

Eric Feng

摘要

可编程逻辑器件 (Programmable Logic Device, PLD)是一种可以通过用户编程实现自定义逻辑功能的半导体器件。TI 可编程逻辑器件 (TI Programmable Logic Device, TPLD)将多个数字逻辑和模拟电路集成于单个封装中,可以有效提升设计集成度。本文主要介绍了 TPLD 的使用方法,帮助 TPLD 的使用者快速上手。

1. 引言

逻辑电路是数字电路的核心组成部分,用于处理和操作二进制信号(0和1)。通过逻辑门可以实现基本的布尔运算,如与(AND)、或(OR)、非(NOT)、异或(XOR)等。每个逻辑门根据输入信号产生特定的输出,组合起来可以构建复杂的逻辑功能。

TPLD 通过将多个数字逻辑和模拟电路集成于单个封装中,可以有效提升设计的集成度、节省 PCB 面积、降低 BOM 复杂度并适配多种应用场景。TPLD 与复杂可编程逻辑器件 (Complex Programmable Logic Device, CPLD)、现场可编程门阵列 (Field Programmable Gate Arrays, FPGA)之间的区别如表 1 所示:

	TPLD	CPLD	FPGA
逻辑资源	少	中等	丰富
设计复杂度	低	中等	高
功耗	低	适中	高

表 1. TPLD, CPLD, FPGA 的区别

目前 TI 的可编程逻辑产品主要为 TPLD801(8 Pin), TPLD1201 (12 Pin 无 I2C)和 TPLD1202 (12 Pin 有 I2C), 其 IO、查找表等资源对比如表 2 所示。

Device Features	TPLD801 (Preview)	TPLD1201 (Active)	TPLD1202 (Preview)
Interface	-	-	SPI/12C
GPIO	6	8	10
Look-up tables	10	10	18
Digital flip-flops	4	4	17
8-bit / 16-bit Counters	4 / 0	4 / 0	10 / 0
Analog comparator	-	2	4
Oscillators	1 (25kHz,2MHz)	1 (25kHz,2MHz)	2 (2/10kHz,25MHz)
State Machine (8 states)	-	-	Yes
Watchdog	-	-	Yes
PWM	-	-	4
Device pins	8	12/10	12
Packages	SOTA	QFN, VSSOPA	QFN, SOTA

表 2. 目前 TI.com 上主流 3 款 TPLD 的资源对比

本文介绍了 TPLD 的使用流程以及注意事项,包含 6 个章节:硬件环境、软件环境、电路设计、仿真测试、板上 实测以及总结,帮助 TPLD 的使用者快速上手。

2. 硬件环境

硬件环境搭建方面,需要准备1个TPLD1201-DGS评估板(含芯片)(图1a)和1个TPLD烧录器(图1b)。

图 1. (a) TPLD1201-DGS 评估板 (b) TPLD 烧录器

将烧录器与评估板如图 2 方式连接 USB 端连接电脑,打开开关 SW3, PWR 灯亮说明电源供电正常。

图 2. 硬件环境的搭建

TPLD1201-DGS-EVM 评估模块 (Rev. A)

3. 软件环境

首先下载 TI 的图形化编程软件 InterConnect Studio (ICS) ,下载完成后默认安装即可。安装完成后打开界面如图 3 所示。

Texas Instruments	5
www.ti.com.cn	

InterConnect Studi	0				- 0
ABOUT					
		Welcome To Inte	rConnect Studio		
	() Start a new Design ⊘				
	Device: TPLD1201			▼	
	Package: DGS (VSSOP, 10)			*	
		Q Type Filter	Text		
	Empty Design	TPLD1201 EVM	Oscillator Division	Blinking LED's	
	Start from a blank design	Demo This demo configuration the TPLD1201 EVM to showcase the basic capabilities of the TPLD1201 device	An example of dividing the oscillator down into something the human eye can track	Blinks an output	

选择对应型号的芯片以及封装,之后选择空白设计,可以看到图4的设计界面。

图 4. ICS 设计界面

- 1. 号区包含设计选项卡和仿真选项卡,通过切换可以查看当前设计的仿真结果。
- 2. 号区为设计资源区,会显示当前芯片可用资源,剩余资源等信息,同时可以修改仿真时间以及系统配置。有关资源的详细介绍可参考:ICS用户指南。
- 号区为设计布局区,显示整体系统设计,布局布线等情况。用户添加的2号区资源会在3号区显示,将资源 根据用户所需的逻辑进行连线,即可实现用户所需的组合逻辑或时序逻辑,最后将IO与逻辑资源连线,即可 与外部电路进行交互。
- 4. 号区为参数配置区,对 TPLD内部的资源进行参数配置和调整。用户点击想要修改配置的资源块,在4号区会显示该资源当前的配置。通过修改对应条目下拉框、勾选框或空白框的值即可完成对应配置的修改。通过烧录即可完成对于 TPLD 中资源的重新配置。
- 5. 号区为信息显示区,包含报错信息、芯片引脚信息、历史记录、界面设置、引脚配置表、时钟配置表等。

6. 号区为芯片烧录区,可以配置芯片的烧录方式(临时烧录/永久烧录)、芯片供电来源(烧录器供电/外部供电)等参数。目前 TI 的 TPLD 均为 OTP (One-Time Programmable) 器件,只能进行一次永久烧录。永久烧录后的芯片支持板上临时烧录。

4. 电路设计

数字逻辑电路中,JK 触发器是一种常用的时序逻辑电路元件,属于双稳态触发器的一种。它具有两个输入信号(J和K)、一个时钟信号(CLK)以及两个输出信号(Q和Q')。JK 触发器的特点是能够实现置位、复位、保持和翻转功能,因此在数字电路中应用广泛。

