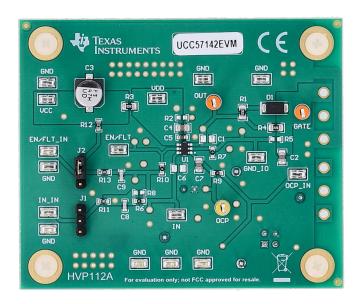
EVM User's Guide: UCC57142EVM

UCC57142 评估模块



说明

UCC57142EVM 主要用于评估 UCC57142 的功能。此 EVM 可以针对容性负载或具有 TO-220 封装的功率器件评估这款驱动器的性能。UCC57142EVM 评估板允许通过表面贴装测试点连接到各种测试点(如 IN、EN/FLT、OCP 和 OUT)。UCC57142EVM 可通过跳线支持不同的 UCC57142 型号。通过对电路板进行改造,UCC57142EVM 还与 DBV 封装中的其他栅极驱动器兼容。

特性

- 测试点可用于探测 UCC57142 的所有关键引脚
- 可快速验证大多数数据表参数
- 在采用 DBV 封装的所有 UCC57142 型号和其他 TI 栅极驱动器之间兼容
- 外部 TO-220 功率器件低侧连接
- PCB 布局针对偏置电源旁路电容和栅极电阻选型进 行了优化

UCC57142 评估模块

1 评估模块概述

1.1 简介

本用户指南介绍了 UCC57142 评估模块 (EVM) 的特性、运行和使用情况。本文档包含完整的原理图、PCB 布局和 BOM。此系列器件提供过流保护功能,并可高效驱动 MOSFET、SiC MOSFET 和 IGBT 电源开关。

1.2 套件内容

UCC57142EVM 套件包含:

- UCC57142 EVM
- 通用评估套件用户指南

1.3 规格

如需了解驱动负载的全系列建议运行规格和设计指南,请参阅 *具有过流保护功能的 UCC5714x-Q1 高速、低侧栅极驱动器* 数据表。

小心

UCC57142EVM 仅适用于低压评估,未经认证在超出电气规格中列出的绝对最大值的电压下进行评估。请**勿**使用此电路板评估高压参数。

1.4 器件信息

UCC57142 是一款 30V 单通道低侧栅极驱动器,具有 3A 峰值拉电流和 3A 峰值灌电流,用于驱动 Si MOSFET、SiC MOSFET和 IGBT。UCC57142 还具有过流保护 (OCP)、故障信号输出和额定电压为 12.5V 的 UVLO 保护功能。UCC57142 具有低传播延迟以及快速上升和下降时间。无论 VDD 电压如何,UCC57142 输入均可承受高达30V 以及低至 -5V 的信号,从而提高驱动器稳健性。UCC57142EVM 板可用于评估支持的封装中的其他引脚对引脚兼容器件。

如需详细的器件信息,请参阅 具有过流保护功能的 UCC5714x-Q1 高速、低侧栅极驱动器 器件数据表。

2 硬件

2.1 其他图像

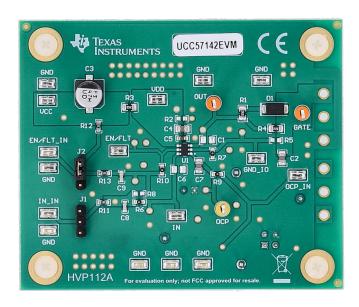


图 2-1. UCC57142EVM 的前面,支持 UCC57142 和 UCC57148 IC

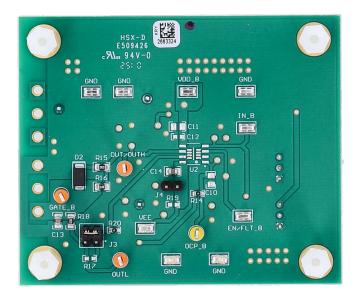


图 2-2. UCC57142EVM 的背面,支持 UCC57132B 和 UCC57138C IC

2.2 电源要求

参数	最小值	典型值	最大值	单位			
输入和输出特性							
输入 V _{DD}	14.5 ⁽¹⁾		26	V			
输入 V _{IN}	-2		26	V			
输入 V _{EN/FLTb}	0		26	V			
输入 V _{OCP}	-5		10	V			
系统特性							
开关频率	0	100	500	kHz			

