TI Designs: TIDEP-01001 车辆乘员检测参考设计

TEXAS INSTRUMENTS

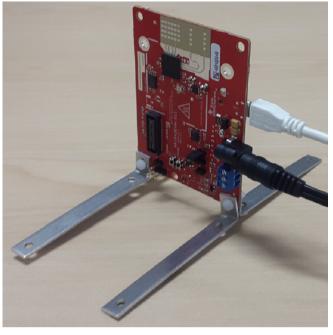
说明

该参考设计演示了如何使用 AWR1642(具有集成 DSP 的单芯片毫米波传感器)作为车辆乘员检测传感器,实现车内生命形式检测。该设计提供了一个在 C674x DSP 上运行的参考处理链,可生成热图来检测 ±60 度视场 (FOV)内的生命形式。

资源

TIDEP-01001	
AWR1642	
AWR1642BOOST	
mmWaveSDK	

设计文件夹 产品文件夹 工具文件夹 软件开发套件


特性

- 演示毫米波传感器技术用于可靠检测车辆中的生命
 形式(成人、儿童、宠物)。
- 生成 ±60 度 FOV 内的存在热图。
- 基于毫米波软件开发套件 (SDK) 的处理和检测源代码
- 基于成熟的 EVM 硬件设计,可缩短上市时间并支持 开箱即用演示。
- 雷达前端和检测配置完整说明

应用

- 儿童遗留车内检测
- 车辆乘员检测
- 入侵者检测

该 TI 参考设计末尾的重要声明表述了授权使用、知识产权问题和其他重要的免责声明和信息。

A

1 System Description

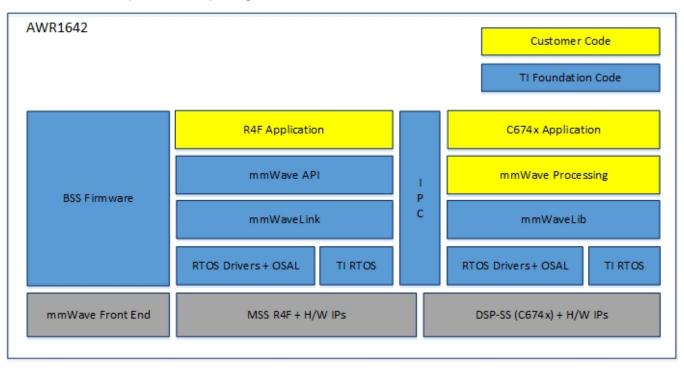
Today's vehicles require robust and reliable information about the in-cabin occupancy. Smart airbag deployment systems, air condition controls, detecting children and disabled people left behind in vehicles relies upon this information.

The TIDEP-01001 provides a reference for creating a vehicle occupant detection application, using TI's AWR1642 based on 77-GHz mmWave radio-frequency complementary metal-oxide semiconductor (RF-CMOS) technology.

TI's mmWave sensing devices integrate a 76-GHz to 81-GHz mmWave radar front end with ARM[®] microcontroller (MCU) and TI DSP cores for single-chip systems.

This reference design demonstrates the suitability of the AWR1642 for vehicle occupant detection applications. This design targets the implementation of a wide, azimuth field of view (±60°), close range (3 m) sensor configuration, which can detect life forms across two regions of interest. This can be extended to multiple regions detection.

This TI Design implements algorithms for generating an azimuth-range heat map, detection, and decision for an AWR1642 device on a TI EVM module.


The design provides a list of required hardware, schematics, and foundational software to quickly begin traffic monitoring product development. It describes the example usage case as well as the design principle, implementation details, and engineering tradeoffs made in the development of this application. High-level instructions for replicating the design are provided.

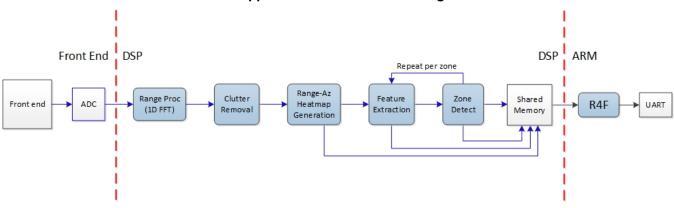
2 System Overview

The VOD TI design is built around the AWR1642EVM evaluation board and the millimeter wave (mmWave) SDK demo application. The system is optimized and built for VOD applications to detect objects within a 3-m range

2.1 Block Diagram

The mmWave software development kit (SDK) enables the development of mmWave sensor applications using the AWR1642 SOC and EVM. The SDK provides foundational components that let end users focus on their applications. In addition, the SDK provides several demonstration applications, which serve as a guide for integrating the SDK into end-user mmWave applications. This TI Design is a separate package installed on top of the SDK package.

