EVM User's Guide: BQ25856EVM

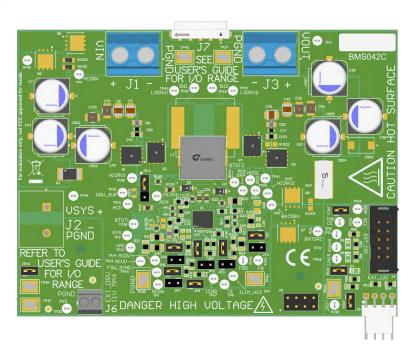
BQ25856 评估模块

TEXAS INSTRUMENTS

说明

BQ25856EVM 评估模块 (EVM) 是适用于 BQ25856 IC 的完整评估系统。BQ25756E IC 是一款降压/升压电池充电控制器,具有 4.2V 至 70V 的宽输入电压范围、高达 70V 的宽输出电压范围、双向功能和 AEC-Q100 认证。

BQ25856EVM 的最大输入和输出电压为 55V,最大充电电流为 10A。


开始使用

- 1. 在 ti.com 上订购 EVM
- 2. 订购 EV2400 以便与 EVM 通信
- 3. 下载 BQ25856 BQZ 文件
- 4. 在 ti.com 上下载 BQ25856 EVM 设计文件

特性

• 宽输入电压工作范围: 4.2V 至 55V

- 宽输出电压工作范围:高达 55V,并为以下电池提供 CC/CV 支持:
 - 2至13节锂离子电池
 - 2至14 节磷酸铁锂电池
- 具有 NFET 驱动器的同步降压/升压直流/直流充电 控制器
 - 可调节开关频率范围: 200kHz 至 600kHz
 - 可选择与外部时钟同步
 - 可选栅极驱动器电源输入,可提高效率
- 可通过电阻进行编程并添加了 I2C 的独立模式
- 内置 MPPT,可更大限度地提高太阳能电池板阵列的功率
- 由电池(反向模式)输出 4V 至 55V 供电
- 高安全集成
 - 可调输入过压和欠压保护
 - 输出过压和过流保护
- 通过 AEC-Q100 认证

1 评估模块概述

1.1 引言

BQ25856EVM 可以在 USB 扩展功率范围 (EPR) 的整个 240W 范围内以及最多 13 节锂离子电池的充电状态 (旨在实现 CC/CV 充电曲线)下进行评估。典型应用包括 USB-PD 扩展功率范围应用、扩展坞、监视器和双电池充电。

该 EVM 不包含 EV2400 或 USB2ANY 接口器件,也不为数字接口提供任何电气隔离。为了评估 BQ25856EVM,必须单独订购 EV2400 或 USB2ANY;在 PC 和 EVM 板之间连接时,必须考虑电气安全注意事项。通过数字接口将 EVM 连接到 PC 时,建议使用具有隔离边界的数字隔离器。

BQ25856EVM 的间隙和爬电距离小于高压电路板上通常使用的间隙和爬电距离,并且没有隔离边界。如果在该电路板上施加高电压,则必须将所有端子视为高压和危险带电端子。将该电路板连接到带电的导线时可能会发生电击。电路板应由专业人员小心处理。为安全起见,建议使用具有各种保护特性(例如过压和过流保护)的隔离式测试设备。

1.2 套件内容

此 EVM 套件包括:

• 1 块 BQ25856 EVM

1.3 器件信息

BQ25856EVM 评估模块 (EVM) 是 BQ25856 IC 的评估系统。BQ25856 IC 是一款降压/升压电池充电控制器,具有 4.2V 至 70V 的宽输入电压范围、高达 70V 的宽输出电压范围以及双向功能。

该器件可通过输出 CC-CV 控制在宽电压范围内实现电池高效充电。该器件集成了降压/升压转换器的所有环路补偿功能,因此可提供易于使用的高密度方案。

除了 I2C 主机控制的充电模式外,该器件还支持可编程硬件限制。输入电流和输出电流调节目标可以分别通过 IIN 和 IOUT 引脚上的单个电阻器来设置。

www.ti.com.cn 评估模块概述

1.4 通用德州仪器 (TI) 高压评估模块 (TI HV EMV) 用户安全指南

务必遵循 TI 的设置和应用说明,包括在建议的电气额定电压和功率限制范围内使用所有接口元件。务必采取电气 安全防护措施,这样有助于确保自身和周围人员的人身安全。如需了解更多信息,请联系 TI 的产品信息中心,网 址为 http://ti.com/customer support。

保存所有警告和说明以供将来参考。

警告

务必遵循警告和说明,否则可能引发电击和灼伤危险,进而造成财产损失或人员伤亡。

TI HV EVM 一词是指通常以开放式框架、敞开式印刷电路板装配形式提供的电子器件。该器件严格*用于开发实验室环境,仅供了解开发和应用高压电路相关电气安全风险且接受过专门培训、具有专业知识背景的合格专业用户使用。德州仪器 (TI) 严禁任何其他不合规的使用和/或应用。如果不满足资格要求,则需要立即停止进一步使用HV EVM。*

- 1. 工作区安全:
 - a. 保持工作区整洁有序。
 - b. 每次电路通电时,都必须由具有资质的观察员在场监督。
 - c. TI HV EVM 及接口电子元件通电区域必须设有有效的防护栏和标识;指示可能存在高压操作,以避免意外接触。
 - d. 开发环境中使用的所有接口电路、电源、评估模块、仪器、仪表、示波器和其他相关装置如果超过 50Vrms/75VDC,则必须置于紧急断电 EPO 保护电源板内。
 - e. 使用稳定且不导电的工作台。
 - f. 使用充分绝缘的夹钳和导线来连接测量探针和仪器。尽量不要徒手进行测试。
- 2. 电气安全:
 - a. 作为一项预防措施,假设整个 EVM 可能具有完全可接触和有效的高电压是良好的工程实践。
 - b. 执行任何电气测量或其他诊断测量之前,需切断 TI HV EVM 及其全部输入、输出和电气负载的电源。再次确认 TI HV EVM 已安全断电。
 - c. 确认 EVM 断电后,根据所需的电路配置、接线、测量设备连接和其他应用需求执行进一步操作,同时仍 假定 EVM 电路和测量仪器均带电。
 - d. EVM 准备就绪后,根据需要将 EVM 通电。

