TI Designs: TIDA-01520 适用于汽车前灯且具有预升压控制功能的 50W 两级 LED 驱动器参考设计 # TEXAS INSTRUMENTS #### 说明 此参考设计详细展示了一个两级解决方案的实施方法,该解决方案可在无需使用微控制器 (MCU) 的情况下驱动汽车前灯 应用 的两个 LED 灯串和自动调整预升压电压。 本设计使用升压控制器 (LM5122-Q1) 以及紧跟着的两个降压 LED 驱动器 (TPS92515HV-Q1)。一个被称为自适应预升压控制的电路测量经过 LED 灯串的电压并将电流注入到升压控制器反馈中,从而根据 LED 灯串的长度和 LED 正向电压的温度变化调整升压电压。这样可以减少开关损耗,从而最大程度地提高总体系统效率。 本参考设计还包括根据 CISPR 25 规范得出的若干基准 测试结果和 EMC 测量值。 #### 资源 TIDA-01520设计文件夹LM5122-Q1产品文件夹TPS92515HV-Q1产品文件夹OPA348-Q1产品文件夹 咨询我们的 E2E™ 专家 #### 特性 - 两级: 升压 + 两个降压 LED 驱动器 - 根据灯串长度和温度变化自动调整升压电压 - 支持动态负载 (矩阵和调光) - 每个通道支持高达 14 个 LED (25W) - 测试结果符合 CISPR 25 标准 #### 应用 - 车外照明 前灯 - 车外照明 雾灯 Copyright © 2018, Texas Instruments Incorporated System Description www.ti.com.cn An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information. ## 1 System Description This reference design showcases a two-channel LED driver for automotive front light applications. The design uses a dual-stage approach consisting of one boost controller (LM5122-Q1) and two buck LED drivers (TPS92515HV-Q1). The boost controller provides a intermediate voltage rail that connects the LED drivers. With this architecture, the system can operate during cold crank and load dump conditions where the battery voltage is varying. This architecture also enables a flexible number of LEDs per string. The buck LED drivers are based on a hysteretic control, which is ideal to support dynamic loads. This control is specifically required for shunt dimming and matrix-based front light applications. This reference design also includes a circuit called adaptive pre-boost control. This circuit measures the boost voltage and the voltage across the LED strings. Based on the difference, a current gets injected into the feedback node of the boost controller to adjust the boost voltage based on the length of the LED string and the temperature variations of the LED forward voltage. This maximizes the overall system efficiency by reducing the switching losses of the boost controller and the buck LED drivers. This dual-stage LED driver is designed with the following points in consideration: - Each channel up to 25 W - 1-A LED current - Operation during cold cranking condition - Maximum of 14 LEDs per string - Adaptive pre-boost voltage control ## 1.1 Key System Specifications #### 表 1. Key System Specifications | PARAMETER | SPECIFICATIONS | DETAILS | |-------------------------------------|---------------------------------------|---------| | Input voltage range of operating DC | 6 V to 18 V | 节 2.3.4 | | Maximum string length per channel | 14 LEDs at 3-V forward voltage (42 V) | 节 2.3.5 | | Default LED current | 1 A | 节 2.3.5 | | Output power | 25 W per channel | 节 2.3.5 | | PCB form factor | 75 mm × 60 mm | 节 2.3.1 | ## 2 System Overview ## 2.1 Block Diagram 图 1. Block Diagram of TIDA-01520 System Overview www.ti.com.cn ## 2.2 Highlighted Products #### 2.2.1 LM5122-Q1 The LM5122 device is a multiphase-capable synchronous boost controller intended for high-efficiency synchronous boost regulator applications. The control method is based upon peak current mode control. Current mode control provides inherent line feedforward, cycle-by-cycle current limiting, and ease of loop compensation. The switching frequency is programmable up to 1 MHz. Higher efficiency is achieved by two robust, N-channel MOSFET gate drivers with adaptive dead-time control. A user-selectable diode emulation mode also enables discontinuous mode operation for improved efficiency at light load conditions. An internal charge pump allows 100% duty cycle for high-side synchronous switch (bypass operation). A 180° phase-shifted clock output enables easy multiphase interleaved configuration. Additional features include thermal shutdown, frequency synchronization, hiccup mode current limit, and adjustable line undervoltage lockout. 