一次。

使用线性调频脉冲时,这在雷达功能模式下不会导致问题。但是,在实验室中使用连续流

模式测试 Rx 链时,将会出现此问题。

权变措施

要使用连续流 (CW) 模式进行测试,建议从第一个样本本身开始采集数据,以确保在确定性的样本上发生干扰。请按照以下顺序实现此目的:

- 配置 RDIF (雷达数据接口)
- 装备 DCA1000 (数据采集卡)
- 启用连续流模式。

按此顺序操作不会出现干扰。例如,如果用户分析前 20ms 或 21 到 41ms 间的数据。

ANA#54 由于 TX 与 RX 的耦合, RX ADC 存在饱和风险

受影响的修订版: IWRL6432AOP ES2.0

率和 HPF 截止频率配置,这可能导致 ADC 饱和。

权变措施: 请参阅 xWRL6432AOP 的 Tx 退避和 Rx 增益建议,避免 ADC 饱和。

ANA #57 在存在强近距离反射源的情况下,在 60GHz 出现 SNR 劣化

受影响的修订版 IWRL6432AOP ES2.0

详细信息 超过 60GHz 时,合成器存在非线性问题,这会导致在存在强近距离反射源的情况下 RX 输

出的本底噪声增加。

权变措施 射频带宽较大 (>1.5GHz) 的线性调频脉冲的本底噪声影响可以忽略不计。对于带宽较小的

线性调频脉冲,避免使用 60GHz。

DIG #1 ePWM: 斩波运行模式期间存在干扰

受影响的修订版 IWRL6432AOP ES2.0

详细信息 在斩波模式下运行期间,可能会在来自 ePWM 模块的 ePWMA 和 ePWMB 输出信号上观

察到干扰。

权变措施 如果用例受到干扰,建议将 LPRADAR:APP_PWM:PCCTL:CHPEN 寄存器位设置为 0,以

禁用 PWM 斩波控制功能。

下表列出了上述权变措施的寄存器地址。

位	名称	地址
0	LPRADAR:APP_PWM:PCCTL:CHP EN	0X57F7 FC3C

DIG #3 UART: 限制了UART 波特率

受影响的修订版

IWRL6432AOP ES2.0

详细信息

由于设计限制(与时钟方案有关), UART 不支持高于 115200 比特每秒的标准波特率。可支持最高 1.25Mbps 的更高波特率,但它们是非标准的。

需要 UART 的应用无法使用高于 115200 比特每秒的标准波特率

支持的标准波特率:

XTAL (MHz)	40	
理想波特率 (bps)	实际波特率	误差 %
115200	113636.36	1.36
76800	75757.58	1.36

支持的非标准波特率:

XTAL (MHz)	40
最大波特率 (bps)	1250k
	833.33k
	625k
	500k
	416.66k
	357.14k
	312.5k

权变措施

建议根据应用需求使用以下权变措施:

- 如果外部 MCU 可支持相同的非标准波特率,使用非标准波特率可提供最高 1.25Mbps 的吞吐量。
- 如果用例需要更高的吞吐量,则改用 SPI。

DIG #4 RS232:自动波特率功能不支持修整后的 RCOSC 差异

受影响的修订版 IWRL6432AOP ES2.0

详细信息

修整 RCOSC 后,预期的时钟频率和观察到的频率差异(RC 时钟的容差)不支持 RS232

所需的自动波特率设置。

目前,对于 ES2.0,默认会禁用自动波特率

启用 SPI 智能空闲模式后,不支持通过内部总线访问 SPI 来传输数据。

受影响的修订版

IWRL6432AOP ES2.0

详细信息

在第一次触发以进行数据传输访问之前,需要禁用 SPI 智能空闲模式。如果需要启用 SPI 智能空闲模式,必须在访问完成后再次启用该模式。

权变措施

建议遵循以下操作顺序:

自动唤醒 = 1 且在控制器模式下

- 1. 根据需要配置 McSPI
- 2. 在确保**没有**来自/到 SPI 的待处理事务,且 CPU 或 DMA 不会再访问 McSPI 之后,启用"智能空闲"模式(对于 SPI1,设置
 - LPRADAR:APP_CTRL:SPI1_SMART_IDLE_ENABLE; 对于 SPI 2, 设置 LPRADAR:APP_CTRL:SPI2_SMART_IDLE_ENABLE)
- 3. 如果需要对 McSPI 进行寄存器或存储器访问,禁用"智能空闲"模式(对于 SPI 1, 设置 LPRADAR:APP_CTRL:SPI1_SMART_IDLE_ENABLE=0; 对于 SPI 2, 设置 LPRADAR:APP CTRL:SPI2 SMART IDLE ENABLE=0)
- 4. 在控制器模式下,外部主机不会切换 SPI_CS,因此不会发生任何唤醒操作 => (对于 SPI 1,设置 LPRADAR:APP_CTRL:SPI1_SMART_IDLE_AUTO_EN 为 1 或 0,以及 设置 LPRADAR:APP_CTRL:SPI2_SMART_IDLE_AUTO_EN 为 1 或 0)没有任何区 别

