通过 Jacinto™ 7 处理器上的 MCU 集成 获得显著优势

Mahmut Ciftci

系统架构师, Jacinto 处理器

Yashwant Dutt

工程经理, Jacinto 处理器

Sujith Shivalingappa

工程经理, Jacinto 处理器 在过去的十年里,汽车架构发生了很大的变化,致力于满足消费者的要求,提供了更多娱乐、连接和功能安全特性。最近,自动驾驶技术受到普遍关注,这使得汽车成为了一个创新中心并处于技术进步的前沿。因此,系统复杂性、半导体组件数量和成本迅速攀升。

如今,典型的汽车都拥有数百个电子控制单元 (ECU),可管理各种功能。这些 ECU 大多是简单的微控制器 (MCU)。但是,对于高级驾驶辅助系统 (ADAS) 和汽车网关系统等更复杂的系统而言,除了汽车 MCU 之外,还需要配备更加强大的应用处理器,每一个处理器都需要执行特定的系统功能。

本白皮书介绍了汽车 MCU 在汽车系统中所发挥的作用,并展示了 Jacinto™7 处理器的芯片架构(该处理器将汽车 MCU 集成到了应用处理器中)。

汽车系统中的汽车 MCU

复杂的汽车嵌入式系统将会在应用处理器和汽车 MCU (也称为唤醒 MCU) 之间分配计算责任。图 1 展示了此类系统的方框图, 其中的应用处理器可以是一个单核或多核处理器, 用于托管单个或多个高级操作系统, 并且驱动显示器、处理应用软件和中间件以及管理高吞吐量数据、复杂图形、摄像头和视觉处理。

MCU 则负责由 ECU 所执行的所有操作。它将监视应用处理器并评估其计算结果。MCU 还将处理其他传感器输入、管理与汽车网络的通信(通过控制器区域网络 [CAN]、本地互连网络 [LIN] 和以太网实现)、执行其他维护活动并支持唤醒和待机功能。在某些功能安全用例中,汽车 MCU 还可以管理功能安全要求。

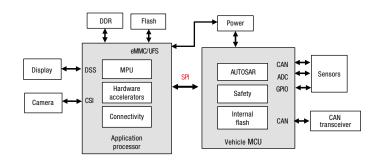


图 1.复杂汽车系统的通用方框图。

典型的汽车 MCU 支持:

- 多种连接接口,可通过 CAN、LIN 和以太网与汽车网络的其他节点通信。
- 多种输入和输出接口(例如

通用输入/输出 [GPIO]、模数转换器 [ADC]、串行外设接口 [SPI] 和 I2C),可监控各种传感器和外设。

- 高速存储器,可存储数据和程序(嵌入式/外部存储器)。
- 低功耗待机模式。
- · 快速启动,可响应汽车网络消息 (例如在 50ms 至 100ms 内提供 CAN 响应)。
- 汽车安全完整性等级 (ASIL)-D 安全支持 (如果需要),可达 到系统安全目标。
- · 汽车开放系统架构 (AUTOSAR) 堆栈和应用程序。

随着系统复杂性和功能集的增加,对车辆 MCU 的要求将会不断提高,包括:

- 更高的计算能力,以便满足复杂软件的更高计算需求。
- 更大的嵌入式闪存,以便处理更复杂的软件。
- 更多的高速存储器,以便容纳更大的软件(同时包括数据和指令)。
- 多个以太网端口,以便支持多个网络。
- ・ 更多的输入和输出接口(CAN、LIN 和 ADC)。
- 更高的网络安全要求。

这些更高的要求意味着更高的汽车 MCU 成本,因此物料清单 (BOM) 成本将会增加。

当采用图 1 中所示的分离式架构时,软件开发会成为一个挑战。应用处理器和汽车 MCU 基于不同的架构,并且都具有自己的软件开发套件 (SDK)。软件开发和验证必须在两个不同的软件环境中进行,这会显著增加软件开发和验证的复杂性和工作量。

此外,当系统需要具备满足功能安全要求的能力时,分离式架构还会使这种能力变得更加复杂。如果必须兼顾应用处理器和 MCU 的要求,那么管理这两个组件就会变得非常困难。此外,在具有 ASIL-D 安全要求的系统中,处理器间通信 (IPC) 必须具有较高的中央处理单元性能,从而满足功能安全需求(尤其是存在大量数据时)。