2 shows the functional block diagram of the LM5122-Q1 boost controller. Copyright © 2017, Texas Instruments Incorporated 图 2. Functional Block Diagram of LM5122-Q1 Boost Controller #### 2.2.2 TPS92515HV-Q1 The TPS92515 family of devices are compact monolithic switching regulators integrating a low-resistance N-channel MOSFET. The devices are intended for high-brightness LED lighting applications where efficiency, high bandwidth, PWM or analog dimming (or both), and small size are important. The regulator operates using a constant off-time, peak current control. The operation is simple: after an off-time based on the output voltage, an on-time begins. The on-time ends once the inductor peak current threshold is reached. The TPS92515 device can be configured to maintain a constant peak-to-peak ripple during the ON and OFF periods of a shunt FET dimming cycle. This ripple is ideal for maintaining a linear response across the entire shunt FET dimming range. Steady-state accuracy is aided by the inclusion of a low-offset, high-side comparator. LED current can be modulated using either analog or PWM dimming, or both simultaneously. Other features include undervoltage lockout (UVLO), wide input voltage operation, inherent LED open operation, and wide operating temperature range with thermal shutdown. 图 3. Functional Block Diagram of TPS92515HV-Q1 Buck LED Driver System Overview www.ti.com.cn ## 2.2.3 OPA348-Q1 The OPA348-Q1 device is a single-supply, low-power CMOS operational amplifier. Featuring an extended bandwidth of 1 MHz and a supply current of 45 μ A, the OPA348-Q1 device is useful for low-power applications on single supplies of 2.1 V to 5.5 V. 图 4 shows a block diagram of the OPA348-Q1 operational amplifier. Copyright © 2016, Texas Instruments Incorporated 图 4. Functional Block Diagram of OPA348-Q1 Operational Amplifier ## 2.3 System Design Theory ## 2.3.1 PCB and Form Factor This reference design uses a two-layer printed circuit board (PCB) where all components are placed on the top layer. The PCB is not intended to fit any particular form factor and has a dimension of 75 mm \times 60 mm. The primary objective of the design with regards to the PCB is to make a solution that is compact while still providing a way to test the performance of the board. In a final-production version of this reference design, the size of the solution can be further reduced. \boxtimes 5 shows a 3D rendering of the PCB. 图 5. 3D Render of TIDA-01520 PCB System Overview www.ti.com.cn #### 2.3.2 Input Protection and OR-ing In this reference design, reverse polarity protection is implemented by using Schottky diodes D2 and D5 on the input lines as shown in 🛭 6. The diodes are acting as an OR-ing circuit, which implies independent function of the output channels by applying power to its input supply line. Using Schottky diodes for reverse polarity protection is a very simple and common implementation; however, for high current levels, the power dissipation in the diodes gets very high (see † 3.2.7). Smart diode controllers like the LM5050-1-Q1 or LM74700-Q1 can be used instead to reduce the power dissipation to a minimum. For transient protection, a transient voltage suppressor (TVS) diode D3 is placed at the input after the reverse polarity protection. Copyright © 2018, Texas Instruments Incorporated 图 6. Schematic of Input Protection + EMI Filter #### 2.3.3 EMI Filter A LC low-pass filter is placed on the input of the boost controller to attenuate conducted differential mode noise generated by the system. The filter consists of C1, C2, and L2 as shown in 🛭 6. For more details, see Simple Success With Conducted EMI From DC-DC Converters. #### 2.3.4 LM5122-Q1 Boost Controller 表 2 shows the default design parameters for the boost controller. 