警告

EVM 通电后,请勿触摸 EVM 或电路,因为电路和 EVM 可能存在高压,会造成电击危险。

- 3. 人身安全
 - a. 穿戴个人防护装备(例如乳胶手套或具有侧护板的安全眼镜)或将 EVM 放置于带有联锁装置的透明塑料箱,避免意外接触。

安全使用限制条件:

勿将 EVM 作为整体或部分生产单元使用。

1.4.1 一般安全信息

为确保使用 BQ25756EVM 或在其附近工作的任何人的安全,请注意以下警告和注意事项。请遵循所有安全防护措施。

ZHCUCK7 - MAY 2024 BQ25856 评估模块 3

BQ25756EVM 电路模块在运行期间可能会因散热而变烫。切勿接触电路板。请遵守适用于相关实验室的所有适用安全规程。

小心

表面高温。接触会导致烫伤。请勿触摸!

警告

BQ25756EVM 的间隙和爬电距离小于高压电路板上通常使用的间隙和爬电距离,并且没有隔离边界。如果用户在该板上施加高电压,则所有端子均被视为具有高电压且危险带电。将该电路板连接到带电的导线时可能会发生电击。电路板需由专业人员小心处理。为安全起见,建议使用具有各种保护特性(例如过压和过流保护)的隔离式测试设备。

警告

此评估模块 (EVM) 上存在可能导致人身伤害的高电压。在使用此 EVM 时,请确认已遵循所有安全程序。切勿让已通电的 EVM 无人看管。

警告

断电后,板载电容器上可能存在高电压。在 EVM 断电后,请正确检查所有板载储能器并使其放电。

注意

在无人看管的情况下,请勿让 EVM 处于通电状态。

小心

EVM 上的通信接口未进行隔离。建议使用数字隔离器。确认在测试期间遵守所有高压安全预防措施。

小心

必须在端子块上实施用于实现额定电流的连接方式。没有为测试点设置板流额定值。

小小

电路模块可能会因过热而损坏。为避免损坏,请在评估期间监测温度并根据需要使系统环境冷却。操作时切勿使电流和电压超出**节 2.3** 中的限值。

小心

施加外部电压可能会损坏测试设备。请检查您的设备要求并根据需要使用阻断二极管或其他隔离技术,以防止设备损坏。

小心

电路模块的板底上有信号迹线、元件和元件引线。这可能会导致电压、高温表面或尖锐的边缘暴露在外面。操作过程中请勿触摸电路板的底部。

小心

BQ25756 的默认设置可能不是专为用户的应用设计的。在器件上电之前,确认根据测试设置进行了正确的 EVM 设置。适当设置所有保护措施并限制电流,以确保安全运行。

小心

电路板未安装保险丝,依靠外部电压源电流限制来验证电路保护。

www.ti.com.cn *硬件*

2 硬件

2.1 电路板参数

表 2-1. BQ25856EVM 的默认电路板设置

	* * * * * * * * * * * * * * * * * * * *		
	说明	值	単位
ACUV	输入欠压	4.2	V
ACOV	输入过压	55	V
ILIM_HIZ	EVM 的输入电流	8	A
ICHG	EVM 的输出电流	10	A
FSW_SYNC	功率级的开关频率	250	KHz
VBAT_REG	电池充电电压	14.4	V
IAC 检测电阻	输入电流检测电阻	2	mΩ

表 2-2. PCB 和机械参数

	值	単位
电路板尺寸(X维度或长度)	112	mm
电路板尺寸 (Y 维度或宽度)	84	mm
IC + 功率级最大高度	5	mm
铜层总数	6	层
每层覆铜重量	2	oz
电路板总厚度	62	mil

2.2 IO 和跳线说明

表 2-3. 连接器/端口说明

插孔	说明					
J1-VIN	输入:正极端子					
J1-PGND	输入:负极端子(接地端子)					
J3-VOUT	连接到电池包输出					
J3-PGND	接地					
J4-EXT_I2C	USB2ANY 的通信端口					
J5-I2C	EV2400 的通信端口					
J6-EXT_DRV	外部栅极驱动器接口					
J7 电源连接器	VAC 和 BAT 接口					
J8 通信端口	EXT_DRV、/INT、I2C、/PG 和 3.3V 接口					