图 1. Software Block Diagram


2.2 Vehicle Occupancy Detection Software Block Diagram

As described in 🕅 2, the implementation of the vehicle occupancy detection example in the signalprocessing chain consists of the following blocks, implemented as DSP code executing on the C674x core in the AWR1642:

- Range processing
 - For each antenna, 1D windowing, and 1D fast Fourier transform (FFT).
 - Range processing is interleaved with the active chirp time of the frame.
- Clutter removal
 - Estimate the DC component for each range bin, across chirps in a frame.
 - Subtract the estimated DC component for each range bin.
- Range-Azimuth heatmap generation

- Perform Direction-of-Arrival (DOA) Spectral Estimation to calculate a 2D heatmap for the frame, indexed by range (N_r, rows) and azimuth (N_{az}, columns).
- Feature Extraction
 - Each frame, scan the heatmap within each defined zone of interest and compute a feature vector:
 - Average zone power
 - Moving-average zone power (for L (window length), frames)
 - Moving-average power ratio (for L frames)
 - Correlation coefficient of zone power
- Zone Detection
 - For N_z zones, there are 2^{Nz} possible occupancy states. Offline, define a matrix of decision parameters (coefficients) to represent targets of interest (adults, children, pets, etc).
 - Perform matrix multiplication with the decision parameters and feature vector. This yields an array
 of flags, one flag per zone, a 1 indicating 'zone occupied', and 0 indicating 'empty'.

图 2. Application Software Block Diagram

After the DSP finishes frame processing, the results are formatted and written in shared memory (HSRAM) for the R4F MCU to send to the host through a UART for visualization.

2.3 Highlighted Products

2.3.1 AWR1642 Single-Chip Radar Solution

The AWR1642 is an integrated single-chip FMCW sensor capable of operation in the 76-GHz to 81-GHz band. It is built with TI's low power 45-nm RFCMOS process, and enables unprecedented levels of integration in an extremely small form factor. The AWR1642 is an ideal solution for low power, self-monitored, ultra-accurate radar systems in the automotive and industrial space.

图 3. AWR1642BOOST EVM Block Diagram

-	Calibration,	RAF
	Monitoring Engline	C874x
315	and the second s	1.5MB
CAN	CANFD	UART

The AWR1642 EVM has the following features:

- AWR1642 radar device
- Power management circuit to provide all the required supply rails from a single 5-V input.
- Two onboard TX antennas and four RX antennas
- Onboard XDS110, which provides JTAG interface, UART1 for loading the radar configuration on the AWR1642 device, and UART2 to send the object data back to the PC.

For more details on the hardware, see the *AWR1642 Evaluation Module (AWR1642EVM) Single-Chip mmWave Sensing Solution.* The schematics and design database can be found in the following documents: the *AWR1642 Evaluation Board Design Database* and the *AWR1642EVM Schematic, Assembly, and BOM*.

2.3.2 mmWaveSDK

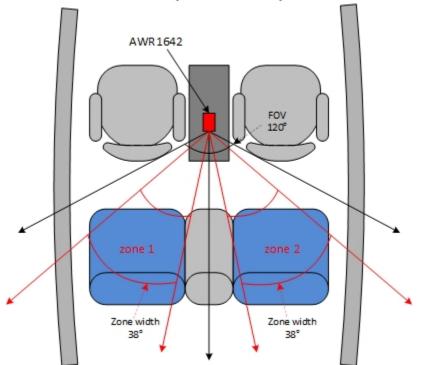
The mmWave SDK is split in two broad components: the mmWave Suite and mmWave demos. The mmWave Suite is the foundational software part of the mmWave SDK and includes smaller components:

- Drivers
- OSAL
- mmWaveLink (BSS interface API)
- mmWaveLib (C674 optimized library)
- mmWave API (High level control API)
- BSS firmware
- Board setup and flash utilities

The mmWave SDK demos provide a suite of demonstrations that depict the various control and data processing aspects of an mmWave application. Data visualization of the demonstration's output on a PC is provided as part of these demonstrations:

- mmWave processing demonstration
- ADC data streaming demonstration

2.4 System Design Theory


2.4.1 Use Case Geometry and Sensor Considerations

The AWR1642 is a radar-based sensor that integrates a fast FMCW radar front end with both an integrated ARM R4F MCU and the TI C674x DSP for advanced signal processing.

The configuration of the AWR1642 radar front end depends on the configuration of the transmit signal and the configuration and performance of the RF transceiver, the design of the antenna array, and the available memory and processing power. This configuration influences key performance parameters of the system.

When designing the frame and chirp configuration for a vehicle occupancy detection use case, start by considering increasing range resolution and velocity resolution over maximum range and velocity; because objects are within short range, defined zones will be relatively stationary

图 4. Example Zone Geometry

Example Car Setup

A shows the zone geometry for the example configurations. In these examples, the primary field of zone coverage begins at about 61 mm and continues to 136 mm. The zone widths are roughly 38 degrees each. Tuning of the zones is completely configurable, as described in the user guide. There is a small amount of spectral leakage from cell to cell, so an object entering a heatmap cell adjacent to a defined zone cell could cause enough averaged energy in the zone to cause a transient positive detection.

2.4.2 Chirp Configuration used and System Performance

An example configuration for the VOD application is given in \pm 1.

PARAMETER	SPECIFICATION				
Idle time (µs)	250				
ADC start time (µs)	10				
Ramp end time (µs)	40				
Num ADC samples per chirp	64				
Freq slope (MHz/µs)	98				

表 1. Example Configuration

PARAMETER	SPECIFICATION				
Starting frequency (GHz)	77				
ADC sampling freq (ksps)	2200				
Num chirps per frame	512 (128 × 4)				
MIMO (1 => Yes)	1				
Chirp cycle time (µs)	340				
Bandwidth (MHz)	3920				
Frame periodicity (ms)	160				
Memory requirements (KB)	512				

表 1. Example Configuration (continued)

The above configurations are just illustrative, and can be tailored according to user requirements

2.4.3 Configuration Profile

The demo applications in the mmWave SDK distribution let the user push the radar configuration using a "Profile Configuration" file over UART to the AWR1642 EVM. The mmWave SDK user guide (included in the mmWave SDK distribution) describes the semantics of the following commands in detail. In the configuration files for the vehicle occupancy demo, additional commands are created that allow configurability of the specialized algorithms. These commands are described in the demo's user guide.