表 2. Design Parameters of Default Boost Controller | DESIGN PARAMETERS | VALUE | |----------------------------|--------------| | Output voltage range | 18 V to 45 V | | Output power | 55 W | | Minimum input voltage (DC) | 6 V | | Typical input voltage (DC) | 13.5 V | | Maximum input voltage (DC) | 18 V | | Switching frequency | 330 kHz | For the maximum boost ratio (6 V to 45 V), the switching frequency of the LM5122-Q1 is limited by a forced off-time. Based on $\triangle \vec{x}$ 1, the frequency in the default configuration is set to 330 kHz. $$f_{SW(MAX)} = \frac{V_{IN(MIN)}}{V_{OUT} \times t_{LO_OFF}} = \frac{6 \text{ V}}{45 \text{ V} \times 400 \text{ ns}} = 333 \text{ kHz}$$ (1) 图 7 shows the default LM5122-Q1 boost controller schematic of this reference design. 图 7. Schematic of LM5122-Q1 Boost Controller The main components of the boost stage are selected by following the Detailed Design Procedure section in the data sheet *LM5122 Wide-Input Synchronous Boost Controller With Multiple Phase Capability*. R20 sets the switching frequency whereas R19 programs the slope compensation. The desired startup voltage and the hysteresis are set by the voltage divider R5, 15. For this reference design, the startup voltage is 6.7 V with a hysteresis of 1 V, which results in a 5.7-V shutdown voltage. The inductor L1 has a value of 15 μ H with a saturation current rating above the maximum expected inductor current of 9.7 A at a minimum input voltage of 6 V. For this example, a ripple ratio (RR) of 0.5, 50% of the input current is chosen. Based on this input current capability, a value of 6 m Ω is selected for the current sense resistor R2. R8, R9, and C14 form a filter for the current sensing. The slope compensation resistor R19 is set to 49.9 k Ω . The output capacitors C6, C7, and C8 smooth the output voltage ripple and provide a source of charge during transient loading conditions. Also the output capacitors reduce the output voltage overshoot when the load is disconnected suddenly. Ripple current rating of output capacitor must be carefully selected. In a boost regulator, the output is supplied by discontinuous current and the ripple current requirement is usually high, which makes ceramic capacitors a perfect fit. The output voltage ripple is dominated by ESR of the output capacitors. Paralleling the output capacitor is a good choice to minimize effective ESR and split the output ripple current into capacitors. This example uses two 2.2-µF ceramic capacitors and one 0.1-µF ceramic capacitor with a voltage rating of 100 V. A higher output voltage ripple in this reference design is not a concern for the buck LED drivers, which are connected to the boost output voltage. System Overview www.ti.com.cn Input capacitors C3, C4, and C5 smooth the input voltage ripple. This reference design uses small-sized 4.7- μF ceramic capacitors with a voltage rating of 50 V. R6 and C15 form an RC filter, which helps to prevent faults caused by high-frequency switching noise injected into the VIN pin. The bootstrap capacitor C11 between the BST and SW pins supplies the gate current to charge the high-side N-channel MOSFET device gate during each cycle's turnon and also supplies recovery charge for the bootstrap diode D4. The VCC capacitor C12 is used to supply the peak transient currents of the LO driver and bootstrap diode as well as provide stability for the VCC regulator. A value of $4.7~\mu F$ is selected. R10 and R14 set the output voltage to 45~V. C18 forms the soft-start capacitor. The high-side and low-side power switches Q1 and Q2 are 60-V rated N-channel MOSFETs in a PowerPAK® package. An additional Schottky diode D1 is placed in parallel with the high-side switch Q1 to improve efficiency and reduce ringing. Usually, the power rating of this parallel Schottky diode can be less than the power rating of the high-side switch because the diode conducts only during dead-times. R11 and R12 are gate resistors that can limit the rise and fall times of the switch node voltage. A resistor-capacitor snubber network (R1 and C9) across the