表 2-4. 跳线说明

跳线	说明	出厂默认设置
JP1	使用 JP1 可连接默认反馈电阻,并将充电器设置为默认 7 节电池。	已安装
JP2	使用 JP2 可连接新的反馈电阻以设置不同的电池节数。	未安装
JP3	使用 JP3 可连接外部 ICHG 电阻。JP3 可短接到 PGND 以禁用硬件输出电流限制。	未安装
JP4	对 JP4 进行分流可使用默认 ICHG 电阻。通过闭合 JP4,默认 ICHG 电流将设置为 10A。	己安装
JP5	对 JP5 进行分流可偏置 TS。	已安装
JP6	已对 JP5 进行分流(为分压器连接了 REGN)。对 JP6 进行分流可将 TS 状态设置为正常。	己安装
JP7	己对 JP5 进行分流 (为分压器连接了 REGN)。使用 JP7 可连接外部电阻以更改 TS 状态。	未安装
JP8	使用 JP8 可连接外部 FSW_SYNC 电阻。	未安装
JP9	对 JP9 进行分流可使用默认 FSW_SYNC 电阻。通过闭合 JP9,默认开关频率将设置为 250kHz。	已安装
JP10	对 JP10 进行分流可使用默认 ILIM_HIZ 电阻。通过闭合 JP10,最大输入电流将设置为 8A。	已安装
JP11	使用 JP11 可连接外部 ILIM_HIZ 电阻。JP11 可短接到 PGND 以禁用硬件输入电流限制。	未安装
JP12	使用 JP12 可选择栅极驱动源。将引脚 1 分流到引脚 2 可使用 IC 内部 LDO REGN 输出。将引脚 2 分流到引脚 3 可使用外部栅极驱动电源。最大外部栅极驱动电源电压最高可达 11V。	己对引脚 1 和引脚 2 进行分流
JP13	对 JP13 进行分流可在正向模式下启用控制器。断开 JP13 可禁用控制器。/CE 引脚也可用作通用指示器。	己安装
JP14	对 JP14 进行分流可将 /INT 连接到上拉电源轨。	已安装
JP15	对 JP15 进行分流可将 STAT1 连接到上拉电源轨。STAT1 引脚也可用作通用指示器。	己安装
JP16	对 JP16 进行分流,用于产生板载 3.3V 上拉电源轨。	已安装

2.3 建议运行条件

表 2-5. BQ25856EVM 的建议运行条件

	说明	最小值	典型值	最大值	单位
VIN (J1)	EVM 的输入电压	4.2		55 ⁽¹⁾	V
VOUT (J3)	EVM 的输出电压	3.3		55 ⁽¹⁾	V
ILIM_HIZ (J1)	EVM 的输入电流			10 ⁽³⁾ (4)	Α
ICHG (J3)	EVM 的输出电流			10 ⁽³⁾	Α
稳压器输出功率	EVM 的输出功率			400 ⁽³⁾	W
EXT_DRV (J6)	施加到稳压器 DRV_SUP 引脚的电压	4		11	V
IAC 检测电阻	输入电流检测电阻	2	2 ⁽⁵⁾	10	m Ω
EVM 工作环境温度 (TA)			25 ⁽²⁾		°C

- (1) 由于与开关模式电源相关的高 di/dt 和 dv/dt 电流量, EVM 上的节点可能具有高于输入电压(降压模式)或输出电压(升压模式)电平的高尖峰。开关节点电压具有高达"输入或输出+电感尖峰"电平的摆幅。高侧栅极驱动器具有高达"开关节点电压+11V(取决于DRV_SUP电源电压)+栅极驱动电感尖峰"电平的摆幅。必须始终遵守安全预防措施。
- (2) 当温度严重偏离 25°C 室温的情况下, EVM 上的连接器、凸点和跳线不太适合用于评估。请参阅 BOM 了解电路板元件的额定温度。
- (3) 如果功率级输出电流大于 5A,或总输出功率大于 100W,则建议进行温度监测(例如,使用热像仪)。
- (4) 默认 EVM 输入电流限制通过 IIN 引脚设置为 8A。若要禁用电流限制特性,可以将 EN_IIN_PIN 位设置为"0"、更改 IIN 引脚电阻或通过 JP11 将 IIN 引脚短接至 PGND。
- (5) 输入检测电阻是可选的,可以移除检测电阻。对于 USB-C EPR 运行,需要一个 $5m\Omega$ 检测电阻。

www.ti.com.cn 硬件

2.4 设备

建议使用两种方法来测试 EVM。测试 EVM 的第一种方法是使用四象限电源,这也是首选的方法。第二种方法是在恒压模式下使用电子负载。后续章节将介绍使用恒压负载进行测试。使用四象限电源进行测试时,建议使用下列设备。

1. 电源:

需要一个能够提供 40V 电压、8A 电流的电源。虽然此器件能够处理更大的电压和电流,但在此过程中不需要更高的功率级别。

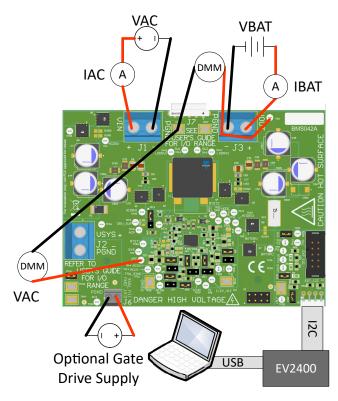
2. 负载#1:

一个 Kepco 负载:BOP36-6M,直流 0V 至 \pm 36V,0A 至 \pm 6A(或更高),或等效设备。在无真实电池的情况下进行测试时,请在输入端连接 2000 μ F 的电容。

3. 仪表:

六个 Fluke 75 万用表(性能相当或更高)或:三个性能相当的电压表和三个性能相当的电流表。

4. 计算机:


至少有一个 USB 端口和一条 USB 电缆的计算机。

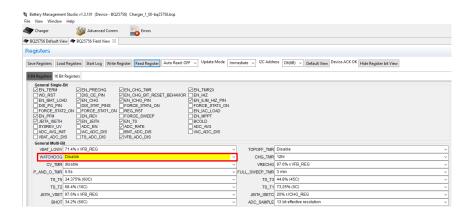
5. EV2400 通信套件:

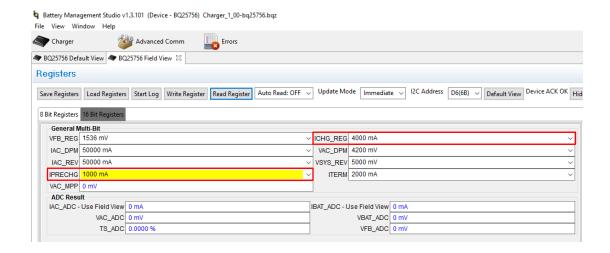
6. 软件:

从 https://www.ti.com.cn/tool/cn/BQSTUDIO 下载 bqStudio 并正确安装该软件。

2.4.1 设备设置

根据以下指南来设置和测试设备:


- 1. 将电源 1 设置为 10V 直流、8A 电流限制,然后关闭电源。
- 2. 将电源 1 的输出与一个电流表串联在一起,然后连接到 J1 (VIN 和 PGND)。
- 3. 在 J1 (VIN) 和 J1 (PGND) 之间连接一个电压表。
- 4. 将负载 1 与一个电流表串联在一起,然后连接到 J3 (VBAT 和 PGND)。


- 5. 在 J3 (VBAT 和 PGND) 上连接一个电压表。
- 6. 将 KEPCO 负载输出设置为 23V。将 KEPCO 限制为 6A。使用负载 1 从 VOUT 输出为 EVM 供电。
- 7. 将 J5 连接到 EV2400。将 J5 连接到 EV2400 上的 I²C 端口 2。
- 8. 确保按照"IO和跳线说明"中所述安装跳线。
- 9. 开启计算机和负载 2。打开 bqStudio 软件。
 - a. 选择 Charger 并点击 Next 按钮。

- b. 在 *Select a Target* 页面中选择 *Charger_1_00_BQ25756.bqz*。BQ25756 bqz 文件和 BQ25856 bqz 文件 都适用于此测试。
- c. 选择目标器件后,点击 Field View,然后点击 Read Register 按钮。

10. 将 WATCHDOG 和 EN CHG 设置为禁用。

8 BQ25856 评估模块 ZHCUCK7 - MAY 2024 提交文档反馈

www.ti.com.cn *硬件*

- 11. 在 16 位寄存器中,将 ICHG_REG 设置为 4000mA。
- 12. 打开电源 1, 测量:

 $V(J1(VAC)) = 10V \pm 0.5V$

 $I(J1(IAC)) = 5.4A \pm 0.5A$

 $V(J3(VBAT)) = 13V \pm 0.5V$

 $I(J3(IBAT)) = 3.9A \pm 0.5A$

13. 将电源 1 设置为 13V,测量:

 $V(J1(VAC)) = 13V \pm 0.5V$

 $I(J1(IAC)) = 4.1A \pm 0.5A$

 $V(J3(VBAT)) = 13V \pm 0.5V$

 $I(J3(IBAT)) = 3.9A \pm 0.5A$

14. 将电源 1 设置为 40V,测量:

 $V(J1(VAC)) = 40V \pm 0.5V$

 $I(J1(IAC)) = 1.4A \pm 0.5A$

 $V(J3(VBAT)) = 13V \pm 0.5V$

 $I(J3(IBAT)) = 3.9A \pm 0.5A$

2.4.2 设备 — 使用 CV 负载

使用恒压电子负载进行测试时,建议使用下列设备。

1. 电源:

需要一个能够提供 40V 电压、8A 电流的电源。虽然此器件能够处理更大的电压和电流,但在此过程中不需要更高的功率级别。

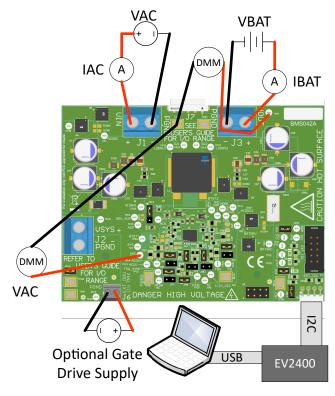
2. 负载#1:

Kikusui PLZ164WA 0V 至 150V、0A 至 33A 或等效器件。在无真实电池的情况下进行测试时,请在输入端连接 2000 μ F 的电容。

3. 仪表:

六个 Fluke 75 万用表(性能相当或更高)或:三个性能相当的电压表和三个性能相当的电流表。

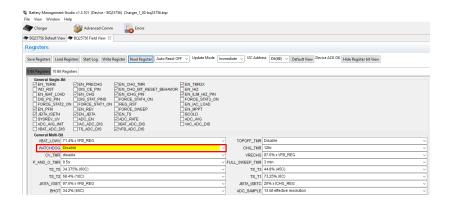
4. 计算机:


至少有一个 USB 端口和一条 USB 电缆的计算机。

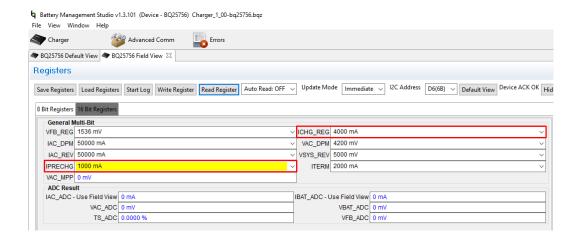
- 5. EV2400 通信套件:
- 6. 软件:

从 https://www.ti.com.cn/tool/cn/BQSTUDIO 下载 bqStudio 并正确安装该软件。

2.4.3 设备设置 — 使用 CV 负载


根据以下指南来设置和测试设备:

- 1. 将电源 1 设置为 10VDC、6A 电流限制, 然后关闭电源。
- 2. 将电源 1 的输出与一个电流表串联在一起, 然后连接到 J1 (VIN 和 PGND)。
- 3. 在 J1 (VIN) 和 J1 (PGND) 之间连接一个电压表。
- 4. 将负载 1 与一个电流表串联在一起,然后连接到 J3 (VBAT 和 PGND)。
- 5. 在 J5 (VBAT 和 PGND) 上连接一个电压表。
- 6. 将电子负载输入设置为 13V。
- 7. 将 J5 连接到 EV2400。将 J5 连接到 EV2400 上的 I²C 端口 2。
- 8. 确保按照"IO和跳线说明"中所述安装跳线。
- 9. 拔下跳线 13。
- 10. 打开计算机和电源 1。打开 bqStudio 软件。
 - a. 选择 Charger 并点击 Next 按钮。