图 5. VOD Profile Configuration File

```
sensorStop
flushCfg
dfeDataOutputMode 1
channelCfg 15 3 0
adcCfg 2 1
adcbufCfg -1 0 0 1 1
profileCfg 0 77 250 10 40 0 0 98 1 64 2200 0 0 40
chirpCfg 0 0 0 0 0 0 1
chirpCfg 1 1 0 0 0 0 0 2
chirpCfg 2 2 0 0 0 0 0 1
chirpCfg 3 3 0 0 0 0 0 2
frameCfg 0 3 128 0 160 1 0
lowPower 0 0
guiMonitor -1 0 1 1
calibDcRangeSig -1 0 -5 8 256
60D Demo commands:
zoneDef 2 13 16 9 15 13 16 27 15
coeffMatrixRow 0 -14.409613
                                -8.187467
                                            -8.019457
                                                         3.833826
                                                                     4.045485
                                                                                -0.539210
coeffMatrixRow 1 -12.465002
                                -2.228748
                                            -5.612140
                                                         4.324446
                                                                    -7.912656
                                                                                 0.528747
coeffMatrixRow 2 -9.210626
                               -3.004206
                                           -0.082298
                                                       -2.949700
                                                                    7.538751
                                                                                0.246658
coeffMatrixRow 3 -1.917373
                                2.299849
                                                                               -0.099186
                                            2.389683
                                                        7.035545
                                                                    6.675194
meanVector 23.992751
                        23.689970 -3.388539
                                                -3.691319
                                                             0.816150
stdVector
           8.495360
                        8.497394
                                    2.198640
                                                2.432388
                                                            0.196337
oddemoParms 12 0.001
sensorStart
```


System Overview

The profile configuration (profileCfg), defines the profile of a single chirp (as seen in 85). Subsequently, four chirp configurations are defined; each one inheriting the same profile but associated with TX1 and TX2 alternately. Finally, a frame config message constructs a frame with transmissions alternating between TX1 and TX2.

2.4.4 Processing Chain

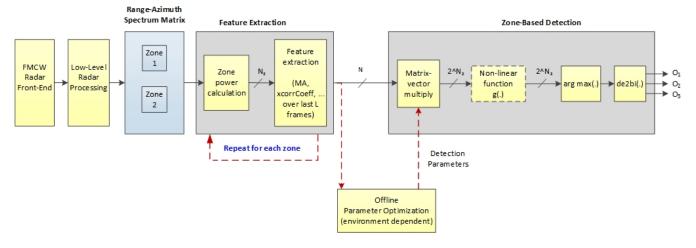
An example processing chain for vehicle occupancy detection using a short range chirp and frame design is implemented on the AWR1642 EVM.

The main processing elements involved in the processing chain consist of the following:

- Front end Represents the antennas and the analog RF transceiver implementing the FMCW transmitter and receiver and various hardware-based signal conditioning operations. This must be properly configured for the chirp and frame settings of the usage case.
- ADC The ADC is the main element that interfaces to the DSP chain. The ADC output samples are buffered in ADC output buffers for access by the digital part of the processing chain.
- EDMA controller This is a user-programmed DMA engine employed to move data from one memory location to another without using another processor. The EDMA can be programed to trigger automatically, and can also be configured to reorder some of the data during the movement operations.
- C674 DSP This is the digital signal processing core that implements the configuration of the front end and executes the main signal processing operations on the data. This core has access to several memory resources, as noted further in the design description.
- ARM R4F This ARM MCU can execute application code, including further signal processing
 operations and other higher level functions. In this application, the ARM R4F primarily relays
 visualization data to the UART interface. There is a shared memory visible to both the DSP and the
 R4F.

The processing chain is implemented on the DSP. There are several physical memory resources used in the processing chain, which are described in $\frac{1}{2}$.

Section Name	Size (KB) as Configured	Memory Used (KB)	Description
L1D SRAM	16	16	Layer one data static RAM is the fastest data access for DSP and is used for most time-critical DSP processing data that can fit in this section.
L1D cache	16	Used as cache	Layer one data cache caches data accesses to any other section configured as cacheable. The LL2, L3, and HSRAM are configured as cacheable.
L1P SRAM	16	4	Layer one program static RAM is the fastest program access RAM for DSP and is used for most time-critical DSP program that can fit in this section.
L1P cache	16	Used as cache	Layer one cache caches program accesses to any other section configured as cacheable. The LL2, L3, and HSRAM are configured as cacheable.
LL2	256	240	Local layer two memory is lower latency than layer three for accessing and is visible only from the DSP. This memory is used for most of the program and data for the signal processing chain.
L3	640	595	Higher latency memory for DSP accesses primarily stores the radar cube and the range-Doppler power map. It is a less time sensitive program. Data can also be stored here.


表 2. Memory Resources

	Size (KB) as Configured	Memory Used (KB)	Description
HSRAM	32	32	Shared memory buffer between the DSP and theR4F relays visualization data to the R4F for output over the UART in this design.