high-side N-channel MOSFET Q1 reduces ringing and spikes at the switching node. For how to calculate these values, see *Power Tips: Calculate an R-C snubber in seven steps*. The optional snubber network (R4 and C10) for the low-side switch is not used. R13, C16, and C13 configure the error amplifier gain and phase characteristics to produce a stable voltage loop. R7 is not populated but can be used when measuring the loop transfer function of the LM5122-Q1 controller. For more details, see *How to Measure the Loop Transfer Function of Power Supplies*. See 4.3 † for layout guidelines for the boost controller in this reference design. #### 2.3.5 TPS92515HV-Q1 Buck LED Driver 表 3 shows the default design parameters for the buck LED drivers. #### 表 3. Design Parameters of Default Buck LED Driver | DESIGN PARAMETER | RANGE | DEFAULT VALUE | |--------------------------|----------------|---------------| | Input voltage | 18 V to 45 V | 28 V | | LED forward voltage | | 3 V | | Number of LEDs in series | 1 to 14 | 8 | | Output current range | 0.2 A to 1.2 A | 1 A | | Output voltage | 3 V to 42 V | 24 V | | Output power per channel | 25 W max | 24 W | | Inductor current ripple | | 0.1 A | | Switching frequency | | 350 kHz | 🛚 8 shows the default TPS92515HV-Q1 LED driver schematic of this reference design. Copyright © 2018, Texas Instruments Incorporated 图 8. Schematic of TPS92515HV-Q1 Buck LED Driver The main components of the buck LED drivers are selected by following the Detailed Design Procedure section in *TPS92515x 2-A, Buck LED Driver with Integrated N-channel FET, High-Side Current Sense, and Shunt FET PWM Dimming Capability.* Components R22, R35, C26, and C39 are used to program the off-time of the hysteretic LED drivers to 0.2 μ s. With the default configuration, the LED current is set to 1 A with a inductor ripple current of 0.1 A. When selecting an inductor ensure the ratings for both peak and average current are adequate. For the inductors L3 and L4, a value of 47 μ H is selected. Based on the output current capability, a value of 220 m Ω is selected for the current sense resistors R21 and R34. R23, R24, R36, and R37 program the startup and UVLO level. C28 and C40 at the UVLO pin are placed for noise immunity. Capacitors C20 and C33 tied to the switch node (SW pin) and the diodes D6 and D10 connected to the VCC supply power the System Overview www.ti.com.cn BOOT pin to ensure proper operation of the internal MOSFET. The 10-µF VCC capacitors C19 and C31 supply current for the device operation as well as additional power for external circuitry. The low-side rectifier diodes D7 and D12 are 3-A rated, low-leakage, Schottky diodes in a PowerDI5 package. Diodes D8 and D13 provide reverse polarity protection to the PWM pin because the signal is coming from the input voltage. With a voltage higher than 1 V on the PWM, the device starts operation. The input capacitors C21, C22, C23, C34, C35, and C36 provide a low impedance source for the discontinuous input current of the buck LED drivers. The output capacitors C24, C25, C37, and C38 in parallel with the LED load reduce the ripple current on the LEDs. See 4.3 † for layout guidelines for the TPS92515HV-Q1 in this reference design. ## 2.3.6 Adaptive Pre-Boost Control This section describes how the adaptive pre-boost control circuit is working and how to select the right components. 