

ZHCSHS1D - MAY 2017 - REVISED DECEMBER 2021

AWR1243 单芯片 77GHz 和 79GHz FMCW 收发器

1 特性

FMCW 收发器

Texas

INSTRUMENTS

- 集成 PLL、发送器、接收器、基带和 ADC
- 76GHz 至 81GHz 的覆盖范围,具有 4GHz 的可 用带宽
- 四个接收通道
- 三个发送通道 (可以同时使用两个通道)
- 基于分数 N PLL 的超精确线性调频脉冲引擎
- TX 功率:12dBm
- RX 噪声系数:
 - 14dB(76至77GHz)
 - 15dB(77至81GHz)
- 1MHz 时的相位噪声:
 - - 95dBc/Hz (76 至 77GHz)
 - - 93dBc/Hz (77 至 81GHz)
- 内置校准和自检
 - 内置固件 (ROM)
 - 针对工艺和温度进行自校准的系统
- 主机接口
 - 通过 SPI 与外部处理器进行控制连接
 - 通过 MIPI D-PHY 和 CSI2 V1.1 与外部处理器进 行数据连接
 - 用于故障报告的中断

- 符合功能安全标准
 - 专为功能安全应用开发
 - 文档有助于使 ISO 26262 功能安全系统设计满 足 ASIL-D 级要求
 - 硬件完整性高达 ASIL-B 级
 - 安全相关认证
 - 经 TUV SUD 进行 ISO 26262 认证达到 ASIL B 级
- 符合 AEC-Q100 标准
- 器件高级特性
 - 嵌入式自监控,无需使用主机处理器
 - 复基带架构
 - 嵌入式干扰检测功能
- 电源管理
 - 内置 LDO 网络, 可增强 PSRR
 - I/O 支持双电压 3.3V/1.8V
- 时钟源
 - 支持外部驱动、频率为 40MHz 的时钟 (方波/正 弦波)
 - 支持 40MHz 晶体与负载电容器相连接
- 轻松的硬件设计
 - 0.65mm 间距、161 引脚 10.4mm × 10.4mm 覆 晶 BGA 封装,可实现轻松组装和低成本 PCB 设计
 - 小尺寸解决方案
- 运行条件
 - 结温范围: 40°C 至 125°C

AWR1243 ZHCSHS1D - MAY 2017 - REVISED DECEMBER 2021

2 应用

- 用于测量距离、速度和角度的汽车传感器
- 自动紧急刹车
- 自适应巡航控制
- 自动公路驾驶

图 2-1. 适用于汽车应用的自主雷达传感器

3 说明

AWR1243 器件是一款能够在 76 至 81GHz 频带内运行的集成式单芯片 FMCW 收发器。该器件在极小的封装中实现了出色的集成度。AWR1243 是适用于汽车领域中的低功耗、自监控、超精确雷达系统的理想解决方案。

AWR1243 器件是一种自包含 FMCW 收发器单芯片解决方案,能够简化 76 至 81GHz 频带中的汽车雷达传感器实施。它基于 TI 的低功耗 45nm RFCMOS 工艺构建,从而实现了一个具有内置 PLL 和 ADC 转换器的单片实施 3TX、4RX 系统。简单编程模型更改可支持各种传感器实施(近距离、中距离和远距离),并且能够进行动态重 新配置,从而实现多模式传感器。此外,该器件作为完整的平台解决方案进行提供,其中包括 TI 参考设计、软件 驱动程序、示例配置、API 指南以及用户文档。

器件信息

器件型号 ⁽²⁾	封装 ⁽¹⁾	封装尺寸	托盘/卷带包装
AWR1243FBIGABLQ1	ECBCA (161)	10 4mm x 10 4mm	托盘
AWR1243FBIGABLRQ1	FCBGA (101)	10.411111 ~ 10.411111	卷带包装

(1) 如需更多信息,请参阅节 13 机械、封装和可订购信息。

(2) 如需更多信息,请参阅节12.1,器件命名规则。

4 Functional Block Diagram

图 4-1 shows the functional block diagram of the device.

