
SitaraTM AM5728

Other peripheralsIndustrial Ethernet

Root cell

Inmate

MPCore (L2 Cache, MMU, GIC)

Cortex® A15 Cortex® A15

RTOS Linux®

Linux® Jailhouse

Realtime Application

Application
(PredixTM,

MindsphereTM, ...)

TCP/IP

Copyright © 2017, Texas Instruments Incorporated

1ZHCU348A–October 2017–Revised October 2017

TIDUDF8 — http://www-s.ti.com/sc/techlit/TIDUDF8
版权 © 2017, Texas Instruments Incorporated

虚拟化：AM572x 上的 Jailhouse Hypervisor 参考设计

TI Designs：：TIDEP-0095
虚虚拟拟化化：：AM572x 上上的的 Jailhouse Hypervisor 参参考考设设计计

说说明明

工业嵌入式系统是基于裸机或实时操作系统 (RTOS) 的
平衡型传统与成熟实时解决方案，具有添加云连接和高

级图形界面的新要求。 Linux®通常是提供复杂、安全的

云连接并实现先进人机界面 (HMI) 的最有效途径。现代

嵌入式处理器（如 Sitara™AM5728）可以将实时应用

的功能与 Linux 应用相集成。此参考设计使用 ARM®

Cortex®-A15 核心以及一个称为 Jailhouse 的开源静态

管理程序，旨在支持实时应用和 Linux 应用的共存。

资资源源

TIDEP-0095 设计文件夹

AM5728 产品文件夹

TMDXIDK5728 工具文件夹

TMDSEVM572X 工具文件夹

PROCESSOR-SDK-AM57X 工具文件夹

咨询我们的 E2E 专家

特特性性

• Jailhouse Hypervisor 运行在 Sitara AM572x 上；

Linux 在一个 ARM Cortex-A15 核上，而裸机在第二

个核上

• 在 Linux 与裸机之间对 AM572x 外设进行静态分区

• 支持在第二个核上运行裸机二进制文件和基于

RTOS 的二进制文件

• 针对在 Linux 上具有和没有处理负载的虚拟化裸机系

统进行性能（中断延迟）测量

• 在 TMDXIDK5728 和 TMDSEVM5728 板上经过测

试

应应用用

• 工厂自动化与控制 - 可编程逻辑控制器 (PLC)、DCS
和 PAC - CPU（PLC 控制器）

• 工厂自动化与控制 - HMI - 单板计算机

• 电网基础设施 - 保护继电器 - 多功能继电器

• 电网基础设施 - 电网自动化 - 过程总线

• 电网基础设施 - 电网自动化 - 系统总线

http://www-s.ti.com/sc/techlit/TIDUDF8.pdf
http://www.ti.com.cn/tool/cn/TIDEP-0095
http://www.ti.com.cn/product/cn/AM5728
http://www.ti.com.cn/tool/cn/tmdxidk5728
http://www.ti.com.cn/tool/cn/tmdsevm572x
http://www.ti.com.cn/tool/cn/processor-sdk-am57x
http://e2e.ti.com
http://e2e.ti.com/support/applications/ti_designs/
http://www.ti.com.cn/solution/cn/plc-controller
http://www.ti.com.cn/solution/cn/plc-controller
http://www.ti.com.cn/solution/cn/single_board_computer_for_hmi
http://www.ti.com.cn/solution/cn/protection_relay_special_function
http://www.ti.com.cn/solution/cn/substation_automation_iec61850_processbus

System Description www.ti.com.cn

2 ZHCU348A–October 2017–Revised October 2017

TIDUDF8 — http://www-s.ti.com/sc/techlit/TIDUDF8
版权 © 2017, Texas Instruments Incorporated

虚拟化：AM572x 上的 Jailhouse Hypervisor 参考设计

该 TI 参考设计末尾的重要声明表述了授权使用、知识产权问题和其他重要的免责声明和信息。

1 System Description

Embedded systems have different concerns and priorities from enterprise or data center server
infrastructure or laptops. Typically the main difference is the priority of meeting the real-time requirement,
as opposed to meeting a metric like average throughput or transactions per second. For embedded
systems meeting the worst-case deadline is part of the correctness of the program, which is equally
important to logical correctness. There is often no value in going beyond the required performance (for
example, completing the task on average ahead of the deadline)or not meeting the required performance,
which makes the system useless. In practice typical software (SW) architecture, such as RTOS or even a
bare-metal-based periodic control loop triggered by either data input or a timer expiring, meets this
requirement. Systems based on this pattern of SW architecture have been proven to work over the past
several decades. Disrupting this established approach paradigm shifts, like Industry 4.0 and Industrial
Internet of Things (IIoT), drive the requirement for a full-featured, cloud connectivity solution.

This solution has led many embedded systems to run Linux for the convenience of having a full-featured,
networking stack with latest constantly updated security features and application-level protocols written in
high-level languages like Python or Java. GE®’s Predix cloud platform and Siemens® Mindsphere® are
examples of these protocols. However, for all the goodness of Linux, even with real-time (RT) patches,
Linux might not satisfy the real-time constraints of toggling IO pins and counting nanoseconds. In these
cases, being able to isolate a deterministic real-time OS or a bare-metal control loop alongside Linux is
required. In some sense this is simpler than the traditional virtualization, which often has further goals
beyond isolation, like consolidation of multiple-guest operating systems on to a single processor core or
live migration of guests from a server or to another server. In embedded systems these use cases either
do not exist or are of secondary value compared to meeting the real-time performance.