表 2. Memory Resources (continued)

图 6. Processing Chain Flow

As shown in [X] 6, the implementation of the vehicle occupancy detection example in the signal-processing chain consists of the following blocks, implemented as DSP code executing on the C674x core in the AWR1642:

- Range processing For each antenna, EDMA is used to move samples from the ADC output buffer to DSP's local memory. A 16-bit, fixed-point 1D windowing and 16-bit, fixed-point 1D FFT are performed. EDMA is used to move output from DSP local memory to radar cube storage in layer three (L3) memory. Range processing is interleaved with active chirp time of the frame. All other processing happens each frame, except where noted, during the idle time between the active chirp time and the end of the frame.
- Clutter removal In clutter-rich environments, especially indoor, detecting objects with small RCS (radar cross section), such as pedestrian and life-form objects, is a challenge. Some clutters with large RCS, such as building structure and furniture, can dominate the received signal. As a result, objects with small RCS can be buried under the strong interference from the clutters and become difficult to detect. When the radar sensor is stationary, clutters and all stationary objects have zero Doppler, which is exploited to improve the signal condition for the remaining radar signal processing chain.
- Range-Azimuth heatmap generation The Range-Azimuth heatmap is generated using high resolution direction of arrival (DoA) spectral estimation, based on spatial covariance. This is done each frame using the clutter removed, 1D FFT outputs. To avoid numeric instability issues, a small value is added along the diagonal of the covariance estimate matrix.
- Feature extraction Using the frame's Range-Azimuth heatmap (and several previous frame's heatmaps), several features are calculated using zone definitions pre-computed and loaded during configuration. The features are computed using only the heatmap cells within the defined zones. These features are average power, average power for the past N frames, power ratios, and the correlation coefficient.
- Zone detection For N_z zones, there 2^{Nz} are possible occupancy states for the area of interest. Matrix

multiplications are performed with the feature vectors and offline-generated training coefficients. The result of these multiplications is an array of decisions, 1 (occupied) or 0 (empty) for each zone, representing the possible occupancy states.

After DSP finishes frame processing, the results are formatted and written in shared memory for the MSS R4F to send to host using UART for visualization. The PC GUI executable then decodes each frame's data and updates the heatmap and zone detections accordingly.

2.4.5 Heatmap Generation Algorithms

This section explains a functional block for high-resolution DoA spectral estimation based on spatial covariance. The spatial covariance is estimated within a radar frame. Although an MVDR (minimum variance distortion less response) based DoA estimation approach is presented, other covariance-based high-resolution DoA methods can be used as well using the same radar processing signal chain.

Notation:

X $_{n,k,p}$: the output of range processing and clutter removal.

n,*k*, and *p* are the range bin index, the chirp index, and the virtual receive antenna index, respectively.

The following describes a DoA spectral estimation:

For the *n*-th range bin:

1. Spatial covariance is estimated as follows:

$$\hat{R}_n = \frac{1}{N_c} \sum_{k=1}^{N_c} X_{n,k} \times H_{n,k}^H$$

where

• $x_{n,k}$ is called a dimensional spatial vector for n-th range bin and the k-th chirp, which is formed from the data cube by stacking samples across the virtual antennas (1)

For example:

$$X_{n,k} = \begin{bmatrix} X_{n,k,1}, & X_{n,k,2}, & \dots & X_{n,k,N_a} \end{bmatrix}^T$$
(2)

To reduce the amount of computation, a smaller number of chirps less than N_c may be used in estimating the spatial covariance.

DoA spectral estimation is performed as follows: An MVDR (also known as Capons' beamforming) based approach is shown here. First, denote $\alpha(\theta)$ a steering vector for an azimuth angle θ as follows: for a linear one-dimensional virtual receiver antenna array,

 $\alpha(\theta) = [1, \exp(j2\pi d\sin(\theta)), \ldots \exp(j2\pi (N_a - 1)d \sin(\theta))]^{T}$

where

• *d* is the inter-antenna spacing normalized by the wavelength.

The steering vector represents phase difference on each of virtual receive antennas when the incident radar radio-frequency (RF) signal comes from azimuth angle θ . The angular spectrum for the n-th range bin is given by:

$$P_n(\theta) = \frac{1}{d(\theta)^{H} \hat{R}_n^{-1} d(\theta)}$$
(4)

And the corresponding beamforming vector is given as:

$$W_{n}(\theta) = \frac{\hat{R}_{n}^{-1}(\theta)}{d(\theta)^{H}\hat{R}_{n}^{-1}(\theta)}$$

(5)

(3)

(6)

(8)

The DoA spectrum for each range bin is stacked into a matrix form, where the n-th row is populated with the DoA spectrum of the n-th range bin. This matrix is called range-azimuth spectrum matrix S (see \boxtimes 1), whose (n, m) element is given by:

$$a_n = \beta \overline{P}_n$$

where

• the azimuth angle θ_m for an azimuth angle index m

2.4.6 Diagonally-Loading Method

In some situations, the covariance estimate is singular or near-singular, which may cause numeric stability issues in doing the matrix inversion as a part of the DoA spectral estimation. One way to avoid the numeric stability issues is to add a small value along the diagonal of the covariance estimate matrix:

$$P_n(\theta) = \frac{1}{a(\theta)^{H} [\hat{R}_n + a_n I]^{-1} a(\theta)}$$
(7)

The diagonally loading factor α , may be determined using the noise variance estimate as follows:

$$\alpha_n = \beta P_n$$

for a constant β , where P_n = 1/N_a trace{R_n}) is the average of the diagonal terms of the covariance estimate matrix.

