TI Designs: TIDA-01560 待机功耗接近于零 (4mW) 的 15W 双隔离输出偏置电源参考设计 # TEXAS INSTRUMENTS #### 说明 此参考设计是一个 15W 偏置电源,具有两个隔离输出(12 V/1.125A 和 3.3V/0.3A)且在 220V 交流电输入下的总待机功耗为 4mW。该控制器使用了初级侧调整(PSR)并检测来自 UCC24650 次级侧压降监控器的唤醒信号,从而改善对大型负载阶跃的瞬态响应。此参考设计展示了 UCC28730 如何通过内部的 700V 启动开关、动态控制工作状态和定制调制方式,提供超低待机功耗,而不影响启动时间或输出瞬态响应。UCC28730 在其控制算法中使用频率调制、峰值初级电流调制、谷值开关和谷值跳跃,以实现整个工作范围内的效率最大化。 #### 资源 TIDA-01560设计文件夹UCC28730产品文件夹UCC24650产品文件夹TLV743P产品文件夹 咨询我们的 E2E™ 专家 #### 特性 - 可实现零待机功耗, 115V 交流电输入时为 3.1mW, 220V 交流电输入时为 4.2mW - 平均效率 > 84%,超过 DoE VI 和 CoC 2 级规范 - 初级侧调整省去了光耦合器且增加了偏置电源的稳定性 - 针对最高总体效率的谐振环谷值开关运行 - 通用输入电压范围(85V至 270V 交流电),可满足所有国家/地区的客户需求 - 12V 和 3.3V 的双隔离输出适合大多数工业 应用 - 具有频率抖动特性,确保符合 EMI 标准 - 具有针对过压、低压线路和过流情况的全面保护功能 #### 应用 - 洗衣机 - 咖啡机 - 厨具系列 - 小型家用电器 - 消毒柜 - 马桶坐垫 - 电视和显示器电源 System Description www.ti.com.cn 该 TI 参考设计末尾的重要声明表述了授权使用、知识产权问题和其他重要的免责声明和信息。 #### 1 System Description The International Electrotechnical Commission (IEC) specifies methods of measurement of electrical power consumption in standby modes and other low power modes (off mode and network mode), as applicable in IEC 62301:2011. These methods are applicable to electrical products with a rated input voltage or voltage range that lies wholly or partly in the range of 100-V to 250-V AC for single-phase products and 130-V to 480-V AC for other products. Clause 4.5 of this standard regards measurements of less than 5 mW as zero power, which now has become the basis for a "Zero Power" marketing campaign as the ultimate target for no-load standby dissipation in electronic devices and appliances. Products that meet this requirement can earn a "Zero Power" label. Most of industrial applications need a bias power supply and at least has dual power rails for the entire system: 3.3 V or 5 V for the system controller and 12 V or 15 V for the power module. This reference design provides dual isolated outputs of 3.3 V and 12 V that cover most industrial applications. This design also achieves very low power consumption in standby mode: 3-mW standby power consumption at a 115-V AC input and 4.4 mW at a 230-V AC input. The design is suited for use in isolated off-line systems requiring minimal standby power, high efficiency, and fault protection. Such applications include: - SMPS for home appliance and building automation - TVs and monitor power supplies - Adapters and chargers for smart phones, tablets, and consumer electronics System Description www.ti.com.cn # Key System Specifications # 表 1. TIDA-01560 Electrical Performance Specifications | | PARAMETER | TEST CONDITIONS | MIN | NOM | MAX | UNIT | |-----------------------|--------------------------------|---------------------------------------------------------------------------------|------|------------|----------|------------------| | INPUT CH | IARACTERISTICS | | | <u> </u> | <u> </u> | | | V _{IN} | Input voltage range | $V_{IN} = V_{IN_min}, I_{OUT} = I_{OUT_max}$ | 85 | 115 or 230 | 265 | V_{RMS} | | I _{IN_max} | Maximum input current | | | | 0.25 | A _{RMS} | | f _{LINE} | Line frequency | | 47 | 50 or 60 | 63 | Hz | | P _{STANDBY} | No-load power consumption | $V_{IN_min} \le V_{IN} \le V_{IN_max}, I_{OUT} = 0 A$ | 3 | | 4.9 | mW | | | CHARACTERISTICS | | | | | | | V _{OUT1} | Output1 voltage, CV mode | $V_{IN_min} \le V_{IN} \le V_{IN_max}$, $0 A \le I_{OUT1} \le I_{OUT_max}$ | 12.1 | | 12.18 | V | | I _{OUT1_max} | Output1 load current, CV mode | $V_{IN_min} \le V_{IN} \le V_{IN_max}$ | | 1.125 | | Α | | V_{OUT2} | Output2 voltage | $V_{IN_min} \le V_{IN} \le V_{IN_max}$, $0 A \le I_{OUT2} \le I_{OUT_max}$ | | 3.3 | | V | | I _{OUT2_max} | Output2 load current | $V_{IN_min} \le V_{IN} \le V_{IN_max}$ | | 0.3 | | Α | | | Output voltage line regulation | $V_{IN_min} \le V_{IN} \le V_{IN_max}, I_{OUT} = I_{OUT_max}$ | | | 1 | % | | | Output voltage load regulation | 0 A ≤ I _{OUT} ≤ I _{OUT_max} | | | 2 | % | | | Output1 voltage ripple | $V_{IN_min} \le V_{IN} \le V_{IN_max}$, $0 A \le I_{OUT1} \le I_{OUT1_max}$ | | | 45 | mVpp | | | Output2 voltage ripple | $V_{IN_min} \le V_{IN} \le V_{IN_max}$, $0 A \le I_{OUT2} \le I_{OUT2_max}$ | | | 35 | mVpp | | SYSTEMS | CHARACTERISTICS | | 1 | | - | | | f _{SW} | Switching frequency | | 0.05 | | 83 | kHz | | η_{AV} | Average efficiency | 25%, 50%, 75%, 100% load average | 85.2 | | | % | | η_{PEAK} | Peak efficiency | | | | 86 | % | | η _{10%} | 10% efficiency | 10% load, V _{IN} = 115 V | 81.8 | | | % | | T _o | Operating temperature | | -20 | | 85 | °C | System Overview www.ti.com.cn ## 2 System Overview ## 2.1 Block Diagram ■ 1 shows the high-level block diagram of the circuit. The main parts of this reference design are the isolated-flyback power supply controller (UCC28730), voltage monitor (UCC24650), and next-generation, low-dropout regulators (TLV74333). 