EVM User's Guide: J742S2XH01EVM J742S2XH01EVM 评估模块

TEXAS INSTRUMENTS

说明

J742S2XH01EVM 评估模块 (EVM) 是一个用于评估 TDA4VPE-Q1 和 TDA4APE-Q1 处理器的平台,这些处理器用于整个汽车和工业市场中的视觉分析和网络应用,在多摄像头、传感器融合和高级驾驶辅助系统 (ADAS) 域控制应用中的性能尤为出色。

J742S2XH01EVM 由 SDK 处理器提供支持,后者包括基础驱动程序、计算和视觉内核,以及示例应用框架和演示,用于展示如何利用 Jacinto™ 7 处理器的强大异构架构。

开始使用

- 1. 在 J742S2XH01EVM 上订购该 EVM。
- 2. 下载 EVM 设计文件。
- 3. 从 J742S2XH01EVM 下载该软件。
- 4. 阅读本用户指南。

特性

处理能力包括四个高达 2.0GHz 的 Arm® Cortex®-A72 微处理器子系统、八个高达 1.0GHz 的 Arm® Cortex®-R5F 单核心。多达三个 C7x 浮点 DSP,在 1.0GHz 下支持 320GFLOPs。多达两个深度学习加速器,在 1.0GHz 下支持 32TOPS

- 所支持的三显示器包括两个 3840 x 2160p (4K) 显示器, 二者使用带多流传输 (MST) 的单一 DisplayPort™ 连接器。第二个 DisplayPort 接口通过 DisplayPort 支持 1920 x 1080p。图形处理能够支持 50GFLOPS、4GTexels/s
- 捕获功能包括三个 MIPI-CSI2 端口,每个端口各自支持 10Gb/s 的速率。利用多摄像头集线器模块(独立模块)支持高达十二个摄像头。处理功能包括具有 ISP (VPAC)的双视觉处理加速器、深度和运动加速器 (DMPAC)以及多个视觉辅助加速器
- 支持多种不同的存储技术,因此支持各种配置和测试场景,包括 LPDDR、八线串行 NOR/NAND、通用闪存存储 (UFS)、嵌入式多介质卡 (eMMC) 和可拆卸安全数字卡 (SD/MMC)
- 软件支持包括 TI 处理器 SDK Linux、RT-Linux、 RTOS MCU+ SDK、QNX SDK、包含 Android 的 开箱即用演示

应用

- 汽车和工业
 - 汽车前置摄像头系统
 - 汽车环视和泊车辅助系统
 - 工业 HMI
 - 机器人示教盒

J742S2XH01EVM

1 评估模块概述

1.1 简介

J742S2XH01EVM 是一种独立的测试、开发和评估模块,其中包含各种板载外设和外部接口,使客户可以灵活地根据需要定制平台。该设计不是参考设计,因为其中包含用于软件开发/调试的电路和灵活的配置。不过,设计中的某些部分经过优化,可视为参考(LPDDR4 实现作为示例)。J742S2XH01EVM EVM 支持多个功能丰富的软件开发套件(SDK),本用户指南中未予以介绍。本文档介绍了如何使用硬件以及 EVM 的一些架构和设计元件。

TDA4VPE-Q1 和 TDA4APE-Q1 处理器采用功能强大的异构架构,其中包含由 DSP 核心、Arm Cortex-A72 核心、人工智能 (AI) 矩阵数学加速、集成式图像信号处理器 (ISP) 和视觉处理加速、3D 图形处理单元 (GPU) 核心以及 H.264 和 H.265 编解码加速构成的组合。集成式安全微控制器单元 (MCU) 包含双锁步 Arm Cortex-R5F 内核,可帮助系统通过 ASIL-D 等级认证。

该 EVM 可通过 CSI-2 端口实现多摄像头输入,并通过 DisplayPort 和显示串行接口 (DSI) 实现多显示器连接。连接功能包括一个 USB3.1 Gen 1 (双角色) Type C接口、两个 PCI-Express (Gen3) 卡接口、双千兆位以太网®接口、多个具有 CAN-FD 支持的 CAN 总线接口、板载 XDS110 联合行动组 (JTAG) 仿真器,以及六个通过 USB2.0-B 实现的通用异步收发器 (UART)。

1.2 套件内容

EVM 可订购器件型号为: J742S2XH01EVM。此套件包括:

- J742S2XH01EVM
- Micro SD 卡 (空自)
- 用于串行终端/日志记录的 USB 电缆 (Type-A 至 Micro-B)
- USB 电缆 (Type-A 至 Type-C®)
- USB 适配器 (Type-C 插头至 Type-A 插座)
- 以太网电缆 (RJ45)
- DisplayPort 电缆
- EVM 用户指南手册
- EVM 免责声明和标准条款

EVM 由 4 引脚 DIN 电源插孔供电。不附带电源。有关 EVM 所推荐电源类型的更多信息,请参阅节 2.3。

1.3 器件信息

该 EVM 采用许多不同的器件和技术来打造。下面的列表详细介绍了此设计中包含的一些主要德州仪器 (TI) 器件,以及用于获取更多信息的链接。

功能	器件信息	
处理器 , SoC	TDA4VPE-Q1、TDA4APE-Q1	
电源管理,SoC	TPS6594113A	
电源稳压器,SoC	TPS62873-Q1	
音频编解码器	PCM3168A-Q1	
CAN-FD 总线收发器	TCAN1042HG-Q1	
DisplayPort 桥接器	SN65DSI86、SN65DSI86-Q1	
仿真器 (XDS110)	TM4C1294NCPDT	
以太网 PHY , Gb	DP83867E	
IO 扩展	TCA6408A-Q1、TCA6416A、TCA6424A	
电源监测	INA226、INA226-Q1	
电源稳压器 (3V3 , 5V)	LM5141-Q1、LM5143-Q1	
电源稳压器 (LDO)	TPS74801-Q1	
温度传感器	TMP100、TMP100-Q1	
USB 集线器控制器	TUSB4041I-Q1	

www.ti.com.cn 评估模块概述

功能	器件信息
USB 电源稳压器	TPS25830-Q1
USB Type-C 控制器	TUSB321

1.4 规格

下图展示了 EVM 的功能方框图。

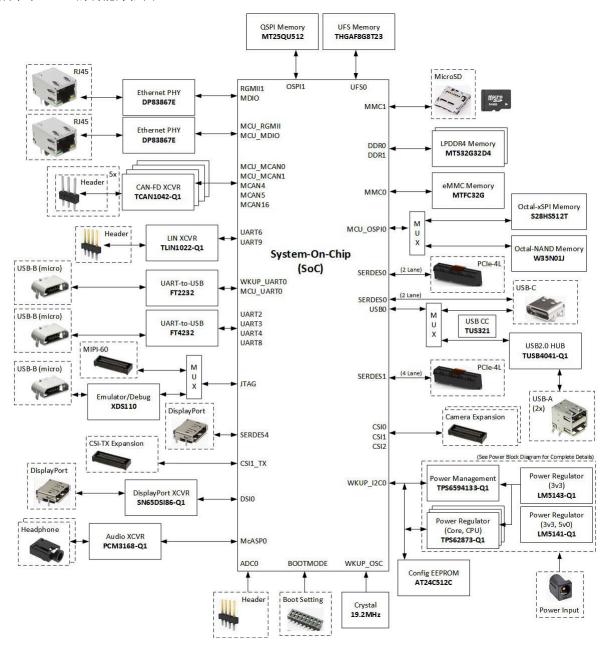


图 1-1. J742S2XH01EVM 方框图

2 硬件

2.1 主要特性和接口

J742S2XH01EVM 是一个高性能的独立开发平台,使用户能够评估和开发使用德州仪器 (TI) J742S2/TDA4VPE/TDA4APE 处理器的汽车和工业应用。EVM 特性汇总:

- 处理器(也称为 SoC 或片上系统):
 - 德州仪器 (TI) 的 Jacinto J742S2 超集器件
- 经过优化的电源管理设计:
 - 动态电压调节
 - 多个时钟和电源域
 - 多种低功耗/睡眠模式 (仅 MCU、IO 保持)
- 存储器:
 - 16GB LPDDR4 DRAM (4266MT/s), 支持内联 ECC
 - 两个 512Mb 非易失性 NOR 存储器, 1 个八线 SPI 和 1 个四线 SPI
 - 1Gb 非易失性 NAND 存储器,八线 SPI
 - 32GB 非易失性 eMMC 存储器,符合 JEDEC/MMC v5.1 标准
 - 32GB 非易失性 UFS 存储器,双通道, Gear3
 - 多媒体卡 (MMC)/安全数字卡 (Micro SD) 卡笼, UHS I
- USB :
 - USB3.1 (Gen 1) Type C 接口,支持 DFP、DRP、UFP 模式
 - USB2.0 集线器转 2 个 Type A (主机) , 1 个引脚接头提供 PCIe WiFi® 支持
 - USB2.0 Micro B (适用于双线/四线 UART over USB 收发器)
- 显示:
 - VESA DisplayPort (v1.4), 支持 4K UHD 且支持 MST
 - VESA DisplayPort (v1.4), 支持 2K QHD
 - 自定义 CSI2-TX 扩展接口
- 有线网络:
 - 两个千兆位以太网(RJ45连接器)
 - 六个 CAN-FD 接口
 - 两个 LIN 接口
- 摄像机:
 - 三个 CSI2-RX 摄像头接口 (自定义接口/双 QSH 连接器)
- 音频:
 - 3.5mm 立体声输入和输出
- 扩展/附加组件:
 - 两个 PCIe/Gen3 4L 卡槽 (1个支持 4 通道,1个支持 2 通道)
 - 用于 ADC、I2C、I3C 和 SPI 访问的多个引脚接头
- 用户控制/指示:
 - 按钮(复位、电源模式、用户定义)
 - LED(电源、用户定义、串行端口)
 - 用户配置(引导模式、USB模式)
 - 支持外部或板载仿真器 (带 14 引脚或 20 引脚 CTI 适配器的 MIPI-60)

EVM 图像标识了这些主要特性和用户界面(顶视图和底视图)的位置。

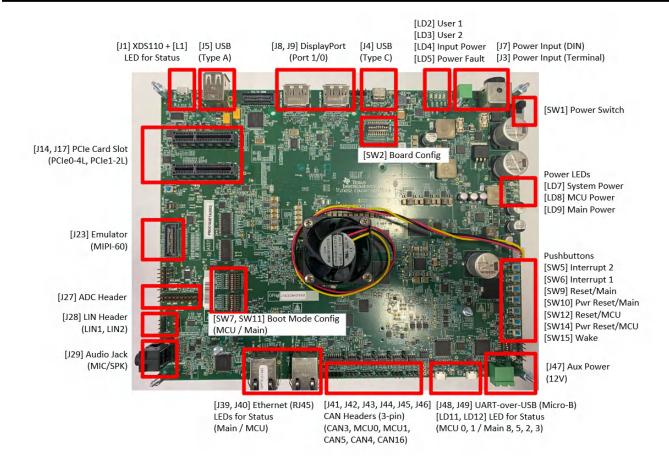


图 2-1. 主要特性和接口(顶部)

硬件 www.ti.com.cn

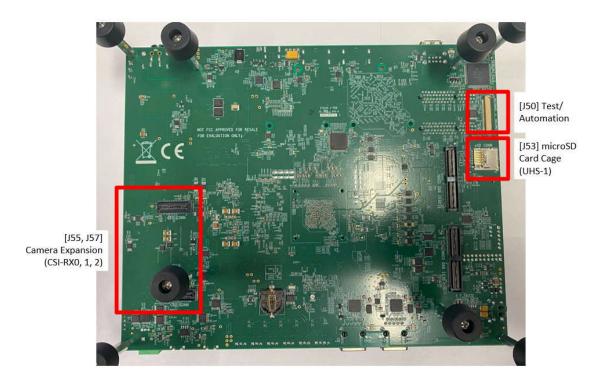


图 2-2. 主要特性和接口(底部)

2.2 加电/断电过程

以下过程简要总结了打开和关闭 EVM 所需的步骤。如需更深入的信息,请参阅本指南的后续部分。

加电过程

- 1. 将 EVM [SW7、SW11] 的引导 DIP 开关设置为所需的引导模式。有关如何配置 EVM 引导模式的更多信息, 请参阅引导配置设置。默认情况下,应将开关设置为从 MicroSD 卡引导。
- 2. 连接引导介质(如果适用)。
- 3. 将电源线连接到 EVM 的电源输入连接器 [J7]。有关电源要求的其他信息,请参阅节 2.3。
- 4. 将电源线连接到电源(交流电源插座或其他)。
- 5. 目视检查输入电源 LED [LD4] 是否亮起(绿色)。
- 6. 将电源开关 [SW1] 从 OFF 位置切换/移动到 ON 位置。
- 7. 目视检查电源 LED [LD7、LD8、LD9] 是否亮起 (绿色) 。

断电过程

- 1. 将电源开关 [SW1] 从 ON 位置切换/移动到 OFF 位置。
- 2. 目视检查电源 LED [LD7、LD8、LD9] 是否未亮起。
- 3. (可选)断开电源线与电源(交流电源插座或其他)的连接。
- 4. 如果执行了第 3 步,则目视检查电源 LED [LD4] 是否未亮起。
- 5. (可选)从 EVM [J7] 拔下电源线。

2.3 电源输入

此 EVM 不包括电源,必须单独购买。外部电源/附件的要求如下:

- 标称输出电压: 24-48 VDC
- 输出功率容量: 100W 至 160W(取决于用例和连接的外设)
- 效率等级 V

备注

TI 建议使用符合适用地区安全标准 (例如 , UL、CSA、VDA、CCC 和 PSE 等) 的外部电源或电源配件。

2.3.1 电源

EVM 支持两个独立的电源输入连接器 [J7]、[J3],二者均可用于为系统供电。(请注意,二者不可同时使用,因为将电源输出连接在一起可能会损坏 EVM 和电源。)输入可接受范围较宽的电压(20VDC 至 48VDC)。EVM 所需的确切功率很大程度上取决于应用和连接的外设。市场上有许多电源制造商和型号,但无法在 EVM 上测试每一种组合。下表列出了几个经 EVM 测试的推荐电源。

衣 Z-1. 建灰的灯 即电源			
制造商器件型号		说明	订购信息
CUI 公司开发。	SDI120-24-UC-P51	交流/直流台式机适配器 24V 120W	102-4664-ND [DigiKey 器件型号]
CUI 公司开发。	SDI160-48-UC-P51	-	SDI160-48-UC-P51-ND [DigiKey 器件型号]

表 2-1. 建议的外部电源

当有效电源与任一电源输入连接时,绿色电源 LED [LD4] 将会亮起。当电源不在正确的电压范围内时(低于 22VDC 或高于 52VDC),红色电源 LED [LD5] 将会亮起。

2.3.2 功率控制

EVM 支持手动开关 [SW1],用于对 EVM 进行电源控制。开关 [SW1] 是一种两位开关。OFF 位置下会断开来自板载电路的输入电源。ON 位置下会接通输入电源。

三个状态 LED [LD7]、[LD8]、[LD9] 用于向用户指示电源状态。

 LED
 "ON"状态
 "OFF"状态

 [LD7]
 电源开关 [SW1] 处于 ON 位置,此时正向 EVM 提供输入电源。
 电源开关 [SW1] 处于 OFF 位置,或者存在某种其他问题导致无法供电。

 [LD8]
 EVM 的 MCU 域通电
 EVM 的 MCU 域未通电/关断 (1)

 [LD9]
 EVM 的 MAIN 域通电
 EVM 的 MAIN 域未通电/关断 (1)

表 2-2. 电源域状态

备注

电源管理 IC (PMIC) 包含用于监测电源域的功能,包括过压/欠压、过流和残余电压。如果 PMIC 检测到错误,则 PMIC 可以转换到*安全模式*,此时 PMIC 会同时关断 MCU 域和 MAIN 域的电源。

2.3.3 功率预算注意事项

EVM 所需的确切功率很大程度上取决于应用、板载外设的使用以及附加器件的功率需求。表 2-3 展示了设计方案的功率分配。同样,输入电源必须能够提供应用所需的功率。

77 - 77 1 77 H=			
功能	电源	说明	
处理器内核	高达 50W	处理器、DDR 存储器	
板载外设	高达 10W	SD 卡、以太网、引导逻辑、非易失性存储器	
USB 端口	高达 15W	Type A 端口、Type C	
显示器	高达 3W	DisplayPort 面板、DP 收发器	
扩展接口	高达 50W	2 个 PCle、摄像头扩展	

表 2-3. 功率分配

2.4 用户输入和设置

EVM 支持多种机制供用户配置、控制和向系统提供输入。

2.4.1 引导配置设置

EVM 的引导模式由两组 DIP 开关 [SW7、SW11] 决定。这些开关设置直接映射到处理器的 BOOTMODE 引脚。有关支持的所有引导模式的完整定义,请参阅处理器的技术参考手册 (TRM)。

备注

"OFF"设置提供低逻辑电平("0"),"ON"设置提供高逻辑电平("1")。测试自动化接口提供了覆盖这些开关设置的功能,但这是本手册中未讨论的高级功能。

如图所示,BOOTMODE 顺序与 DIP 开关分配相反。例如,MCU_BOOTMODE [2:0] 会选择 PLL 配置。EVM 使用 19.2Mhz 时钟源,因此必须将 MCU_BOOTMODE [2:0] 设置为"000"。EVM 会将 MCU_BOOTMODE [1:0] 分配至"00"。DIP 开关 SW7[1] 映射到 MCU BOOTMODE [2],且必须设置为 OFF 或"0"。