2.4.7 Feature Extraction Algorithms

Notations:

- N_z is the number of zones.
- *r_n* (for *n* = 1,2, ..., *N_r*) is the range value for the range bin index n, and θ_m (for *m* = 1, 2, ..., *N_{az}*) is the azimuth angle for the azimuth angle index m, where *N_r* is the number of range bins and *N_{az}* is the number of azimuth angle bins.
- *S*[*t*] is the *N*_r x *N*_{az} range-azimuth spectrum matrix at radar frame t, whose (*n*,*m*)-th element is denoted as *S*_{*n*,*m*} [*t*].

2.4.8 Definition of Zones

Zones may be defined in range and azimuth-angle domain, and depend on the mounting location and attitude of the radar sensor. For example, in-cabin applications for automotive vehicles, each driver/passenger seats can be defines as zones. A zone can be defined as follows with four parameters. $Z_i = \{(n,m): r_L^i \le r_n < r_{u}^i, \theta_L^i \le \theta_m < \theta_U^i\}$

*Z*_{*i*} is the set of all the range-azimuth angle grids within the i-th zone (a rectangular-shaped boundary in range-azimuth domain) which is defined by four parameters, r^{i}_{L} , r^{i}_{U} , θ^{i}_{L} , and θ^{i}_{U} .

2.4.9 Features

For each zone, several features used in determining the occupancy state are extracted. The features may be derived from the average power for each zone (referred to as 'zone power'). For zone i at a radar frame index t, the average zone-power is defined as follows:

$$\mathbf{Q}_{\mathbf{i}}[t] = \frac{1}{|\mathbf{Z}_{\mathbf{i}}|} \sum_{\substack{(n,m) \in \mathbf{Z}_{\mathbf{i}}}} \mathbf{S}_{n,m}[t]$$

Features are defined as follows:

(9)

(11)

System Overview

Moving-averaged zone power: for zone i at frame t,

$$\overline{\mathbf{Q}}[t] = \frac{1}{L} \sum_{l=t-L+1}^{l} \overline{\mathbf{Q}}_{l}[l]$$

where

- L is the window length for the moving-average.
- •
- Moving-averaged power ratio: for zone i at frame t,

$$q_{i}[t] = \frac{\overline{Q}[t]}{\sum_{i=1}^{N_{2}} \overline{Q}[t]}$$
(12)

· Correlation coefficient of zone power: between zone i and zone j,

$$\rho_{i,j}[t] = \frac{1}{L-1} \sum_{l=t-L+1}^{L-1} \left(\frac{\mathbf{Q}[l] - \bar{\mathbf{Q}}[l]}{\sigma_{i}[t]} \right) \left(\frac{\mathbf{Q}[l] - \bar{\mathbf{Q}}[l]}{\sigma_{j}[t]} \right)$$

where

σ_i[t] is the standard deviation of Q_i[t]for zone i, which is defined as follows:

$$\sigma_{l}[t] = \left[\frac{1}{L}\sum_{l=t-L+1}^{t} \left(Q_{l}[l] - \bar{Q}_{l}[l]\right)^{2}\right]^{\frac{1}{2}}$$
(14)

The feature set for a radar frame is formed by stacking all the features. For example, when N $_{z}$ = 3, the feature set vector is 9-dimensional vector x[t] as follows:

$$\mathbf{x}[t] = \begin{bmatrix} \bar{\mathbf{Q}}_1[t], \quad \bar{\mathbf{Q}}_2[t], \quad \bar{\mathbf{Q}}_3[t], \quad q_1[t], \quad q_2[t], \quad q_3[t], \quad \rho_{1,2}[t], \quad \rho_{2,3}[t], \quad \rho_{3,1}[t] \end{bmatrix}^T$$

$$(15)$$

In the following sections, the element of the feature vector is sometimes also denoted as $x[t] = [x_1[t], x_2[t], \dots, x_N[t]]^T$, where is the number of features.

2.4.10 Zone Detection Algorithms

For N_z zones, there are 2 N_z possible occupancy states for the area of interest. The binary occupancy state for zone i is denoted by $O_i[t] \in \{0,1\}$. $O_i[t] = 0$ and $O_i[t] = 1$ represents that the zone i at radar frame t is 'empty' and 'occupied', respectively. For example, when N_z the occupancy status for the all the zones are:

$$(O_1[t], O_2[t], O_3[t]) \in \{(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)\}$$
(16)

For each of possible occupancy decision states, we define (*N*+1) dimensional decision weight vector (also called decision parameters):

$$W_{(o_1, o_2, \ldots, o_{N_2})} = [W_{(o_1, o_2, \ldots, o_{N_2})}^{0}, W_{(o_1, o_2, \ldots, o_{N_2})}^{1}, \ldots, W_{(o_1, o_2, \ldots, o_{N_2})}^{N}]'$$

where

N is the number of element in feature vector x[t], w_0 is for bias term.