A. Phase Shift Control:

• 0° / 180° BPM for AWR1243

B. Internal temperature sensor accuracy is ± 7 °C.

图 4-1. Functional Block Diagram

Table of Contents

1 特性	1
2 应用	2
3 说明	2
4 Functional Block Diagram	3
5 Revision History	<mark>5</mark>
6 Device Comparison	6
6.1 Related Products	7
7 Terminal Configuration and Functions	8
7.1 Pin Diagram	8
7.2 Signal Descriptions	12
8 Specifications	16
8.1 Absolute Maximum Ratings	16
8.2 ESD Ratings	16
8.3 Power-On Hours (POH)	17
8.4 Recommended Operating Conditions	17
8.5 Power Supply Specifications	18
8.6 Power Consumption Summary	19
8.7 RF Specification	20
8.8 Thermal Resistance Characteristics for FCBGA	
Package [ABL0161]	21
8.9 Timing and Switching Characteristics	21
9 Detailed Description	33

9 1 Overview	33
9 2 Functional Block Diagram	
9.3 Subsystems	
0.4 Other Subayatema	
9.4 Other Subsystems	
10 Monitoring and Diagnostics	
10.1 Monitoring and Diagnostic Mechanisms	
11 Applications, Implementation, and Layout	42
11.1 Application Information	42
11.2 Short-, Medium-, and Long-Range Radar	42
11.3 Reference Schematic	43
12 Device and Documentation Support	44
12.1 Device Nomenclature	44
12.2 Tools and Software	45
12.3 Documentation Support	
12.4 支持资源	45
12.5 Trademarks	46
12.6 Electrostatic Discharge Caution	
12.7 术语表	
13 Mechanical, Packaging, and Orderable	
Information	
13.1 Packaging Information	47
13.2 Tray Information for	47
10.2 may mornadon for	······

5 Revision History

Changes from May 1, 2020 to December 8, 202 [,]	1 (from Revision C (May 2020) to Revision D
(December 2021))	

(D	Page Page
•	<i>通篇</i> :进行了更新,以反映功能安全合规性及相关认证资料1
•	通篇:将"A2D"替换为"ADC";将"主子系统"和"主 R4F"更改为"主要子系统"和"主要 R4F";在
	主/从术语方面改用了更具包容性的措辞1
•	<i>(特性)</i> :提及了毫米波传感器的额定工作温度范围1
•	<i>(应用):</i> 修订了图示并更新了应用链接2
•	(器件信息):从表格中删除了可订购的预量产器件型号 (XA1243FPBGABL) 及其相关特性2
•	Updated/Changed Functional Block Diagram to remove XA1243FPBGABL OPN specific features
•	(Device Comparison) : Removed a row on Functionaly-Safety compliance and instead added a table-note for
	this and LVDS Interface; modified the existing table-note on simultaneous TX operation; Additional
	information on Device security added
•	(Device Comparison) : Updated/Changed RF Specification Receiver from "Max real sampling rate (Msps)" to
	max real/complex 2x sampling rate (msps); and max complex sampling rate (msps) to max complex 1x
•	(Signal Descriptions): Removed XA12/3EPBCABL OPN specific pin functions: undated descriptions for
	CLKP and CLKM pins for Reference Oscillator.
•	(Absolute Maximum Ratings): Added entries for externally supplied power on the RF inputs (TX and RX) and
	a table-note for the signal level applied on TX
•	(Power Supply Specifications): Updated/Changed footnote in 表 8-1
•	(Maximum Current Rating at Power Terminals): Updated footnotes section to add estimation assumption for
	VIOIN rail
•	(Average Power Consumption at Power Terminals): Removed 3TX, 4RX power numbers since only 2TX are
	operational simultaneously in the device
•	(<i>RF Specification</i>): Updated/Changed RF Specification Receiver from "A2D sampling rate (complex)" to "ADC
	sampling rate (complex 1x)"; and "A2D sampling rate (real)" to "ADC sampling rate (real/complex 2x)" 20
•	(<i>RF Specification):</i> Updated/Changed the table to remove XA1243FPBGABL specific features
•	(Synchronized Frame Triggering): Updated the maximum pulse width to 4ns
	(Clock Specifications): Opdated/Changed \approx 8-6 to reflect correct device operating temperature range
	(Table: External Clock Mode Specifications): Revised frequency (orefance specs from +/-50 to +/-100 ppm24)
-	remove Slew Rate = 1 condition: removed a footnote
•	8 9-1: Updated the figure to remove XA1243EPBGABL OPN specific features
•	(Monitoring and Diagnostic Mechanisms): Added a new section
•	(<i>Reference Schematics</i>) : Added weblinks to AWR1243 EVM documentation collateral
•	(Device Nomenclature):Updated/changed Device Nomenclature