图 1. Block Diagram of TIDA-01560 #### 2.2 Design Considerations IEC 62301:2011 defines "Zero Power" as standby power consumption of a system that is below 5 mW. For different industry applications, the system power level can be from tens to hundreds of watts. Above this power level, the requirement for x-capacitor discharge as well as the parasitic dissipation in the components make it very difficult to achieve zero power. For example, the bulk capacitor leakage current can amount to several mW at high line input. To enable zero power for higher power designs, the UCC24650 features an output enable pin, which can drive a relay to disconnect the AC input voltage at a very light load and reduce power dissipation to below 5 mW. Based on this operating principle, this reference design has two options to help achieve the zero standby power for different applications: high-power supply system (图 2) and larger system (图 3). 🛚 2 shows a block diagram of a system with a high-power supply. During normal operation mode, this system operates with a large capacitor of a larger leakage current and a full EMI filter. During standby mode, ENS of the UCC24650 switches the relay and lets the system operate with a small capacitor of much less leakage current and without EMI filter. www.ti.com.cn System Overview 3 shows a block diagram of a large system. Usually, a large system is supplied as several portions, just like power factor correction (PFC), DC/DC converter, DC/AC inverter, and so on. During normal operation mode, zero standby power flyback serves as the auxiliary power supply for the system. During standby mode, ENS of the UCC24650 shuts off the relay and only the flyback is connected to the power line, making it easy to achieve zero standby power. 图 2. Block Diagram of System With High-Power Supply 图 3. Block Diagram of Large System System Overview www.ti.com.cn #### 2.3 Highlighted Products This reference design features the following devices, which are selected based on their specifications. For more information on each of these devices, see their respective product folders at Tl.com or click on the links for the product folders under 资源. #### 2.3.1 UCC28730 The UCC28730 is an isolated-flyback power supply controller that provides accurate voltage and constant current regulation using primary-side winding sensing, eliminating the need for optocoupler feedback circuits. The controller operates in discontinuous conduction mode with valley switching to minimize switching losses. The modulation scheme is a combination of frequency modulation and primary peak-current modulation to provide high conversion efficiency across the load range. The control law provides a wide dynamic operating range of output power, which facilitates the achievement of <5-mW standby power. During low-power operating levels, the device has power management features to reduce the device operating current at switching frequencies less than 28 kHz. The UCC28730 includes features in the pulse-width modulator to reduce the EMI peak energy at the fundamental switching frequency and its harmonics. Accurate voltage and current regulation, fast dynamic response, and fault protection are achieved with primary-side control. A complete charger solution can be realized with a straightforward design process, low cost, and low component count. #### 2.3.2 UCC24650 The UCC24650 is a voltage monitor designed to alert a companion primary-side controller device when the monitor detects a relative droop of approximately 3% on its VDD input. Commonly known as a wake-up device, the UCC24650 is normally used in isolated-flyback power supply applications using primary-side regulation (PSR). Because the PSR controller can operate at very low frequencies during light-load or no-load conditions, the controller cannot detect a sudden load step that can occur between power cycles, and the output voltage can fall out of regulation. The UCC24650 can detect the voltage droop and wake-up a compatible PSR controller to increase its switching frequency before the output falls too low. This action significantly reduces the amount of output capacitance needed to achieve an acceptable transient response. At the end of each power cycle delivered by the PSR controller, the UCC24650 droop monitor refreshes an internally stored voltage scaled to 97% of the VDD voltage. If the monitor detects a droop of VDD to the level of the stored voltage, the WAKE signal is connected to GND by an internal low-impedance switch. The WAKE signal transmits a current pulse across the isolation transformer to a compatible PSR controller, such as the UCC28730, capable of detecting the wake-up signal on the primary