(17)

The probability (or likelihood) of having a particular occupancy state is defined as follows:

(23)

$$\hat{\rho}_{(o_1, o_2, \dots, o_{N_2})}[t] = g (w_{(o_1, o_2, \dots, o_{N_2})}^{\chi[t]}) = g \sum_{i=0}^{N} w_{(o_1, o_2, \dots, o_{N_2})} i^{\chi[t]}$$

where

• $x^{[t]} = [1; x[t]] = [x_0[t], x_1[t], \dots, x_N[t]]^T$ (obtained by pre-appending '1' to the feature vector x[t]. Note that $x_0[t] = 1$ always), and g(.) is a non-linear function, e.g., logistic function,

$$g(z) = \frac{1}{1 + e^{-z}}$$
 (19)

Zone occupancy state is estimated as follows:

$$(\hat{O}_{1}[t], \hat{O}_{2}[t], \ldots, \hat{O}_{N_{z}}[t]) = arg_{(o_{1}, o_{2}, \ldots, o_{N_{z}}) \in [0, 1]^{N_{z}}} max \hat{\rho}_{(o_{1}, o_{2}, \ldots, o_{N_{z}})}[t]$$
(20)

Because g(.) is an increasing function, the occupancy decision making is equivalent to:

$$(\hat{O}_{1}[t], \hat{O}_{2}[t], \ldots, \hat{O}_{N_{z}}[t]) = arg_{(o_{1}, o_{2}, \ldots, o_{N_{z}}) \in [0, 1]^{N_{z}}}max \quad W^{T}_{(o_{1}, o_{2}, \ldots, o_{N_{z}})} \quad \tilde{x}[t]$$

$$(21)$$

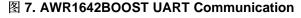
Furthermore, the zone detection can be implemented with a matrix-vector multiplication as shown in **Figure 3**, by stacking $w_{(o1, o2, ..., oNz)}$ into a $2^{Nz} \times (1 + N)$ matrix W as follows:

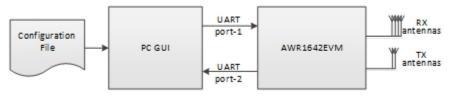
$$W_{(0,0, \dots, 0)}^{T} = \begin{bmatrix} W_{(1,0, \dots, 0)}^{T} \\ W_{(1,1,\dots, 1)}^{T} \end{bmatrix}$$
(22)

Then the zone-based decision may be made as follows:

$$(\hat{O}_1[t], \hat{O}_2[t], \ldots, \hat{O}_{N_2}[t]) = de2bi [arg max g(W\tilde{x}[t])]$$

where


т


• the non-linear function g(.) is element-wise, and arg max(.) gives the index of element that gives the maximum in a vector, and de2bi[.] is a converter from a decimal value to a binary vector.

For example, when $N_z = 3$, de2bi[.] functions as shown in the following table:

index	$(O_{1}^{-}[t], O_{2}^{-}[t], O_{3}^{-}[t]) = de2bi[index]$
0	(0, 0, 0)
1	(1, 0, 0)
2	(0, 1, 0)
3	(1, 1, 0)
4	(0, 0, 1)
5	(1, 0, 1)
6	(0, 1, 1)
7	(1, 1, 1)

2.4.11 Output through UART

System Overview

www.ti.com.cn

As illustrated in 🕅 7, the example processing chain uses one UART port to receive input configuration to the front end and signal processing chain, and uses the second UART port to send out processing results for display. See the information included in the user guide for detailed information on the format of the input configuration and output results.

3 Hardware, Software, Testing Requirements, and Test Results

3.1 Required Hardware and Software

The AWR1642EVM from Texas Instruments is an easy-to-use evaluation board for mmWave sensing devices. The VOD radar application runs on the AWR1642 EVM and connects to a visualization tool running on a PC connected to the EVM over USB.

For details regarding usage of this board, see the *AWR1642 Evaluation Module (AWR1642EVM) Single-Chip mmWave Sensing Solution*.

For details regarding the VOD GUI visualization tool, see the user guide for this demo.

3.1.1 Hardware

The AWR1642 core design includes:

- AWR1642 device: A single-chip, 77-GHz radar device with an integrated DSP
- Power management network using a low-dropout linear regulator (LDO) and power management integrated circuit (PMIC) DC/DC supply (TPS7A88, TPS7A8101-Q1, and LP87524B-Q1)

The EVM also hosts a device to assist with onboard emulation and UART emulation over a USB link with the PC.