- b. 在 *Select a Target* 页面中选择 *Charger_1_00_BQ25756.bqz*。BQ25756 bqz 文件和 BQ25856 bqz 文件 都适用于此测试。
- c. 选择目标器件后,点击 Field View, 然后点击 Read Register 按钮。

www.ti.com.cn *硬件*

11. 将 WATCHDOG 和 EN_CHG 设置为禁用。

- 12. 在 16 Bit Registers 中,将 ICHG_REG 设置为 4000mA,将 IPRECHG 设置为 1000mA。
- 13. 将 EN_CHG 设置为启用。插入跳线 13。
- 14. 将电源 1 设置为 10V,测量

$$V(J1(VAC)) = 10V \pm 0.5V$$

$$I(J1(IAC)) = 5.4A \pm 0.5A$$

$$V(J3(VBAT)) = 13V \pm 0.5V$$

$$I(J3(IBAT)) = 3.9A \pm 0.5A$$

15. 将电源 1 设置为 13V,测量

$$V(J1(VAC)) = 13V \pm 0.5V$$

$$I(J1(IAC)) = 4.1A \pm 0.5A$$

$$V(J3(VBAT)) = 13V \pm 0.5V$$

$$I(J3(IBAT)) = 3.9A \pm 0.5A$$

16. 将电源 1 设置为 40V,测量

$$V(J1(VAC)) = 40V \pm 0.5V$$

$$I(J1(IAC)) = 1.4A \pm 0.5A$$

$$V(J3(VBAT)) = 13V \pm 0.5V$$

$$I(J3(IBAT)) = 3.9A \pm 0.5A$$

3 硬件设计文件

以下几节将展示 BQ25756EVM 的硬件设计文件。本节包含原理图、电路板布局布线和物料清单 (BOM)。

3.1 原理图

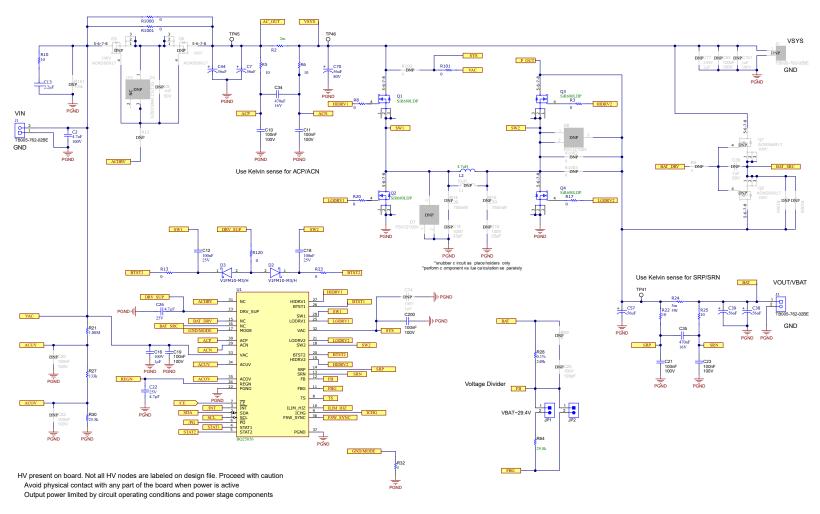
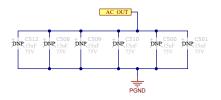
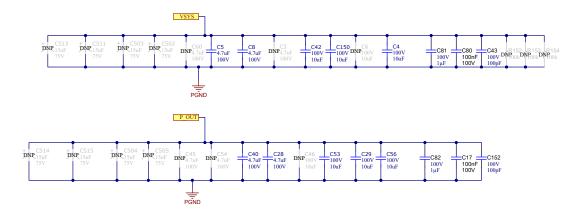
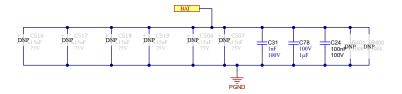
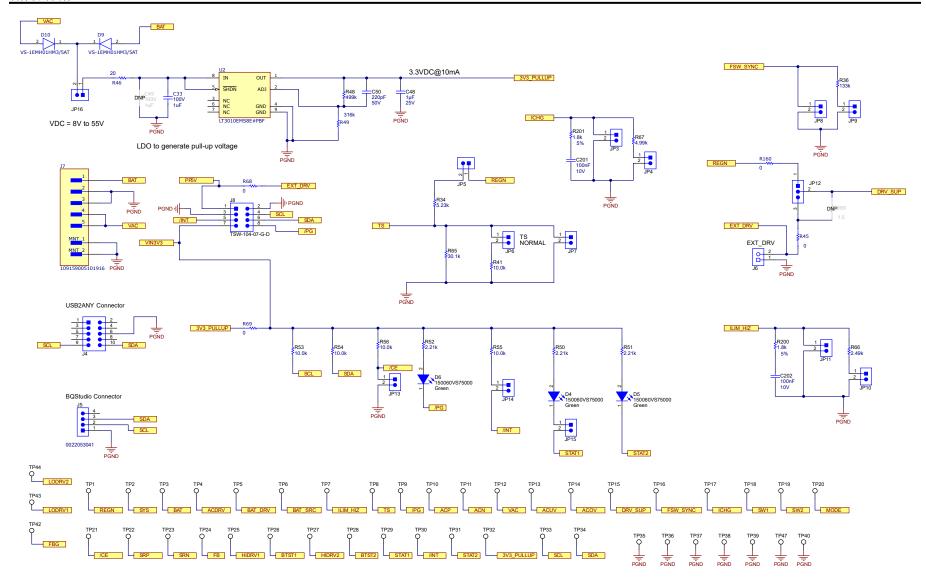