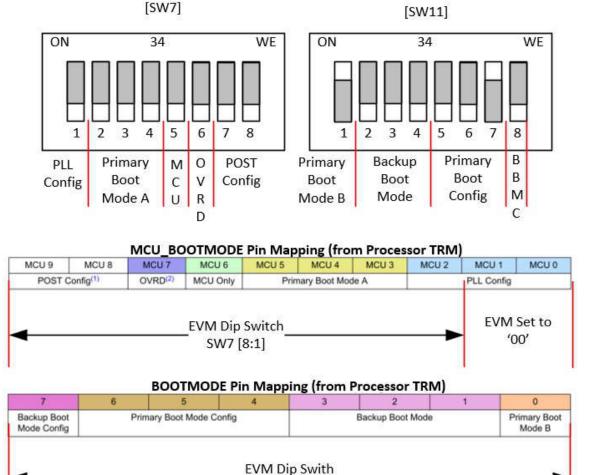


图 2-3. DIP 开关 [SW7、SW11] 映射到引导模式

SW11 [8:1]

EVM 的默认设置配置为 Micro SD 卡引导。引导设置为:

SW7[1:8] = 0000 0000 , SW11[1:8] = 1000 0010

另一种常见的引导配置是"无引导"。在使用仿真器/XDS110下载代码时会使用此选项。该引导设置为:

SW7[1:8] = 0111 000 , SW11[1:8] = 1000 1000

还支持 eMMC、串行闪存、USB、以太网和 UART 等其他引导模式。有关具体设置和支持模式的完整列表,请参阅处理器的 TRM。

2.4.2 板配置设置

DIP 开关 [SW2] [SW4] [SW13] [SW16] 用来配置 EVM 上可用的不同选项。下表列出了每个开关以及分配的功能和定义。

表 2-4. 板配置设置 [SW2] [SW13]

[SW2] 位置	功能	说明
SW2.1	八线 SPI 存储器选择	(OFF) = 选择 xSPI NOR 存储器 (默认) (ON) = 选择八线 NAND
SW2.2	调试/跟踪使能	(OFF) = 选择或启用 EVM 的标准功能 (ON) = 对 MIPI-60 仿真接口启用调试/跟踪(默认)
SW2.[4:3]	USB Type C 模式选择	(OFF/OFF) = DFP(下行端口)(默认) (OFF/ON) = DRP(双角色端口) (ON, Don't Care) = UFP(上行端口)
SW2.5	PCIe0 模式选择	(OFF) = 根复合体 (默认) (ON) = 端点
SW2.6	PCle1 模式选择	(OFF) = 根复合体 (默认) (ON) = 端点
SW2.7	串行摄像头附加电路板的 IO 电压	(OFF) = IO 电平设置为 3.3VDC (ON) = IO 电平设置为 1.8VDC (默认)
SW2.8	测试 自动化选择	(OFF) = 测试自动化通过 TIVA 微控制器 (XDS110) 进行控制 (ON) = 测试自动化通过专用连接器 [J50] 进行控制 (默认)
SW2.9	EVM 配置 EEPROM 写保护	(OFF) = 可以更新配置 EEPROM (ON) = 配置 EEPROM 无法更新/受保护(默认)
SW2.10	用户定义, 映射到 GPIO 以进行访问(请参阅 IO 表)	(OFF) = 用户定义 (ON) = 用户定义 (默认)
SW13.1	LIN1 控制器/目标模式选择	(OFF) = 目标模式(默认) (ON) = 控制器模式
SW13.2	LIN2 控制器/目标模式选择	(OFF) = 目标模式(默认) (ON) = 控制器模式

备注

各种信号通过处理器上的调试/跟踪接口进行多路复用。如果启用跟踪,则可能会影响一些连接的外设,包括:音频、CAN 总线 4/5 和 RGMII1 以太网。

ww.ti.com.cn *硬件*

表 2-5. 测试模式配置设置

[SW16] 位置	默认值	功能	说明	
SW4.1	OFF	保留/测试模式 (复位等待)	保留,必须设置为 (OFF) 才能使 EVM 正常运行(仅在测试模式下使用)	
SW4.2	OFF	保留/测试模式 (复位等待)	保留,必须设置为 (OFF) 才能使 EVM 正常运行(仅在测试模式下使用)	
SW16.1	ON 保留/测试模式(PMIC 使能)		保留,必须设置为 (ON) 才能使 EVM 正常运行(仅在测试模式下使用) (OFF) = 禁用 PMIC(请勿使用) (ON) = 启用 PMIC	
SW16.2	ON	保留/测试模式 (VMonitor 使能)	保留,必须设置为 (ON) 才能使 EVM 正常运行(仅在测试模式下使用) (OFF) = 禁用电压监测(请勿使用) (ON) = 启用电压监测	
SW16.3	ON	保留/测试模式 (禁用)	保留,必须设置为 (ON) 才能使 EVM 正常运行 (OFF) = 启用测试模式(请勿使用) (ON) = 禁用测试模式	
SW16.4	ON	PMIC 看门狗禁用	(OFF) = 启用看门狗计时器。(请注意,如果不管理看门狗,这可能会导致处理器复位。) (ON) = 禁用看门狗计时器(默认)	

2.4.3 复位按钮

按下该按钮之后,特定的 EVM 域会收到复位指令,并且保持复位状态,直到松开该按钮为止。

表 2-6. 复位按钮

按钮	域	功能	说明
[SW14]	所有	上电复位	EVM 上电/冷复位,复位两个处理器域(MCU、MAIN)和所有 EVM 外设
[SW12]	MCU	MCU 热复位	MCU 域热复位
[SW10]		上电复位	MAIN 域上电/冷复位,MCU 域不受影响
[SW9]	热复位	MAIN 域热复位,MCU 域不受影响	

2.4.4 用户按钮

按钮的主要功能由用户和应用来定义。可以对输入进行监控,并且配置它们来生成中断。一些按钮支持辅助功能。一些按钮可用于从低功耗模式下唤醒系统。下表列出了每个按钮的完整定义。

表 2-7. 用户按钮和 LED

按钮	主要功能	备用功能	
[SW3]	用户定义 (GPIO0_11)	从低功耗模式下唤醒 (MAIN IO_RET)	
[SW5]	用户定义 (WKUP_GPIO0_7)	从软件启动的断电状态下唤醒 (OFF)	
[SW6] 用户定义 (GPIO0_0)		外部中断 (EXTINTn)	
[SW8] 用户定义 (WKUP_GPIO0_70)		从低功耗模式下唤醒 (MCU IO_RET)	
[SW15]	用户定义 (PMIC_GPIO4)	从低功耗模式下唤醒(任何 LP_STBY)。	
上ED 主要功能		备用功能	
[LD2] 用户定义(IO_EXP 0x22,位 P26)		无	
[LD3] 用户定义(IO_EXP 0x22,位 P27)		无	

备注

用户定义的按钮输入和 LED 输出连接到处理器引脚和/或 IO 扩展器。这些引脚可通过引脚的 GPIO 功能进行访问或通过 I2C 命令进行控制。表中指明了所使用的特定引脚/GPIO。

2.5 标准接口

EVM 提供行业标准的接口/连接器,用于连接各种外设。由于这些接口是标准接口,因此本文档中不提供引脚特定的信息。

2.5.1 音频输入和输出

EVM 支持用于音频输入和输出的堆叠式 3.5mm 插孔 [J29]。德州仪器 (TI) PCM3168A 编解码器以高达 96KHz ADC/192KHz DAC (ADC 和 DAC) 的采样率提供音频转换。顶部插孔支持立体声麦克风(带麦克风偏置),底部插孔支持立体声耳机输出。

2.5.2 显示端口接口

EVM 通过标准 DP 电缆接口 [J8] [J9] 支持两个 DisplayPort 面板。处理器的原生 DP [J9] 支持高达 4K UHD (3840x216) 的分辨率,并且包含用于连接多个面板的 MST (多流传输)。通过 DP 桥接器件 (SN65DSI86) 支持第二个 DisplayPort [J8],所支持的分辨率高达 1080p。第二个 DisplayPort (通过桥接器件)不支持集成音频。

2.5.3 千兆位以太网

通过 RJ45 电缆接口 [J39] [J40] 支持两条有线以太网网络。二者均兼容 IEEE 802.3 10BASE-Te、100BASE-TX 以及 1000BASE-T 规范。连接器包括用于链路状态和活动的 LED。该 EVM 支持的以太网 PHY 是德州仪器 (TI) 的 DP83867E。