side of the transformer. The UCC24650 is also capable of disabling a compatible PSR controller, such as the UCC24610, during light-load conditions to minimize standby power. The ENS output signal is driven low after a fixed sustained count of low-frequency power pulses and can re-enable the PSR controller after a cumulative count of 32 higher-frequency power pulses. The ENS output can also be used to drive other secondary circuitry compatible with the ENS operating parameters. www.ti.com.cn System Overview #### 2.3.3 TLV74333 The TLV74333 device belongs to a new family of next-generation, low-dropout regulators (LDOs). This device consumes low quiescent current and delivers excellent line and load transient performance. Combined with low noise, good PSRR, and low-dropout voltage, these characteristics make this device well-suited for portable consumer applications. This regulator offers foldback current limit, shutdown, and thermal protection. The operating junction temperature for this device is -40° C to $+125^{\circ}$ C. System Overview www.ti.com.cn #### 2.4 System Design Theory This reference design uses the UCC28730 controller with the UCC24650 wake-up monitor in a 15-W converter to provide dual isolated outputs of 12 V with 1.125 A and 3.3 V with 0.3 A. The input accepts an universal voltage range of 85-V to 265-V AC. Depending upon the operating conditions, the control law algorithm modulates the switching frequency or the peak primary current to satisfy the power transfer requirements. As the load is increased from zero, the converter transitions through a frequency modulation (FM) mode. The peak primary current is held constant at one-third of its full-load peak value as the switching frequency increases from a minimum value to maintain energy transfer up to 28 kHz. When the load is increased to the level at which the switching frequency reaches 28 kHz, the controller keeps the switching frequency fixed and modulates the amplitude of peak primary current, increasing it from one-third its peak value up to its maximum full load peak current value; this area of operation is referred to as the amplitude modulation (AM) range. A further increase in load demand transitions the controller into another FM mode where the peak primary current is constant at its maximum designed value and the switching frequency is increased as needed, up to the maximum switching frequency of the controller (83 kHz). Using PSR, the output voltage is indirectly sensed on the auxiliary winding once the stored transformer energy is transferred to the secondary to maintain a tightly regulated output. The wake-up monitoring feature operates in conjunction with the secondary-side UCC24650 to allow light-load and no-load switching frequencies to approach 32 Hz. This controller minimizes no-load power consumption to less than 5 mW while providing a fast dynamic response to load transients without requiring large output capacitance. The controller further enhances its efficient operation with valley switching. The UCC28730 also uses dithering of the gate drive, which helps to ease EMI compliance. This design guide provides the schematic, component list, assembly drawing, and test setup necessary to evaluate the UCC28730 and UCC24650 in a typical off-line converter application. A typical application for the UCC28730 controller includes the compatible UCC24650 wake-up monitor to regulate an isolated low-voltage DC output with low output capacitance. When the UCC28730 is operating in the low-frequency wait state, the UCC24650 alerts the UCC28730 to a sudden load increase, avoiding the need for extremely high output capacitance to hold up between power cycles. As shown in 🖺 4, the output rectification uses a ground-referenced diode to facilitate application of the UCC24650 device. A ground-referenced synchronous rectifier can also be used. 图 4. Simplified Application With Ground-Referenced Diode www.ti.com.cn System Overview ## 2.4.1 Wake-Up Detection and Function A major feature available at the VS pin of the UCC28730 is the wake-up function, which operates in conjunction with a companion secondary-side wake-up device, such as the UCC24650. This feature allows light-load and no-load switching frequencies to approach 32 Hz to minimize losses, yet wake the UCC28730 from its wait state (sleep mode) in the event of a significant load step between power cycles. Despite the low frequencies, excessive output capacitance is not required to maintain reasonable transient response. While in the wait state, the UCC28730 continually monitors the VS input for a wake-up signal and, when detected, responds immediately with several high-frequency power cycles and resumes operation as required by the