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Applying acceleration and deceleration 
profiles to bipolar stepper motors

Introduction
With a DC motor, ramping up the voltage (or duty cycle if 
pulse-width modulation is being used) controls how fast 
the motor’s shaft reaches any given speed. With stepper 
motors, however, changing the voltage does not have any 
effect on the motor speed. While it is true that changing 
the voltage changes the rate of current charge across the 
windings and thus the maximum speed the stepper can 
reach, the motor speed is set by the rate at which the cur-
rent through the windings is switched, or commutated.

Can it be assumed that steppers are machines not 
requiring controlled acceleration profiles? If so, can step-
pers be run at any target speed desired without conse-
quences? The truth is that stepper-motor motion needs to 
be actuated through acceleration and deceleration profiles 
more than any other motor topology. Trying to start at any 
speed may have dire effects.

In this article it is assumed that the reader is well-
versed in how a commercially available integrated micro-
stepping driver is used to control a stepper motor. The 
output of a stepper driver, such as the Texas Instruments 
(TI) DRV8818, is directly proportional to the frequency of 
a square wave (STEP input). Each STEP pulse equals a 
step (or microstep) as defined by the driver’s stepping 

logic. Hence, changing the frequency of the square wave 
also changes the stepper’s rate accordingly.

Figure 1 shows a motor manufacturer’s conventional 
stepping rate/torque curve with an important parameter, 
fs, called the starting frequency. It must be understood 
that, for this particular motor to start properly, a stepping 
rate smaller than fs must be employed. To start the motor 
with a stepping rate larger than fs may induce the motor to 
stall and lose synchronization. Once this happens, motion 
control is severely compromised. This appears to be a major 
problem but actually can be solved quite easily. All that is 
needed is to start the motor at a stepping rate below fs and 
then increase the speed until the target speed is reached. 
Following this guideline, the stepper motor can be actuated 
with stepping rates far exceeding fs—as long as the speed 
is kept below the shown torque/speed curve.

Equally important, one should not attempt to stop the 
motor simply by halting the STEP pulses. Instead, the 
stepping rate should be decreased from the target speed 
to a lower rate at which the motor can stop without the 
shaft inertia inducing extra and unwanted steps. Remember 
that if the stepper is being utilized in a positioning applica-
tion, the motor shaft can lose position if it keeps on moving 
after it should have stopped. Since closed-loop position 
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Figure 1. Torque/speed curve for a bipolar constant-
current stepper motor
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feedback is seldom used for driving steppers, it is crucial 
to ensure that only the commanded steps take place.

Acceleration/deceleration profile
To accelerate a stepper from a starting speed to a desired 
target speed, the current speed just needs to be changed 
at periodic intervals. Most engineers use microcontrollers 
to achieve stepper control. The most common implemen-
tation uses only two timers. The first is a steps-per-second 
(SPS) timer used to generate an accurate timing function 
for the stepping rate. The second is an acceleration timer 
used to alter the first timer on a periodic basis. Since the 
speed is being changed at timely intervals, in essence the 
angular velocity with respect to time (dv/dt) is being 
derived. This derivation is called acceleration, or how 
speed changes across time. Figure 2 shows an enlarged 
view of a typical microcontroller-based acceleration profile 
and what is happening as the stepper is accelerated 
towards a target speed.

The SPS is the desired number of steps per second, or 
the stepping rate, at which the motor should move. The 
SPS timer must be programmed to issue pulses at this 
rate. Depending on the timer’s oscillator frequency, a  
typical equation is

timer _ oscillator
SPS_timer_register = ,

SPS

where SPS_timer_register is a 16-bit number that tells the 
timer how long it takes to generate subsequent STEP 
pulses, and timer_oscillator is a constant of how fast the 
timer is running in megahertz.

This equation is stored in a function because it is used 
quite frequently. To see how it works, assume that the timer 
oscillator is running at 8 MHz and the desired stepping 
rate for the motor is 200 SPS. According to the equation, 
the program code makes the value of SPS_timer_register 
equal to 40,000. So every 40,000 timer clicks, a STEP pulse 

is generated. This results in a timer-based output of 200 
pulses per second and a shaft rotation equal to 200 SPS.