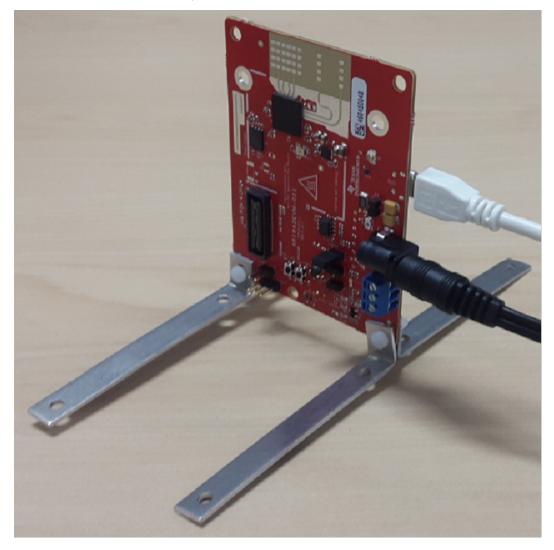
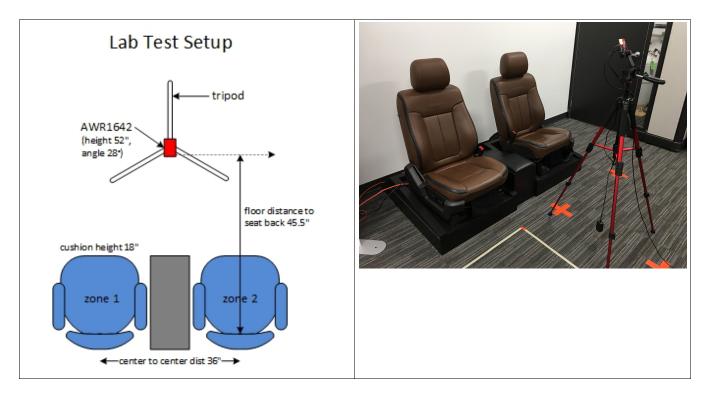
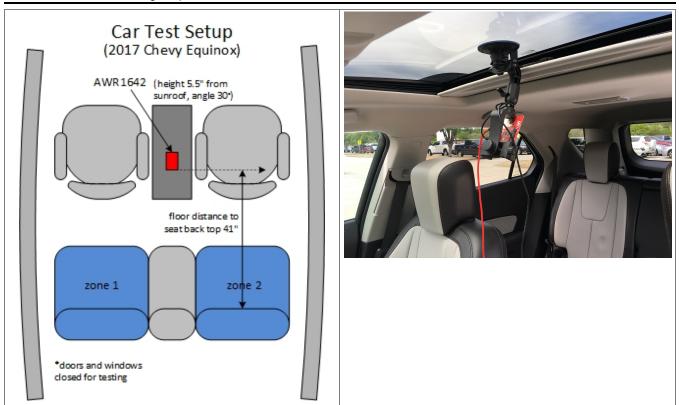


图 8. AWR1642BOOST EVM

3.1.2 Software and GUI


- The mmWave SDK can be downloaded from here. The installation program will also install all required tool components.
- To download the vehicle occupant detection application software, use the following TI Resource Explorer (TI Rex) here.
- Details on how to run the pre-built binaries and how to rebuild the demonstration application are provided in the VOD user guide in TI-Rex.

3.2 Testing and Results


3.2.1 Test Setup

Two test scenarios were used to test the VOD application software: a lab setup and a vehicle setup. The lab setup attempted to replicate the seating area of a vehicle, but without the confinement of door and roof panels. The vehicle setup created a zone in each of the back seats of a common vehicle. When the test setup is replicated, the demo application can be run as described in the user guide, using the appropriate configuration file.

Hardware, Software, Testing Requirements, and Test Results

3.2.2 Test Results

To create a testing criteria, the VOD demo GUI was instrumented with a counting widget that when started, counts frames received from the AWR1642, and counts positive (occupied) detections in each zone per frame. No averaging or smoothing is performed; it is a simple frame count. For each scenario, all possible occupied and empty zone combinations were tested. Each test was allowed to run for at least 1000 frames (approximately 2.75 minutes at 6 frames/second), and the resulting counts are recorded in the following tables. These tests require that the test subjects are in place when the frame counting begins, and nothing enters an "empty" zone during the testing period.

Test	Total Frames	Zone1 Count	Zone1Error (%)	Zone2 Count	Zone2 Error (%)
Zone1: emptyZone2: empty	1004	0	0	0	0
Zone1: occupiedZone2: empty	1018	1018	0	0	0
Zone1: emptyZone2: occupied	1034	2	0.19	1034	0
Zone1: occupiedZone2: occupied	1025	1025	0	1011	1.3

表 3.5	Scenario	Config	file: o	od_demo_	carseats_	_0302_	3p0.cfg
-------	----------	--------	---------	----------	-----------	--------	---------

表 4. Scenario Config file: od_demo_ car_0318_1p0.cfg

Test	Total Frames	Zone1 Count	Zone1Error (%)	Zone2 Count	Zone2 Error (%)
Zone1: emptyZone2: empty	1011	0	0	0	0

		• –	•	0.	
Test	Total Frames	Zone1 Count	Zone1Error (%)	Zone2 Count	Zone2 Error (%)
Zone1: occupiedZone2: empty	1008	1008	0	0	0
Zone1: emptyZone2: occupied	1007	0	0	1007	0
Zone1: occupiedZone2: occupied	1012	1012	0	1012	0

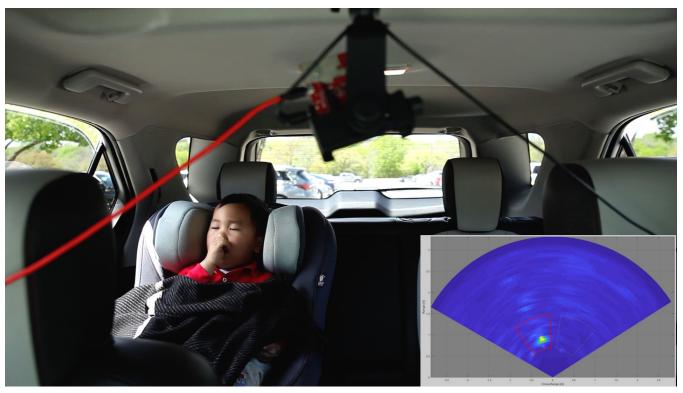

表 4. Scenario Config file: od_demo_ car_0318_1p0.cfg (continued)

表 5. Scenario Config file: od_demo_ car_0318_3p0.cfg

Test	Total Frames	Zone1 Count	Zone1Error (%)	Zone2 Count	Zone2 Error (%)
Zone1: emptyZone2: empty	1004	0	0	0	0
Zone1: occupiedZone2: empty	1012	1012	0	0	0
Zone1: emptyZone2: occupied	1006	0	0	1006	0
Zone1: occupiedZone2: occupied	1008	1008	0	1002	0.6

Other tests were also performed with the AWR1642 sensor mounted in the vehicle. The first test was a child seated in a carseat in one of the zones. [X] 13 shows the child in the carseat, and a capture from the VOD demo GUI during testing.