表 4 shows the default design parameters for adaptive pre-boost control. | DESIGN PARAMETER | VALUE | |---------------------------------------------------------------------------|-------| | VCC voltage | 5 V | | V _{FB} (boost controller) | 1.2 V | | Voltage offset (between pre-boost voltage and highest LED driver voltage) | 10% | 表 4. Design Parameters of Default Adaptive Pre-Boost Control § 9 shows the default adaptive pre-boost control schematic of this reference design. The circuit is based on an operational amplifier configured as a differential amplifier, which measures and compares the buck LED driver voltages and the boost controller output voltage. Diode D9 is used for OR-ing functionality for the buck LED driver voltages. Depending on the number of connected LEDs, the circuit automatically regulates the pre-boost voltage to a level, which is higher than the buck LED driver voltage, by sourcing current into the pre-boost feedback node. The offset between pre-boost and buck voltage can be set such that the output voltage of the adaptive pre-boost control circuit reaches optimal operating voltage. This voltage results in increased overall efficiency by reducing the switching losses of the boost controller as well as the buck LED drivers. 图 9. Schematic of Adaptive Pre-Boost-Control The OPA348-Q1 operational amplifier can operate from a 2.1-V to 5.5-V supply. This reference design uses the 5-V VCC supply rail of the TPS92515HV-Q1 buck LED driver. The LED driver can allow up to 500 μA to be drawn from the VCC rail in addition to the device load. Resistor dividers reduce the measured voltages on the amplifiers input to a recommended level below 5.2 V. R26 and R27 reduce the LED driver voltage by a factor of 10, which result in a voltage level smaller than 4.2 V on the negative input of the amplifier. By keeping the same bottom resistor R27 = R33 = 2 k Ω and a 10% offset between the pre-boost voltage and the LED driver voltage. Use Δ 2 to calculate the top resistor R31 of the boost voltage resistor divider. $$R31 = (R26 + R27) \times (1 + offset) - R33 = (18 k\Omega + 2 k\Omega) \times (1 + 0.1) - 2 k\Omega = 20 k\Omega$$ • offset = 10% To calculate the gain of the operational amplifier, define the maximum error between boost voltage and LED driver voltage. In this example, the error must be smaller than 2 V. The maximum operational amplifier output voltage (V_{OPmax}) is 5 V, which is the VCC supply voltage level. 公式 3 calculates the required gain. $$Gain = \frac{V_{OPmax} \times \left(\frac{R31}{R33} + 1\right)}{error} = \frac{5 \text{ V} \times \left(\frac{20 \text{ k}\Omega}{2 \text{ k}\Omega} + 1\right)}{2 \text{ V}} = 27.5$$ • V_{OPmax} = maximum output voltage of the operational amplifier (3) In this example, resistors R25, R28, R30, and R32 set the gain to 30. By increasing the gain, the maximum error can be reduced. Note that the loaded voltage dividers and the diode D9 create an additional error. The output voltage of the boost controller is programmed with the feedback divider consisting of R10 and R14 (see \boxtimes 7). To vary the boost output voltage, an additional resistor R29 is connected to the boost controller feedback divider to enable feeding current into the boost feedback node (for more details, see *PMP9796 - 5V Low-Power TEC Driver Reference Design*). The feedback voltage V_{FB} of the boost controller is regulated to a constant value of 1.2 V (see *LM5122 Wide-Input Synchronous Boost Controller With Multiple Phase Capability Data Sheet*). Depending on the control voltage V_{CON}, which is the output voltage of the operational amplifier V_{OP}, minus the diode drop of D11 defines the current flowing through R29. Diode D11 prevents sink current into the output of the amplifier. Therefore, the circuit can only reduce the boost output voltage. In this example, the minimum control voltage V_{CONmin} is 1.2 V, the maximum control voltage V_{CONmax} is 4.8 V, and the resistance of R10 is selected to a value of 100 kΩ. 