control law to recover from the load-step transient and restore output voltage regulation. Because the wake-up feature interrupts the wait state between very low frequency switching cycles, the feature allows the use of a much lower output capacitance value than would be required to hold up the voltage without the wake-up function. The feature also allows the controller to drop to extremely low switching frequencies at no-load conditions to minimize switching losses. This drop facilitates the achievement of less than 5 mW of input power to meet zero-power standby requirements. The UCC28730 controller alone cannot ensure zero-power operation because other system-level limitations are also imposed; however, the UCC28730 and UCC24650 together make this goal achievable. ## 2.4.2 Valley Switching and Valley Skipping The UCC28730 uses valley-switching to reduce switching losses in the MOSFET, to reduce induced-EMI, and to minimize the turnon current spike at the current sense resistor. The controller operates in valley switching in all load conditions unless the VDS ringing is diminished to the point where valleys are no longer detectable. Valley skipping modulates each switching cycle into discrete period durations. During FM operation, the switching cycles are periods when energy is delivered to the output in fixed packets, and the power delivered varies inversely with the switching period. During operating conditions when the switching period is relatively short, such as at high-load and low-line, the average power delivered per cycle varies significantly based on the number of valleys skipped between cycles. As a consequence, valley skipping adds additional low-amplitude ripple voltage to the output with a frequency dependent upon the rate of change of the bulk voltage. For a load with an average power level between that of cycles with fewer valleys skipped and cycles with more valleys skipped, the voltage control loop modulates the control law voltage and toggles between longer and shorter switching periods to match the required average output power. #### 2.4.3 Fault Protection The UCC28730 provides comprehensive fault protection. The protection functions include: - Output overvoltage - Input undervoltage - Internal overtemperature - Primary overcurrent fault - CS pin fault - VS pin fault A UVLO reset and restart sequence applies to all fault protection events. System Overview www.ti.com.cn The output overvoltage function is determined by the voltage feedback on the VS pin. If the voltage sample of VS exceeds 4.6 V for three consecutive switching cycles, the device stops switching and the internal current consumption becomes I_{FAULT}, which discharges the VDD capacitor to the UVLO turnoff threshold. After that, the device returns to the start state and a start-up sequence ensues. Current into the VS pin during the MOSFET on-time determines the line input run and stop voltages. While the VS pin clamps close to GND during the MOSFET on-time, the current through feedback resistor is monitored to determine a sample of V_{BULK} . A wide separation of the run and stop thresholds allows clean start-up and shutdown of the power supply with line voltage. The run-current threshold is 225 μ A, and the stop-current threshold is 80 μ A. The input AC voltage to run at start-up always corresponds to the peak voltage of the rectified line because there is no loading on C_{BULK} before start-up. The AC input voltage to stop varies with load because the minimum V_{BULK} depends on the loading and the value of C_{BULK} . At maximum load, the stop voltage is close to the run voltage, but at no-load condition, the stop voltage can be approximately 1/3 of the run voltage. The UCC28730 always operates with cycle-by-cycle primary-peak current control. The normal operating range of the CS pin is 0.74 V to 0.249 V. An additional protection occurs if the CS pin reaches 1.5 V after the leading-edge blanking interval for three consecutive cycles, which results in a UVLO reset and restart sequence. Normally at an initial start-up, the peak level of the primary current of the first four power cycles is limited to the minimum $V_{\text{CST(min)}}$. If the CS input is shorted or held low such that the $V_{\text{CST(min)}}$ level is not reached within 4 μ s on the first cycle, the CS input is presumed to be shorted to GND and the fault protection function results in a UVLO reset and restart sequence. Similarly, if the CS input is open, the internal voltage is pulled up to 1.5 V for three consecutive switching cycles and the fault protection function results in a UVLO reset and restart sequence. The internal overtemperature protection threshold is 165°C. If the junction temperature reaches