EVM User's Guide: DLPDLCR160CPEVM

DLP® LightCrafter™ Display 160CP 评估模块

说明

DLP® LightCrafter™ Display .16 nHD 评估模块 (EVM) 经过专门设计,无需视频处理器即可显示微控制器 (MCU) 生成的图形;这为电器、人机界面、机器人和玩具等工业和个人电子产品应用中实现经济实惠的 DLP 自由形状按需显示开辟了新的可能性。此 EVM 采用 DLP160CP 芯片组,包括 DLPC3421、.16 nHD (640x360) 光学引擎和 MSPM0G3507 MCU,可提供开箱即用的图像生成功能。

特性

- 外形小巧 (66mm x 56mm)
- 能够显示 MCU 生成内容的 DLP 显示 EVM
- 轻松评估 Micro SD 卡的图像显示
- 兼容 MSPM0G MCU 系列 (支持 ARM® SWD 和 UART)
- nHD (640x360) 分辨率
- 开箱即用, 亮度 20lm

1 评估模块概述

1.1 引言

本用户指南概要介绍了 DLP® LightCrafter™ Display 160CP 评估模块 (EVM) (DLPDLCR160CPEVM) 并对其主要特性和功能进行了一般描述。本指南介绍了开始使用的初始步骤,并详细说明了板载 LED、连接器和整个 EVM 组件。

EVM 可单独使用,以显示由 DLPC3421 显示控制器或 MSPM0G3507 MCU (微控制器) 生成的 nHD (640x360) 分辨率图形或图像。还可以通过 MSPM0 MCU 从 Micro-SD 卡添加图像。

本指南向用户详细介绍了如何成功运行 EVM 并将内容投射到墙上。

1.2 套件内容

DLPDLCR160CPEVM 是一款组装完备的器件。为该器件供电所需的唯一组件是兼容的电源适配器(不含)。需要一个最小输出为 1A 的 5V 电源适配器和一个 USB-C 连接器。

1.3 DLPDLCR160CPEVM 子系统

DLP LightCrafter Display 模块由 2 个子系统组成:

- **格式化器板**:包括 DLP 芯片组(DLPC3421 显示控制器和 DLPA2005 PMIC/LED 驱动器)。还包括 MSPM0G3507 MCU、SSD1963 视频接口驱动器和 Micro-SD 卡连接器。
- 光源引擎:包括光学元件、RGB LED 和 DLP160CP DMD (在屏幕上显示 640 × 360 像素 (nHD))。请参阅下表中的光源引擎子系统说明。

表 1-1. EVIII EED 一句 Mily Altoi が Mily					
EVM 配置	LED 电流 (A) (典型值)			ANSI 流明(典型 值)	
GUI 设置	红色	绿色	蓝色		
默认 LED 电流	0.23	0.29	0.29	20	
最大 LED 电流	0.40	0.52	0.52	32	