(1) UCC57142EVM 还支持 UCC57148 IC。在本例中,最小输入 V_{DD} 为 8.5V。

2.3 不同 UCC57142 型号的设置

UCC57142EVM 出厂时已预装 UCC57142 驱动器系列中的 UCC57142 型号,并且 EVM 已按该型号进行开箱即用设置。UCC57148 是 8V UVLO 型号。UCC5714x 用于负过流保护。

UCC57142 驱动器系列还有另外两个型号:支持双极电压并具有 12.5V UVLO 的 UCC57132B;以及具有拆分输 出和 8V UVLO 的 UCC57138C。UCC57132B 和 UCC57138C 型号均用于正过流保护。

UCC5714x 使用该 EVM 的项面, UCC5713x 使用该 EVM 的底面。一次只能在 EVM 上填充一个 IC。

由于每个 UCC5713x 型号的引脚排列略有不同,因此,该 EVM 具有跳线以支持不同型号。借助跳线 J3 和 J4,用户可以在连接器之间进行短接或断开,具体取决于所使用的器件型号。图 2-3 显示了如何为每个 UCC5713x 型号配置 J3 和 J4。不要在 J3 上进行多个短接。请确保使用 VDD 旁路电容器组装 C11 和 C12 (C11 建议的最低电容为 $1\mu F$, C12 建议为 $0.1\mu F$)。

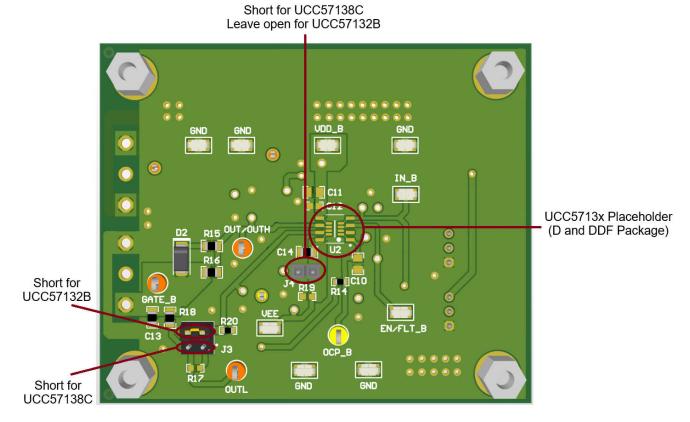


图 2-3. 每个 UCC5713x IC 型号的跳线 J3 和 J4 选择

除了跳线 J3 和 J4,还可以焊接 0Ω 跳线电阻(R17、R19 或 R20)来实现低寄生效应的短接。开箱即用 EVM 的底部设置了 UCC57132B 型号,该型号在电路板上安装了 R20。电阻 R17 和 R19 未安装。如果使用 UCC57138C 型号,则必须拆焊 R20。表 2-1 展示了每个 UCC5713x 型号的 0Ω 跳线电阻的焊接或拆焊指南。

表 2-1. UCC5713x 的电阻焊接指南

器件	R17	R19	R20
UCC57132B	拆焊	拆焊	焊料
UCC57138C	焊料	焊料	拆焊

2.4 I/O 说明

表 2-2. UCC57142EVM 顶部 I/O 说明

引脚	说明
VCC	EVM 的正电源输入。用于 EVM 的项部和底部。
IN_IN	EVM 的输入信号输入。用于 EVM 的顶部和底部。
EN/FLT_IN	EVM 的使能和故障信号输入。用于 EVM 的顶部和底部。
OCP_IN	EVM 的过流保护输入。用于 EVM 的顶部和底部。
VDD	UCC57142 IC VDD 引脚的测试点。
IN	UCC57142 IC IN 引脚的测试点。
EN/FLT	UCC57142 IC EN/FLTb 引脚的测试点。
OCP	UCC57142 IC OCP 引脚的测试点。
GATE	EVM 顶部的负载测试点。
OUT	UCC57142 IC OUT 引脚的测试点。
GND_IO	UCC57142 IC 的接地。兼用作 DBV 封装中的其他栅极驱动器的多用途 I/O。
GND	EVM 的接地。多个测试点。