Using virtualization is not the only approach to design a system that combines a real-time application with
a Linux application. A discrete solution with separate devices can sometimes make sense, but integrating
the digital processing to one system-on-chip (SoC) brings size, communication latency, and often cost
advantages. For some real-time applications using one or more of the embedded ARM Cortex-M4 or C66x
DSP cores in the AM5728 SoC can be a more efficient solution than virtualizing a Cortex-A15 core. The
right engineering tradeoff depends on the application, which includes the expected future evolution of
additional features and capability. One alternative solution is moving the real-time application to RT Linux
and using core affinity to assign the real-time threads to the second Cortex-A15 core while everything else
is handled on the first core. The drawback with RT Linux is an order of magnitude higher worst case
interrupt latency compared to an RTOS or a static hypervisor solution like Jailhouse.

http://www.ti.com.cn
http://www-s.ti.com/sc/techlit/TIDUDF8.pdf

SitaraTM AM5728

Other peripheralsIndustrial Ethernet

Root cell

Inmate

MPCore (L2 Cache, MMU, GIC)

Cortex® A15 Cortex® A15

RTOS Linux®

Linux® Jailhouse

Realtime Application

Application
(PredixTM,

MindsphereTM, ...)

TCP/IP

Copyright © 2017, Texas Instruments Incorporated

www.ti.com.cn System Overview

3ZHCU348A–October 2017–Revised October 2017

TIDUDF8 — http://www-s.ti.com/sc/techlit/TIDUDF8
版权 © 2017, Texas Instruments Incorporated

虚拟化：AM572x 上的 Jailhouse Hypervisor 参考设计

2 System Overview

This reference design is a template products that require the integration of a real-time component built
using an RTOS and a Linux component, such as cloud connectivity or a graphics interface. An example of
an RTOS application is a fieldbus protocol stack, such as PROFINET™ or EtherCAT®. Linux Jailhouse
manages boot and initialization of the system and peripherals using the two-stage hardware (HW) MMU
isolates core 1 and the required peripherals for the inmate.

图图 1. TIDEP-0095 Block Diagram

http://www.ti.com.cn
http://www-s.ti.com/sc/techlit/TIDUDF8.pdf

PRU (Quad Core)

Industrial
Communication

Subsystem
EtherCAT®,

PROFINET®,
EtherNET/IPTM,

PROFIBUS, POWERLINK,
SERCOS 3

Security
Acceleration

AES, MD5/SHA-256,
SHA-512, 3DES, TRNG

28 nm

Display Subsystem

Video Acceleration
IVA HD 1080 p Video, VPE

3 LCD

1080 p
Blend/Scale/Convert

ARM®

Cortex-A15
32 K/ 32 K L1

2.5 MB L3 Shared RAM w/ECC

32b DDR3/3L

System Services

EDMA 13 mailbox SDMA WDT Spinlock KBD

High Speed Interconnect

Graphics Acceleration
3D GPU

2xSGX544
BB2D
GC320

HDMI 1.4 a

Video Input Ports

2x24b, 2x8b 2x24b, 2x8b 2x16b
32b DDR3/3L

32 KB L1
64 KB RAM

2 MB L2

ARM®

Cortex-M4
C66x DSP

32 K/ 32 K L1
288 KB L2

+ - * =

RTC Secure WDT 16 Timer

Serial IO Industrial and programmable IO Storage IO

8
McASP

5
I2C

4
McSPI

2
DCAN

QSPI

10
UART

3 SD/SDIO

1 eMMC/SD/SDIO
SATA

NAND/NOR

GPIO

USB2

2
PCLe

3
PWM/CAP/QEP

USB3/2

GbE 2-port
switch w/1588
G/MII, RMII,

RGMII***

Not available in AM5726, except VPE

Copyright © 2017, Texas Instruments Incorporated

System Overview www.ti.com.cn

4 ZHCU348A–October 2017–Revised October 2017

TIDUDF8 — http://www-s.ti.com/sc/techlit/TIDUDF8
版权 © 2017, Texas Instruments Incorporated

虚拟化：AM572x 上的 Jailhouse Hypervisor 参考设计

2.1 Multi-Core AM572x Processor

图图 2. Sitara™ AM5728 Block Diagram

The AM572x is a high-performance, Sitara processor based on two ARM Cortex-A15s and two TI C66x
DSPs. TheAM572x is designed for embedded applications including PLCs, industrial network switches,
industrial gateways for protocol translation, HMI, grid infrastructure protection and communications, and
other industrial use applications. The device includes the following subsystems:

• ARM Cortex-A15 microprocessor unit (MPU) subsystem, including two ARM Cortex-A15 cores

• Two DSP C66x cores

• Two Cortex-M4 subsystems, each including two ARM Cortex-M4 cores

• Two dual-core PRU-ICSS (capable of industrial protocols such as EtherCAT, PROFINET, EtherNet/IP,
PROFIBUS™, Ethernet POWERLINK, SERCOS III, HSR, PRP)

• Graphics, video, real-time clock (RTC) and debug subsystems

The device supports memory management unit (MMU) and MPU:

• MMU used for key masters (Cortex-A15 MPU, Cortex-M4, C66x DSP, EDMA)

• Memory protection of C66x cores

• MMU inside the dynamic memory manager

The device also integrates:

• On-chip memory

http://www.ti.com.cn
http://www-s.ti.com/sc/techlit/TIDUDF8.pdf

www.ti.com.cn System Overview

5ZHCU348A–October 2017–Revised October 2017

TIDUDF8 — http://www-s.ti.com/sc/techlit/TIDUDF8
版权 © 2017, Texas Instruments Incorporated

虚拟化：AM572x 上的 Jailhouse Hypervisor 参考设计

External Memory Faces:

• Memory management

• Level 3 (L3) and level 4 (L4) interconnects

• System and serial peripherals

2.2 Design Considerations

Jailhouse is a static partitioning hypervisor based on Linux. Jailhouse can run bare-metal applications or
(adapted) operating systems aside from Linux. For this purpose, Jailhouse configures CPU and device
virtualization features of the hardware platform in a way that none of these domains, called cells, can
interfere with each other in an unacceptable way. The overriding approach in Jailhouse is optimization for
simplicity rather than feature richness. Unlike full-featured, Linux-based hypervisors like KVM or Xen,
Jailhouse does not support overcommitment of resources like CPUs, RAM, or devices. All hardware
resources, such as memory, CPUs, and peripherals, are statically assigned to guest operating system.
Jailhouse hypervisor performs no scheduling and only virtualizes resources in software that are essential
for a platform and cannot be partitioned in hardware. An example of shared hardware with ARM Cortex-A
based SoC's is the interrupt controller or GIC.

Once Jailhouse is activated, the hypervisor runs bare-metal, that is, it takes full control over the hardware
and requires no external support. However, in contrast to other bare-metal hypervisors, Jailhouse is
loaded and configured by a normal Linux system with a management interface based on Linux
infrastructure. Boot Linux first, next enable Jailhouse, and finally split off parts of the system's resources
and assign them to additional cells. In the case of AM5728, it only makes sense to have two cells, the root
cell Linux on A15 core 0 and another cell typically running an RTOS or bare-metal on A15 core 1.
Typically a real-time inmate would directly own a couple peripherals (for example, the industrial Ethernet
port implementing a fieldbus). The rest of the peripherals, such as USB or displays, would be owned and
used by standard Linux drivers. Networking peripherals would typically be shared—at a minimum—with
the configuration part of the paravirtualized driver, which sets up the hardware, so at least the real-time
traffic goes directly to the inmate's memory and best-effort, TCP traffic and any management traffic goes
to the Linux networking stack. Jailhouse consists of three parts: kernel module, hypervisor firmware, and
tools. These are used to enable the hypervisor, create a cell, load an inmate binary, run it and stop it. On
AM572x, which has two ARM Cortex-A15 cores, Linux boots in SMP mode using both cores. After
enabled, the hypervisor moves Linux to the root-cell. At this point the root cell still uses both ARM cores.
When a new cell is created, the hypervisor calls cpu_down() for the second core, which leaves Linux to
run on core 0 only. The new cell will use core 1 and hardware resources dedicated for this cell in the cell
configuration file.

Jailhouse is based on static partitioning of memory and peripherals. On AM5728 one core will run Linux,
and the inmate will run an RTOS or bare metal, which is managed with device tree. Those peripherals and
memory allocated for the inmate are carved out with additional configuration to the Linux device tree. 节
3.1.1 describes the example device tree used in this reference where 240MB of physical memory, one

timer, and one serial port (UART) are statically partitioned for the inmate. A further 16MB of memory is
carved out for the hypervisor itself—primarily used to store the second stage virtual address translation
page tables. The .cell configuration files are compiled files that describe the memory and peripherals
allocated to the root-cell and each inmate.

http://www.ti.com.cn
http://www-s.ti.com/sc/techlit/TIDUDF8.pdf

System Overview www.ti.com.cn

6 ZHCU348A–October 2017–Revised October 2017

TIDUDF8 — http://www-s.ti.com/sc/techlit/TIDUDF8
版权 © 2017, Texas Instruments Incorporated

虚拟化：AM572x 上的 Jailhouse Hypervisor 参考设计

2.3 Highlighted Products

2.3.1 TMDXIDK5728

The TMDXIDK5728 is the Sitara AM5728 industrial development kit (IDK) The TMDXIDK5728 can be
used for both of the examples in this reference design and any application development that requires the
usage of the programmable real-time units for industrial communication (PRU-ICSS). If developing HMI
applications the display, TMDXIDK57X-LCD is also required. The single, Cortex-A15 core based AM571x
and AM570x devices and evaluation boards are not applicable as Jailhouse requires two or more ARM
Cortex-A cores.

The AM572x IDK is a development platform for evaluating the industrial communication and control
capabilities of Sitara AM572x processors for applications in factory automation, drives, robotics, grid
infrastructure, and more. AM572x processors include dual PRU-ICSS subsystems, which can be used for
industrial Ethernet protocols, such as PROFINET, EtherCAT, Ethernet/IP, and others. The TMDXIDK5728
breaks out six ports of Ethernet, four of which can be used concurrently—2x Gb Ethernet ports and 2x
10/100 Ethernet ports from the PRU-ICSS subsystems.

2.3.2 TMDSEVM572X

The TMDSEVM572X is the Sitara AM5728 general purpose evaluation module (GP-EVM).
TMDSEVM572X can be used to run the UART and timer example application and for developing
applications that do not require the use of the PRU-ICSS for industrial communication. The GP-EVM
includes a display.