自动唤醒 = 1 且在外设模式下

- 1. 根据需要配置 McSPI
- 2. 在确保**没有**来自/到 SPI 的待处理事务,且 CPU 或 DMA 不会再访问 McSPI 之后,启用"智能空闲"模式(对于 SPI1,设置
 - LPRADAR:APP_CTRL:SPI1_SMART_IDLE_ENABLE;对于 SPI 2,设置 LPRADAR:APP_CTRL:SPI2_SMART_IDLE_ENABLE)
- 3. 如果任何控制器 (DMA/CPU) 需要对 McSPI 进行寄存器或存储器访问,禁用"智能空闲"模式(对于 SPI 1,设置
 - LPRADAR:APP_CTRL:SPI1_SMART_IDLE_ENABLE=0;对于 SPI 2,设置 LPRADAR:APP CTRL:SPI2 SMART IDLE ENABLE=0)
- 4. 如果有来自 McSPI 的唤醒信号(由于某个 SPI CS 切换操作),则会自动启用时钟。
- 5. 禁用"智能空闲"配置(对于 SPI 1,设置 LPRADAR:APP_CTRL:SPI1_SMART_IDLE_ENABLE=0;对于 SPI 2,设置 LPRADAR:APP CTRL:SPI2 SMART IDLE ENABLE=0),以访问寄存器。

下表列出了针对上述权变措施的寄存器地址。

位	名称	地址
0	LPRADAR:APP_CTRL:SPI1_SMAR T_IDLE_ENABLE	0x560603A8
2	LPRADAR:APP_CTRL:SPI1_SMAR T_IDLE_AUTO_EN	0x560603A8
0	LPRADAR:APP_CTRL:SPI2_SMAR T_IDLE_ENABLE	0x560603AC
2	LPRADAR:APP_CTRL:SPI2_SMAR T_IDLE_AUTO_EN	0x560603AC

CRC:不支持 CRC 8 位数据宽度以及 CRC8-SAE-J1850 和 CRC8-H2F 在 CAN 模块中的 潜在用途

受影响的修订版

IWRL6432AOP ES2.0

详细信息

- 1. 不支持 8 位数据宽度。支持的最小数据宽度为 16 位。
- 2. 不支持 CRC 类型 CRC8-SAE-J1850 和 CRC8-H2F。

权变措施

- 1. 支持 16/32/64 位数据宽度。
- 2. 建议不要使用上述不受支持的多项式。

共享RAM 时钟门控默认值

受影响的修订版

IWRL6432AOPES2.0

详细信息

在未对时钟门控寄存器重新编程的情况下,退出深度睡眠模式时可能会损坏共享 RAM 数据。

前端控制器子系统 (FECSS)、应用子系统 (APPSS) 和硬件加速器子系统 (HWASS) 共享存储器时钟门控的复位值为 1。时钟 ICG 控制信号来自以下寄存器。

位	名称	地址
0	LPRADAR:FEC_CTRL:FECSS_SH ARED_MEM_CLK_GATE: FECSS_SHARED_MEM_CLK_GAT E_HWA_ENABLE	0x5200002C
0	LPRADAR:APP_CTRL:APPSS_SH ARED_MEM_CLK_GATE:APPSS_ SHARED_MEM_CLK_GATE_MEM 0_HWA_ENABLE	0x56060398
2	LPRADAR:APP_CTRL:APPSS_SH ARED_MEM_CLK_GATE:APPSS_ SHARED_MEM_CLK_GATE_MEM 1_HWA_ENABLE	0x56060398

当 FECSS 通过 AHB 访问共享存储器时,若 APPSS 试图通过 VBUSM SCR 访问共享存储器组 0,会观察到 APPSS 从共享 RAM 中读取到错误的零值。

如果根据分配情况仅启用其中一个时钟门(HWA或FEC/APP),则可以正确读取数据。由于时钟门控控制信号来自控制信号寄存器空间,因此每次退出深度睡眠模式后,这些值会再次被复位,需要重新编程。