DRA8xx 和 TDA4xx 片上系统 (SoC) 是 Jacinto 7 处理器系列的组成部分,且提供了将汽车 MCU 集成到应用处理器中的全新架构。该架构可解决不断提高的系统要求,同时优化系统 BOM 成本、实现统一的软件开发并简化功能安全和安全支持。

在 Jacinto 7 处理器上集成 MCU

Jacinto 7 汽车应用处理器平台包括针对 ADAS、汽车网关和驾驶舱系统的创新功能(尤其是在与汽车 MCU 集成的情况下)。图 2 展示了 Jacinto 7 SoC 的高级架构。应用处理器分为两个独立的域:主域和 MCU 域。主域提供高性能计算内核,如微处理单元和图形处理单元、多媒体加速器和视觉硬件加速器(包括数字信号处理器)。此外,主域还会提供必要的输入、输出和视频接口(如捕获和显示)。

MCU 域将会替代通常被分摊到外部汽车 MCU 上的功能。主域和 MCU 域是彼此分开的,各自具有独立的电压、电源、时钟和复位功能。硬件防火墙可确保两个域之间不相互干扰 (FFI)。

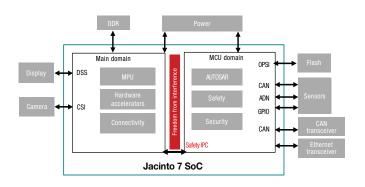


图 2.基于 Jacinto 7 SoC 的系统架构。

Jacinto 7 SoC 的 MCU 域包括:

· 处理内核。MCU 域基于双核 Arm® Cortex®-R5F 处理器;每个内核均可进行配置,从而实现锁步或分离模式。Cortex-R5F 内核的运行频率最高可达 1GHz,并且性能显著高于独立的汽车 MCU。

- 外设和 I/O 接口。MCU 子系统具有一套支持汽车用例的全面 I/O,包括:
 - 多个 CAN 灵活数据速率实例。
 - 以太网。
 - 多个 GPIO、SPI、I2C 和脉宽调制实例。
 - 多通道 ADC。
- 功能安全。Jacinto 7 SoC MCU 域旨在支持高达 ASIL-D 等级的系统。集成到 MCU 域中的以下功能单元可实现更高的安全等级:
 - 内置自检。
 - 所有存储器上的错误校正码 (ECC)。
 - 错误信令模块。
 - 循环冗余校验。
 - 看门狗计时器。
 - 双路时钟比较器和温度传感器。

有关详情,请参阅我们的《将 Jacinto™ 7 处理器的功能安全特性用于汽车设计》)白皮书。

- 安全性。Jacinto 7 架构中的 MCU 域是整个 SoC 的安全主设备。MCU 包括一个设备管理和安全控制器,该控制器可支持:
 - 使用唯一密钥进行安全启动。
 - 加密加速器: Rivest, Shamir and Adelman-4K; 真随机数 发生器/确定性随机位发生器;安全哈希算法 2-512; 以及 高级加密标准(AES)256。
 - 硬件安全模块服务。
 - 内存和外设防火墙。

电源

低待机功耗是汽车 MCU 提供的一个主要特性。Jacinto 7 SoC 可向 MCU 域提供独立电源,以此实现低待机功耗。在典型情况下,MCU 域将保持断电状态,且只有在出现 CAN 活动时才会被唤醒。根据所收到的 CAN 消息,SoC 将开启整个系统上电过程或重新返回断电模式。

闪存

Jacinto 7 SoC 不支持集成闪存, 而是依靠八通道 SPI (OSPI) 或 Hyperflash 等外部 NOR 闪存来存储启动映像和其他映像。MCU 域具有带 ECC 支持的内部随机存取存储器, 可运行

AUTOSAR 堆栈和其他软件;而且还可以访问大型外部双倍数据速率存储器,从而提供额外的程序和数据空间。OSPI 支持就地执行(XIP),可缩短唤醒时间,且 XIP 中的映像在执行之前要先经过身份验证。