图 13. Child in a Car Seat

ZHCU485-April 2018

Another test illustrates an intruder approaching the vehicle. 🛛 14 shows the intruder and the corresponding heatmap image. A positive (occupied) detection was not gathered, because the intruder was still outside the defined zones.

图 14. Intruder Approaching Vehicle

4 Design Files

To download the software files, see the design files at TIDEP-1001.

4.1 Schematics

To download the schematics, see the design files at TIDEP-01001 .

4.2 Bill of Materials

To download the bill of materials (BOM), see the design files at TIDEP-01001 .

4.3 PCB Layout Recommendations

4.3.1 Layout Prints

To download the layer plots, see the design files at TIDEP-01001 .

4.4 Altium Project

To download the Altium Designer® project files, see the design files at TIDEP-01001 .

4.5 Gerber Files

To download the Gerber files, see the design files at TIDEP-01001 .

4.6 Assembly Drawings

To download the assembly drawings, see the design files at TIDEP-01001

5 Software Files

To download the software files, see the design files at TIDEP-01001 .

6 Related Documentation

- Texas Instruments, AWR1642 Evaluation Module (AWR1642EVM) Single-Chip mmWave Sensing Solution
- Texas Instruments, Programming Chirp Parameters in TI Radar Devices
- Texas Instruments, AWR1642 Single-Chip 77- and 79-GHz FMCW Radar Sensor
- Texas Instruments, AWR14xx/16xx Technical Reference Manual
- Texas Instruments, AWR1642 Evaluation Board Design Database
- Texas Instruments, AWR1642BOOST Schematic, Assembly, and BOM
- Texas Instruments, mmWave SDK User's Guide
- Texas Instruments, AWR1642 mmWave sensor: 76–81-GHz radar-on-chip for short-range radar applications

6.1 商标

E2E is a trademark of Texas Instruments. ARM is a registered trademark of ARM Ltd.. Altium Designer is a registered trademark of Altium LLC or its affiliated companies. All other trademarks are the property of their respective owners.

有关 TI 设计信息和资源的重要通知

德州仪器 (TI) 公司提供的技术、应用或其他设计建议、服务或信息,包括但不限于与评估模块有关的参考设计和材料(总称"TI 资源"),旨在 帮助设计人员开发整合了 TI 产品的 应用; 如果您(个人,或如果是代表贵公司,则为贵公司)以任何方式下载、访问或使用了任何特定的 TI 资源,即表示贵方同意仅为该等目标,按照本通知的条款进行使用。

TI 所提供的 TI 资源,并未扩大或以其他方式修改 TI 对 TI 产品的公开适用的质保及质保免责声明;也未导致 TI 承担任何额外的义务或责任。 TI 有权对其 TI 资源进行纠正、增强、改进和其他修改。

您理解并同意,在设计应用时应自行实施独立的分析、评价和 判断, 且应全权负责并确保 应用的安全性, 以及您的 应用 (包括应用中使用 的所有 TI 产品))应符合所有适用的法律法规及其他相关要求。你就您的 应用声明,您具备制订和实施下列保障措施所需的一切必要专业知 识,能够 (1) 预见故障的危险后果,(2) 监视故障及其后果,以及 (3) 降低可能导致危险的故障几率并采取适当措施。您同意,在使用或分发包 含 TI 产品的任何 应用前, 您将彻底测试该等 应用 和该等应用所用 TI 产品的 功能而设计。除特定 TI 资源的公开文档中明确列出的测试 外,TI 未进行任何其他测试。

您只有在为开发包含该等 TI 资源所列 TI 产品的 应用时, 才被授权使用、复制和修改任何相关单项 TI 资源。但并未依据禁止反言原则或其他 法理授予您任何TI知识产权的任何其他明示或默示的许可,也未授予您 TI 或第三方的任何技术或知识产权的许可,该等产权包括但不限于任 何专利权、版权、屏蔽作品权或与使用TI产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务的信 息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权的许 可。

TI 资源系"按原样"提供。TI 兹免除对 TI 资源及其使用作出所有其他明确或默认的保证或陈述,包括但不限于对准确性或完整性、产权保证、 无屡发故障保证,以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。

TI 不负责任何申索,包括但不限于因组合产品所致或与之有关的申索,也不为您辩护或赔偿,即使该等产品组合已列于 TI 资源或其他地方。 对因 TI 资源或其使用引起或与之有关的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿,不管 TI 是否获悉可能会产生上述损害赔偿,TI 概不负责。

您同意向 TI 及其代表全额赔偿因您不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。

本通知适用于 TI 资源。另有其他条款适用于某些类型的材料、TI 产品和服务的使用和采购。这些条款包括但不限于适用于 TI 的半导体产品 (http://www.ti.com/sc/docs/stdterms.htm)、评估模块和样品 (http://www.ti.com/sc/docs/sampterms.htm) 的标准条款。

> 邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2018 德州仪器半导体技术(上海)有限公司