图 3-1. BQ25856 EVM 原理图


www.ti.com.cn

PCB LOGO

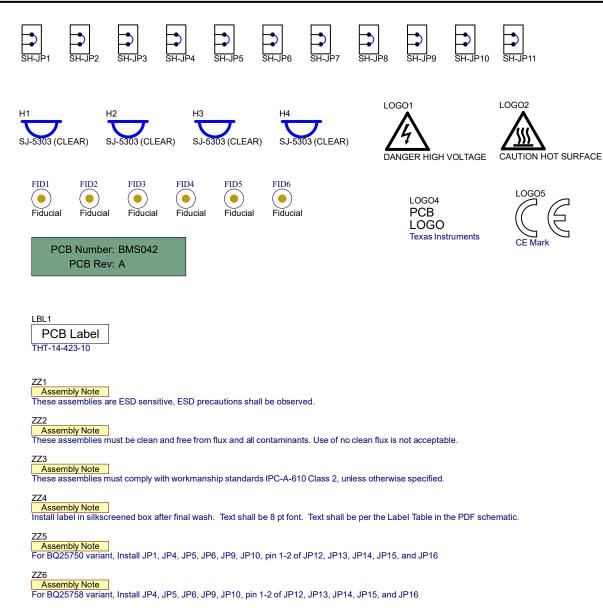
LOGO6

PCB

LOGO

FCC disclaimer

CAUTION. READ USER GUIDE BEFORE USE


LOGO7

PCB

LOGO

WEEE logo

1. DNP 表示"不填充"。

Assembly Note

For BQ25756 variant, Install JP1, JP4, JP5, JP6, JP9, JP10, pin 1-2 of JP12, JP13, JP14, JP15, and JP16

