使用 TLVM13630EVM

摘要

TLVM13630EVM 具有 TLVM13630 同步降压电源模块,配置为在典型的 3V 至 36V 输入总线应用中运行。通过使用配置跳线,可以将输出电压和开关频率分别设置为五个常用电压中的任何值。该 EVM 提供器件的完整输出电流额定值。装有输入和输出电容,可在 EVM 上提供完整的输入电压范围和所需的输出电压。通过提供监测测试点,可测量以下参数:

- 效率
- 功率耗散
- 输入纹波
- 输出纹波
- 线性和负载调整率
- 瞬态响应

提供了控制测试点和跳线,以便使用器件使能 (EN) 和电源正常 (PGOOD) 功能。EVM 的推荐 PCB 布局可更大限度地提高热性能并降低输出波纹和噪声。

内容

1 EVM 设置	2
2 EVM 连接器和测试点	
3 测试结果	
4 PCB 布局	
5 原理图	
6 物料清单	
▼ W/116 T	
插图清单	
图 1-1. EVM 用户接口	2
图 3-1. ENABLE 启动波形	4
图 3-2. ENABLE 关断波形	4
图 3-3. 输出电压纹波	4
图 3-4. 瞬态性能	4
图 4-1. 顶部丝网印刷层(顶视图)	5
图 4-2. 项部铜层 (项视图)	
图 4-3. 内层 1 (顶视图)	
图 4-4. 内层 2 (顶视图)	
图 4-5. 底层(顶视图)	
图 4-6. 底层丝网印刷层 (底视图)	
图 5-1. TLVM13630EVM 原理图	
表格清单	
表 2-1. 测试点说明	3
表 6-1. TLVM13630EVM BOM	9
商标	
所有商标均为其各自所有者的财产。	

1 EVM 设置

图 1-1 突出显示了与 EVM 关联的用户接口项目。VIN 电源 端子块 (J1) 用于连接主机输入电源, VOUT 电源 端子块 (J4) 用于连接负载。这些端子块可以接受高达 16-AWG 导线。

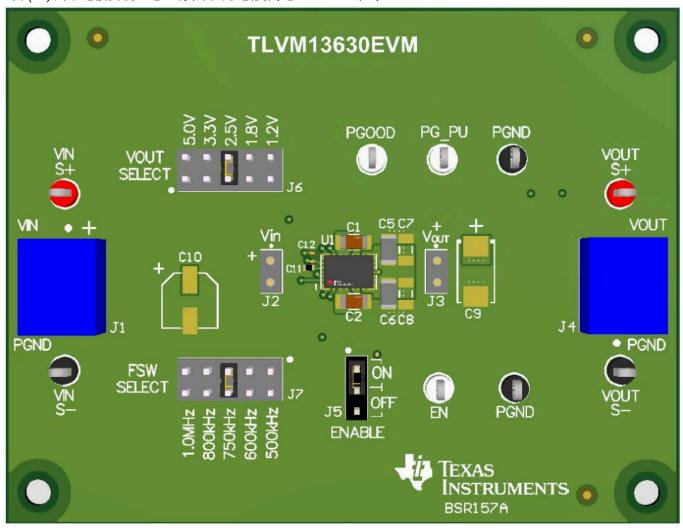


图 1-1. EVM 用户接口

- 使用位于电源端子块附近的 VIN S+ 和 VIN S 测试点以及 VOUT S+ 和 VOUT S 测试点作为电压监测点,通过连接电压表来分别测量 VIN 和 VOUT。请勿将 S+ 和 S- 监测测试点用作输入电源或输出负载连接点。连接到这些测试点的 PCB 布线不支持高电流。
- 使用 VIN 范围 (J2) 和 VOUT 范围 (J3) 测试点通过示波器监测 VIN 和 VOUT 波形。这些测试点旨在与配有低电感接地引线(接地弹簧,安装到示波器探针桶)的无帽示波器探针一同使用。每个测试点的两个插座的中心间距为 0.1 英寸。将示波器探头尖端连接到标有"+"的顶部插座,并将示波器接地导线连接到底部插座。
- EVM 顶部和底部附近的控制测试点测试器件的特性。更多有关各个控制测试点的信息,请参阅 EVM 连接器和测试点。
- VOUT SELECT 跳线 (J6) 用于选择所需的输出电压: 1.2V、1.8V、2.5V、3.3V 或 5.0V。在向 EVM 供电之前,请确保已在合适的位置放置了跳线,以获得所需输出电压。请务必在更改跳线设置之前移除输入电源。