this threshold, the device initiates a UVLO reset cycle. If the temperature is still high at the end of the UVLO cycle, the protection cycle repeats. Protection is included in the event of component failures on the VS pin. If a complete loss of feedback information on the VS pin occurs, the controller stops switching and restarts. #### 2.4.4 Input Bulk Capacitance Calculation Bulk capacitance can consist of one or more capacitors connected in parallel, often with some inductance between them to suppress differential-mode conducted noise. EMI filter design is beyond the scope of this procedure. First calculate the input capacitor charge time (t_{ch}) based on a 40% ripple voltage: $$t_{ch} := \frac{1 - \frac{90 - a \sin\left(\frac{V_{IN_min}\sqrt{2} - V_{IN_min}\sqrt{2} \times 0.65}{V_{IN_min}\sqrt{2}}\right) \times \frac{180}{\pi}}{4.47 \, \text{Hz}} = 3.256 \times 10^{-3} \, \text{s}$$ (1) Calculate flyback average primary current during an input capacitor discharge: Ipt1 := $$\frac{\frac{P_{OUT}}{\eta \times V_{IN_min} \times \sqrt{2}} + \frac{P_{OUT}}{\eta \times \left(V_{IN_min} \times \sqrt{2}\right) 0.65}}{2} = 0.198 \text{ A}$$ (2) www.ti.com.cn System Overview Calculate total input capacitance (C_{IN}) based on minimum flyback input voltage and 40% ripple voltage across the input capacitor: $$C_{IN} := \frac{Ipt1 \times (Tr1 - t_{ch})}{V_{IN_ripple}} = 3.036 \times 10^{-5} F \tag{3}$$ Where Tr1 is the longest period of the rectified line voltage, which is calculated using 公式 4: $$Tr1 := \frac{1}{2 \times 47 \text{Hz}} = 0.011 \text{ s}$$ (4) $V_{\text{IN_ripple}}$ is the input ripple voltage to the flyback converter: $$V_{IN_ripple} := V_{IN_min} \times \sqrt{2} \times 0.4 = 48.083 \text{ V}$$ (5) Choose two 10-µF electrolytic capacitors as Ca and Cb. #### 2.4.5 Output Capacitance Calculation With ordinary flyback converters, the output capacitance value is typically determined by the time of duration, which is defined as 2 ms. Calculate the output capacitance using 公式 6: $$C_{OUT} := \frac{2 \text{ ms} \times \frac{P_{OUT}}{V_{OUT} \times 2}}{V_{OUT} - V_{OTRM}} = 6.25 \times 10^{-4} \text{F}$$ (6) Choose one 680-µF electrolytic capacitor as the output capacitance. #### 2.4.6 Snubber Circuit Selection Define the enter voltage of Zener diode as $V_7 = 150 \text{ V}$. $$V_{\text{CLAMP}} := V_{\text{DS}_\text{max}} \times 0.9 - V_{\text{IN}_\text{max}} \sqrt{2} = 165.233 \text{ V}$$ $$(7)$$ Rs := $$\frac{V_{CLAMP} - 0.6 \text{ V} - \text{Vz}}{\text{lppk}} = 14.788 \Omega$$ (8) Select a standard resistor of 22 Ω . #### 2.4.7 Transformer Design Define D_{MAG} = 43.2%, where D_{MAG} is the secondary diode of the conduction duty cycle during constant current (CC) operation. In the UCC28730 controller, D_{MAG} is fixed internally at 0.432. Define $T_r = 2 \mu s$, where T_r is the estimated period of the LC tank frequency at the switch node. Calculate the maximum duty cycle (D_{MAX}) using 公式 9: $$D_{MAX} := 1 - D_{MAG} - f_{MAX} \times \frac{T_r}{2} = 0.485$$ (9) Calculate the primary peak current (I_{ppk}) using 公式 10: $$I_{ppk} := \frac{P_{OUT} \times 2}{\eta \times \left(V_{IN_min} \sqrt{2} \times 0.65\right) \times D_{MAX}} = 0.99 \text{ A}$$ $$\tag{10}$$ Calculate the primary inductance (L_{pm}) using 公式 11: $$L_{pm} := \frac{\frac{2 \times P_{OUT}}{\eta}}{I_{ppk}^2 \times f_{design}} = 5.106 \times 10^{-4} H$$ (11) System Overview www.ti.com.cn - Estimated voltage drop across R_{DSon} V_{QAon} = 2 V - Maximum current sense signal V_{RCS} = 0.77 V - Estimated diode voltage drop V_{DG} = 0.6 V Calculate the transformer primary-to-secondary turns ratio (a1) based on the volt second balance: al := $$\frac{D_{MAX} \times \left(V_{IN_min} \sqrt{2} \times 0.65 - V_{AQON} - V_{RCS}\right)}{D_{MAG} \times \left(V_{OUT} + V_{DG}\right)} = 6.715$$ (12) - a1 = N_P / N_S - Minimum VDD voltage of the UCC28730 controller before UVLO turnoff V_{DD_min} = 8.1 V - Estimated forward voltage drop V_{de} = 0.3 V - Voltage on the output when the adapter is connected V_{OUT init} = 10 V Calculate the transformer auxiliary-to-secondary turns ratio (a2) using 公式 13: $$a2 := \frac{V_{DD_min} + V_{DE}}{V_{OUT_int} + V_{DG}} = 0.792$$ $$(13)$$ Calculate the transformer primary RMS current using 公式 14: $$I_{prms} := I_{ppk} \times \sqrt{\frac{D_{MAX}}{3}} = 0.398 \,A \tag{14}$$ Calculate the transformer secondary peak RMS current using 公式 15: $$I_{spk} := \frac{2 \times P_{OUT}}{V_{OUT} \times D_{MAG}} = 5.787 \,A \tag{15}$$ Calculate the transformer secondary RMS current using 公式 16: $$I_{srms} := I_{spk} \times \sqrt{\frac{D_{MAG}}{3}} = 2.196 A \tag{16}$$ ## 2.4.8 VS Sense Resistor Calculation For the UCC28730 controller, I_{vslrun} = 220 μA. Calculate the VS divider