BQ25856 评估模块

3.2 PCB 布局

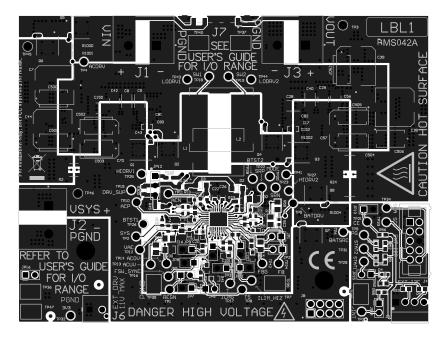


图 3-2. 顶层和覆盖层

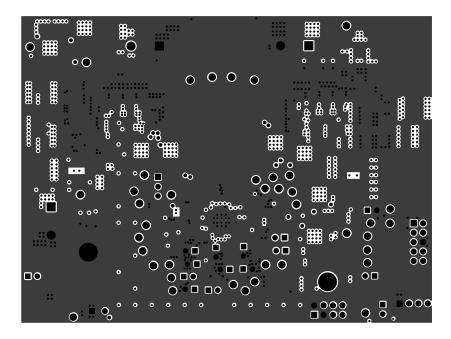


图 3-3. 第 2 层 — GND

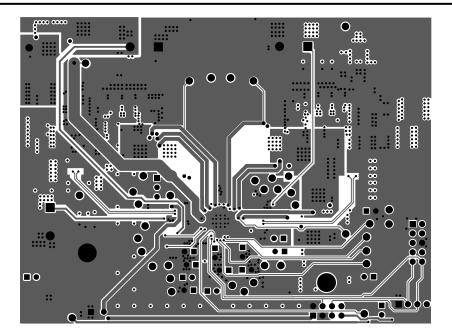


图 3-4. 信号层 1

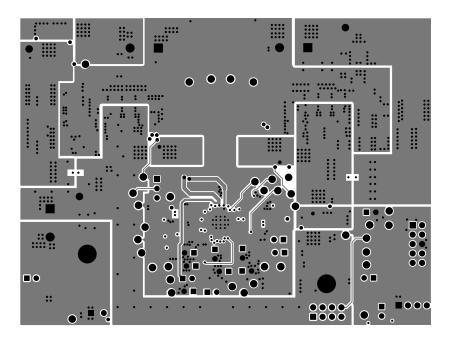


图 3-5. 信号层 2

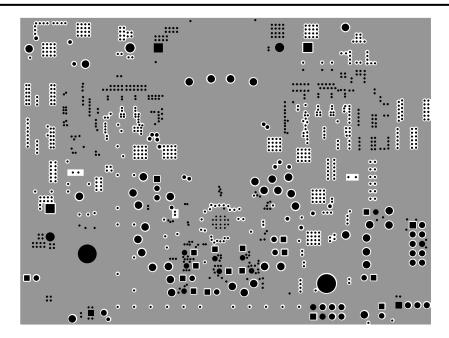


图 3-6. 第 5 层 — GND

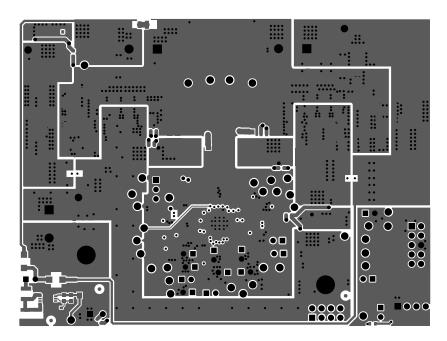


图 3-7. 底层

www.ti.com.cn *硬件设计文件*

3.3 物料清单

表 3-1. 物料清单

项目编号	位号	数量	值	器件型号	制造商	说明	封装参考
1	C2、C5、C8、 C28、C40	5	4.7µF	GCJ32DC72A475KE01L	Murata	4.7μF ±10% 100V 陶瓷电容器 X7S 1210 (公制 3225)	1210
2	C4、C29、C42、 C53、C56、C150	6	10µF	C3225X7R2A106K250AC	TDK	10μF ±10% 100V 陶瓷电容器 X7R 1210 (公制 3225)	1210
3	C7、C38、C39、 C44、C57、C70	6	56uF	80SXV56M	Panasonic	56μF 80V 铝 - 聚合物电容径向,Can - SMD 28mΩ 1000 小时,125°C	SMT
4	C10、C11、C17、 C19、C21、C23、 C24、C80、C200	8	0.1 μ F	HMK107B7104KAHT	Taiyo Yuden	电容,陶瓷,0.1µF,100V,+/-10%, X7R,AEC-Q200 1 级,0603	603
5	C12、C18	2	0.1 µ F	06033C104KAT2A	AVX	电容,陶瓷,0.1uF,25V,+/-10%, X7R,0603	603
6	C13	1	2.2 µ F	CGA6N3X7R2A225K230AE	TDK Corporation	电容,陶瓷,2.2μF,100V,X7R,10%, SMD,1210,FlexiTerm,125°C,塑料, T/R	1210
7	C16、C78、C81、 C82	4	1µF	08051C105K4Z2A	AVX	电容,陶瓷,1µF,100V,+/-10%, X7R,AEC-Q200 1 级,0805	805
8	C22、C26	2	4.7µF	CGA4J1X7R1E475K125AE	TDK Corporation	电容,陶瓷,4.7 μ F,25V,X7R,10%, 焊盘,SMD,0805,+125°C,汽车,T/R	805
9	C31	1	1000pF	CGA3E2X7R2A102K080AA	TDK	多层陶瓷电容器,MLCC - SMD/SMT, CGA,0603,100V,1000pF,X7R, 10%,AEC-Q200	603
10	C33	1	1µF	12101C105KAT2A	AVX	通用陶瓷电容器,1210,1μF,10%, X7R,15%,100V	1210
11	C34、C35	2	0.47 μ F	C0603C474K4RACTU	Kemet	电容,陶瓷,0.47μF,16V,+/-10%, X7R,0603	603
12	C43、C152	2	100pF	CGA3E2C0G2A101J080AA	TDK	多层陶瓷电容器,MLCC - SMD/SMT, CGA,0603,100V,100pF,C0G, 5%,AEC-Q200	603
13	C48	1	1µF	C0805C105K3RACTU	Kemet	电容,陶瓷,1µF,25V,+/-10%,X7R, 0805	805
14	C50	1	220pF	C0603C221K5RACTU	Kemet	电容,陶瓷,220pF,50V,+/-10%, X7R,0603	603
15	C201、C202	2	0.1 μ F	C0603C104K8RACTU	Kemet	电容,陶瓷,0.1uF,10V,+/-10%, X7R,0603	603
16	D2、D3	2		V1FM10-M3/H	Vishay	二极管,肖特基,1A,表面贴装, DO-219AB (SMF)	DO-219AB
17	D4、D5、D6	3	绿色	150060VS75000	Wurth Elektronik	LED,绿色,SMD	LED_0603

表 3-1. 物料清单 (续)

项目编号	位号	数量	值	器件型号	制造商	说明	封装参考
18	D9、D10	2		VS-1EMH01HM3/5AT	Vishay	二极管,标准,100V,1A,表面贴装, DO-214AC (SMA)	DO-214AC
20	H1、H2、H3、H4	4		SJ-5303 (CLEAR)	3M	Bumpon,半球形,0.44 X 0.20,透明	透明 Bumpon
21	J1、J3	2		TB005-762-02BE	CUI 器件		TERM_CONN
22	J4	1		N2510-6002-RB	3M	接头(有罩),100mil,5x2,高温,镀 金,TH	5x2 有罩接头
23	J5	1		22053041	Molex	接头(摩擦锁),100mil,4x1,R/A,TH	4x1 R/A 接头
24	J6	1		393570002	Molex	端子块,3.5mm,2x1,锡,TH	端子块,3.5mm, 2x1,TH
25	J7	1		109159005101916	KYOCERA AVX	连接器,板对板,HDR,5 位,3mm,焊接,RA,SMD,T/R	CONN_SSL_PLUG5
26	J8	1		TSW-104-07-G-D	Samtec	接头,100mil,4x2,金,TH	4x2 接头
27	JP1、JP2、JP3、 JP4、JP5、JP6、 JP7、JP8、JP9、 JP10、JP11、 JP13、JP14、 JP15、JP16	15		PEC02SAAN	Sullins Connector Solutions	接头,100mil,2x1,锡,TH	接头,2 引脚, 100mil,锡
28	JP12	1		PEC03SAAN	Sullins Connector Solutions	接头,100mil 3x1,锡,TH	接头,3 引脚, 100mil,锡
29	L2	1	10 µ H	SRP1050WA-4R7M	Bourns	功率电感器 - SMD 工业、11mm x 10mm x 5.1mm、4.7uH+/-20%、14.5A、shd	3939 (公制 1010)
30	LBL1	1		THT-14-423-10	Brady	热转印打印标签, 0.650	PCB 标签,0.650 x 0.200 英寸
32	Q1、Q2、Q3、Q4	4		SIR680LDP-T1-RE3	Vishay	N 沟道,80V,31.8A (Ta),130A (Tc), 6.25W (Ta),104W (Tc),表面贴装, PowerPAK® SO-8	SO-8
33	R2	1	2m	WSLF25122L000FEA	Vishay	电流检测电阻,SMD,6W,0.002Ω,1%	2512
34	R3、R8、R13、 R17、R20、R23、 R68、R69、 R101、R160	10	0	CRCW06030000Z0EA	Vishay	厚膜电阻 - SMD,1/10W,0Ω,跳线	603
35	R5、R6、R22、 R25	4	10	CRCW060310R0FKEB	Vishay	电阻厚膜,10Ω,1%,0.1W, 100ppm/℃,0603	603
36	R10	1	10	CRCW120610R0FKEAHP	Vishay Dale	电阻厚膜,10Ω,1%,0.75W, 100ppm/°C,1206	1206
37	R21	1	1.00Meg	CRCW08051M00FKEAC	Vishay / Dale	厚膜电阻 - SMD,1/8W,1MΩ,1%,商 用	805

www.ti.com.cn *硬件设计文件*

表 3-1. 物料清单 (续)