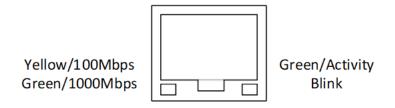


图 2-4. RJ45 LED 指示器 [39] [J40]

以太网供电 (PoE) 不受支持。

2.5.4 JTAG/仿真接口

该 EVM 支持用于加载和调试软件的集成 XDS110 仿真器。该 EVM 的 USB Micro-B 连接器 [J1] 使用提供的 USB 电缆 (Type-A 转 Micro-B) 连接到主机 PC。计算机可以使用德州仪器 (TI) 的 Code Composer Studio (CCS) 与处理器建立连接,并在各个处理器内核上下载和调试软件。仿真器电路由 USB VBUS 电源供电。LED [LD1] [LD6] 用于指示与主机 PC/处理器的有效连接。绿色 LED [LD6] 表示 USB 与主机 PC 的连接,而红色 LED [LD1] 表示处理器与 CCS 的连接。

(可选)可使用专用仿真连接器 [J23] 连接外部 JTAG 仿真/调试器。该连接器符合 MIPI 60 引脚仿真器标准,并扩展了调试功能以包含跟踪支持。可使用多种不同的德州仪器 (TI) 仿真器,包括 XDS560v2、XDS110 和 XDS200。请注意,某些应用可能需要第三方适配器来与 MIPI-60 连接器进行连接。

在板载仿真器和外部仿真器之间自动进行选择,而只有在连接到 MIPI-60 连接器 [J23] 时才切换到外部仿真器。

2.5.5 MicroSD 卡笼

EVM 支持 micro-SD 卡笼 [J53]。它支持 UHS-1 类存储卡,包括 SDHC 和 SXDC。连接器是一种推推式连接器,这意味着推动即可插入卡,再次推动即可弹出卡。

EVM 中附带一张 Micro SD 卡(空白)。

2.5.6 PCIe 卡槽

EVM 支持两个 4 通道 PCIe 卡插槽,用于对接全尺寸 PCIe 卡。PCIe0 接口 [J14] 支持高达 Gen3 数据速率的全部 4 个通道,而 PCIe1 接口 [J17] 带宽会降至 2 个通道(在 Gen3 数据速率下))。PCIe1 接口 [J17] 需要处理器 生成 REFCLK (100MHz)。对于 PCIe0 [J14],会自动生成 REFCLK(板载)。

EVM 能够为每个 PCIe 卡提供高达 25W 的电源,符合 PCIe 规范。

2.5.7 用于终端/日志记录的 UART

提供了六个 UART 端口,以便使用两个 UART over USB 收发器提供终端和日志记录功能。当 EVM 的 USB Micro-B 连接器 [J48] 或 [J49] 通过提供的 USB 电缆(Type-A 转 Micro-B)连接到主机 PC 时,计算机可以建立虚拟 COM 端口,以用于任何终端应用。收发器的虚拟 COM 端口驱动程序可从 FTDI 芯片获得。

安装后, 主机 PC 会创建虚拟 COM 端口(两个端口用于 FT2232, 四个端口用于 FT4232)。虚拟 COM 端口不位于 COM1-2 或 COM3-6, 具体取决于其他可用的主机 PC 资源。但是, 对于每个收发器, 这些端口将保持相同的数字顺序。

表 2-8. 具有状态 [LD11] 的 UART 到 COM 端口映射 [J48]

UART 端口	主机 PC COM 端口	
MCU_UART0	COM 1	
WKUP_UART0	COM 2	

表 2-9. 具有状态 [LD12] 的 UART 到 COM 端口映射 [J49]

And an NAME of the Party of the		
UART 端口	主机 PC COM 端口	
UART8	COM 1	
UART5	COM 2	
UART2	COM 3	
UART3	COM 4	

电路通过 USB 电源供电,因此当移除 EVM 电源后,COM 连接不会断开。LED [LD11] [LD12] 用于指示与主机 PC 的活动 COM 连接。FTDI 桥的 EEPROM 中编写了 EVM 序列号,当一个或多个板连接到一台计算机时,用户可以通过板序列号来识别所连接的 COM 端口。

备注

IO 电缆的最大长度不得超过 3 米。

2.5.8 USB 接口

EVM 支持一个 USB3.1 Gen1 Type C 接口 [J4],它可以用作 DFP、UFP 或 DRP。可以配置模式,从而为处理器的 USB 引导模式提供支持。有关如何选择 USB 模式的详细信息,请参阅节 2.4.2。此端口的 VBUS 输出限制为 1.5A。作为 UFP 运行时,EVM 无法从此端口供电。

EVM 还通过板载 USB 集线器支持两个 USB2.0 Type A 接口 [J5]。这些端口只能用作主机。每个端口的 VBUS 输出限制为 0.5A。

处理器支持单个 USB 接口。因此,用户必须配置为 USB3.1 Type C 接口或 USB2.0 Type A 接口。二者不能同时运行

备注

关于 USB2.0 Micro-B 连接器 [J48] [J49] 和 [J1], UART-over-USB 部分和仿真部分中进行了探讨。它们是专用于外设的 USB 接口,不能用于通用 USB 外设。

2.6 扩展接口

EVM 提供多个具有非标准/自定义引脚排列的扩展接口。其中每个接口都会进行介绍,并提供特定的引脚信息。

请注意,某些接口包含"方向"信息。这是相对于 EVM 而言,因此输入是向 EVM 的输入/所连接器件的输出。输出是 EVM 的输出/向所连接器件的输入。

2.6.1 附件电源连接器

提供有一个电源输出连接器 [J47],适用于扩展板需要额外电源的情况。2 引脚连接器 (Phoenix 1757242) 可提供 稳压 12V 输出,电流高达 5000mA。

表 2-10. 附件电源连接器 [J47]

引脚编号	引脚名称	说明	方向
1	GND	接地	
2	电源	电源, 12V	输出

2.6.2 模数转换

EVM 支持通过一个接口,连接具有 ADC 输入的外部外设。20 引脚、双排、2.54mm 间距引脚接头 [J27] 支持 8 个至 ADC0 的输入通道、2 个至 ADC1 的通道,以及触发器和 ADC 基准信号。

表 2-11. 模数转换扩展引脚定义 [J27]

引脚编 号	引脚名称	说明:[J57]/[J55] 的处理器资源	方向
1	GND	接地	
2	ADC0_AIN3	ADC 实例 0,通道 3	输入
3	ADC0_AIN7	ADC 实例 0,通道 7	输入
4	ADC0_AIN0	ADC 实例 0,通道 0	输入
5	ADC0_AIN1	ADC 实例 0,通道 1	输入
6	ADC0_AIN6	ADC 实例 0,通道 6	输入
7	GND	接地	
8	GND	接地	
9	ADC0_AIN4	ADC 实例 0,通道 4	输入
10	ADC0_REFP	ADC 基准电压,正	输入
11	ADC0_AIN2	ADC 实例 0,通道 2	输入
12	ADC0_REFN	ADC 基准电压,负	输入
13	GND	接地	
14	GND	接地	
15	ADC0_AIN5	ADC 实例 0, 通道 5	输入
16	ADC_TRIGGER	转换触发器,可配置至 ADC 实例 0 或 1	输入
17	ADC1_AIN0	ADC 实例 1,通道 0	输入
18	ADC1_AIN1	ADC 实例 1,通道 1	输入
19	GND	接地	
20	GND	接地	

2.6.3 摄像头接口

EVM 包含两个 40 引脚(2x20,0.5mm 间距)高速连接器 [J57] [J55],用于连接摄像头和其他图像捕捉器件。每个扩展连接器可支持高达两个 MIPI-DPHY CSI2 接口。每个 CSI2 接口的带宽为 10Gbps (每个 CSI2 端口支持 4个数据通道,每个通道高达 2.5Gbps)。扩展连接器还包括电源以及其他用于与捕获器件通信的 IO。所有控制信号均可配置为 3.3V 或 1.8V IO 电压电平。详细配置信息请参考节 2.4.1。

表 2-12. 高速摄像头扩展引脚定义 [J57][J55]

引脚编号	引脚名称	说明:[J57]/[J55] 的处理器资源	方向
1	电源	电源,12V	输出
2	I2C_SCL	I2C 总线时钟 (I2C5)	双向

表 2-12. 高速摄像头扩展引脚定义 [J57][J55] (续)