The AM572x EVM provides an affordable platform to quickly start evaluation of Sitara ARM Cortex-A15
AM57x processors (AM5728, AM5726, AM5718, AM5716) and accelerate development for HMI, machine
vision, networking, medical imaging, and many other industrial applications. The EVM is a development
platform based on the dual ARM Cortex-A15, dual C66x DSP processor that is integrated with tons of
connectivity, such as PCIe, SATA, HDMI, USB 3.0 or 2.0, dual Gb Ethernet, and more.

The AM572x EVM also integrates video and 3D or 2D graphics acceleration as well as two PRU-ICSS and
dual ARM Cortex-M4 cores.

http://www.ti.com.cn
http://www-s.ti.com/sc/techlit/TIDUDF8.pdf
http://www.ti.com/tool/tmdxidk5728
http://www.ti.com/tool/TMDXIDK57X-LCD
http://www.ti.com/tool/TMDSEVM572X

www.ti.com.cn System Overview

7ZHCU348A–October 2017–Revised October 2017

TIDUDF8 — http://www-s.ti.com/sc/techlit/TIDUDF8
版权 © 2017, Texas Instruments Incorporated

虚拟化：AM572x 上的 Jailhouse Hypervisor 参考设计

2.4 System Design Theory

The peripherals will be owned by a inmate depending on the application. A good general principle is to
keep the number of peripherals and amount of resources owned by the inmate as small as possible. This
sizing is both to manage the complexity of meeting real-time and to minimize software engineering effort
by using existing and maintained Linux drivers.

2.4.1 Example Device Tree
/* append to the existing device tree used with Linux, am57xx-evm-
reva3.dts is the device tree for the GP EVM */
#include "am57xx-evm-reva3.dts"
/* if you are using the IDK without a display use am572x-
idk.dts, if using an IDK with display use appropriate device tree file such as am572x-idk-lcd-
osd101t2045.dts */

/ {
reserved-memory {

/* reserve physical memory for the hypervisor privilege SW, 16MB (0x1000000) */
jailhouse: jailhouse@ef000000 {

reg = <0x0 0xef000000 0x0 0x1000000>;
no-map;
status = "okay";

};
/* reserve physical memory for the inmate SW, 256MB (0xF000000) */

jh_inmate: jh_inmate@ee000000 {
reg = <0x0 0xe0000000 0x0 0xf000000>;
no-map;
status = "okay";

};
};

};
/* assign timer8 to inmate, but allow Linux to configure clocking for it */
&timer8 {

status = "disabled";
ti,no-idle;

};
/* assign uart9 to inmate, but allow Linux to configure clocking for it */
&uart9 {

status = "disabled";
ti,no-idle;

};
/* configure the interrupt crossbar so the interrupts related to the above are not used by Linux.
Linux on AM5728 dynamically manages the interrupt crossbars, we want these to be statically
assigned to inmate */
/ {

ocp {
crossbar_mpu: crossbar@4a002a48 {
ti,irqs-skip = <10 133 134 135 139 140>;
};

};
};

http://www.ti.com.cn
http://www-s.ti.com/sc/techlit/TIDUDF8.pdf

SitaraTM AM5728

All other peripherals
and memory

(16 MB for Jailhouse)

UART9,
Timer8,

240 MB DDR

Root cell

Inmate

MPCore (L2 Cache, MMU, GIC)

Cortex® A15 Cortex® A15

RTOS Linux®

Linux® Jailhouse

ti-app.bin

Examples in
Processor SDK

TCP/IP

Copyright © 2017, Texas Instruments Incorporated

Hardware, Software, Testing Requirements, and Test Results www.ti.com.cn

8 ZHCU348A–October 2017–Revised October 2017

TIDUDF8 — http://www-s.ti.com/sc/techlit/TIDUDF8
版权 © 2017, Texas Instruments Incorporated

虚拟化：AM572x 上的 Jailhouse Hypervisor 参考设计

2.4.2 Sharing Peripherals

For some peripherals, such as Ethernet or storage, there is a requirement for both Linux and the real-time
inmate to have access to the interface. To achieve this with Jailhouse, a paravirtualized driver is required.
For example the real-time fieldbus, such as PROFINET, might be used for best-effort, Ethernet traffic
coming from and going to the Linux networking stack. In this case the low-level control is typically in the
real-time inmate with a paravirtualized Ethernet driver in the Linux side. In the case of storage, it might be
more common to leverage the Linux driver and provide an interface for the inmate to read and write
through a proxy application.

3 Hardware, Software, Testing Requirements, and Test Results

3.1 Required Hardware and Software

3.1.1 UART and Timer Application Example

This section contains details of setting up Jailhouse on Sitara AM5728 with a bare-metal inmate on Cortex
A15 core 1 and with Linux running on core 0. Further information on setting up Jailhouse can be found in
TI Processors Wiki . The demonstration application is ti-app, which is a simple, forever loop that
configures a timer and related interrupt, printing out values read from the timer periodically on the console
(UART).