公式 4 calculates an appropriate value for the resistance of R29. $$R29 = R10 \times \left(\frac{V_{CONmax} - V_{CONmin}}{V_{OUT_BOOSTmax} - V_{OUT_BOOSTmin}} \right) = 100 \text{ k}\Omega \times \left(\frac{4.8 \text{ V} - 1.2 \text{ V}}{45 \text{ V} - 18 \text{ V}} \right) = 13.3 \text{ k}\Omega$$ $$(4)$$ Finally, the bottom feedback resistor R14 of the boost controller is calculated using 公式 5: $$R14 = \frac{V_{FB} \times R10 \times R29}{R29 \times V_{OUT_BOOSTmax} + R10 \times V_{CONmin} - V_{FB} \times (R10 + R29)} = \frac{1.2 \text{ V} \times 100 \text{ k}\Omega \times 13.3 \text{ k}\Omega}{13.3 \text{ k}\Omega \times 45 \text{ V} + 100 \text{ k}\Omega \times 1.2 \text{ V} - 1.2 \text{ V} \times (10 + R29)} \times (R10 + R29) R29)$$ For this reference design, verify that the quiescent current of the amplifier plus the current through R29 needs to be smaller than 500 μ A, which is the maximum allowed current to be drawn from the TPS92515HV-Q1 VCC rail. $$\frac{V_{CONmax} - V_{FB}}{R29} + I_{Q} \le 500 \ \mu A \tag{6}$$ ## 3 Hardware, Testing Requirements, and Test Results ## 3.1 Required Hardware 图 10 shows the default test setup of this reference design. Copyright © 2018, Texas Instruments Incorporated 图 10. Default Test Setup Connect a DC power supply to each input terminal (J1, J2) and the LED strings to the output terminals (J3, J4). By providing power to one of the inputs, the respective output channel gets active. The PCB of this reference design implements several test points, which are described in 表 5. Use these test points to measure signals on the reference design. | 丰。 | Taat | Daint | Descriptions | |------------|------|-------|--------------| | ★ 5 | Lest | Point | Descriptions | | TEST POINT | DESCRIPTION | |------------|-------------------------------------------------------------------------------------------------------| | TP1 | Boost output voltage | | TP2 | Power ground | | TP3 | PWM pin of LED driver (CH1), can be used to enable or disable the device or for dimming functionality | | TP4 | PWM pin of LED driver (CH2), can be used to enable or disable the device or for dimming functionality | | TP5 | Operational amplifier output | ## 3.2 Testing and Results All tests in this section are performed in the default configuration where the input voltage is 13.5 V and the LED current is set to 1 A on each channel. ## 3.2.1 Startup/Shutdown 图 11. Startup (CH1 at Eight LEDs) 图 12. Startup (CH1 at Six LEDs) CH1: VIN, CH2: VOUT LED driver , CH3: VOUT boost, CH4: LED current 图 13. Shutdown (CH1 at Eight LEDs) CH1: VIN, CH2: VOUT LED driver , CH3: VOUT boost, CH4: LED current 图 14. Shutdown (CH1 at Six LEDs) ## 3.2.2 Steady State Operation § 15 through § 18 show the steady state operation of the LM5122-Q1 boost controller. With 8 LEDs connected, the boost controller operates with nearly a 50% duty cycle. 图 15. Boost Operation (CH1 at Eight LEDs) CH1: SW boost, CH2: VIN, CH3: VOUT boost, CH4: IL boost 图 16. Boost Operation (CH1 + CH2 at Eight LEDs) CH1: SW boost, CH2: VIN, CH3: VOUT boost, CH4: IL boost 图 17. Boost Operation (CH1 at Six LEDs) CH1: SW boost, CH2: VIN, CH3: VOUT boost, CH4: IL boost 图 18. Boost Operation (CH1 + CH2 at Six LEDs) 图 19 and 图 20 show the steady state operation of the TPS92515HV-Q1 buck LED driver. CH1: SW LED driver, CH2: VOUT LED driver, CH3: VOUT boost, CH4: IL LED driver 图 19. LED Driver Operation (CH1 at Eight LEDs) CH1: SW LED driver, CH2: VOUT LED driver, CH3: VOUT boost, CH4: IL LED driver 图 20. LED Driver Operation (CH1 at Six LEDs) ## 3.2.3 Adaptive Pre-Boost Control CH1: VOUT LED driver (8 LEDs), CH2: VOUT LED driver (6 LEDs), CH3: VOUT boost, CH4: VOUT operational amplifier 图 21. Adaptive Pre-Boost Control Operation (up) CH1: VOUT LED driver, CH2: VOUT LED driver, CH3: VOUT boost, CH4: VOUT operational amplifier 图 22. Adaptive Pre-Boost Control Operation (Down) ## 3.2.4 Efficiency $\frac{1}{2}$ 6 shows the efficiency of the design in different conditions. To achieve a total efficiency of 91%, each stage (boost and buck) operates with an efficiency of \approx 95%. 