	次 = 1=1 耐风E.	TX BY X 1 /K 1 /K 1 /K X /	
引脚编号	引脚名称	说明:[J57]/[J55] 的处理器资源	方向
3	电源	电源,12V	输出
4	I2C_SDA	I2C 总线数据 (I2C5)	双向
5	CSIa_CLK_P	CSI 端口 0/端口 2	输入
6	GPIO0/PWMA	IO 扩展器 0x20 位 P1/开路	输出
7	CSIa_CLK_N	CSI 端口 0/端口 2	输入
8	GPIO1/PWMV	IO 扩展器 0x20 位 P2/位 P4	双向
9	CSIa_D0_P	CSI 端口 0/端口 2	输入
10	REFCLK	25MHz 基准时钟	输出
11	CSIa_D0_N	CSI 端口 0/端口 2	输入
12	GND	接地	
13	CSla_D1_P	CSI 端口 0/端口 2	输入
14	RESETz	GPIO, IO 扩展器 0x20 位 P0	输出
15	CSIa_D1_N	CSI 端口 0/端口 2	输入
16	GND	接地	
17	CSla_D2_P	CSI 端口 0/端口 2	输入
18	GPIO2	GPIO0_26/IO 扩展器 0x20 位 P5	双向
19	CSIa_D2_N	CSI 端口 0/端口 2	输入
20	GPIO3	IO 扩展器 0x20 位 P3/位 P6	双向
21	CSla_D3_P	CSI 端口 0/端口 2	输入
22	GPIO4	GPIO0_28/IO 扩展器 0x20 位 P7	双向
23	CSIa_D3_N	CSI 端口 0/端口 2	输入
24	GND	接地	
25	CSIb_CLK_P	CSI 端口 1/开路	输入
26	CSlb_D3_P	CSI 端口 1/开路	输入
27	CSIb_CLK_N	CSI 端口 1/开路	输入
28	CSIb_D3_N	CSI 端口 1/开路	输入
29	CSIb_D0_P	CSI 端口 1/开路	输入
30	电源	电源,3.3V	输出
31	CSIb_D0_N	CSI 端口 1/开路	输入
32	电源	电源,3.3V	输出
33	CSlb_D1_P	CSI 端口 1/开路	输入
34	电源	电源,3.3V	输出
35	CSIb_D1_N	CSI 端口 1/开路	输入
36	电源	电源,3.3V	输出
37	CSIb_D2_P	CSI 端口 1/开路	输入
38	电源	电源,IO 电平(1.8V 或 3.3V)	输出
39	CSIb_D2_N	CSI 端口 1/开路	输入
40	电源	电源,IO 电平(1.8V 或 3.3V)	输出

2.6.4 CAN 总线接口

EVM 支持高达六 (6) 个 CAN 总线接口。

表 2-13. CAN-FD 接口分配

连接器	处理资源
J41	CAN3

表 2-13. CAN-FD 接口分配 (续)

连接器	处理资源
J42	MCU CANO
J43	MCU CAN1
J44	CAN5
J45	CAN4
J46	CAN16

每个控制器局域网 (CAN) 总线接口都支持 3 引脚、2.54mm 间距接头。该接口符合 ISO 11898-2 和 ISO 11898-5 物理标准,支持 CAN 并将 CAN-FD 性能优化至高达 8Mbps。每个都包括 CAN 总线终点端接。如果将 EVM 纳入具有两个以上节点的网络,则可能需要调整终端。

表 2-14. CAN-FD 接头引脚定义 [J41-J46]

引脚编号	引脚名称	说明	方向
1	CAN-H	高级 CAN 总线	双向
2	GND	接地	
3	CAN-L	低级 CAN 总线	双向
4	唤醒 (仅 J41)	使 PHY 唤醒功能生效	输入

2.6.5 风扇接头

散热器支持在环境温度下冷却器件。如果环境或用例要求进行额外的冷却,可以为散热器增加风扇。

风扇连接器是 3 引脚接头 (TE Connectivity 的 440054-3), 支持 12VDC 风扇。对接连接器为 440129-3 和 1735801-1。

表 2-15. 风扇接头引脚定义 [J24]

引脚编号	引脚名称	说明	方向
1	<open></open>	未连接	不适用
2	12V	12V 电源	输出
3	GND	接地	

2.6.6 LIN 总线接口

EVM 支持高达两个 LIN 总线接口。局域互联网络 (LIN) 是用于低速车载网络的单线双向总线。4 引脚、2.54mm 间距接头 [J28] 上支持两个 EVM 接口。该接口符合 LIN 2.2A 和 ISO/DIS17987-4.2 物理标准,且支持高达 100kbps 的速率,专为支持 12V 应用而设计。每个 LIN 接口可以选择作为控制器或目标。有关配置详细信息,请参阅节 2.4.2。

表 2-16. LIN 接头引脚定义 [J28]

引脚编号	引脚名称	说明	方向
1	VBUS_LIN	LIN 总线电源 (4V 至 45V)	输入(可选)
2	LIN #1	使用 UART6 的接口	双向
3	LIN #2	使用 UART9 的接口	双向
4	GND	接地	

2.6.7 测试和自动化控制接口

EVM 支持自动控制系统的接口,包括开/关、复位和启动模式设置等功能。

表 2-17. 测试自动化接口引脚定义 [J50]

引脚编号	引脚名称	说明	方向
1	电源	电源,3.3V	输出
2	电源	电源,3.3V	输出

表 2-17. 测试自动化接口引脚定义 [J50] (续)

引脚编号	引脚名称	说明	方向
3	电源	电源,3.3V	输出
4-6	<open></open>		
7	GND	接地	
8-15	<open></open>		
16	GND	接地	
17-24	<open></open>		
25	GND	接地	
26	POWERDOWNz	EVM 断电	输入
27	PORz	EVM 上电/冷复位 (MCU_PORz)	输入
28	RESETz	EVM 热复位 (RESETz)	输入
29	<open></open>		
30	INT1z	EXTINT/GPIO0_0	输入
31	INT2z	WKUP_GPIO0_7	双向
32	<open></open>		
33	BOOTMODE_RSTz	引导模式缓冲器复位	输入
34	GND	接地	
35	<open></open>		
36	总线 1 I2C_SCL	INA 总线 1 I2C (与处理器 I2C1 的可选连接)	双向
37	总线 2 I2C_SCL	INA 总线 2 I2C	输入
38	总线 1 I2C_SDA	INA 总线 1 I2C (与处理器 I2C1 的可选连接)	双向
39	总线 2 I2C_SDA	INA 总线 2 I2C	双向
40	GND	接地	
41	GND	接地	
42	GND	接地	

备注

信号极性由引脚名称末尾的"z"标识,表示信号为低电平有效。例如,POWERDOWNz是一个低电平有效信号,因此"0"= EVM 已断电,"1"= EVM 未断电。

2.7 电路细节

本节提供了有关 EVM 设计和处理器连接的更多详细信息。顶层方框图展示了 EVM 的整体连接(节 1.4)。

2.7.1 接口映射

表 2-18 中提供了 EVM 接口映射表。

表 2-18. 接口映射

连接的外设	处理器资源	元件/器件型号
存储器,LPDDR4 DRAM	DDR0、DDR1	(2x) Micron , MT53E2G32D4DE-046 AUT:C
存储器, xSPI NOR 闪存	MCU_OSPI0	Cypress , S28HS512TGABHM010
存储器,八线 NAND	MCU_OSPI0	Winbond , W35N01JWTBAG
存储器,四线 SPI NOR 闪存	MCU_OSPI1	Micron , MT25QU512ABB8E12-0SIT
存储器,eMMC	MMC0	Micron , MTFC16GAPALBH-AAT ES
存储器,microSD 卡	MMC1	
EEPROM,存储电路板标识信息	WKUP_I2C0	On-Semi , CAT24C256WI-GT3
EEPROM,引导	MCU_I2C0	Microchip Tech , AT24CM01
存储器,UFS 2L Gear3	UFS0	Toshiba , THGAF8G8T23BAIL
有线以太网	MCU_RGMII1、RGMII1	(2x) 德州仪器 (TI), DP83867ERGZT
USB Type C + CC 控制器	USB0 + SERDES0 (L2、L3)	德州仪器 (TI),TUSB321RWBR
USB Type A (2x)	USB0	德州仪器 (TI),TUSB4041IPAP
音频编解码器	McASP0	德州仪器 (TI), PCM3168APAP
PCle 4L 卡槽	PCle1/SERDES0 (L0 、L1)	
PCIe 4L 卡槽	PCle0、SERDES1	
四线 USART 端子	UART 8、5、2 和 3	FTDI , FT4232HL
双线 USART 端子	WKUP_UART0、MCU_UART0	FTDI , FT2232HL
CAN (6x)	MCU_MCAN0、MCU_MCAN1、MCAN4、 MCAN5、MCAN16	德州仪器 (TI),TCAN1042HGVD
	MCAN3	德州仪器 (TI), TCAN1043-Q1
LIN (2x)	UART6、UART9	德州仪器 (TI), TLIN1022DMTTQ1
CSI RX 接口	CSI0、CSI1、CSI2	QSH 连接器-J57 (QSH-020-01-L-D-DP-A-K)
显示端口	DP0	
	DSI0	德州仪器 (TI), SN65DSI86IPAPQ1
ADC 接头	MCU_ADC0	