表 2-3. UCC57142EVM 底部 I/O 说明

引脚	说明
VDD_B	UCC5713x IC VDD 引脚的测试点。
VEE	UCC57132B IC 型号的负电源输入和测试点。
IN_B	UCC5713x IC IN 引脚的测试点。
EN/FLT_B	UCC5713x IC EN/FLTb 引脚的测试点。
OCP_B	UCC5713x IC OCP 引脚的测试点。
GATE_B	EVM 底部的负载测试点。
OUT/OUTH	UCC5713x IC OUT 引脚的测试点。 OUTH 仅用于 UCC57138C 型号。
OUTL	UCC57138C IC OUTL 引脚的测试点。
GND	EVM 的接地。多个测试点。

2.5 跳线信息

表 2-4. 跳线

跳线	名称	说明	
J1	EN/FLT_IN 到 VCC 上拉电压	通过连接到 VCC 将 EN/FLT 信号输入拉至高电平	
J2	IN_IN 到 VCC 上拉电压	通过连接到 VCC 将信号输入拉至高电平	
J3	引脚7指示符	实现引脚 7 与其他 UCC5713x 型号的兼容性	
J4	引脚 8 指示符	实现引脚 8 与其他 UCC5713x 型号的兼容性	

2.6 DBV 封装兼容性

通过修改 EVM 的顶部, UCC57142EVM 可与多个使用 DBV (SOT-23) 封装的其他 TI 栅极驱动器兼容。支持以下 TI 栅极驱动器(及其型号): UCC27511、UCC27517、UCC27518、UCC27519、UCC27531、UCC27532、UCC27533、UCC27536、UCC27537和 UCC44273。

备注

UCC57142EVM 主要设计用于 UCC57142 系列驱动器。如果将 EVM 用于其他器件,则无法确保最佳性能。

2.6.1 UCC27511 修改

UCC57142EVM 的开箱即用配置可通过以下修改与 UCC27511 兼容:

- 1. 移除 EVM 上的所有跳线。
- 2. 移除 R1、R3、R7 和 D1。
- 3. 短接 C4 和 C5。
- 4. 使用栅极电阻器填充 R5。
- 5. 使用 1 μ F 电容器 (VDD 旁路电容器) 替换 C7。

表 2-5 列出了 UCC27511 如何使用 I/O 接头。

表 2-5. 接头功能

EVM 接头	功能	
OCP/OCP_IN	VDD 引脚/ VCC 信号输入	
GND_IO	OUTH 引脚	
OUT/栅极	OUTL 引脚/栅极	
VDD/VCC	GND 引脚/未使用	
EN/FLT/EN/FLT_IN	IN- 引脚/IN- 信号输入 ⁽¹⁾	
IN/IN_IN	IN+ 引脚/IN+ 信号输入 ⁽¹⁾	

⁽¹⁾ UCC27511 要求对输入引脚施加偏置才能确保正常运行。如果在非反相配置中使用驱动器,则应将 IN- 引脚偏置到 GND。如果在反相配置中使用驱动器,则应将 IN+ 引脚偏置到 VDD。使用适当的接头偏置引脚。

2.6.2 UCC27517 和 UC27533 修改

UCC57142EVM 的开箱即用配置可通过以下修改与 UCC27517 和 UCC27533 兼容:

- 1. 移除 EVM 上的所有跳线。
- 2. 移除 R1、D1、C3 和 C4。
- 3. 短接 R11。
- 4. 将 C8 调整为所需的负载值。
- 5. 将 R6 调整为所需的栅极电阻。
- 6. 使用 1 µ F 电容器 (VDD 旁路电容器)替换 C7。

表 2-6 列出了 UCC27517 和 UCC27533 如何使用 I/O 接头。

表 2-6. 接头功能

7			
EVM 接头	功能		
OCP/OCP_IN	VDD 引脚/VDD 信号输入		
GND_IO	GND 引脚		
OUT/栅极	IN+ 引脚/IN+ 信号输入 ⁽¹⁾		
VDD/VCC	IN- 引脚/IN- 信号输入 ⁽¹⁾		
EN/FLT/EN/FLT_IN	未使用		
IN/IN_IN	OUT 引脚/栅极		

⁽¹⁾ UCC27517 要求对输入引脚施加偏置才能确保正常运行。如果在非反相配置中使用驱动器,则应将 IN- 引脚偏置到 GND。如果在反相配置中使用驱动器,则应将 IN+ 引脚偏置到 VDD。使用适当的接头偏置引脚。