图图 3. Bare Metal Application and Linux®

3.1.1.1 Hardware

This example runs on AM5728 EVM and AM5728 IDK and a host Windows or Linux machine with
Ethernet and USB. Connect a USB to serial port cable to the host and connect both host and the EVMto
the same LAN. There are a couple slight differences between the AM5728 EVM and AM5728 IDK with or
without a display are highlighted in parenthesis.

http://www.ti.com.cn
http://www-s.ti.com/sc/techlit/TIDUDF8.pdf
http://processors.wiki.ti.com/index.php/Processor_SDK_Jailhouse_Hypervisor

www.ti.com.cn Hardware, Software, Testing Requirements, and Test Results

9ZHCU348A–October 2017–Revised October 2017

TIDUDF8 — http://www-s.ti.com/sc/techlit/TIDUDF8
版权 © 2017, Texas Instruments Incorporated

虚拟化：AM572x 上的 Jailhouse Hypervisor 参考设计

3.1.1.2 Software

All the required software is in Processor SDK Linux 4.0.0 and can be run using the prebuilt SD card
image. A Telnet and serial port console program, such as PuTTY, is required on the host. Source code for
the application is located in /ti-processor-sdk-linux-am57xx-evm-04.00.00.04/board-support/extra-
drivers/jailhouse-0.7/inmates/ti_app/.
1. Connect IDK and host to the same Ethernet LAN.
2. Connect serial to USB cable to the host. Check which COM port becomes visible when USB cable is

connected from the host (typically COM3). Open a console with 115200 baud rate 8-1-none
3. Boot the EVM with the Processor SDK Linux 4.0.0 prebuilt SD card image.
4. Halt the boot with a key press to the console get to u-boot shell.

http://www.ti.com.cn
http://www-s.ti.com/sc/techlit/TIDUDF8.pdf
http://www.ti.com/tool/PROCESSOR-SDK-AM57X

Hardware, Software, Testing Requirements, and Test Results www.ti.com.cn

10 ZHCU348A–October 2017–Revised October 2017

TIDUDF8 — http://www-s.ti.com/sc/techlit/TIDUDF8
版权 © 2017, Texas Instruments Incorporated

虚拟化：AM572x 上的 Jailhouse Hypervisor 参考设计

5. Modify the boot arguments to use the correct device tree am572x-evm-jailhouse.dtb for the EVM
(am572x-idk-jailhouse.dtb for the IDK without display, am572x-idk-jailhouse-lcd-osd101t2045.dtb, or
am572x-idk-jailhouse-lcd-osd101t2587.dtb with display), and increase the contiguous virtual memory to
for example 512M from the default 240M with environment variable vmalloc=512M. The device tree
addition shown in 节 2.4.1 statically defines the memory used by jailhouse hypervisor and the inmate,
and the interrupts and peripherals will be managed by the inmate. The contiguous memory is required
to statically allocatargs_mmce the memory (16MB for hypervisor, 16MB for inmate) for the inmate and
hypervisor, and in 32-bit plafroms the typical default value is not sufficient. For the SD card binary with
Processor SDK 4.0.0 these modifications can be done modifying args_mmc by appending it with
setenv args_mmc ${args_mmc} vmalloc=512M, and setenv findfdt ‘setenv fdtfile am572x-evm-
jailhouse.dtb’. Store the modifications with saveenv, and continue booting with the command boot.

6. Open a Telnet window to Linux on the EVM.
7. Next steps are to insert the kernel module, enable the hypervisor, create a cell for the inmate, load the

bare metal binary, and start the binary. This is achieved with:
root@am57xx-evm:~# modprobe jailhouse
root@am57xx-evm:~# jailhouse enable /usr/share/jailhouse/examples/am57xx-evm.cell
root@am57xx-evm:~# jailhouse cell create /usr/share/jailhouse/examples/am57xx-evm-ti-app.cell
root@am57xx-evm:~# jailhouse cell load 1 /usr/share/jailhouse/examples/ti-app.bin
root@am57xx-evm:~# jailhouse cell start 1

The bare-metal example application is now running on core 1 and owns the UART, a timer, and related
interrupts. Note the hypervisor sdebug messages will also print out on the serial port console in addition to
the inmate. Linux continues to run utilizing cpu0 and has control over the rest of AM5728. This can be
verified by launching any of the examples from the Matrix user interface, which will run in parallel to the
inmate.

For example select Video Analytics and then OpenCV+OpenCL+OpenGL in Matrix to run an example
application that utilizes the camera module, DSP offload, and the GPU. This and the other examples
utilizing the Sitara AM5728 will continue to work with the ARM Cortex A15 core 1, a timer, and UART,
which is carved out for the bare-metal inmate.

http://www.ti.com.cn
http://www-s.ti.com/sc/techlit/TIDUDF8.pdf

SitaraTM AM5728

All other peripherals
and memory

(16 MB for Jailhouse)

UART9, timer2,
timer8, PRUSS1

(Ethernet), PRUSS2
(Ethernet), 240MB

DDR, GPIO

Root cell

Inmate

MPCore (L2 Cache, MMU, GIC)

Cortex® A15 Cortex® A15

RTOS Linux®

Linux® Jailhouse

pruss.bin

Examples in
Processor SDK

TCP/IP

Copyright © 2017, Texas Instruments Incorporated

www.ti.com.cn Hardware, Software, Testing Requirements, and Test Results

11ZHCU348A–October 2017–Revised October 2017

TIDUDF8 — http://www-s.ti.com/sc/techlit/TIDUDF8
版权 © 2017, Texas Instruments Incorporated

虚拟化：AM572x 上的 Jailhouse Hypervisor 参考设计

3.1.2 RTOS-Based Application Example

This section contains details of setting up jailhouse on Sitara AM5728 with an RTOS-based inmate built
external to Processor SDK Linux on Cortex A15 core 1 and with Linux running on core 0. Further
information on setting up jailhouse can be found in Processor SDK Jailhouse Hypervisor . The
demonstration application is a TI RTOS-based application pruss loading the test application from
Processor SDK RTOS to the programmable real-time units (PRUs). The PRU is a programmable building
block inside the industrial communications subsystem (ICSS) that can be used to implement Ethernet or
serial communication based fieldbusses (such as EtherCAT, PROFINET IRT, or PROFIBUS) or other
functions requiring the lowest possible latency. This test is intended to show how a binary built outside
Linux and utilizing an RTOS can be used. The test application loads simple firmware to the two PRUs,
uses a timer, exchanges interrupts with the PRUs, and prints this out using the UART.