www.ti.com.cn EVM 连接器和测试点

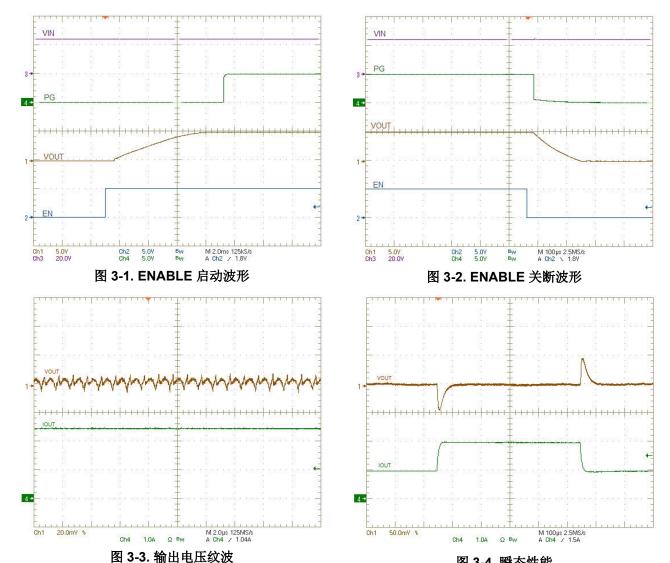
• FSW SELECT 跳线 (J7) 用于选择所需的开关频率:500kHz、600kHz、750kHz、800kHz 或 1.0MHz。在向 EVM 供电之前,请确保已在合适的位置放置了跳线,以获得所需开关频率。请务必在更改跳线设置之前移除 输入电源。

• 可以使用使能跳线 (J5) 打开或关闭器件。将跳线置于 ON 位置可启用器件。将跳线置于 OFF 位置可禁用器件。欠压锁定 (UVLO) 可通过接入位于 EVM 底部的电阻器 R1 和 R2 来设置。有关推荐的 UVLO 电阻值,请参阅特定器件的数据表。电源正常状态 (PGOOD) 测试点可用于监测 EVM 上何时存在有效输出电压。此外,PG PU 引脚作为连接 PGOOD 信号上拉电压的方便点。

2 EVM 连接器和测试点

为数字电压表 (DVM) 或示波器探针提供了导线回路测试点和示波器探针插座,以帮助评估器件。表 2-1 描述了每个测试点。

表 2-1. 测试点说明


测试点 ⁽¹⁾	说明				
VIN S+	输入电压监测。将 DVM 的正极引线连接到此点以测量效率。				
VIN S-	输入接地监视器。将 DVM 的负极引线连接到此点以测量效率。				
VOUT S+	输出电压监测。将 DVM 的正极引线连接到此点以测量效率,进行线路调整和负载调整。				
VOUT S-	输出接地监视器。将 DVM 的负极引线连接到此点以测量效率,进行线路调整和负载调整。				
PGND	电源接地测试点。				
VIN 范围 (J2)	输入电压范围监测。将示波器探头连接到这组测试点,以测量输入纹波电压。				
VOUT 范围 (J3)	输出电压范围监测。将示波器探针连接到这组测试点,以测量输出电压纹波和瞬态响应。				
英文	启用测试点。监测器件的使能信号。使用使能控制接头 (J5) 禁用器件。				
使能控制 (J5)	启用选择跳线。使用跳线启用或禁用器件。				
PGOOD	源正常测试点。监测器件的电源正常信号。这是一个开漏信号 49.9kΩ 电阻器连接到该引脚和/M上的 PG_PU 引脚。				
PG_PU	电源正常上拉测试点。向该引脚施加电压,以用作 PGOOD 信号的上拉电压。该引脚和 EVM 上的 PGOOD 引脚连接了一个 49.9k Ω 电阻器。				