由于 TPLD 中没有 JK 触发器的资源,因此本例程通过 TPLD 的 D 触发器以及逻辑门资源实现 JK 触发器,实现的 逻辑原理图如图 5 所示。通过原理图可以发现,实现 JK 触发器需要用到 1 个 D 触发器、2 个与门、1 个或门和 1 个非门。

图 5. 通过 D 触发器以及逻辑门资源实现 JK 触发器

由于 TPLD 中拥有 4 输入可编程逻辑门资源,可以将图 5 中原理图的逻辑门部分进一步简化。通过计算,可以得出 D 触发器输入逻辑的表达式:(J&!Q) | (!K&Q)。由于 TPLD 的 D 触发器资源没有!Q 输出,需要添加一个非门作为!Q 输出,最终得到的电路如图 6 所示。

图 6. TPLD 内部资源实现 JK 触发器

其中 lut3 的配置方法如下:将 "Number of Inputs" 配置为 "4", "Boolean Function" 配置为 "Equation", "Equation"一栏填入 "(A&D)](!B&C)",如图 7 所示。

LOOKUP TABLE 🕐

Name	lut3	
Label	, +1 more lines	
Number of Inputs	4	•
Boolean Function	Equation	•
Equation	(A&D) (!B&C)	
Disable Top Label Calculations		
Device MacroCell Allocated	Any(LUT4_0_CNTDLY2)	-

图 7. 配置 lut3 为四输入组合逻辑

设计中将 IO 口配置为数字输入/输出;D 触发器默认配置即可;反相器通过新增 LUT,将 "Boolean Function"配置为 "INVA"即可实现。

5. 仿真测试

首先点击 CLK 输入,在参数配置区将"Simulated Input"选项设置为"Square (DIGITAL)",然后在方波的参数 配置中,设置周期为"8us",占空比"50%",延时为"0ms",如图 8 所示。

PIN ⑦		
Square wave clock (50% duty cyc	le square wave)	~
Period	8	us 💌
Duty Cycle (Percentage)	50	
Delay	0	<u>ms</u>

图 8. 配置输入时钟仿真参数

接下来点击 J 输入,在参数配置区将"Simulated Input"选项设置为"Digital Pattern (DIGITAL)",用户可以按 测试需求设置数字序列以测试电路的逻辑特性。本例程将"Pattern"设置为"010110011101","Time Per Bit"设置为"8us",如图 9 所示。

Ų	Texas Instruments
	www.ti.com.cn

PIN ⁽²⁾			ŌŌ
onnalated input	(
Device Pin Allocated	Any(IN0/1)		•
Digital pattern			^
Pattern	010110011101		
Time Per Bit	8	us	•

图 9. 配置输入信号仿真参数

与 J 输入设置同理,本次例程将 K 输入的"Pattern"设置为"011011111101", "Time Per Bit"设置为 "8us",设置方法同上。

仿真参数方面,点击 左侧 "Settings - Simulation",修改结束时间为 200us,步进为 1us,如图 10 所示。

✓ SETTINGS (2)				
Simulation	1/1 🕑 🕀			
System Settings	1/1 🔮 🕀			
		SIMULATION		
		Supply Voltage	3.3	
		Start Time	0	us 💌
		End Time	200	US 💌
		Minimum Step Time	1	US 💌
		Simulate Startup Behavior		

图 10. 仿真参数设置

接下来,点击最左侧的仿真选项卡,可以得到如图 11 仿真测试波形。

图 11. JK 触发器电路仿真波形

通过仿真测试结果可以发现,当J、K同时输入0时,为保持状态,Q的输出不变;J为1、K为0时,Q输出置1;J为0、K为1时,Q输出置0;同时为1时,输出极性反转。符合JK触发器的真值表,电路工作正常。

6. 板上实测

其中, "Permanently Configure Device"为永久性烧录, TPLD为 OTP (One time Programmable), 只允许一次 永久性烧录,因此一般调试时,不需要勾选。Power Source为芯片供电来源,若为外部电源供电需要选择 "Target Board",在烧录完成后会自动断开烧录器的供电,从而保护烧录器。本例程配置均为默认即可。

确认烧录配置后,点击"OK"按钮,选择对应的烧录串口,点击"Connect"按钮即可开始烧录程序。如图 13 所示。

"Interconnect Studio" wants to connect to a serial port

TPLD Programmer (COM8) - Paired		
0	Connect	Cancel

图 13. 选择烧录串口界面

烧录完成后,会提示"Programming Successful"。若出现报错,请检查芯片是否妥善放置在烧录槽内,引脚顺序是否正确对应等。

最后是板上实测环节,设置信号发生器输出两路 5kHz 3.3V 的方波,两个方波的相位差为 45°,分别连接 J,K 输入脚(参照图 6,分别对应 INO 和 IO5)。CLK 输入设置为 25kHz,最终得到的实测波形图如图 14 所示。

图 14. 实测波形图

通过对波形图分析,当J、K同时输入0时,为保持状态,Q的输出不变;J为1、K为0时,Q输出置1;J为 0、K为1时,Q输出置0;同时为1时,输出极性反转。符合JK触发器的真值表,逻辑实现完成。

7. 总结

TPLD 通过将多个数字逻辑和模拟电路集成到单个封装中,可以有效提升设计的集成度。通过使用 Interconnect Studio (ICS)可以轻松配置 TPLD 的内部资源,更多技术细节请参考 TI 官网的 ICS 用户指南。

8. 参考资料

- 德州仪器 (TI), TI 可编程逻辑器件
- 德州仪器 (TI), TPLD1201 产品文件夹
- 德州仪器 (TI), ICS 用户指南
- 德州仪器 (TI), TPLD1201-DGS-EVM 评估模块 (Rev. A)

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行 复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索 赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司