Every time such an event takes place, an interrupt is 
generated and the timer is cleared. The timing of the rising 
edge at the STEP input is crucial to the microstepping 
driver’s accuracy, but the falling edge can happen at 
almost any time as long as it is well before the next STEP 
rising edge.

Two parameters are needed to define the acceleration 
curve: (1) how often to change the SPS value, and (2) by 
how much. The acceleration curve is directly proportional 
to both parameters; that is, the more often the SPS value 
is updated and the higher its value, the steeper will be the 
acceleration curve. The acceleration timer handles both 
parameters: The timer function fires as many times per 
second as is desired to change the SPS value, and the  
timer’s interrupt-service routine (ISR) determines what 
the new speed is by incrementing the current SPS by a 
predetermined factor.

The acceleration rate is measured in steps per second 
per second (SPSPS), or by how many times per second 
the current SPS rate is changed. If the SPS value is changed 
by adding a one, the acceleration timer’s ISR must be called 
(triggered) for each change in the acceleration rate. For 
example, with an acceleration rate of 1000 SPSPS, the 
motor speed can be started at 200 SPS and incremented 
by one until it reaches 1200 SPS. The acceleration timer’s 
ISR would then need to be called 1000 times.

Another option is to call the acceleration timer half as 
frequently and then increment the SPS by two. Compared 
to the previous example, the acceleration timer’s ISR is 
called only 500 times, but the motor still starts up at  
200 SPS and reaches 1200 SPS within a second. The  
difference is more real-time availability at the expense of 
resolution. In other words, to achieve an accurate acceler-
ation rate of 999 SPSPS, the first option must be used.
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Figure 2. Close-up of a typical acceleration profile
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The trade-offs of choosing one option versus the other 
must not be ignored, as the choice defines what kind of 
motion quality can be obtained. For instance, if a lot of 
granularity is required in order to achieve every possible 
acceleration profile, the acceleration timer’s ISR will need 
to be called as much as possible.

However, in the SPS-timer equation given earlier, there 
is a division operation. Depending on which processor core 
is being employed, this division may considerably limit how 
many times the ISR can effectively be called and still cor-
rectly generate the new SPS rate. In an implementation 
using TI’s MSP430™ with the CPU running at 16 MHz, a 
division operation takes about 500 μs. As a result, the most 
the ISR can be called per second is 2000 times. This limit 
then defines the incrementing factor. For any acceleration 
rate larger than 2000, an increment larger than one must 
be used.

The acceleration rate is computed once, shortly before 
the motor is started. The software in charge of this com pu-
tation determines what the acceleration timer’s interval 
and increment factor will be, then configures the variables 
accordingly. These variables are used concurrently until 
the SPS rate is modified enough to reach the target speed. 
Once the target speed is met, the acceleration profile ends.

The deceleration profile is basically identical to the accel-
eration profile, except that the increment factor is negative 
rather than positive. Also, a new target speed must be 
speci fied at which the motor can be safely stopped.  
Figure 3 shows an acceleration/deceleration profile where 

Target Speed

Starting Speed

Acceleration Rate
(same as

deceleration rate)

Stopping Speed

Figure 3. Acceleration/deceleration profile

the acceleration and deceleration rates are symmetric. 
Asymmetric rates can also be employed.

Position control
Up to this point, operating the motor in a speed-control 
loop has seemed fairly simple. The motor is brought into  
a target speed and at some point commanded to stop. 
However, what happens when a predetermined number of 
steps needs to be executed in a predetermined amount of 
time? The acceleration/deceleration profiles then become 
more important than ever. In this motion-control topology, 
it is crucial that the motor stop when all the programmed 
steps have been executed. The variable that specifies how 
many steps will be issued is called number_of_steps.

The motion profile must be coded to make the motor 
stop at the required time rather than wait for a command 
to start deceleration. One way to achieve this is to pro-
gram a variable called steps_to_stop to be smaller than  
number_of_steps. The software then determines when 
deceleration needs to be engaged by monitoring  
steps_to_stop.