⁽¹⁾ 有关与该表中特性相关的绝对最大额定值,请参阅器件特定产品数据表。

3 测试结果

图 3-1 至图 3-4 展示了在 24V 输入和 5V 输出下运行的 TLVM13630EVM 的性能。

4 PCB 布局

图 4-1 至图 4-6 展示了 EVM PCB 布局图。

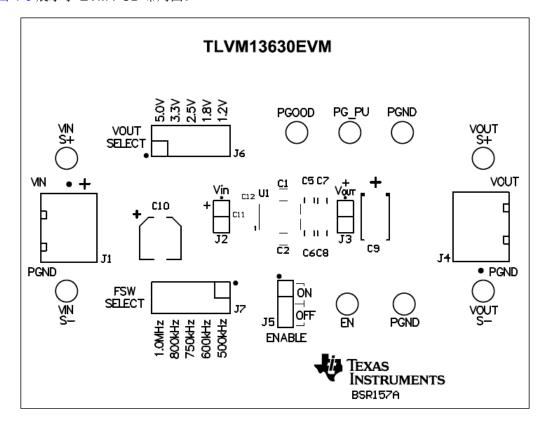


图 4-1. 顶部丝网印刷层(顶视图)

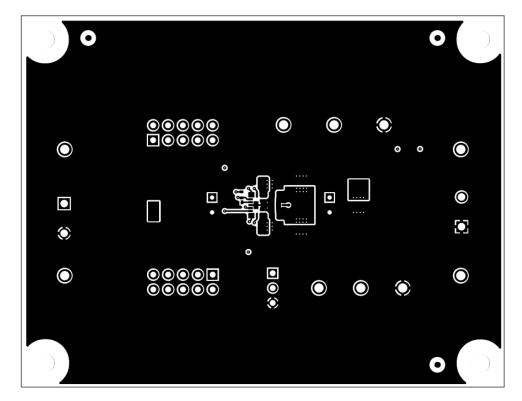


图 4-2. 顶部铜层(顶视图)

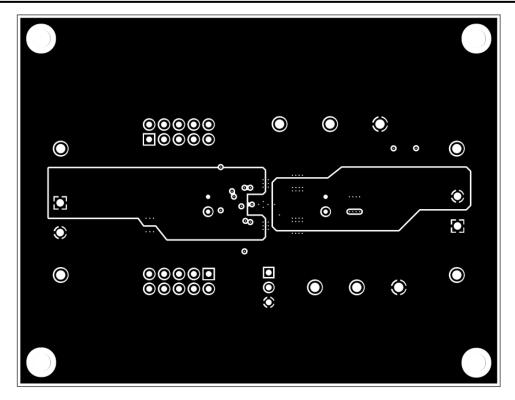


图 4-3. 内层 1 (顶视图)

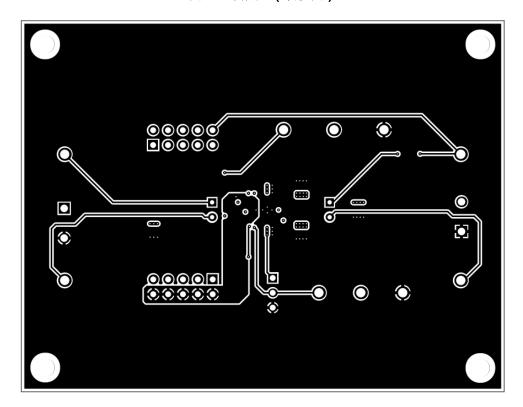


图 4-4. 内层 2 (顶视图)

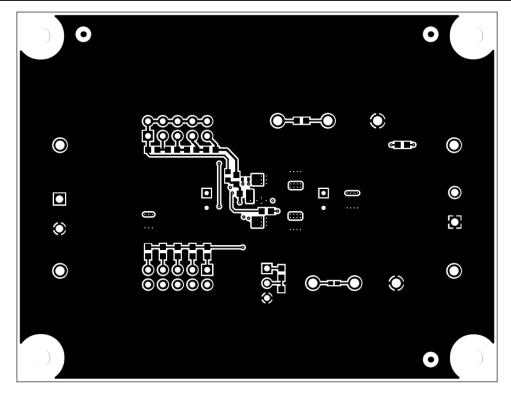


图 4-5. 底层(顶视图)

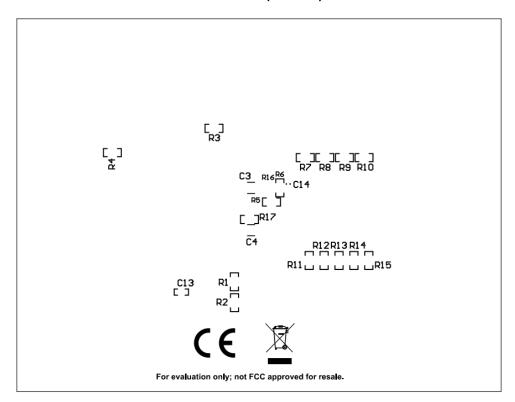


图 4-6. 底层丝网印刷层(底视图)