2.6.2.1 UCC27518、UCC27519、UCC27536 和 UCC27537 修改

UCC57142EVM 的开箱即用配置可通过以下修改与 UCC27518、UCC27519、UCC27536 和 UCC27537 兼容:

- 1. 移除 EVM 上的所有跳线。
- 2. 移除 R1、R3、R6、C4 和 D1。
- 3. 将 C5 调整为所需的负载值。
- 4. 使用 1 μ F 电容器 (VDD 旁路电容器)填充 C6。

表 2-7 列出了 UCC27518、UCC27519、UCC27536 和 UCC27537 如何使用 I/O 接头。

表 2-7. 接头功能

EVM 接头	功能
OCP/OCP_IN	EN 引脚/EN 信号输入
GND_IO	GND 引脚
OUT/栅极	IN 引脚/IN 信号输入
VDD/VCC	OUT 引脚/未使用
EN/FLT/EN/FLT_IN	未使用
IN_IN	VDD 引脚/未使用

2.6.3 UCC27531 和 UCC27532 修改

UCC57142EVM 的开箱即用配置可通过以下修改与 UCC27531 和 UCC27532 兼容:

- 1. 移除 EVM 上的所有跳线。
- 2. 移除 R1、R3、R4、R7、R13、C4、C9 和 D1。
- 3. 短接 R8、R11 和 C5。
- 4. 将 R6 和 R10 调整为所需的栅极电阻
- 5. 将 C8 调整为所需的负载值。
- 6. 使用 1 μ F 电容器 (VDD 旁路电容器)填充 C1

表 2-8 列出了 UCC27531 和 UCC27532 如何使用 I/O 接头。

表 2-8. 接头功能

EVM 接头	功能
OCP/OCP_IN	EN 引脚/EN 信号输入
GND_IO	IN 引脚
OUT/栅极	VDD 引脚/未使用
VDD/VCC	GND 引脚/未使用
EN/FLT/EN/FLT_IN	OUTL 引脚/未使用
IN/IN_IN	OUTH 引脚/栅极

2.6.4 UCC44273 修改

UCC57142EVM 的开箱即用配置可通过以下修改与 UCC44273 兼容:

- 1. 移除 EVM 上的所有跳线。
- 2. 移除 R3、R6、C4 和 C5。
- 3. 短接 R2。
- 4. 使用 1 μ F 电容器 (VDD 旁路电容器)填充 C6。

表 2-9 列出了 UCC44273 如何使用 I/O 接头。

表 2-9. 接头功能

EVM 接头	功能
OCP/OCP_IN	IN 引脚/IN 信号输入
GND_IO	GND 引脚
OUT/栅极	OUT 引脚/栅极
VDD/VCC	OUT 引脚/未使用
EN/FLT/EN/FLT_IN	未使用
IN/IN_IN	VDD 引脚/VCC 输入信号

3 实现结果

3.1 设备设置

此评估旨在直接测试 UCC57142EVM 功能。假设用户没有对电路板进行任何调整。

3.1.1 电源

直流电源 1

- 电压设置:15V - 电流限值:0.1A

• 直流电源 2

- 电压设置:5V - 电流限值:0.1A

3.1.2 函数发生器

表 3-1. 函数发生器设置

	模式	频率	宽度	延迟	高	低	输出阻抗
通道 A	Pulse	100kHz	2.5µs	0 μs	5V	0V	高阻抗

3.1.3 示波器

表 3-2. 示波器设置

	带宽	耦合	终端	比例设置	反相
通道 1-4	500MHz 或以上	DC	1MΩ 或自动	10× 或自动	关闭

3.1.4 数字万用表 (DMM)

电压和电流分别高于 26V 和 1A 的 DMM 1,例如:Fluke 187

3.2 工作台设置

请按照以下连接过程操作,并可参考图 3-1。

- 确保在连接之前关闭函数发生器的所有输出以及电压源。
- 函数发生器 Ch-A 通道应用于 IN IN 上。
- 电源:
 - **电源 1**:正极节点连接到 DMM 1 的输入, DMM 1 的输出连接到标记为 VCC 的测试点, 电源 1 的负极节点直接连接到标记为 GND 的测试点。
 - **电源 2**: 负极节点连接到 OCP_IN、正极节点连接到 GND 或 GND_IO(以更方便者为准),这使得 OCP IN 接收到的是 -5V,而不是 5V。
- 示波器:
 - VDD 信号:将示波器 Ch-1 探头连接到标记为 VDD to GND 的测试点,优选较小的测量环路。
 - IN 信号:将示波器 Ch-2 探头连接到标记为 IN to GND 的测试点,优选较小的测量环路。
 - OUT 信号:将示波器 Ch-3 探头连接到标记为 GATE to GND 的测试点,优选较小的测量环路。
 - FLTb 信号:将示波器 Ch-4 探头连接到标记为 EN/FLT 到 GND 的测试点,优选较小的测量环路。