resistor R_{s1} using $\Delta \pm 17$: $$R_{s1} := \frac{\frac{a2}{a1} \times V_{IN_min} \sqrt{2} \times 0.7}{I_{vsIrun}} = 5.464 \times 10^{4} \Omega$$ (17) Choose a standard resistor value (56 k Ω) as R $_{\rm s1}$. $$R_{s2} := \frac{4.0 \text{ V}}{\frac{\left(V_{OUT} + V_{DG}\right) a2 - 4 \text{ V}}{R_{s1}}} = 2.605 \times 10^{4} \Omega$$ (18) Select two standard resistors 27k and 150k in parallel, so the $R_{\rm s2}$ is found using $\triangle \pm$ 19: $$R_{s2} := \frac{27 \times 150}{27 + 150} \times 10^{3} \Omega = 22.881 \,\text{k}\Omega \tag{19}$$ ## 3 Hardware, Testing Requirements, and Test Results #### 3.1 Required Hardware #### 3.1.1 Test Equipment Needed to Validate Board - Multimeters: For highest accuracy, V_{OUT} can be monitored by connecting a DC voltmeter; Fluke 287C is recommended. - Power meter: Use a power analyzer capable of measuring low input current, typically less than 1 mA, and a long integration mode, when low power standby mode input power measurements are taken; WT210 is recommended. - AC voltage source: For an input source, use an isolated variable AC source capable of supplying between 85-V and 265-V AC at no less than 20 W and connected as shown in ☒ 5. For accurate efficiency calculations, insert a power meter between the neutral line of the AC source and the Neutral terminal of the design. For highest accuracy in loaded conditions, connect the voltage terminals of the power meter directly across the Line and Neutral terminals of the design. For highest accuracy at no load, connect the V+ voltage terminal of the power meter at the Line terminal of the design and the V− terminal of the power meter ahead of the shunt resistor; Chroma 61503 is recommended. - Output load: Use a programmable electronic load capable of sinking 0 A to 3 A. When testing the design in constant current mode, set the electronic load to constant resistance mode; Chroma 63103 is recommended. - Oscilloscope: A digital or analog oscilloscope with 500-MHz scope probes is recommended; Tektronix DPO 3054 is recommended. - Wire gauge: The wire connections between the AC source and the design and the wire connections between the design and the load must be less than 2 ft; a wire with a minimum of 18 AWG is recommended. ## 3.1.2 Recommended Test Setup 图 5. TIDA-01560 Recommended Test Setup #### 3.1.3 Test Procedure #### 表 2. Connecter Pin Map | CONNECTOR | PIN | DESCRIPTION | |-----------|-----|-----------------------| | J1 | 1 | Line of AC input | | 31 | 2 | Neutral of AC input | | J2 | 1 | 12-V output positive | | J2 | 2 | Ground | | 12 | 1 | 3.3-V output positive | | J3 | 2 | Ground | - 1. Prepare the test setup as shown in \(\begin{array}{c} 5. \end{array} \) - 2. Connect the line of the AC source on the design input (pin 1 of connector J1), and connect the neutral of the AC source on the TIDA-01560 input (pin 2 of connector J1) through the current sensing module of the power meter. - 3. Connect the voltage sensing module to the design input (connector J1). - 4. Connect an electronic load to the 12-V output terminal (connector J2) with the load set to draw 14 W through the multimeter. - Connect another electronic load to the 3.3-V output terminal (connector J3) with the load set to draw 1 - Turn on the AC source connected to the design input with a universal input voltage (85-V to 264-V AC). - 7. Once the design activates, monitor the input power consumption and dual output performance. - 8. Turn off the AC source and disconnect the AC source from the board when the test is complete. ## 3.2 Testing and Results # 3.2.1 No-Load Power Consumption No-load power consumption is measured as less than 5 mW over the entire line input range. 图 6. No-Load Power Consumption #### 3.2.2 Power Loss Breakdown (Theoretical Calculation) This power loss breakdown is based on theoretical calculation, and this calculation does not contain the leakage power loss of the input and output aluminum capacitor. 图 7. Power Loss Breakdown ## 3.2.3 Efficiency With Load Variation 图 8. Efficiency With Load Variation ## 表 3. Efficiency With Load Variation Under 115-V AC Input | V _{IN} (V) | P _{IN} (W) | 12 V V _{OUT} (V) | 12 V I _{OUT} (A) | 3.3 V _{OUT} (V) | 3.3 V I _{OUT} (A) | P _{OUT} (W) | η (%) | |---------------------|---------------------|---------------------------|---------------------------|--------------------------|----------------------------|----------------------|-------| | | 0.0033 | 12.150 | 0.000 | 3.296 | 0.000 | 0.00 | | | | 1.868 | 12.141 | 0.098 | 3.286 | 0.105 | 1.53 | 81.84 | | | 4.702 | 12.123 | 0.296 | 3.285 | 0.105 | 3.93 | 83.68 | | 115 V | 7.612 | 12.118 | 0.498 | 3.285 | 0.105 | 6.38 | 83.76 | | | 10.45 | 12.136 | 0.696 | 3.285 | 0.105 | 8.79 | 84.14 | | | 13.34 | 12.154 | 0.898 | 3.285 | 0.105 | 11.25 | 84.36 | | | 16.49 | 12.175 | 1.118 | 3.285 | 0.105 | 13.96 | 84.64 | ## 表 4. Efficiency With Load Variation Under 230-V AC Input | V _{IN} (V) | P _{IN} (W) | 12 V V _{OUT} (V) | 12 V I _{OUT} (A) | 3.3 V _{OUT} (V) | 3.3 V I _{OUT} (A) | P _{OUT} (W) | η (%) | |---------------------|---------------------|---------------------------|---------------------------|--------------------------|----------------------------|----------------------|-------| | | 0.0043 | 12.133 | 0.000 | 3.296 | 0.000 | 0.000 | | | | 1.9 | 12.121 | 0.098 | 3.287 | 0.105 | 1.527 | 80.36 | | | 4.67 | 12.102 | 0.296 | 3.284 | 0.105 | 3.928 | 84.12 | | 230 V | 7.49 | 12.102 | 0.498 | 3.281 | 0.105 | 6.368 | 85.02 | | | 10.29 | 12.121 | 0.696 | 3.279 | 0.105 | 8.782 | 85.34 | | | 13.13 | 12.139 | 0.898 | 3.278 | 0.105 | 11.239 | 85.60 | | | 16.24 | 12.159 | 1.118 | 3.277 | 0.105 | 13.938 | 85.82 | #### 3.2.4 Load Regulation 8 9 is the 12-V output load regulation with a fixed 3.3-V/0.1-A output. The load regulation is below 2%. 图 9. 12-V Output Load Regulation ## 3.2.5 Turnon Waveform 图 10 and 图 11 are start-up waveforms of a 115-V input with no load and full load, respectively. \boxtimes 10. V_{IN} = 115 V, Startup Waveform With No Load የgapsing 11. V_{IN} = 115 V, Startup Waveform With Full Load 图 12 and 图 13 are start-up waveforms of a 230-V input with no load and full load, respectively. 图 12. V_{IN} = 230 V, Startup Waveform With No Load 图 13. V_{IN} = 230 V, Startup Waveform With Full Load #### 3.2.6 Output Voltage Ripple If and In the total show the 12-V output voltage ripple. The measurements are taken at no load and full load with an input voltage of 115-V AC, 50-Hz, and the waveform is AC coupled with a 20-MHz bandwidth limit. The cursor indicates the maximum peak-to-peak limit of 45 mV permitted for the reference design. The ripple pattern seen is characteristic of the EMI dithering method used by the UCC28730 controller. \boxtimes 14. V_{IN} = 115 V, 12-V Voltage Ripple With No Load \boxtimes 15. V_{IN} = 115 V, 12-V Voltage Ripple With Full Load If and In the total states are taken at no load and full load with an input voltage of 230-V AC, 50-Hz, and the waveform is AC coupled with a 20-MHz bandwidth limit. The cursor indicates the maximum peak-to-peak limit of 45 mV permitted for the reference design. The ripple pattern seen is characteristic of the EMI dithering method used by the UCC28730 controller. \boxtimes 16. V_{IN} = 230 V, 12-V Voltage Ripple With No Load \boxtimes 17. V_{IN} = 230 V, 12-V Voltage Ripple With Full Load ## 3.2.7 Transient Response The transient response shown in № 18 and № 19 are taken with an input voltage of 115-V and 230-V AC, 50-Hz and a load transition from 0 A to full load. Channel 4 is the load current on a scale of 0.5 A per division, and channel 1 is the output voltage on a scale of 200 mV per division, offset from the center line by –12 V. The cursors show the undershoot from the regulated output voltage under full load transient conditions. Output voltage undershoot varies depending on the specific time the transient occurs during the switching cycle. 图 18. V_{IN} = 115 V, Load Transient 图 19. V_{IN} = 230 V, Load Transient ## 3.2.8 Overcurrent and Short-Circuit Protection When UCC28730 go into OCP and SCP conditions, the hiccup frequency is 5.5 Hz, and the output current is limited below 1.3 A. 图 20. V_{IN} = 115 V, Overcurrent Protection 图 21. V_{IN} = 115 V, Short-Circuit Protection 图 23. V_{IN} = 230 V, Short-Circuit Protection ## 3.2.9 Thermal Test § 24 and § 25 are the thermal test results of the top layer and bottom layer with no force cooling. In each figure, the highest temperature is from the snubber circuit of the primary side. 图 24. Thermal Test Result of Top Layer 图 25. Thermal Test Result of Bottom Layer ## 3.2.10 EMI Test Result 图 26 shows the EMI test setup. 图 26. EMI Test Setup The conducted emissions are compared in a pre-compliance test setup against the EN55022 class B limits and are found to meet the class B limits with ease. ## **EMI TEST REPORT** | Organization:
Place:
Detector: PK+AV
Limit: EN55022B
Remark: | | | Operator: Time: 2017/11/25/14:50 Test-time(ms): 30 Transductor(PK/AV): PK / AV | | | | |) | EUT:
Test eq
SN: | - paramete
H3939 | | | |--|----------|----------|--|--|----------------|-------------|---|----------|------------------------|------------------------------------|----------|------------| | Start(MHz)
0.150
2.000
10.000 | | | | End(MHz)
2.000
10.000
30.000 |
 | | | | | Step(MI
0.002
0.010
0.025 | | - freq, st | | dBuV | | | | EN5502 | 2 Cla | ss B | | | | | | - scan re | | 90 | | | |