备注

MCU_OSPI1 连接至两个不同的闪存存储器,目标存储器通过多路复用器进行选择。

2.7.2 共享接口/信号多路复用

受 EVM 上可用功能数量的影响,关于哪些功能可同时使用,存在着一些限制。许多冲突都与仿真/跟踪功能相关。当选择/启用跟踪后,无法使用以下功能:音频、功率测量(从处理器访问)、LIN 总线、降低 CAN-FD 可用性(仅 MCU 和 MCAN16 可用),以及少量其他项目。有关共享资源的接口的完整定义,请参阅原理图。

2.7.3 I2C 地址映射

表 2-19 提供了关于 EVM 上支持的完整 I2C 地址映射详情。

表 2-19. I2C 映射

) 	处理	一 元件/器件编号	
连接的外设	I2C 端口	I2C 地址	一
EEPROM,存储电路板标识信息	WKUP_I2C0	0x50	On-Semi , CAT24C256WI-GT3
电源管理 IC (PMIC)	WKUP_I2C0	0x48-4B	德州仪器 (TI),TPS659413
电源管理 IC (PMIC)	WKUP_I2C0	0x40、0x43	(2x) 德州仪器 (TI),TPS62873
电压监测	WKUP_I2C0	0x30、0x31	(2x) 德州仪器 (TI), PPS38900603NRTERQ1
温度传感器	MCU_I2C0	0x48、0x49	德州仪器 (TI), TMP100NA/3K
EEPROM,引导	MCU_I2C0	0x50、0x51	Microchip Tech , AT24CM01
PCIe0/PCIE1 卡槽	I2C0	0x70,附加组件	德州仪器 (TI),TCA9543APWR
RTC 时钟	I2C0	0x57、0x6F	Microchip , MCP79410-I/SN
时钟发生器,SERDES	I2C0	0x77、0x76	德州仪器 (TI),CDCI6214
时钟发生器,外设	I2C0	0x6D	德州仪器 (TI),CDCEL937-Q1
I2C IO 扩展器,16b	I2C0	0x20	德州仪器 (TI),TCA6416ARGJR
I2C IO 扩展器,24b	I2C0	0x22	德州仪器 (TI),TCA6424ARGJR
ADC,功率测量	I2C1	0x40 至 0x4F	德州仪器 (TI), INA226
I2C IO 扩展器,8b	I2C3	0x20	德州仪器 (TI),TCA6408ARGTR
音频编解码器	I2C3	0x44	德州仪器 (TI), PCM3168A-Q1
I2C IO 扩展器,8b	I2C4	0x20	德州仪器 (TI),TCA6408ARGTR
DisplayPort,桥接器	I2C4	0x2C,附加组件	德州仪器 (TI),SN65DSI86IPAPQ1
扩展,摄像头	WKUP_I2C0 , I2C5	附加组件	

2.7.4 GPIO 映射

EVM 的通用 IO (GPIO) 分为两大类:连接到处理器的 IO 或连接到基于 I2C 的扩展器的 IO ,它们分成下面两个表。

表 2-20. 处理器控制的 GPIO

J784S4 GPIO	功能	方向/级别	备注
WKUP_GPIO0_1	引导 EEPROM 写保护	输出	"0" - 存储器不受写保护 "1" - 存储器受写保护(默认)
WKUP_GPIO0_2	MCU CAN 总线 #1 待机	输出	"0" - 正常模式 "1" - 待机模式(默认)
WKUP_GPIO0_3	MCU CPSW2G 以太网中断	输入	"0" - 运行中断请求 "1" - 无中断请求(默认)
WKUP_GPIO0_6	SPI 闪存选择	双向	"0" - 选择 xSPI NOR 闪存"1" - 选择 Octal-NAND 闪存(请注意,需要通过 DIP 开关来设置默认值)
WKUP_GPIO0_7	按钮 [SW5] 系统/用户中断	输入	"0" - 按下按钮 "1" - 未按下按钮(默认)
WKUP_GPIO0_28	USB Type-C 电缆方向	输入	"0" - 检测到低位(默认) "1" - 检测到高位
WKUP_GPIO0_39	电源管理 IC (PMIC) 中断	输入	"0" - 运行中断请求 "1" - 无中断请求(默认)

表 2-20. 处理器控制的 GPIO (续)

		理希控制的 GPIU (
J784S4 GPIO	功能	方向/级别	备注
WKUP_GPIO0_55	系统断电	输出	"0" - 正常运行(默认) "1" - 系统断电/关闭
WKUP_GPIO0_56	MCU CPSW2G 以太网复位	输出	"0" - 以太网 PHY 复位 "1" - 以太网 PHYT 未复位(默认)
WKUP_GPIO0_66	电源管理总线选择	双向	"0" - 选择总线 1 以接入 INA(默认) "1" - 选择总线 2 以接入 INA
WKUP_GPIO0_69	MCU CAN 总线 #0 待机	输出	"0" - 正常模式 "1" - 待机模式(默认)
WKUP_GPIO0_70	按钮 [SW8] 系统/用户中断	输入	"0"- 按下按钮 "1"- 未按下按钮(默认)
WKUP_GPIO0_84	串行以太网扩展 1 中断	输入	"0" - 运行中断请求 "1" - 无中断请求(默认)
WKUP_GPIO0_85	串行以太网扩展 2 中断	输入	"0" - 运行中断请求 "1" - 无中断请求(默认)
WKUP_GPIO0_86	IO 扩展器中断(总线 I2C0)	输入	"0" - 运行中断请求 "1" - 无中断请求(默认)
GPIO_3	DSI/DisplayPort 桥中断	输入	"0" - 运行中断请求 "1" - 无中断请求(默认)
GPIO_8	SD 卡 IO 电压选择	输出	"0" - SD 卡 IO 电压为 1.8V "1" - SD 卡 IO 电压为 3.3V(默认)
GPIO_11	按钮 [SW3] 系统/用户中断	输入	"0" - 按下按钮 "1" - 未按下按钮(默认)
GPIO_18	IO 扩展器中断(总线 I2C5)	输入	"0" - 运行中断请求 "1" - 无中断请求(默认)
GPIO_21	CPSW2G 以太网中断	输入	"0" - 运行中断请求 "1" - 无中断请求(默认)
GPIO_26	摄像头扩展 1 GPIO 2	双向	摄像头扩展板特定(引脚 18)
GPIO_28	摄像头扩展 1 GPIO 4	双向	摄像头扩展板特定(引脚22)

备注

GPIO 功能有时会与其他功能共用引脚。这些 IO 的默认状态通过 MCU_BOOTMODE 和/或 BOOTMODE 引脚进行设置。对于 EVM 来说,这些引脚通过 DIP 开关进行设置。

表 2-21. 扩展器控制器 GPIO

I2C0/TCA6416 Addr: 0x20	功能	方向/级别	备注
P00	PCle1 模式选择	输入	"0" - 处理器/PCle1 是根复合体 "1" - 处理器/PCle1 是端点
			(请注意,需要通过 DIP 开关来设置默认值)
P01	PCIe1 PERSTz 状态	输入	"0" - PCle1 复位置为有效 "1" - PCle1 复位不置为有效
P02	PCIe1 PERSTz 输出 (根复合体模式)	输出	"0" - PCle1 复位置为有效 "1" - PCle1 复位不置为有效

表 2-21. 扩展器控制器 GPIO (续)