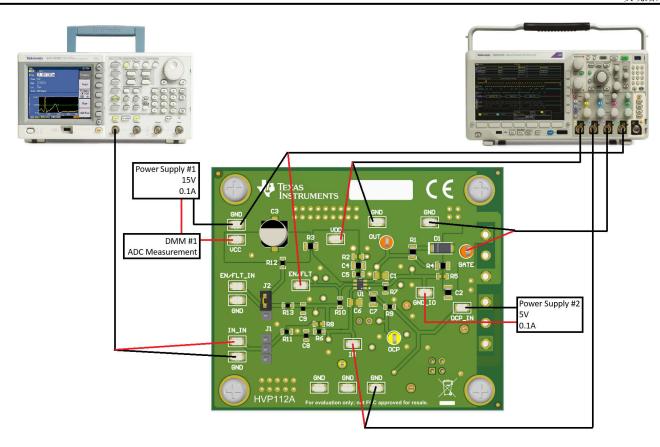


图 3-1. 工作台设置图

3.3 测试过程和结果

- 1. 在启动测试过程之前,请确保连接正确,如第6节中所示。
- 2. 开启 PSU 1 并检查 DMM 1 上的电流。如果显示的电流**小于 1.25mA**,则初始设置正确。
- 3. 开启函数发生器输出并检查以下情况:
 - a. 开启函数发生器后, DMM #1 上的电流应显示 2.5mA±1.0mA。
 - b. 检查 FLTb 和 OUT 信号。FLTb 应为高电平,且 OUT 应保持稳定。有关详细信息,请参阅图 3-2。
 - c. 开启 PSU #2 并检查 FLTb 和 OUT 信号。**两个信号**都应为低电平。有关详细信息,请参阅图 3-3。如果信号不是低电平,则请重新检查 PSU #2 连接。
 - d. 关闭 PSU #2 并重新检查 FLTb 和 OUT 信号。FLTb 应为高电平,且 OUT 应保持稳定。有关详细信息,请参阅图 3-2。
- 4. 一旦满足测试要求,请按照以下顺序使 EVM 断电:
 - a. 禁用函数发生器。
 - b. 禁用电源 #2。
 - c. 禁用电源#1。
 - d. 断开电缆和探头的连接。