图图 4. RTOS and Linux With Jailhouse Hypervisor

3.1.2.1 Hardware

This example runs on AM5728 IDK and a host Windows or Linux machine with Ethernet and USB.
Connect a USB to serial port cable to the host and connect both host and the EVM to the same LAN.

3.1.2.2 Software

All the required software is in Processor SDK Linux 4.0.0 and can be run using the prebuilt SD card
image. A Telnet and serial port console program, such as PuTTY, is required on the host.Processor SDK
RTOS 4.0.0 is used as the RTOS, and the test application for PRUs is used as the test application. The
example application source code is in /ti/pdk_am57xx_1_0_7/packages/ti/drv/pruss/test. There are couple
modifications needed to run this application as an inmate are limited to removing initialization related to
UART, GIC, and the IO delays which are covered by Linux in the Jailhouse case. The source code for
these modifications and makefile is in /ti/processor_sdk_rtos_am57xx_4_00_00_04/demos/jailhouse-
inmate/rtos/pru-icss.

注注: Update the path name will change if using a newer Processor SDK release.

http://www.ti.com.cn
http://www-s.ti.com/sc/techlit/TIDUDF8.pdf
http://processors.wiki.ti.com/index.php/Processor_SDK_Jailhouse_Hypervisor
http://www.ti.com/tool/PROCESSOR-SDK-AM57X
http://www.ti.com/tool/PROCESSOR-SDK-AM57X
http://www.ti.com/tool/PROCESSOR-SDK-AM57X

Hardware, Software, Testing Requirements, and Test Results www.ti.com.cn

12 ZHCU348A–October 2017–Revised October 2017

TIDUDF8 — http://www-s.ti.com/sc/techlit/TIDUDF8
版权 © 2017, Texas Instruments Incorporated

虚拟化：AM572x 上的 Jailhouse Hypervisor 参考设计

The TI RTOS configuration file, bios/pruss_arm_wSoCLib.cfg related, and board initialization file,
src/idkAM572x_jh.c, have been modified to remove the initialization for the board already covered by
Linux. For details compare to the stand alone RTOS version located in
/ti/pdk_am57xx_1_0_7/packages/ti/drv/pruss/test/am572x/armv7/bios/.

http://www.ti.com.cn
http://www-s.ti.com/sc/techlit/TIDUDF8.pdf

www.ti.com.cn Hardware, Software, Testing Requirements, and Test Results

13ZHCU348A–October 2017–Revised October 2017

TIDUDF8 — http://www-s.ti.com/sc/techlit/TIDUDF8
版权 © 2017, Texas Instruments Incorporated

虚拟化：AM572x 上的 Jailhouse Hypervisor 参考设计

Build the pruss application to be used as inmate (pruss.bin is not included in the Processor SDK Linux):
1. Go to /processor_sdk_rtos_am57xx_4_00_00_04.

注注: Update the path name will change if using a newer Processor SDK release.

2. Type: source setupenv.sh to set up environment variables related to compiling.
3. Go to /processor_sdk_rtos_am57xx_4_00_00_04/demos/jailhouse-inmate.

注注: Update the path name will change if using a newer Processor SDK release.

4. Type: source setenv.sh to set up environment variables related to the pruss application.
5. Run: make pruss_test.
6. Copy pruss.bin to /usr/share/jailhouse/examples/ directory on the IDK

Run the pruss application:
1. Connect IDK and host to the same Ethernet LAN.
2. Connect serial to USB cable to the host. Check which COM port becomes visible when USB cable is

connected from the host (typically COM3), and open a console with 115200 baud rate 8-1-none.
3. Boot the EVM with the Processor SDK 4.0.0 prebuilt SD card image.
4. Halt the boot with a key press to the console get to u-boot shell.
5. Modify the boot arguments to use the correct device tree am572x-idk-jailhouse.dtb for IDK without a

display (am572x-idk-jailhouse-lcd-osd101t2045.dtb or am572x-idk-jailhouse-lcd-osd101t2587.dtb with
display) and increase the contiguous virtual memory to for example 512M from the default 240M with
environment variable vmalloc=512M. The device tree addition statically defines the memory used by
jailhouse hypervisor and the inmate and which interrupts and peripherals will be managed by the
inmate. The contiguous memory is required to statically allocate the memory (16MB for hypervisor,
16MB for inmate) for the inmate and hypervisor, and in 32-bit platforms, the typical default value is not
sufficient. For the SD card binary with Processor SDK 4.0.0 these modifications can be done modifying
args_mmc by appending it with setenv args_mmc ${args_mmc} vmalloc=512M and setenv findfdt
‘setenv fdtfile am572x-idk-jailhouse.dtb’. Store the modifications with saveenv, and continue booting
with the command boot.