I2C0/TCA6416 Addr: 0x20	功能	方向/级别	备注	
P03	PCle1 PERSTz 连接到 PORz (端点模式)	输出	"0" - PCle1 PERSTz 与 PORz 分开 "1" - PCle1 PERSTz 可控制 PORz	
P04	PCle0 模式选择	输入	"0" - 处理器/PCIe0 是根复合体 "1" - 处理器/PCIe0 是端点 (请注意,需要通过 DIP 开关来设置默认值)	
P05	PCle0 PERSTz 状态	输入	"0" - PCle0 复位置为有效 "1" - PCle0 复位不置为有效	
P06	PCle0 PERSTz 输出 (根复合体模式)	输出	"0" - PCle0 复位置为有效 "1" - PCle0 复位不置为有效	
P07	PCle0 PERSTz 连接到 PORz (端点模式)	输出	"0" - PCle0 PERSTz 与 PORz 分开 "1" - PCle0 PERSTz 可控制 PORz	
P10	PCle1 卡存在检测	输入	"0" - PCle1 检测到卡 "1" - PCle1 未检测到卡(默认)	
P11	PCle0 卡存在检测	输入	"0" - PCle0 检测到卡 "1" - PCle0 未检测到卡(默认)	
P12	为 PCle0 启用外部时钟	输出	"0" - 不为 PCle0 启用外部时钟 "1" - 为 PCle0 启用外部时钟(默认)	
P13	为 PCle1 启用外部时钟	输出	"0" - 不为 PCle1 启用外部时钟 "1" - 为 PCle1 启用外部时钟(默认)	
P14	McASP(音频)/CAN 多路复用器 选择	输出	"0" - 选择 McASP0 以连接至编解码器(禁用 CAN3、CAN5)(默认)设置) "1" - 选择 CAN3、CAN5,禁用 McASP0(音 频)	
P15	GESI 扩展多路复用器控制	———— 输出	保留(不支持 GESI 扩展)	
P16	GESI 扩展多路复用器控制	 输出	保留(不支持 GESI 扩展)	
P17	GESI 扩展以太网复位	 输出	保留(不支持 GESI 扩展)	
I2C0/TCA6424 Addr: 0x22	功能	方向/级别	备注	
P00	串行以太网 1 扩展断电	输出	"0" - 扩展板处于运行状态(默认) "1" - 扩展板断电	
P01	串行以太网#1 GPIO1	输出	扩展板特定(引脚 46)	
P02	串行以太网 REFCLK 编程使能	输出	"0" - I2C 未连接到 CDC 时钟定义 def (默认 "1" - 扩展板未复位	
P03	串行以太网#1 GPIO2	双向	扩展板特定(引脚 47)	
P04	串行以太网 2 扩展复位	输出	"0" - 扩展板复位(默认) "1" - 扩展板未复位	
P05	用户 DIP 开关输入 [SW2]	输入	"0" - DIP 开关 SW2 位置 10 设置为 OFF "1" - DIP 开关 SW2 位置 10 设置为 ON (请注意,需要通过 DIP 开关 SW2 来设置默认 值)	
P06	用户 LED [LD2]	输出	"0" - LED [LD2] 点亮 "1" - LED [LD2] 熄灭(默认)	

表 2-21. 扩展器控制器 GPIO (续)

	农 Z-Z I. 1) 胶	器控制器 GPIO	(<i>迭)</i>
I2C0/TCA6416 Addr: 0x20	功能	方向/级别	备注
P07	用户 LED [LD3]	输出	"0" - LED [LD3] 点亮 "1" - LED [LD3] 熄灭(默认)
P10	功率测量总线使能	输出	"0" - 启用从处理器 (I2C1) 接入 INA (默认) "1" - 禁用从处理器接入 INA
P11	串行以太网 2 扩展断电	输出	"0" - 扩展板处于运行状态(默认) "1" - 扩展板断电
P12	串行以太网#2 GPIO2	双向	扩展板特定(引脚 47)
P13	外部时钟发生器复位	输出	"0" - 扩展板复位 "1" - 扩展板未复位(默认)
P14	USB0 多路复用器选择	输出	"0" - USB0 未连接到 Type C(默认) "1" - USB0 接口连接到 Type A(通过集线器)
P15	调试/跟踪使能 (注意:此设置可能会影响其他接 口。)	双向	"0" - 启用调试/跟踪信号至 MIPI-60 仿真接口 [J23] "1" - 未启用调试/跟踪信号至 MIPI-60 接口 [J23] (请注意,需要通过 DIP 开关 SW2.2 来设置默认值)
P16	接口多路复用器选择 1 (注意:此设置可能会影响其他接 口。)	输出	"0" - 为多路复用器 1 选择替代接口 "1" - 为多路复用器 1 选择标准接口(默认)
P17	接口多路复用器选择 2 (注意:此设置可能会影响其他接口。)	输出	"0" - 为多路复用器 2 选择替代接口 "1" - 为多路复用器 2 选择标准接口(默认)
P20	CPSW2G 以太网复位	输出	"0" - 以太网 PHY 复位 "1" - 以太网 PHYT 未复位(默认)
P21	串行以太网#2 GPIO1	输出	扩展板特定(引脚 46)
P22	SD 卡电源使能/复位	输出	"0" - SD 卡电源处于禁用/复位状态 "1" - SD 卡电源处于启用/运行状态(默认)
P23	USB Type C 电源使能	输出	"0" - 禁用 USB Type C 电源 "1" - 启用 USB Type C 电源(默认)
P24	USB Type C 模式选择	双向	"00" = DFP(下行端口) "01" = DRP(双角色端口)
P25			"1x" = UFP(上行端口) (请注意,需要通过 DIP 开关 [SW2 bits 3:4] 来设 置默认值)
P26	LIN 总线 PHY 使能	输出	"0" - 禁用 LIN 总线 PHY (默认) "1" - 启用 LIN 总线 PHY
P27	CAN 总线 3、4、#5 待机	输出	"0" - 正常模式 "1" - 待机模式(默认)
I2C3/TCA6408 Addr: 0x20	功能	方向/级别	备注
P00	音频编解码器使能/复位	输出	"0" - 音频编解码器处于禁用/复位状态(默认) "1" - 音频编解码器处于启用/运行状态
P01-P07	保留/未使用	双向	保留/未使用

22

表 2-21. 扩展器控制器 GPIO (续)

I2C0/TCA6416 Addr: 0x20	功能	方向/级别	备注
I2C4/TCA6408 Addr: 0x20	功能	方向/级别	备注
P00	Displayport 0 电源使能	输出	"0" - 禁用 DisplayPort 电源(默认) "1" - 启用 DisplayPort 电源
P01	Displayport 1 电源使能	输出	"0" - 禁用 DisplayPort 电源(默认) "1" - 启用 DisplayPort 电源
P02	DisplayPort 1 变送器使能	输出	"0" - 禁用 DisplayPort 变送器(默认) "1" - 启用 DisplayPort 变送器
P03-P07	保留/未使用	双向	保留/未使用
I2C5/TCA6408	功能	方向/级别	备注
Addr: 0x20			
P00	摄像头扩展复位(1和2)	输出	"0" - 摄像头扩展处于禁用/复位状态(默认) "1" - 摄像头扩展处于启用/运行状态
P01	摄像头扩展 1 GPIO 0	双向	摄像头扩展板特定(引脚6)
P02	摄像头扩展 1 GPIO 1	双向	摄像头扩展板特定(引脚8)
P03	摄像头扩展 1 GPIO 3	双向	摄像头扩展板特定(引脚 20)
P04	摄像头扩展 2 GPIO 1	双向	摄像头扩展板特定(引脚8)
P05	摄像头扩展 2 GPIO 2	双向	摄像头扩展板特定(引脚 18)
P06	摄像头扩展 2 GPIO 3	双向	摄像头扩展板特定(引脚 20)

2.7.5 电源监视

EVM 附带针对 32 个分立电源轨的电源监视和测量功能,可以为用户提供关键的电源使用详情,以便优化处理器应用。板载模数转换器 (INA226) 通过 I2C 进行访问。处理器可使用 I2C1 进行访问。测试自动化 [J50] 可以访问 I2C 总线,或者可以通过 5 引脚接头 [J30] 从外部进行访问。由于电源轨的数量,ADC 被分成两条 I2C 总线。总线的选择通过多路复用设置来完成(请参阅节 2.7.4)。

表 2-22. 电源监视映射

总线 1 地址	电源轨	标称电压	分流器值	总线 2 地址	电源轨	标称电压	分流器值
0x40	Processor MCU VDD (VDD_MCU_0V85)	0.85V	10m Ω	0x40	1.8V 下的处理器 IO (VDD_IO_1V8)	1.8V	10m Ω
0x41	Processor MCU RAM (VDD_MCU_RAM_0V85)	0.85V	10m Ω	0x41	3.3V 下的处理器 IO (VDD_IO_3V3)	3.3V	10m Ω
0x42	(VDA_MCU_1V8)	1.8V	10m Ω	0x42	处理器双电压 IO (VDD_SD_DV)	DV	10m Ω
0x43	3.3V 下的处理器 MCU IO (VDD_MCUIO_3V3)	3.3V	10m Ω	0x43	LPDDR4 存储器 (VDD1) (VDD1_DDR_1V8)	1.8V	10m Ω
0x44	1.8V 下的处理器 MCU IO (VDD_MCUIO_1V8)	1.8V	10m Ω	0x44	(VDD_DDR_SOC_1V1)	1.1V	
0x45	(VDD_CORE_0V8)	不适用	不适用	0x45	(VCCA_3V3_CORE)	3.3V	5m Ω
0x46	(VDD_RAM_0V85)	0.85V	10m Ω	0x46	1.8V 下的 MCU 外设 (VSYS_MCUIO_1V8)	1.8V	10m Ω
0x47	(VDD_GPIORET_WK_0V8)	0.8V	10m Ω	0x47	3.3V 下的 MCU 外设 (VSYS_MCUIO_3V3)	3.3V	10m Ω
0x48	(VDD_CPU_AVS)	不适用	不适用	0x48	(VSYS_IO_1V8)	1.8V	10m Ω