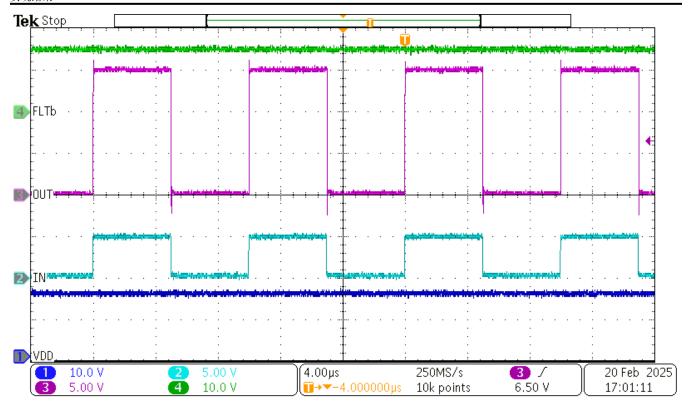


图 3-2. PSU #2 关闭时的参考波形

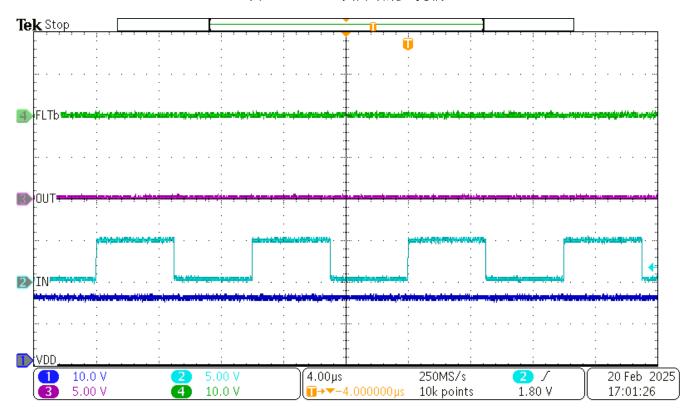


图 3-3. PSU #2 开启时的参考波形

3.4 典型性能波形

3.4.1 正常运行

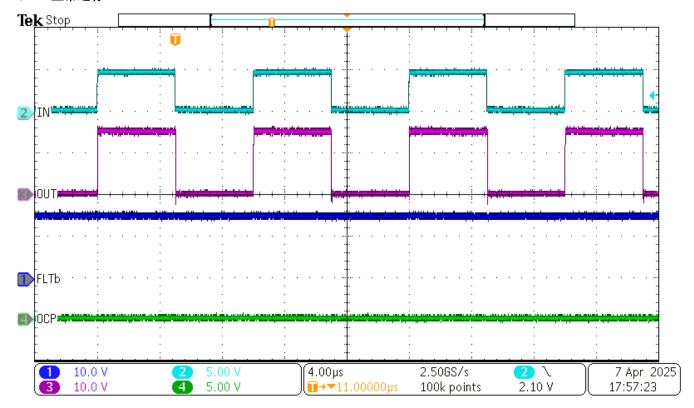


图 3-4. UCC57142 的正常运行

3.4.2 过流保护功能

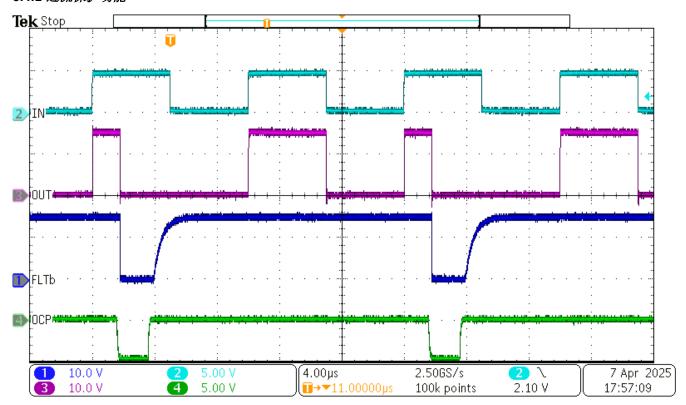


图 3-5. UCC57142 的过流保护功能

www.ti.com.cn *硬件设计文件*

4 硬件设计文件

4.1 原理图

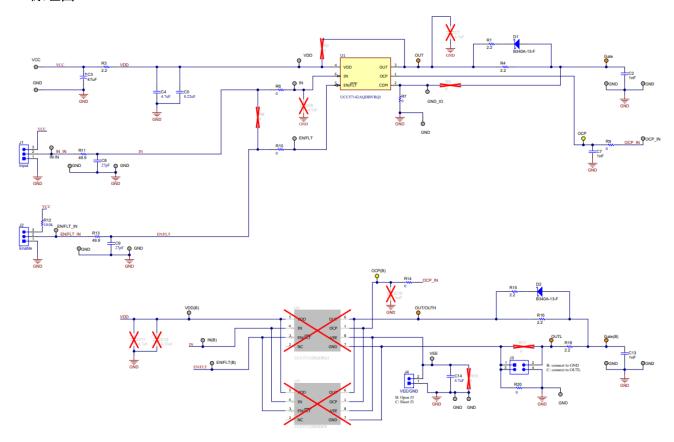


图 4-1. UCC57142EVM 原理图

4.2 PCB 布局

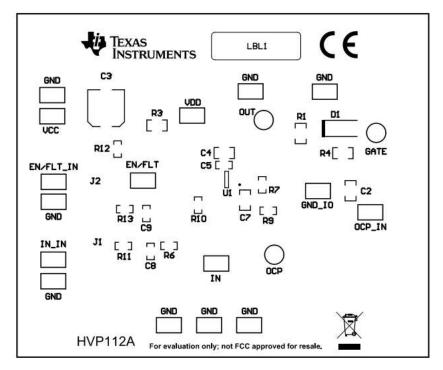


图 4-2. 顶层丝印层

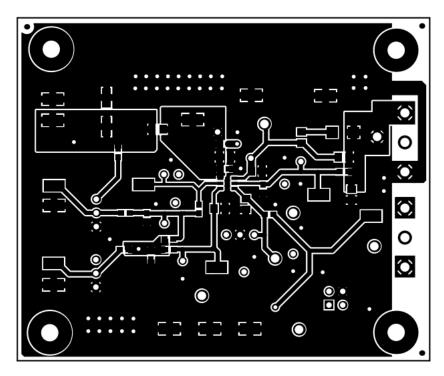


图 4-3. 顶层

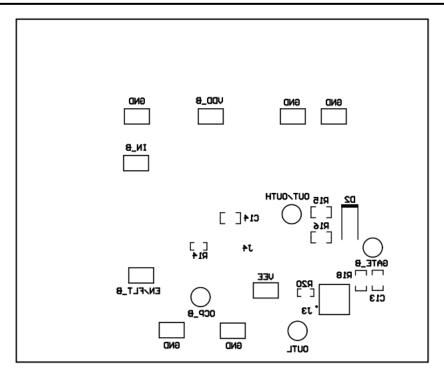


图 4-4. 底层丝印层

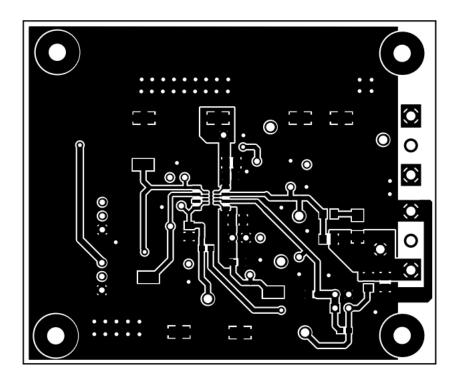


图 4-5. 底层

4.3 物料清单 (BOM)

表 4-1. 物料清单 (BOM)

位号	数量	说明
C2、C7、C13	3	电容,陶瓷,1000pF,50V,+/-5%,X7R,0805
C3	1	电容,铝,47uF,50V,+/- 20%,0.68ohm,SMD
C4、C14	2	电容,陶瓷,4.7 μ F,35V,+/- 10%,X7R,0805
C5	1	电容,陶瓷,0.22μF,50V,+/- 10%,X7R,0603