表 6. Efficiency of TIDA-01520 | CONDITION | EFFICIENCY | | |------------------------------------------------------------------------|------------|--| | TIDA-01520 DESIGN | | | | CH1 + CH2 at eight LEDs | 88.4% | | | CH1 + CH2 at six LEDs | 88.3% | | | CH1 at eight LEDs | 87.7% | | | CH1 at six LEDs | 89.6% | | | TIDA-01520 DESIGN EXCLUDING LOSSES OF REVERSE PROTECTION DIODES D2, D5 | | | | CH1 + CH2 at eight LEDs | 91.2% | | | CH1 + CH2 at six LEDs | 91.1% | | ## 3.2.5 Stability ⊠ 23 shows the bode diagram of the LM5122-Q1 boost controller in this reference design. For a stable operation over all conditions, the control loop is designed more conservatively. If a higher bandwidth is needed, the external compensation can be changed. 图 23. Frequency Response: CH1 + CH2 at Eight LEDs (≈ 48 W) ## 3.2.6 Electromagnetic Compatibility (EMC) All test in this section are performed according to the CISPR 25 standard. 24 to 26 show the different setups. Note that the test setup for conducted emissions is a worst case scenario where the LED driver PCB is placed 5 cm above the reference ground plane. In a real application housing, the distance from the LED driver PCB to the reference ground plane will be higher; thus, the common-mode noise coupling will be lower. 图 24. CISPR 25 Conducted Emissions Setup 图 25. CISPR 25 Radiated Emissions Setup (Monopole) 图 26. CISPR 25 Radiated Emissions Setup #### 3.2.6.1 Conducted Emissions 图 27. Conducted Emissions: 0.15 MHz to 30 MHz, CH1 + CH2 at Six LEDs (≈ 36 W) 图 28. Conducted Emissions: 30 MHz to 108 MHz, CH1 + CH2 at Six LEDs (≈ 36 W) § 29 and § 30 show the conducted emissions at a power level of approximately 24 W (CH1 at 8 LEDs) where the design is passing class 4. 图 29. Conducted Emissions: 0.15 MHz to 30 MHz, CH1 at Eight LEDs (≈ 24 W) 图 30. Conducted Emissions: 30 MHz to 108 MHz, CH1 at Eight LEDs (≈ 24 W) § 31 and § 32 show the conducted emissions at a power level of approximately 48 W (CH1 + CH2 at 8 LEDs) where the design is not passing class 3 in the high frequency range. From 150 kHz to 30 MHz, the design is passing class 4. 图 31. Conducted Emissions: 0.15 MHz to 30 MHz, CH1 + CH2 at Eight LEDs (≈ 48 W) 图 32. Conducted Emissions: 30 MHz to 108 MHz, CH1 + CH2 at Eight LEDs (≈ 48 W) To further reduce the emissions in the higher frequency range, use a metal shielding or common-mode filter. \boxtimes 33 shows the conducted emissions from 30 MHz to 108 MHz at a power level of approximately 48 W (CH1 + CH2 at 8 LEDs) where a metal plate (10 × 10 cm) is placed below the reference design PCB. Now the design is passing class 3. CISPR 25/CISPR 25-IEC 2008-3rd edition - Conducted disturbances on components/modules 4 - Average/ CISPR 25/CISPR 25-IEC 2008-3rd edition - Conducted disturbances on components/modules 5 - Average/ CISPR 25/CISPR 25-IEC 2008-3rd edition - Conducted disturbances on components/modules 4 - Peak/ CISPR 25/CISPR 25-IEC 2008-3rd edition - Conducted disturbances on components/modules 5 - Peak/ Meas.Peak (Wire + Measure) Meas.Avq (Wire + Measure) 图 33. Conducted Emissions: 30 MHz to 108 MHz, CH1 + CH2 at Eight LEDs (≈ 48 W) + Shielding 图 34. Conducted Emissions: 30 MHz to 108 MHz, CH1 + CH2 at Eight LEDs (≈ 48 W) + CM Choke ## 3.2.6.2 Radiated Emissions § 35 and § 36 show the radiated emissions at a power level of approximately 36 W (CH1 + CH2 at 6 LEDs) where the design is passing class 3. From 30 MHz to 1 GHz, the design is passing class 4. 图 35. Radiated Emissions: 0.15 MHz to 30 MHz, CH1 + CH2 at Six LEDs (≈ 36 W) 图 36. Radiated Emissions: 30 MHz to 1 GHz, CH1 + CH2 at Six LEDs (≈ 36 W) § 37 and § 38 show the radiated emissions at a power level of approximately 48 W (CH1 + CH2 at 8 LEDs) where the design is passing class 3. From 30 MHz to 1 GHz, the design is passing class 4. CISPR 25/CISPR 25-IEC 2008-3rd edition - Antenna on components/modules 4 - Average/1.0m/ 图 37. Radiated Emissions: 0.15 MHz to 30 MHz, CH1 + CH2 at Eight LEDs (≈ 48 W) 图 38. Radiated Emissions: 30 MHz to 1 GHz, CH1 + CH2 at Eight LEDs (≈ 48 W) #### 3.2.7 Thermal Performance ☑ 39 through ☑ 42 show the thermal behavior for