Acceleration will not complete execution until the  
target speed has been reached. Once this happens, the 
stepper is allowed to run until it reaches the steps_to_stop 
count, at which time deceleration begins. For example, for 
a 1000-step run, steps_to_stop is set to 800. Hence, the 
motor is started via an acceleration profile and runs until 
step 800 is reached, at which time the motor decelerates 
until it stops.
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Depending on how all of the system’s vari-
ables are configured, five important  scenarios 
need to be examined (see Figure 4).

Scenario 1: All steps are issued before the 
motor reaches the target speed.

Scenario 2: All steps are issued while the 
motor is at the target speed.

Scenario 3: All steps are issued before the 
stopping speed is reached.

Scenario 4: All steps are issued as the 
stopping speed is reached.

Scenario 5: All steps are issued after the 
stopping speed is reached.

Stopping the motor right as the stopping 
speed is reached (Scenario 4) is the ideal 
case. Stopping the motor shortly before the 
stopping speed is reached (Scenario 3) or 
after it is reached (Scenario 5) can be 
acceptable depending on how many steps 
away from the ideal case these events occur. 
For instance, if all steps are issued while the 
motor is moving too fast, the motor shaft 
may lose position due to rotor inertia. But if 
the stopping speed is reached before all the 
steps are executed, the total time needed to 
execute the profile can become too long.

Scenarios 1 and 2, portrayed for illustra-
tive purposes only, should not take place, as 
the designer should always ensure that 
steps_to_stop is smaller than number_of_
steps. Knowing all the possible scenarios, 
the designer can easily tune the system to 
acquire the optimal response.
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Figure 4. Five acceleration/deceleration scenarios
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Another option that may result in less 
tuning is to segment the total number of 
steps into percentages assigned to each 
particular region of the acceleration/decel-
eration profile. In this algorithm implemen-
tation, 20% of the total number of steps can 
be selected to accelerate the motor, 60% to 
run the motor at a constant (reached) 
speed, and the remaining 20% to deceler-
ate the motor (see Figure 5). If number_
of_steps is 1000, the stepper accelerates at 
the programmed acceleration rate for 200 
steps and stops acceleration at whatever 
step rate it reaches. It then executes 600 
steps at this rate, with the last 200 steps 
being executed throughout the decelera-
tion profile.

Notice that with an algorithm of this nature, assuming 
that the percentages are selected correctly, it is impossible 
to run out of steps on the wrong portion of the motion 
profile. For the example in Figure 5, since both the accel-
eration and deceleration portions are balanced, the motor 
most likely starts and stops at the same speed. The disad-
vantage of this method is that it is very hard to ensure 
what the target speed will be. If the target speed is not 
important, then this algorithm can be used to ensure that 
the motor will always stop at a safe speed.

If the speed reached is too slow for the application, the 
only means to speed up the motor shaft with this algo-
rithm is to increase the acceleration rate or increase the 
percentages of the number of steps used in the accelera-
tion/deceleration regions. However, the designer must be 
careful not to take the motor into a speed that violates the 
motor’s torque/speed curve.

Conclusion
Accelerating and decelerating a bipolar stepper motor is  
a crucial part of designing any application that uses one. 
While power-stage control has been simplified consider-
ably throughout the last decade, the application of accel-
eration and deceleration profiles still resides in the realm 
of the application’s processor. Because of the wide avail a-
bility of stepper solutions, the algorithms to process proper 

Acceleration
(20%)

Deceleration
(20%)

Running
(60%)

Reached Speed

Starting
Speed

Stopping
Speed

Number of Steps

Figure 5. Acceleration/deceleration profile based 
on percentages

motion control for the application’s stepper motor are eas-
ier to code and tune. By accelerating and decelerating the 
motor properly, the designer ensures that the appli cation 
will operate efficiently and according to specifications.

Please see Reference 1 for more information about the 
code structure for an acceleration/deceleration-based 
implementation that revolves around a power stage similar 
to the DRV8818 and uses an MSP430 microcontroller.
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