 | | | | | | | | | | 10 | | | | | | | | | | | | - | | 0 | | | | | · | | | | | | | - | | 0 | 4 | | AAAA | 44 | | | | | | | | | | 10 | 1 YIWW | MALIVA | VIII. | MANAGE PARTIES | Marth. | A Warren | | | WED. | Jan Market | Jan. | - | | 10 × | Javana | Ma M | ₩ | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Swelle | Num | TWATE | Vryen'r' | | | Marrie 4 | /) | | 20 | | - Mary I | H-5 : 12: | - | 1 221.04 | vo uprocess | o ^g D _{hort} ori _k | Voney? | ZWV. | AMACOLI. | | | | 0 | i | | | | | | | | | | | | |).150 MHz | | 0.50 | 1 | .00 | | | 5.0 | 00 | 1 | 10.00 | | MHz | 图 27. Test Results of Conducted Emissions www.ti.com.cn Design Files ## 4 Design Files #### 4.1 Schematics To download the schematics, see the design files at TIDA-01560. #### 4.2 Bill of Materials To download the bill of materials (BOM), see the design files at TIDA-01560. ## 4.3 PCB Layout Recommendations To increase the reliability and feasibility of the project, follow these guidelines: - Minimize stray capacitance on the VS node. - Place the voltage sense resistors (R10 and R12, R13) close to the VS pin. - Connect the high-voltage input to a non-switching source of high voltage—not to the MOSFET drain—to avoid injecting high-frequency capacitive current pulses into the device. - Connect the main power loop ground and the UCC28730 ground through a single point connection at the C3 ground pin. - Arrange the components to minimize the loop areas of the switching currents as much as possible. These loops areas are as follows: - Main power loops: From C3 high positive voltage to the transformer primary winding, Q1 current sense resistor (R14,R15) - Primary snubber loop: R5, D2, and the transformer primary winding - Secondary output current loop: C5, C6, and the 12-V secondary winding; C11, C2, and the 3.3-V secondary winding #### 4.3.1 Layout Prints To download the layer plots, see the design files at TIDA-01560. #### 4.4 Altium Project To download the Altium project files, see the design files at TIDA-01560. #### 4.5 Gerber Files To download the Gerber files, see the design files at TIDA-01560. #### 4.6 Assembly Drawings To download the assembly drawings, see the design files at TIDA-01560. Related Documentation www.ti.com.cn #### 5 Related Documentation - Texas Instruments, Using the UCC28730EVM-552 10-W Adaptor Module With PSR and Wake-Up Monitor User's Guide - 2. Texas Instruments, UCC28730 Zero-Power Standby PSR Flyback Controller with CVCC and Wake-Up Monitoring Data Sheet ## 5.1 商标 E2E is a trademark of Texas Instruments. #### 6 About the Authors **YUAN (JASON) TAO** is a systems engineer at Texas Instruments, where he is responsible for developing reference design solutions for the industrial segment. Yuan brings to this role his extensive experience in power electronics, high-frequency DC/DC, AC/DC converters, and analog circuit design. Yuan earned his master of IC design and manufacture from Shanghai Jiao Tong University in 2007. **YUPI (DAVID) JI** is a systems engineer at Texas Instruments, where he is responsible for developing reference design solutions. Yupi brings to this role his extensive experience in power module, PoE, AC/DC converters, and analog circuit design. Yupi earned his master of power electronics and power drive from South China University of Technology in 2012. #### 有关 TI 设计信息和资源的重要通知 德州仪器 (TI) 公司提供的技术、应用或其他设计建议、服务或信息,包括但不限于与评估模块有关的参考设计和材料(总称"TI 资源"),旨在帮助设计人员开发整合了 TI 产品的 应用; 如果您(个人,或如果是代表贵公司,则为贵公司)以任何方式下载、访问或使用了任何特定的 TI 资源,即表示贵方同意仅为该等目标,按照本通知的条款进行使用。 TI 所提供的 TI 资源,并未扩大或以其他方式修改 TI 对 TI 产品的公开适用的质保及质保免责声明;也未导致 TI 承担任何额外的义务或责任。 TI 有权对其 TI 资源进行纠正、增强、改进和其他修改。 您理解并同意,在设计应用时应自行实施独立的分析、评价和 判断, 且应全权负责并确保 应用的安全性, 以及您的 应用 (包括应用中使用的所有 TI 产品))应符合所有适用的法律法规及其他相关要求。你就您的 应用声明,您具备制订和实施下列保障措施所需的一切必要专业知识,能够 (1) 预见故障的危险后果,(2) 监视故障及其后果,以及 (3) 降低可能导致危险的故障几率并采取适当措施。您同意,在使用或分发包含 TI 产品的任何 应用前, 您将彻底测试该等 应用 和该等应用所用 TI 产品的 功能而设计。除特定 TI 资源的公开文档中明确列出的测试外,TI 未进行任何其他测试。 您只有在为开发包含该等 TI 资源所列 TI 产品的 应用时, 才被授权使用、复制和修改任何相关单项 TI 资源。但并未依据禁止反言原则或其他法理授予您任何TI知识产权的任何其他明示或默示的许可,也未授予您 TI 或第三方的任何技术或知识产权的许可,该等产权包括但不限于任何专利权、版权、屏蔽作品权或与使用TI产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务的信息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权的许可。 TI 资源系"按原样"提供。TI 兹免除对 TI 资源及其使用作出所有其他明确或默认的保证或陈述,包括但不限于对准确性或完整性、产权保证、无屡发故障保证,以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。 TI 不负责任何申索,包括但不限于因组合产品所致或与之有关的申索,也不为您辩护或赔偿,即使该等产品组合已列于 TI 资源或其他地方。 对因 TI 资源或其使用引起或与之有关的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿,不管 TI 是否获悉可能会产生上述损害赔偿,TI 概不负责。 您同意向 TI 及其代表全额赔偿因您不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。 本通知适用于 TI 资源。另有其他条款适用于某些类型的材料、TI 产品和服务的使用和采购。这些条款包括但不限于适用于 TI 的半导体产品 (http://www.ti.com/sc/docs/stdterms.htm)、评估模块和样品 (http://www.ti.com/sc/docs/sampterms.htm) 的标准条款。 邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2018 德州仪器半导体技术(上海)有限公司