权变措施

根据不同的共享存储器配置,对到达共享存储器的时钟 ICG 控制信号进行编程。每次退出深度睡眠模式后,都需要对 ICG 控制信号进行重新编程。

配置	软件注意事项
存储器与 M3 共享	禁用以下 ICG 控制信号:- LPRADAR:FEC_CTRL:FECSS_SHARED_MEM_CLK _GATE: FECSS_SHARED_MEM_CLK_GATE_HWA_ENABLE
前 128KB 与 M4 共享	禁用以下 ICG 控制信号: - LPRADAR:APP_CTRL:APPSS_SHARED_MEM_CLK _GATE:APPSS_SHARED_MEM_CLK_GATE_MEM0_ HWA_ENABLE
256KB 与 M4 共享	禁用以下 ICG 控制信号:- LPRADAR:APP_CTRL:APPSS_SHARED_MEM_CLK_GATE:APPSS_SHARED_MEM_CLK_GATE_MEM0_HWA_ENABLE LPRADAR:APP_CTRL:APPSS_SHARED_MEM_CLK_GATE:APPSS_SHARED_MEM_CLK_GATE_MEM1_HWA_ENABLE

无法从 RS232 访问 TOP_IO_MUX 寄存器空间来进行调试

受影响的修订版

IWRL6432AOPES2.0

详细信息

RS232 无法写入 TOP_IO_MUX 寄存器,除非该空间已针对用户模式访问进行了编程。

权变措施

建议按以下顺序操作:

- 1. 从处理器或 DAP:解锁 TOP_IO_MUX 寄存器(通过编程 LPRADAR:TOP_IO_MUX:IOCFGKICK0 = 83E7 0B13h 和 LPRADAR:TOP_IO_MUX:IOCFGKICK1 = 95A4 F1E0h)
- 2. 从处理器或 DAP:写入 TOP_IO_MUX 寄存器, LPRADAR:TOP_IO_MUX:USERMODEEN 应设置为 0xADADADAD
- 3. 现在可以从 RS232 访问 TOP_IO_MUX 寄存器了。

下表列出了针对上述权变措施的寄存器地址。

位	名称	地址
0:31	LPRADAR:TOP_IO_MUX:IOCFGKI CK0	0x5A000068
0:31	LPRADAR:TOP_IO_MUX:IOCFGKI CK	0x5A00006C
0:31	LPRADAR:TOP_IO_MUX:USERM ODEEN	0x5A000060

DIG #10 帧停止 API 出现错误行为

受影响的修订版

IWRL6432AOPES2.0

详细信息

帧定时器将帧停止命令锁存在硬件寄存器中,该命令在当前帧结束时生效。由于锁存的停止位,在帧定时器已经停止时发出帧停止 API,将导致下一帧触发意外停止。

权变措施

- 1. 应避免使用不必要的传感器停止 API。
- 2. 该应用可能必须等待一个帧周期完成,然后才能停止帧。
- 3. 应用应等待 FECSS 在收到帧停止确认后,完成突发结束和帧结束活动。

如果 metaimage 为 2K 的倍数,引导将会失败

受影响的修订版

IWRL6432AOP ES2.0

详细信息

如果 metaimage 为 2048 字节的倍数,引导将会失败。

权变措施

- 2. 将 MMWAVE-L-SDK 更新到 5.4 或更高版本;毫米波 LSDK 5.4 及更高版本对 metaimage 进行了更改,在映像为 2048 字节的倍数时会添加一个最小配置文件(约 64 字节)。

通过 SPI 传输小于 8k 的映像时引导失败

受影响的修订版

IWRL6432AOP ES2.0

详细信息

在少数情况下(在 SPI 连续下载期间)不会进行 EDMA 地址链接,因此对于下表中提到的特定 metaimage 大小范围,通过 SPI 引导连续下载映像将会失败:

映像大小(字节)	是否存在问题
<2048	否
>2048 且 <4096	否
>=4096 且 <6144	是
>=6144 且 <8192	是
>= 8192	否

权变措施

通过 SPI 引导时使用大于 8KB 的映像。如果映像较小,在编译期间将附加常量数据来创建大于 8KB 的映像。

www.ti.com.cn 商标

6 商标

所有商标均为其各自所有者的财产。

修订历史记录

Cł	Changes from APRIL 30, 2024 to APRIL 30, 2025 (from Revision * (April 2024) to Revision A			
(A	April 2025))	Page		
•	<i>器件标识</i> :更新了生产器件标识。	3		
	添加了 ANA #57			
	14-74-14			

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司