表 1-1. EVM LED 电流和 ANSI 流明

DLPDLCR160CPEVM 设计为在 30°C 的最高环境温度下运行。DLPDLCR160CPEVM 的方框图如图 1-1 所示。

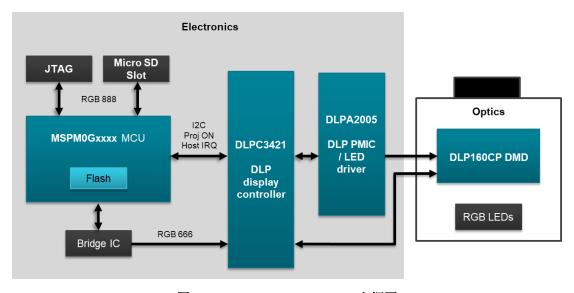


图 1-1. DLPDLCR160CPEVM 方框图

1.4 器件信息

- **DLPC3421**(图 2-1):显示控制器用于控制 DLPA2005(图 2-1) PMIC/RGB 照明驱动器和 DLP160CP DMD(数字微镜器件)。
- **DLP160CP** DMD 与 ELEPN 光学模块组装在一起,使用 Luminus 的 SFM-03X-CG 和 SFM-03X-RAB LED, 开箱即用,亮度为 20L(该模块能够提供 50L 亮度,但需要额外的热设计才能正常运行)。
- **MSPM0G3507**(图 2-1): MCU 提供控制应用,通过 SSD1963(图 2-1)生成 nHD 图像,并提供 UART (通用异步接收器/发送器)(图 2-1)通信可编程功能。MCU 可使用 ARM® SWD(串行线调试)接口通过连接器 J5(图 2-1)进行编程。
- SSD1963(网桥 IC)视频接口驱动器从 MCU 获取 8080 命令,并将 RGB666 格式数据并行接口信号输出到 DLPC3421 DLP 显示控制器。
- **DSI 输入**(图 2-1):通过外部接口连接器输入至 DLPC3421 控制器。视频可以通过外部接口连接器经 DSI 接口输入。如需更多支持,请参阅 *DLPDLCR160CPEVM MSPMO 软件编程器指南*和 *TI E2E*® 社区论坛。
- 电源按钮(图 2-1)用于对 DLP 显示系统平缓上电和断电。
- 可编程按钮(图 2-1)用于提供由 MCU 控制的用户输入。
- MicroSD 卡插槽(图 2-1)用于添加由 MCU 控制的自定义图像(不包括 MicroSD 卡)。
- USB Type-C 电源接口(图 2-1)用于为 EVM 单元供电(不包括 USB Type-C 电缆和电源)。

该 DLP 芯片组与照明和投影光学元件以及 RGB LED 相结合,打造出一款开箱即用、亮度约 20 流明的投影仪,该投影仪外形小巧,可播放图像或信息视频。

DLPDLCR160CPEVM 并非产品设计,仅用于评估。

2 硬件

2.1 EVM 图像

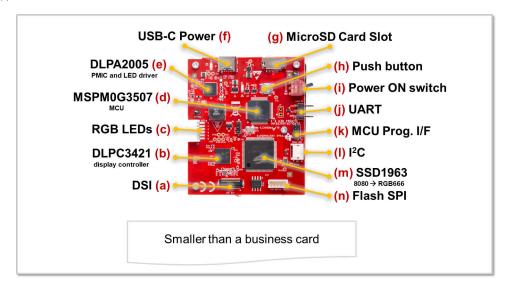


图 2-1. DLPDLCR160CPEVM 单元(顶视图)

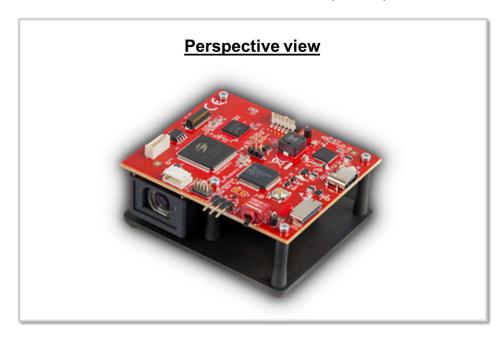


图 2-2. DLPDLCR160CPEVM 单元 (透视图)

www.ti.com.cn *硬件*

2.2 安全说明

注意事项和警告

WARNING

Observe handling precautions. Electrostatic sensitive devices.

CAUTION

Do not stare into operating LED.

CAUTION

Do not leave EVM powered when unattended.

CAUTION

Caution hot surface. Contact may cause burns. Do not touch.