表 2-22. 电源监视映射 (续)

	*** ===							
总线 1 地址	电源轨	标称电压	分流器值	总线 2 地址	电源轨	标称电压	分流器值	
0x49	(VSYS_GPIORET_IO_3V3)	3.3V	10m Ω	0x49	(VSYS_IO_3V3)	3.3V	10m Ω	
0x4A	Processor LPDDR IO (VDD_DDR_1V1)	不适用	不适用	0x4A	(VCC_12V0_N)	12V	??mΩ	
0x4B	(VDD_PHYCORE_0V8)	0.8V	10m Ω	0x4B	(VSYS_5V0)	5V0		
0x4C	(VDA_PLL_1V8)	1.8V	10m Ω	0x4C	(VSYS_3V3)	3V3		
0x4D	(VDA_PHY_1V8)	1.8V	10m Ω	0x4D	(VCCA_3V3_DDR)	3.3V	10m Ω	
0x4E	(VDA_USB_3V3)	3.3V	10m Ω	0x4E	(VDA_DLL_0V8)	0.8V	10m Ω	
0x4F	(VDD_GPIORET_IO_3V3)	3.3V	10m Ω	0x4F	(VCCA_3V3_CPU_AVS)	3.3V	5m Ω	

备注

在表中, "(_name)"是指原理图中使用的网络名称。

2.7.6 供电网络 (PDN)

本文档不包含 EVM 的供电网络 (PDN) 的详细信息。

2.7.7 存储标识信息的 EEPROM

EVM 板的识别和修改信息存储在板载 EEPROM 中。存储器的前 259 个字节预编程了 EVM 识别信息。该数据的格式在下表中提供。剩余的 32509 个字节可用于数据或代码存储。

EEPROM 可从位于地址 0x51 的处理器的 WKUP I2C0 端口访问。

表 2-23. 板 ID 存储器标头信息

字段名称	偏移/大小	值	说明
MAGIC	0000/4B (十六进制)	0xEE3355AA	标头标识符
M_TYPE	0004/1B (十六进制)	0x1	定长可变位置板 ID 标头
M_LENGTH	0005/2B (十六进制)	0x10B	有效载荷大小
B_TYPE	0007/1B (十六进制)	0x10	有效载荷类型
B_LENGTH	0008/2B (十六进制)	0x2E	下一个标头的偏移量
B_NAME	000A/16B(字符)	J742S2X-EVM	板的名称
DESGIN_REV	001A/2B(字符)	E1	设计的版本号
PROC_NBR	001C/4B(字符)	184	PROC 号
型号	0020/2B (字符)	2	设计变体号
PCB_REV	0022/2B (字符)	E1	PCB 的版本号
SCHBOM_REV	0024/2B (字符)	0	原理图的版本号
SWR_REV	0026/2B(字符)	1	第一个软件版本号
VENDORID	0028/2B (字符)	1	0x1:由 Mistral 制造
BUILD_WK	002A/2B(字符)		生产年份的第几周
BUILD_YR	002C/2B(字符)		生产年份
BOARDID	002E/6B(字符)	0	
SERIAL_NBR	0034/4B(字符)	4	递增板编号
DDR_TYPE	0038/1B (十六进制)	0x11	DDR 标头标识符
DDR_LENGTH	0039/2B (十六进制)	0x2	到下一个标头的偏移量

表 2-23. 板 ID 存储器标头信息 (续)

字段名称	偏移/大小	值	说明
DDR_CONTROL	003B/2B (十六进制)	0xC560	DDR 控制字
			位 1:0 = "00" 第一个 DDR
			位 3:2 = "00" 无 SPD
			位 5:4 = "10" LPDDR4
			位 7:6 = "01" 32 位
			位 9:8 = "01" 32 位
			位 10 = "1" 双列
			位 13:11 = "000" 密度 64Gb (位 0 至 3)
			位 14 = "1" ECC 位存在(内联,不是单独
			的位))
			位 15 = "1" 密度 64Gb (位 4)
DDR_TYPE	003D/1B (十六进制)	0x11	DDR 标头标识符
DDR_LENGTH	003E/2B (十六进制)	0x2	到下一个标头的偏移量
DDR_CONTROL	0040/2B (十六进制)	0xC561	DDR 控制字
MAC_TYPE	0042/1B (十六进制)	0x13	MAC 地址标头标识符
MAC_LENGTH	0043/2B (十六进制)	0xC2	有效载荷大小
MAC_CONTROL	0045/1B (十六进制)	0x0	MAC 标头控制字 (0 = 1 个 MAC 地址)
MAC_ADDRS	0047/192B(十六进制)		MAC 地址
END_LIST	0107/1B (十六进制)	0xFE	结尾标记

3 硬件设计文件

硬件设计文件被整合到一个软件包中,可从设计文件下载。软件包文件可以包含多个 EVM 板版本(目录)。 PROCxyzEwq_RP 的命名约定如下,其中:

- PROC:表示 TI 的处理器产品。

- xyz: 此评估板的唯一 ID (此设计的示例为"170")。

- E: E表示预量产. 空白表示量产。

- wq:表示版本(w-主要,空/q-次要)。

-_RP:发布封装的符号。

示例(最早到最新版本):

PROC184E1A: 预量产, 版本"1A"

PROC184E2: 预量产,版本"2"。

PROC184A: 量产, 版本 "A"。

请参阅原理图历史记录/更改日志,了解各个版本的完整更改列表。

3.1 原理图

原理图以设计格式 (Cadence Allegro、*_SCH.DSN) 和可搜索 PDF (*_SCH.PDF) 提供。两者都包含在设计包中,可从设计文件下载。

3.2 PCB 布局

PCB 设计和制造信息以多种不同的文件格式提供。下面列出了设计包中包含的 PCB 文件,可从设计文件下载。

文件类型(扩展名) 说明 设计文件 (*_BRD.ZIP) Allegro PCB 设计文件/zip 设计文件 (*_ODBGRB.ZIP) 设计文件已导出至 ODB++/Zip 设计文件提取 (ALG) 导入到其他设计工具中 制造图纸 (* FAB.PDF) 可视格式的制造信息 光绘数据, RS-274/ZIP 制造文件 (274XGBR.ZIP) 制造文件 (* STL.ZIP) 光绘数据,STL/Zip 制造文件 (* BRD.IPC) IPC-D 465 Gerber 数据补充 图层绘图 (*_LAYERS.PDF) 每个 PCB 层的可视图像 堆叠 (* STACKUP.PDF) 由 PCB 制造商提供的 PCB 堆叠

表 3-1. PCB 设计和制造文件

3.3 物料清单 (BOM)

物料清单 (BOM) 以电子表格的格式 (Microsoft Excel、*_BOM.XLSX) 提供,包含在设计包中,可从设计文件下载。

4 合规信息

4.1 EMC、EMI 和 ESD 合规性

安装在产品上的元件对静电放电 (ESD) 很敏感。TI 建议在 ESD 受控环境中使用此产品。这可能包括温度或湿度受控环境,以限制 ESD 的积累。与产品连接时,TI 还建议采用 ESD 保护措施,例如腕带和 ESD 垫。

产品应在基本电磁环境下使用,如在实验室条件下,应用的标准符合 EN IEC 61326-1:2021。

4.2 REACH 合规性

按照 EU REACH 法规第 33 条的规定,我们特此告知,此 EVM 的元件中至少含有一种含量高于 0.1% 的高度关注物质 (SVHC)。在德州仪器 (TI),这类物质的年使用量不超过 1 吨。表 4-1 列出了这些 SVHC。

表 4-1. SVHC 相关元件

元件制造商	元件类型	元件器件型号	SVHC 物质	SVHC CAS(如果有)
Littelfuse	电源保险丝	015406.3DR	铅	7439-92-1

4.3 热性能合规性

处理器或散热器及其附近可能会温度升高,在环境温度升高时尤其要小心。尽管处理器或散热器不会带来灼伤危险,但由于散热器区域的热量增加,因此在处理 EVM 时必须要小心。

5 其他信息

5.1 已知硬件或软件问题

EVM 上不存在稳定性问题。

5.2 商标

Jacinto[™] is a trademark of Texas Instruments.

DisplayPort[™] is a trademark of Video Electronics Standards Association.

Arm® and Cortex® are registered trademarks of Arm Limited.

以太网® is a registered trademark of Xerox Corporation.

Type-C® is a registered trademark of USB Implementers Forum.

WiFi® is a registered trademark of Wi-Fi Alliance.

所有商标均为其各自所有者的财产。

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司