启动和早期 CAN 响应

在已集成 MCU 的 Jacinto 7 处理器平台上,可实现快速启动和早期 CAN 响应。MCU 域是整个 SoC 的启动主设备,可启动并运行 CAN 堆栈,从而满足 50ms 至 100ms 的时间要求。

比较 Jacinto 7 MCU 集成与外部汽车 MCU

表 1 比较了 Jacinto 7 平台的 MCU 域与

特性	Jacinto 7 MCU	外部 MCU
处理内核	提供更高的性能;与外部 MCU 相比,内核可在 更高的速度下运行。	更低性能
I/O 支持	CAN、ADC、SPI、GPIO、PWM、以太网	CAN、ADC、SPI、GPIO、PWM、以太网
功能安全	高达 ASIL-D 级;简化了混合关键应用的安全 支持	高达 ASIL-D 级;可能落后于最新的功能安全 要求
安全性	最新的安全支持	可能落后于最新的安全要求
电源	可满足低功耗要求	低待机电流
系统 BOM 成本	省去了外部 MCU,可显著节省系统 BOM 成本;可节省印刷电路板 (PCB) 空间	可能导致成本大幅增加(具体取决于闪存大小、功能安全要求等因素)
引导	满足 CAN 响应的 50ms 至 100ms 启动时间 要求	满足 CAN 响应的 50ms 至 100ms 启动时间 要求
软件开发	实现了与应用处理器的统一软件开发	独立 SDK
闪存	外部闪存(OSPI、Hyperflash)	内部闪存;由于需要较大的闪存,MCU成本显著增加。
通信	内部 IPC 可提供更快、更安全的通信	外部接口、SPI等

表 1: 已集成 MCU 的 Jacinto 7 处理器与传统外部 MCU 的特性对比

Jacinto 7 软件架构

Jacinto 7 软件开发 (包括针对 DRA8xx 和 TDA4xx SoC 的开发) 实现了应用处理器和汽车 MCU 的统一。只需使用单个 Jacinto 7 平台 SDK, 即可完成针对主域和 MCU 域的软件开发。

图 3 和图 4 展示了网关和 ADAS 用例的示例软件架构。在这些示例中,MCU 域运行:

- 系统启动和设备管理。
- · AUTOSAR 实时操作系统、堆栈和应用程序。
- 诊断。
- 功能安全和信息安全服务。

主域运行:

高级操作系统。

- · 自适应 AUTOSAR 和客户应用等应用。
- 中间件和互联功能。
- 视觉和多媒体算法。

可实现功能安全的高性能 IPC 将管理主域与 MCU 域之间的通信。

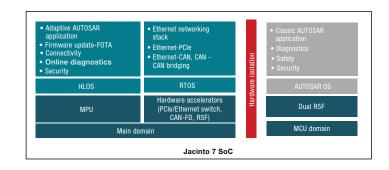


图 3.典型网关系统的 Jacinto 7 软件架构。

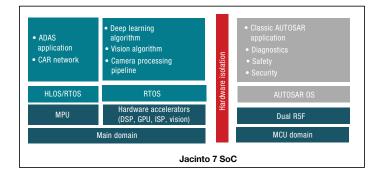


图 4.ADAS 的 Jacinto 7 软件架构。

结束语

与外部 MCU 相比,在将汽车 MCU 集成到 Jacinto 7 平台后可提供许多优势,包括:

- · 灵活的高性能 MCU。
- · 较低的系统 BOM 成本。
- 统一的软件开发。
- · 简化的功能安全和安全支持。

此外,汽车 MCU 集成在所有 Jacinto 7 系列的产品中都很常见,这可以扩展到各种终端设备类型,从而实现软件和硬件的重复使用。

有关 Jacinto 7 处理器的更多信息,请访问 <u>ti.com/jacinto7</u>。

重要声明:本文所提及德州仪器 (TI) 及其子公司的产品和服务均依照 TI 标准销售条款和条件进行销售。TI 建议用户在下订单前查阅全面的全新产品与服务信息。TI 对应用帮助、客户应用或产品设计、软件性能或侵犯专利不承担任何责任。有关任何其他公司产品或服务的发布信息均不构成 TI 因此对其的批准、担保或认可。

所有其它商标均是其各自所有者的财产。

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司