2.3 设置

根据以下说明来设置和运行 DLPDLCR160CPEVM。需要一个最小输出为 1A 的 5V 电源适配器和一个 USB-C 连接器。

表 2-1. 使用 EVM 的步骤

	表 2-1. 使用 EVM b	N.少铢
步骤	操作	说明
电源开关 (SW1) 处于 OFF 位置	电源开关(图 2-1) SW1 需要在接通电路板电源之前处于 OFF 位置。将控制杆切换至 OFF 位置,与电路板上所示箭头方向相反。	TI 不建议在 EVM 运行时拔出电源线或关闭输入电源。SW1 开关还用于在输入电源关闭之前关闭 EVM。
连接电源	连接支持 5V/1A 的 USB-C 电源。	备注 请勿使用多电压输出 USB-C 电源适配器。
LED D1 亮起	绿色 LED D1 亮起,指示电路板正在通电。	
电源开关 (SW1) 打开	电源开关 (SW1) 置于 ON 位置,沿电路板上箭头方向。	ON
LED D2 亮起	绿色 LED D2 亮起,指示电路板处于工作模式。	光学引擎 (OE) 中的 RGB LED 亮起。
启动界面	EVM 在快速上电启动界面中显示 DLP 标识约 1 秒。	TEAS INSTRUMENTS
DLP 标识动画	使用 MCU 生成的图形的 DLP 标识动画播放约 5 秒。	DLP - OLP - (OLP
主菜单	显示用户可选择的主菜单。	Ulev inages in SD card Ulev inages in Flash Snart hone deno Reserved 在节 2.3.1 中可找到每个菜单的描述。
更改菜单选择	按下快速按钮 (SW2) 可循环显示所有菜单。所选菜单按钮变为黄色以确认菜单选择更改。	有 4 个主菜单选项:查看 SD 卡中的图像、查看闪存中的图像、智能家居演示和保留。菜单选择说明见下文。
确认菜单选择	长按(>2秒)按钮(SW2)以确认菜单选择。	用户操作会生成按钮按下动画以确认选择。

2.3.1 主菜单

初始上电和演示显示后,可使用按钮开关 SW2 循环切换以下四个主要输入/显示选择。请参阅表 2-2。

www.ti.com.cn *硬件*

表 2-2. 主要输入/显示选择

	M = 1 = 2 × m × = 4 × c + 1					
选项	说明	指示				
MicroSD 卡	显示 MicroSD 卡(不含)中的图像。	按照节 2.3.2 将内容加载到 MicroSD 卡。在选择菜单之前插入 MicroSD 卡。MicroSD 卡上的图像在屏幕上循环显示。在图像开始 显示后,快速按下按钮 (SW2) 会使图像显示中止,屏幕显示将转至 Return to Menu 屏幕。				
闪存存储器中的图像	显示来自显示控制器闪存存储器的预加载图像。	存储在闪存存储器中的八个图像单独显示。在图像开始显示后,快速按下按钮 (SW2) 会使图像显示中止,屏幕显示将转至 Return to Menu 屏幕。				
智能家居演示	智能家居用户界面演示。MCU 使用媒体 库生成的图像。	快速按下按钮循环切换 Smart Home 菜单。长按按钮选择每个菜单。选择 Home 图标返回主菜单。 12:58 1:38 1:38 1:38 1:38 1:38 1:38 1:38 1:3				
保留	为将来功能保留的空间					

2.3.2 MicroSD 卡图像

MicroSD 卡中存储的图像可通过 EVM 显示。必须先将图像从计算机存储到卡,然后再将卡插入 J1 MicroSD 卡插槽。图像在由 MSPM0G3507 MCU 读取之后显示。每个图像由 MCU 读取后显示,直到新图像传输完毕。在此模式下,卡上的图像将循环显示。

MicroSD 卡要求:

- 分辨率:仅 nHD (640 x 360)
- 格式: 仅 24 位 RGB888 位图 (.bmp)
- 卡容量:最大 32GB。更大容量的卡必须格式化为 FAT32, 因为不支持 exFAT。
- 图像数量:
 - 最多四个图像 (MSPM0G3507 Rev E15 代码限制)
 - 最多 20 个图像 (MSPM0G3507 Rev E16 代码限制)
- 若更改文件数量、文件名称或文件显示顺序,必须更新 conf.txt 文件。