项目编号	位号	数量	值	器件型号	制造商	说明	封装参考
38	R24	1	5m	FCSL110R005FER	Ohmite	5mΩ, ±1%, 5W, 片式电阻, 宽 4320 (公制 11050), 2043, 电流检测, 防潮 金属箔	WIDE_4320
39	R27	1	133k	ERJ-6ENF1333V	Panasonic	电阻,133kΩ,1%,0.125W,AEC- Q200 0 级,0805	805
40	R28	1	249k	ERJ-PB6B2493V	Panasonic	厚膜电阻,SMD,0805,防浪涌电阻, 0.1%,249KΩ	805
41	R30	1	25.5k	ERJ-6ENF2552V	Panasonic	电阻,25.5kΩ,1%,0.125W,AEC- Q200 0 级,0805	805
42	R32	1	0	CRCW08050000Z0EA	Vishay	厚膜电阻 - SMD,1/8W,0Ω,跳线	805
43	R34	1	5.23k	RC0603FR-075K23L	Yageo	电阻,5.23kΩ,1%,0.1W,0603	603
44	R36	1	133k	CRCW0603133KFKEA	Vishay-Dale	电阻,133k,1%,0.1W,AEC-Q200 0 级,0603	603
45	R41、R53、R54、 R55、R56	5	10.0k	RC0603FR-0710KL	Yageo	电阻,10.0k,1%,0.1W,0603	603
46	R45、R120	2	0	CRCW08050000Z0EA	Vishay	厚膜电阻 - SMD,1/8W,0Ω,跳线	805
47	R46	1	20	CRCW121020R0FKEAHP	Vishay Dale	厚膜电阻 - SMD,3/4W,20Ω,1%,大 功率,AEC-Q200	1210
48	R48	1	499k	RC0603FR-07499KL	Yageo	电阻,499k,1%,0.1W,0603	603
49	R49	1	316k	CR0603-FX-3163ELF	Bourns	厚膜片式电阻,0603,316kΩ,0.1W, 1%,100ppm/°C	603
50	R50、R51、R52	3	2.21k	RC0603FR-072K21L	Yageo	电阻,2.21k,1%,0.1W,0603	603
51	R64	1	29.8k	RN73R2ATTD2982B50	KOA Speer Electronics	电阻器, 29.8K, 0.1%, 1/8W, 0805	805
52	R65	1	30.1k	RC0603FR-0730K1L	Yageo	电阻,30.1k,1%,0.1W,0603	603
53	R66	1	2.49k	RC0603FR-072K49L	Yageo	电阻,2.49k,1%,0.1W,0603	603
54	R67	1	4.99k	CRCW06034K99FKEAC	Vishay-Dale	电阻,4.99k,1%,0.1W,0603	603
55	R200、R201	2	1.8k	RC0603JR-071K8L	Yageo	电阻,1.8k,5%,0.1W,0603	603
56	R1000、R1001	2	0	JR0805X35E	Ohmite	0Ω,跳线,0.245W,片式电阻,0805 (公制 2012)-金属元件	805
57	SH-JP1、SH- JP2、SH-JP3、 SH-JP4、SH- JP5、SH-JP6、 SH-JP7、SH- JP8、SH-JP9、 SH-JP10、SH- JP11	11	1x2	SNT-100-BK-G	Samtec	分流器,100mil,镀金,黑色	分流器

表 3-1. 物料清单 (续)

-T-12-17	Λ. Η		224		14月平(次)	SM mit	1.1 11. 4. 4.
项目编号	位号	数量	值	器件型号	制造商	说明	封装参考
<u>项目编号</u> 58	TP1、TP2、TP3、TP4、TP5、TP6、TP7、TP8、TP9、TP10、TP11、TP12、TP13、TP14、TP15、TP16、TP17、TP18、TP19、TP20、TP21、TP22、TP23、TP24、TP25、TP26、TP26、TP27、TP28、TP29、TP30、TP31、TP32、TP33、TP34、TP34、TP41、	数重 40	值	器件型号 5002	制造樹 Keystone	测试点,微型,白色,TH	白色微型测试点
59	TP42、TP43、 TP44、TP45、 TP46 TP35、TP36、 TP37、TP38、 TP39、TP40、	7		5016	Keystone	测试点,紧凑型,SMT	Test point_Keystone_Comp act
	TP47			D00===0DD) (T			110=1100
60	U1	1		BQ25756RRVT	德州仪器 (TI)	BQ25756RRVT	VQFN36
61	U2	1		LT3010EMS8E-PBF	Analog Devices	线性稳压器 IC,可调节正电压,1 个输出,50mA,8-MSOP-EP	MSOP8

www.ti.com.cn *其他信息*

4 其他信息

4.1 商标

PowerPAK® is a registered trademark of Vishay.

所有商标均为其各自所有者的财产。

English Document: SLUUD27 Copyright © 2024 Texas Instruments Incorporated

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司