6. Open a Telnet window to Linux on the EVM.
7. Next steps are to insert the kernel module, enable the hypervisor, create a cell for the inmate, load the

bare metal binary, and start the binary. The inmate will see intermediate physical addresses (IPA) as
opposed to physical addresses. Depending on the RTOS used this might require some startup code to
get running with Jailhouse. TI RTOS based binary expects to be loaded to address 0x80000000, which
is the beginning of the DDR on AM572x while Jailhouse loads the program to address 0x0 in IPA
address space. linux-loader.bin is a helper program that itself is loaded to address 0x0 and contains a
branch to the entry point of the TI RTOS based image (0x80005128, passed to linux-loader.bin with a
string at address 0x100). This is achieved with:
root@am57xx-evm:~# modprobe jailhouse
root@am57xx-evm:~# jailhouse enable /usr/share/jailhouse/examples/am57xx-evm.cell
root@am57xx-evm:~# jailhouse cell create /usr/share/jailhouse/examples/am572x-rtos-pruss.cell
root@am57xx-evm:~# jailhouse cell load 1 linux-loader.bin -a 0 -s "kernel=0x80005128" -
a 0x100 pruss.bin -a 0x80000000
root@am57xx-evm:~# jailhouse cell start 1

The RTOS example application pruss is now running on core 1 and will print out status messages on the
UART. Linux continues to run using core 0 and the rest of AM5728. This can be verified by running Linux
applications from the Telnet shell or with a display, by launching them from the Matrix GUI.

http://www.ti.com.cn
http://www-s.ti.com/sc/techlit/TIDUDF8.pdf

Hardware, Software, Testing Requirements, and Test Results www.ti.com.cn

14 ZHCU348A–October 2017–Revised October 2017

TIDUDF8 — http://www-s.ti.com/sc/techlit/TIDUDF8
版权 © 2017, Texas Instruments Incorporated

虚拟化：AM572x 上的 Jailhouse Hypervisor 参考设计

3.2 Testing and Results

3.2.1 Test Setup

To verify the real-time performance of Jailhouse Sitara AM5728 was setup to run Linux on one of the ARM
Cortex A15 cores and a TI-RTOS inmate on the other A15 core. A test was run to measure interrupt
latency. Poll mode driver based application performance of an inmate should be identical to a system
without virtualization in a static partitioning system like Jailhouse. Anything interrupt-based is required to
share the interrupt controller (GIC), which will introduce some interference from Linux to the real-time
application. The measurements shown in 节 3.2.2 a million interrupts clearly shows the interference and
captures the upper bound at 8.8 µs. For the first run of interrupt latency test an unloaded Linux running on
core 0 is in the first column. In the second column Linux on core 0 is running STREAM. STREAM is an
external memory access benchmark that fully uses the number of outstanding reads and writes to
memory. The benchmark is scalable from individual processors to clusters supercomputers and is used at
the processor level. STREAM was chosen as representative of a worst case memory access behavior of a
Linux-based application on a Cortex A15, essentially with a memory access profile like an optimized
memoryto-memory copy. In AM5728 the two Cortex-A15 cores share L2 cache and access to the rest of
the SoC, which the STREAM benchmark running on core 0 stresses while core 1 access GIC registers to
respond to the interrupt.

3.2.2 Test Results

3.2.2.1 Jailhouse Performance on Sitara™ AM5728

表表 1. Interrupt Latency Of A Bare Metal Inmate (Core 1)

UNLOADED LINUX ON CORE 0 LINUX RUNNING STREAM
BENCHMARK ON CORE 0

Interrupt count
Bucket 1.6 µs to 3.2 µs 99.3756% 33.9323%

Interrupt count
Bucket 3.2 µs to 6.4 µs 0.6244% 66.0632%

Interrupt count
Bucket 6.4 µs to 12.8 µs none 0.0045%

Minimum interrupt latency 2.2 ms 1.8 ms
Maximum interrupt latency 5 ms 8.8 ms

http://www.ti.com.cn
http://www-s.ti.com/sc/techlit/TIDUDF8.pdf
https://www.cs.virginia.edu/stream/

www.ti.com.cn Software Files

15ZHCU348A–October 2017–Revised October 2017

TIDUDF8 — http://www-s.ti.com/sc/techlit/TIDUDF8
版权 © 2017, Texas Instruments Incorporated

虚拟化：AM572x 上的 Jailhouse Hypervisor 参考设计

4 Software Files
• Processor SDK Linux 4.00.00.04

– Prebuilt SD card image can be used.

• Processor SDK RTOS 4.00.00.04

– pruss example is used as an example inmate built outside Linux using TI RTOS

5 Related Documentation
1. STREAM Benchmark

5.1 商商标标

Sitara is a trademark of Texas Instruments.
ARM, Cortex are registered trademarks of ARM Limited.
EtherCAT is a registered trademark of Beckhoff Automation GmbH.
GE is a registered trademark of General Electric Compay.
Linux is a registered trademark of Linux Foundation.
PROFINET, PROFIBUS are trademarks of PROFIBUS and PROFINET International (PI).
Siemens, Mindsphere are registered trademarks of Siemens AG.
All other trademarks are the property of their respective owners.

6 Terminology
• GIC—generic interrupt controller

• GUI—graphical user interface

• MMU—memory management unit

• MPCore—multi processor core, a cluster of ARM Cortex A cores with a shared cache

• SoC—System on Chip

7 About the Author

PEKKA VARIS is the Chief Technologist for Catalog Processors Business in Texas Instruments.