different conditions. The highest temperature is on the input protection diodes. As described in ☼ 2.3.2, smart diode controllers such as the LM5050-1-Q1 or LM74700-Q1 can be used, which result in lower power losses. To improve the thermal performance of the whole board, consider implementing the following items: - Add more layers on the PCB - Increase the PCB size - · Increase the copper thickness to 2 oz - Adding a heat sink 图 39. Thermal Image: CH1 at Eight LEDs (≈ 24 W) 图 40. Thermal Image: CH1 + CH2 at Eight LEDs (≈ 48 W) 图 41. Thermal Image: CH1 at Six LEDs (≈ 18 W) 图 42. Thermal Image: CH1 + CH2 at Six LEDs (≈ 36 W) Design Files www.ti.com.cn ## 4 Design Files ## 4.1 Schematics To download the schematics, see the design files at TIDA-01520. #### 4.2 Bill of Materials To download the bill of materials (BOM), see the design files at TIDA-01520. ## 4.3 PCB Layout Recommendations 图 43. LM5122-Q1 Boost Controller Layout (Top Layer) www.ti.com.cn Design Files The layout of the boost controller as shown in 44 is created by following the layout example and guidelines in the Layout section of TPS92515x 2-A, Buck LED Driver with Integrated N-channel FET, High-Side Current Sense, and Shunt FET PWM Dimming Capability. 图 44. TPS92515HV-Q1 Buck LED Driver Layout (Top Layer) ## 4.3.1 Layout Prints To download the layer plots, see the design files at TIDA-01520. ## 4.4 Altium Project To download the Altium project files, see the design files at TIDA-01520. ## 4.5 Gerber Files To download the Gerber files, see the design files at TIDA-01520. ## 4.6 Assembly Drawings To download the assembly drawings, see the design files at TIDA-01520. Related Documentation www.ti.com.cn #### 5 Related Documentation - Texas Instruments, AN-2162 Simple Success With Conducted EMI From DC-DC Converters Application Report - 2. Texas Instruments, LM5122 Wide-Input Synchronous Boost Controller With Multiple Phase Capability Data Sheet - 3. TI E2E Community, Power Tips: Calculate an R-C snubber in seven steps - 4. Texas Instruments, AN-1889 How to Measure the Loop Transfer Function of Power Supplies Application Report - 5. Texas Instruments, TPS92515x 2-A, Buck LED Driver with Integrated N-channel FET, High-Side Current Sense, and Shunt FET PWM Dimming Capability Data Sheet - 6. Texas Instruments, PMP9796 5V Low-Power TEC Driver Reference Design ## 5.1 商标 E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. #### 有关 TI 设计信息和资源的重要通知 德州仪器 (TI) 公司提供的技术、应用或其他设计建议、服务或信息,包括但不限于与评估模块有关的参考设计和材料(总称"TI 资源"),旨在帮助设计人员开发整合了 TI 产品的 应用; 如果您(个人,或如果是代表贵公司,则为贵公司)以任何方式下载、访问或使用了任何特定的 TI 资源,即表示贵方同意仅为该等目标,按照本通知的条款进行使用。 TI 所提供的 TI 资源,并未扩大或以其他方式修改 TI 对 TI 产品的公开适用的质保及质保免责声明;也未导致 TI 承担任何额外的义务或责任。 TI 有权对其 TI 资源进行纠正、增强、改进和其他修改。 您理解并同意,在设计应用时应自行实施独立的分析、评价和 判断, 且应全权负责并确保 应用的安全性, 以及您的 应用 (包括应用中使用的所有 TI 产品))应符合所有适用的法律法规及其他相关要求。你就您的 应用声明,您具备制订和实施下列保障措施所需的一切必要专业知识,能够 (1) 预见故障的危险后果,(2) 监视故障及其后果,以及 (3) 降低可能导致危险的故障几率并采取适当措施。您同意,在使用或分发包含 TI 产品的任何 应用前, 您将彻底测试该等 应用 和该等应用所用 TI 产品的 功能而设计。除特定 TI 资源的公开文档中明确列出的测试外,TI 未进行任何其他测试。 您只有在为开发包含该等 TI 资源所列 TI 产品的 应用时, 才被授权使用、复制和修改任何相关单项 TI 资源。但并未依据禁止反言原则或其他法理授予您任何TI知识产权的任何其他明示或默示的许可,也未授予您 TI 或第三方的任何技术或知识产权的许可,该等产权包括但不限于任何专利权、版权、屏蔽作品权或与使用TI产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务的信息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权的许可。 TI 资源系"按原样"提供。TI 兹免除对 TI 资源及其使用作出所有其他明确或默认的保证或陈述,包括但不限于对准确性或完整性、产权保证、无屡发故障保证,以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。 TI 不负责任何申索,包括但不限于因组合产品所致或与之有关的申索,也不为您辩护或赔偿,即使该等产品组合已列于 TI 资源或其他地方。 对因 TI 资源或其使用引起或与之有关的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿,不管 TI 是否获悉可能会产生上述损害赔偿,TI 概不负责。 您同意向 TI 及其代表全额赔偿因您不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。 本通知适用于 TI 资源。另有其他条款适用于某些类型的材料、TI 产品和服务的使用和采购。这些条款包括但不限于适用于 TI 的半导体产品 (http://www.ti.com/sc/docs/stdterms.htm)、评估模块和样品 (http://www.ti.com/sc/docs/sampterms.htm) 的标准条款。 邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2018 德州仪器半导体技术(上海)有限公司