备注

请参阅 DLPDLCR160CPEVM 软件编程人员指南 以详细了解 MicroSD 卡信息。

2.3.3 UART 通信

UART 接口是通过连接到 MSPM0G3507 的 J3 连接器连接到 EVM 的主要通信接口。EVM 命令和控制可由计算机通过终端接口或 DLP EVM GUI 程序发送。有关命令和编程信息,请参阅"EVM MSPM0 软件和 DLPC3421 软件编程人员指南"。

备注

使用 GUI 与 EVM 进行通信后,屏幕上显示的菜单不再起作用。关闭并打开 SW1 开关,以对显示控制 进行下电上电,并使屏幕上的显示菜单恢复功能。

3 软件

3.1 编程指令

按照以下说明对 MSPM0 或 DLPC3421 闪存存储器进行编程。

3.1.1 MSPM0 MCU 编程

MSPM0G3507 MCU 可使用 Uniflash 编程工具或 Code Composer Studio Theia IDE 进行重新编程。

请访问以下文档链接以了解详细信息:

- MSPM0 MCU 快速参考指南
- Code Composer Studio
- MSPM0 SDK
- 适用于 MSPM0 的 UniFlash 指南
- UniFlash 快速入门指南

有关更详细的 EVM MSPMO 编程说明,请参阅附录。

3.1.2 对 DLPC3421 显示控制器闪存进行编程

DLPC3421 显示控制器闪存存储器使用控制程序二进制文件进行预编程。

EVM GUI 可用于生成新的二进制文件,以基于 GUI 中提供的所选选项进行编程。可以使用 GUI 通过 UART 接口 (在将来版本中提供)对新的二进制文件进行编程。

请访问以下文档链接以了解详细信息:

• DLPC3421 软件编程人员指南

4 附录

- 1. 对 MSPM0 控制器进行编程
 - a. 需要的项目(*不随附于 EVM)
 - i. XDS110 调试探针 (TMDSEMU110-U) 套件 (随附电缆和适配器)或 LP-XDS110 和 10 引脚 2x5 插座 1.27mm IDC (SWD) 电缆(单独购买)。*
 - ii. TI UniFlash 编程应用。*
 - iii. MSPM0 软件或编程文件。*
 - iv. EVM UUT
 - v. 用于 EVM 的 5V 电源。*
 - vi. 计算机。*
 - b. 如果使用 XDS110 调试探针,则使用 USB 电缆 (套件中包含的 USB-A 转 Micro USB 电缆) 连接到计算机。
 - c. 将 20 引脚调试电缆连接到 XDS110 调试探针上的 20 引脚调试接头。
 - d. 将 ARM® Cortex®-M 10 引脚 (CM10) 适配器连接到调试电缆的另一端。
 - e. 将 CM10 适配器连接到 EVM 上的 J1 (MSPM0 ARM® SWD 连接器)。

备注

请参见图 4-1、图 4-2 和图 4-3 中的 LP-XDS110 与 XDS110 调试探针组装示例。

- f. 将电源连接到电路板。
- g. 打开电路板的电源。

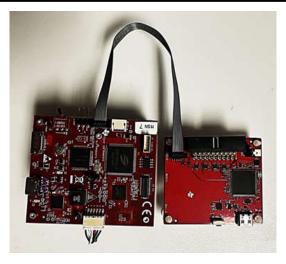


图 4-1. LP-XDS110 调试探针和 EVM

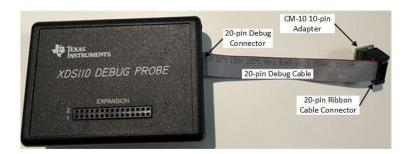
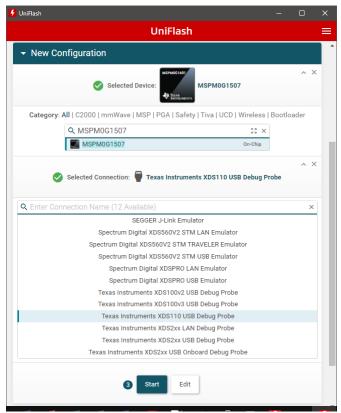