VITALY ANDRIANOV is a Software Engineer in the the Processor SDK Linux team who has implemented
Jailhouse support for the Sitara processors.

http://www.ti.com.cn
http://www-s.ti.com/sc/techlit/TIDUDF8.pdf
http://www.ti.com/tool/PROCESSOR-SDK-AM57X
http://www.ti.com/tool/PROCESSOR-SDK-AM57X
http://www.ti.com/lit/pdf/https://www.cs.virginia.edu/stream/

修订版本 A 历史记录 www.ti.com.cn

16 ZHCU348A–October 2017–Revised October 2017

TIDUDF8 — http://www-s.ti.com/sc/techlit/TIDUDF8
版权 © 2017, Texas Instruments Incorporated

Revision History

修修订订版版本本 A 历历史史记记录录
注：之前版本的页码可能与当前版本有所不同。

Changes from Original (October 2017) to A Revision .. Page

• 已更改 setenv fdtfile am572x-evm-jailhouse.dtb to setenv findfdt ‘setenv fdtfile am572x-evm-jailhouse.dtb’ 10
• 已更改 setenv fdtfile am572x-idk-jailhouse.dtb to setenv findfdt ‘setenv fdtfile am572x-idk-jailhouse.dtb’ 13

http://www.ti.com.cn
http://www-s.ti.com/sc/techlit/TIDUDF8.pdf

IMPORTANT NOTICE
有有关关 TI 设设计计信信息息和和资资源源的的重重要要通通知知

德州仪器 (TI) 公司提供的技术、应用或其他设计建议、服务或信息，包括但不限于与评估模块有关的参考设计和材料（总称“TI 资源”），旨在
帮助设计人员开发整合了 TI 产品的 应用； 如果您（个人，或如果是代表贵公司，则为贵公司）以任何方式下载、访问或使用了任何特定的
TI 资源，即表示贵方同意仅为该等目标，按照本通知的条款进行使用。
TI 所提供的 TI 资源，并未扩大或以其他方式修改 TI 对 TI 产品的公开适用的质保及质保免责声明；也未导致 TI 承担任何额外的义务或责任。
TI 有权对其 TI 资源进行纠正、增强、改进和其他修改。
您理解并同意，在设计应用时应自行实施独立的分析、评价和 判断， 且应全权负责并确保 应用的安全性， 以及您的 应用 （包括应用中使用
的所有 TI 产品））应符合所有适用的法律法规及其他相关要求。你就您的 应用声明，您具备制订和实施下列保障措施所需的一切必要专业知
识，能够 (1) 预见故障的危险后果，(2) 监视故障及其后果，以及 (3) 降低可能导致危险的故障几率并采取适当措施。您同意，在使用或分发包
含 TI 产品的任何 应用前， 您将彻底测试该等 应用 和该等应用所用 TI 产品的 功能。除特定 TI 资源的公开文档中明确列出的测试外，TI 未进
行任何其他测试。
您只有在为开发包含该等 TI 资源所列 TI 产品的 应用时， 才被授权使用、复制和修改任何相关单项 TI 资源。但并未依据禁止反言原则或其他
法理授予您任何TI知识产权的任何其他明示或默示的许可，也未授予您 TI 或第三方的任何技术或知识产权的许可，该等产权包括但不限于任
何专利权、版权、屏蔽作品权或与使用TI产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务的信
息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权的许
可。
TI 资源系“按原样”提供。TI 兹免除对 TI 资源及其使用作出所有其他明确或默认的保证或陈述，包括但不限于对准确性或完整性、产权保证、
无屡发故障保证，以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。
TI 不负责任何申索，包括但不限于因组合产品所致或与之有关的申索，也不为您辩护或赔偿，即使该等产品组合已列于 TI 资源或其他地方。
对因 TI 资源或其使用引起或与之有关的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿，不管
TI 是否获悉可能会产生上述损害赔偿，TI 概不负责。
您同意向 TI 及其代表全额赔偿因您不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。
本通知适用于 TI 资源。另有其他条款适用于某些类型的材料、TI 产品和服务的使用和采购。这些条款包括但不限于适用于 TI 的半导体产品
(http://www.ti.com/sc/docs/stdterms.htm)、评估模块和样品 (http://www.ti.com/sc/docs/sampterms.htm) 的标准条款。

邮寄地址：上海市浦东新区世纪大道 1568 号中建大厦 32 楼，邮政编码：200122
Copyright © 2017 德州仪器半导体技术（上海）有限公司

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	虚拟化：AM572x 上的 Jailhouse Hypervisor 参考设计
	1 System Description
	2 System Overview
	2.1 Multi-Core AM572x Processor
	2.2 Design Considerations
	2.3 Highlighted Products
	2.3.1 TMDXIDK5728
	2.3.2 TMDSEVM572X

	2.4 System Design Theory
	2.4.1 Example Device Tree
	2.4.2 Sharing Peripherals

	3 Hardware, Software, Testing Requirements, and Test Results
	3.1 Required Hardware and Software
	3.1.1 UART and Timer Application Example
	3.1.1.1 Hardware
	3.1.1.2 Software

	3.1.2 RTOS-Based Application Example
	3.1.2.1 Hardware
	3.1.2.2 Software

	3.2 Testing and Results
	3.2.1 Test Setup
	3.2.2 Test Results
	3.2.2.1 Jailhouse Performance on Sitara™ AM5728

	4 Software Files
	5 Related Documentation
	5.1 商标

	6 Terminology
	7 About the Author

	修订版本 A 历史记录
	Important Notice