C8、C9	2	电容,陶瓷,27pF,50V,+/-5%,C0G/NP0,0603
D1、D2	2	二极管,肖特基,40V,3A,SMA
H1、H2、H3、H4	4	机械螺钉,圆头,#4-40 x 1/4,尼龙,飞利浦盘形头
H5、H6、H7、H8	4	六角螺柱,0.5"L #4-40,尼龙
J1、J2	2	接头,2.54mm,3x1,锡,TH
J3	1	接头,100mil,2x2,锡,TH
J4	1	接头,2.54mm,2x1,锡,TH
LBL1	1	热转印打印标签,0.650"(宽) x 0.200"(高) - 10,000/卷
R1、R3、R4、R15、 R16、R18	6	电阻,2.2,5%,0.125W,AEC-Q200 0 级,0805
R6、R7、R9、R10、 R14、R20	6	电阻,0,5%,0.1W,0603
R11、R13	2	电阻,49.9,1%,0.1W,AEC-Q200 0 级,0603
R12	1	电阻,10.0k,1%,0.1W,0603
SH-J1、SH-J3	2	分流器,100mil,镀金,黑色
TP1、TP2、TP21、TP24、 TP25	5	测试点,通用,橙色,TH
TP3、TP4、TP5、TP6、TP7、TP8、TP9、TP10、TP11、TP13、TP14、TP15、TP16、TP17、TP18、TP19、TP22、TP23、TP26、TP27、TP28、TP29、TP30、TP31、TP31	25	测试点,微型,SMT
TP12、TP20	2	测试点,通用,黄色,TH
U1	1	UCC57142AQDBVRQ1

www.ti.com.cn *合规信息*

5 合规信息

UCC57142EVM 符合 RoHS 和 REACH 标准。

6 其他信息

6.1 商标

所有商标均为其各自所有者的财产。

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司