5 原理图

图 5-1 为 TLVM13630EVM 原理图。

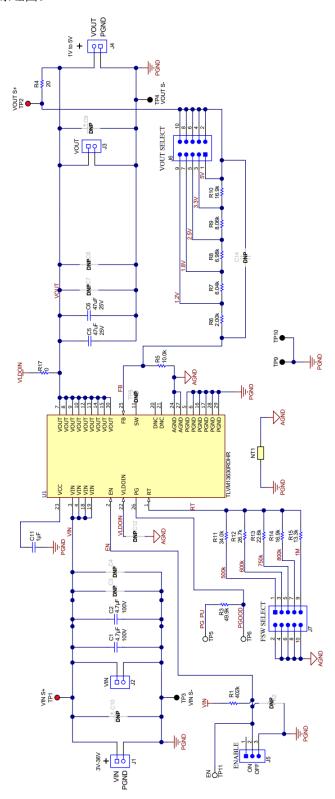


图 5-1. TLVM13630EVM 原理图

www.ti.com.cn 物料清单

6 物料清单

表 6-1 列出了 EVM 物料清单 (BOM)。

表 6-1. TLVM13630EVM BOM

标识符	数量	值	说明	封装参考	器件型号
C1, C2	2	4.7µF	电容,陶瓷,4.7μF,100V,X7S	1206	GRM31CC72A475KE11L
C5, C6	2	47 μ F	电容,陶瓷,47μF,25V,X5R	1206_190	C3216X5R1E476M160AC
C11	1	1 μ F	电容,陶瓷,1μF,16V,X5R	0402	EMK105BJ105KVHF
J1 , J4	2		端子块,2x1,5.08mm	2x1	OSTTA024163
J2 , J3	2		插排,2x1,100mil	100mil,2 引脚	310-43-102-41-001000
J5	1		接头,100mil,3x1	3 引脚,100mil	PEC03SAAN
J6 , J7	2		接头,100mil,5x2	5x2 , 100mil	PEC05DAAN
R1	1	402k	电阻,402k,1%,0.1W	0603	CRCW0603402KFKEA
R3	1	49.9k	电阻,49.9k,1%,0.1W	0603	CRCW060349K9FKEA
R4	1	20	电阻,20,5%,0.1W	0603	CRCW060320R0JNEA
R5	1	10.0k	电阻,10.0kΩ,1%,0.1W	0603	CRCW060310K0FKEA
R6	1	2.00k	电阻,2.00k,1%,0.1W	0603	CRCW06032K00FKEA
R7	1	6.04k	电阻,6.04k,1%,0.1W	0603	CRCW06036K04FKEA
R8	1	6.98k	电阻,6.98k,1%,0.1W	0603	CRCW06036K98FKEA
R9	1	8.06k	电阻,8.06k,1%,0.1W	0603	CRCW06038K06FKEA
R10 , R14	2	16.9k	电阻,16.9k,1%,0.1W	0603	CRCW060316K9FKEA
R11	1	34.0k	电阻,34.0k,1%,0.1W	0603	CRCW060334K0FKEA
R12	1	26.7k	电阻,26.7k,1%,0.1W	0603	CRCW060326K7FKEA
R13	1	22.6k	电阻,22.6k,1%,0.1W	0603	CRCW060322K6FKEA
R15	1	13.3k	电阻,13.3k,1%,0.1W	0603	CRCW060313K3FKEA
R17	1	0	电阻,0,1%,0.1W	0603	RMCF0603ZT0R00
TP1 , TP2	2		红色测试点	通孔	5010
TP3、TP4、TP9、TP10	4		黑色测试点	通孔	5011
TP5、TP6、TP11	3		白色测试点	通孔	5012
U1	1		36V 输入、1V 至 6V 输出、3A 电源模块	B3QFN	TLVM13630
C3、C4、C7、C8	0			1206	
C9	0			7343-40	
C10	0			SMT 6.3X5.8mm	
C12	0			0402	
C14	0			0603	
R2	0			0603	

重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款 (https://www.ti.com/legal/termsofsale.html) 或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021,德州仪器 (TI) 公司

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司