图 4-2. XDS110 调试探针组装

图 4-3. XDS110 调试探针和电路板组装

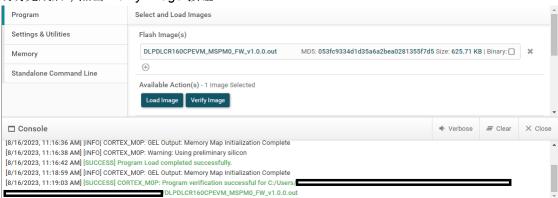


- 2. UniFlash 编程
 - a. 从 TI.com 网站 https://www.ti.com/tool/UNIFLASH 下载并安装 TI UniFlash 闪存编程工具(版本 8.4.0 或 更高版本)。
 - b. 启动 UniFlash.exe

备注

XDS110 固件必须更新至 v3.0.0.26 (或更高版本)才能支持 MSPM0 器件。可使用 UNIFLASH 编程工具更新 XDS 固件。

c. 在"New Configuration"选项卡中,选择 MSPM0G3507 器件和 Texas Instruments XDS110 USB Debug Probe 连接:


- d. 点击"Start"按钮。
- e. 浏览查找并选择 DLPDLCR160CPEVM_RevE15.out (或更高版本)映像。

f. 点击 Load image 按钮,然后等待 Load Program 例程完成。

g. 上传成功完成后,点击 Verify Image 按钮。

- h. 如果控制台中报告验证成功,则 MSPM0 闪存编程已完成。如果验证失败,则重新检查设置和连接,然后 重试编程。
- i. 过程完成。
- j. 关闭电源并拔下电缆。
- k. 参考资料:
 - i. XDS110 调试探针用户指南 (SPRUI94)。
 - ii. XDS110 网页 www.ti.com/xds110。

提交文档反馈

5 其他信息

5.1 通知

按照 EU REACH 法规第 33 条的规定,我们特此告知,此 EVM 的元件中至少含有一种含量高于 0.1% 的高度关注物质 (SVHC)。

德州仪器 (TI) 对这类物质的年使用量不超过 1 吨。SVHS 是:

表 5-1. 符合 REACH 要求的 SVHC 物质

元件制造商	元件类型	元件器件型号	SVHC 物质	SVHC CAS
Dailywell Electronics Co., Ltd.	切换开关	2US1T1A1M6RES	氧化硼	1303-86-21
			氧化镉	1306-19-0
			八甲基环四硅氧烷	556-67-2
			氧化铅	1317-36-8
			铅	7439-92-1
Chimei Corp.	底板	MCH068	四溴双酚 A	79-94-7

5.2 商标

LightCrafter[™] are trademarks of Texas Instruments.

E2E™ is a trademark of Texas Instruments.

DLP® is a registered trademark of Texas Instruments.

ARM® and Cortex® are registered trademarks of Arm Limited.

所有商标均为其各自所有者的财产。

6 相关文档

以下文档适用于 DLPDLCR160CPEVM,可从 Tl.com (www.ti.com) 获得这些文档。

- DLPDLCR160CPEVM MSPM0 软件编程人员指南
- DLP160CP (0.16 nHD) DMD 数据表
- DLPA2005 电源管理和 LED 驱动器 IC 数据表
- DLPC3421 显示控制器数据表
- DLPC3421 软件编程人员指南

有关光绘文件、原理图、BOM 等其他文档,请点击 ti.com 上 EVM 产品页面 (DLPDLCR160CPEVM) 上技术文档部分下面提供的链接。

如需更多帮助,请参阅 DLP 产品和 MEMS TI E2E[™]社区支持论坛。

7 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

Changes from Revision * (November 2023) to Revision A (February 2024)	Page
• 添加了 <i>EVM LED 电流和 ANSI 流明</i> 表	2
• 更新了器件信息 部分	3
• 更新了 设置 部分	6
• 更新了 主菜单 部分	6
• 更新了 MicroSD 卡图像 部分	
• 添加了 UART 通信 部分	7
• 添加了 通知 部分	12
• 更新了相关文档 部分	12

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司