6 Device Comparison

FUNCTION		AWR1243 ⁽¹⁾	AWR1443	AWR1642	AWR1843
Number of receivers		4	4	4	4
Number of transmitters		3	3	2	3
On-chip memo	vry	—	576KB	1.5MB	2MB
Max I/F (Intern	nediate Frequency) (MHz)	15	5	5	10
Max real/comp	lex 2x sampling rate (Msps)	37.5	12.5	12.5	25
Max complex ?	Ix sampling rate (Msps)	18.75	6.25	6.25	12.5
Device Securit	y ⁽²⁾	—	—	Yes	Yes
Processor					
MCU (R4F)		—	Yes	Yes	Yes
DSP (C674x)		—	—	Yes	Yes
Peripherals					
Serial Peripher	ral Interface (SPI) ports	1	1	2	2
Quad Serial Pe	eripheral Interface (QSPI)	—	Yes	Yes	Yes
Inter-Integrate	d Circuit (I ² C) interface	—	- 1 1		1
Controller Area Network (DCAN) interface		—	Yes	Yes	Yes
CAN-FD		—	—	— Yes	
Trace		—	—	Yes	Yes
PWM		—	—	Yes	Yes
Hardware In L	pop (HIL/DMM)	—	—	Yes	Yes
GPADC		—	Yes	Yes	Yes
LVDS/Debug ⁽³)	Yes	Yes	Yes	Yes
CSI2		Yes	—	—	—
Hardware acce	elerator	—	Yes	—	Yes
1-V bypass mo	ode	Yes	Yes	Yes	Yes
Cascade (20-GHz sync)		—	—	—	—
JTAG		—	Yes	Yes	Yes
Number of Tx	that can be simultaneously used	2	2	2	3 ⁽⁴⁾
Per chirp confi	gurable Tx phase shifter	—	—	—	Yes
Product status ⁽⁵⁾	PRODUCT PREVIEW (PP), ADVANCE INFORMATION (AI), or PRODUCTION DATA (PD)	PD	PD	PD	PD

(1) Developed for Functional Safety applications, the device supports hardware integrity upto ASIL-B. Refer to the related documentation for more details.

(2) Device security features including Secure Boot and Customer Programmable Keys are available in select devices for only select part variants as indicated by the Device Type identifier in Section 3, Device Information table.

(3) The LVDS interface is not a production interface and is only used for debug.

(4) 3 Tx Simultaneous operation is supported only in AWR1843 with 1V LDO bypass and PA LDO disable mode. In this mode 1V supply needs to be fed on the VOUT PA pin. Rest of the other devices only support simultaneous operation of 2 Transmitters.

(5) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

6.1 Related Products

For information about other devices in this family of products or related products see the links that follow.

mmWave Sensors	TI's mmWave sensors rapidly and accurately sense range, angle and velocity with less power using the smallest footprint mmWave sensor portfolio for automotive applications.
Automotive mmWave Sensors	TI's automotive mmWave sensor portfolio offers high-performance radar front end to ultra-high resolution, small and low-power single-chip radar solutions. TI's scalable sensor portfolio enables design and development of ADAS system solution for every performance, application and sensor configuration ranging from comfort functions to safety functions in all vehicles.
Companion Products for AWR1243	Review products that are frequently purchased or used in conjunction with this product.

7 Terminal Configuration and Functions

7.1 Pin Diagram

图 7-1 shows the pin locations for the 161-pin FCBGA package. 图 7-2, 图 7-3, 图 7-4, and 图 7-5 show the same pins, but split into four quadrants.

图 7-1. Pin Diagram

AWR1243 ZHCSHS1D - MAY 2017 - REVISED DECEMBER 2021

图 7-4. Bottom Left Quadrant

图 7-5. Bottom Right Quadrant

7.2 Signal Descriptions

 \ddagger 7.2.1 lists the pins by function and describes that function.

备注

All IO pins of the device (except NERROR IN, NERROR_OUT, and WARM_RESET) are non-failsafe; hence, care needs to be taken that they are not driven externally without the VIO supply being present to the device.

7.2.1 Signal Descriptions

FUNCTION	SIGNAL NAME	PIN NUMBER	PIN TYPE	DEFAULT PULL STATUS ⁽¹⁾	DESCRIPTION	
	TX1	B4	0	_	Single-ended transmitter1 o/p	
Transmitters	TX2	B6	0	_	Single-ended transmitter2 o/p	
	ТХ3	B8	0	_	Single-ended transmitter3 o/p	
	RX1	M2	I	_	Single-ended receiver1 i/p	
Bassivers	RX2	K2	I	_	Single-ended receiver2 i/p	
Receivers	RX3	H2	I	_	Single-ended receiver3 i/p	
	RX4	F2	I	_	Single-ended receiver4 i/p	
	CSI2_TXP[0]	G15	0	_	Differential data Out - Lane 0 (for CSI and LVDS	
	CSI2_TXM[0]	G14	0	_	debug interface)	
	CSI2_CLKP	J15	0	_	Differential clock Out (for CSI and LVDS debug	
	CSI2_CLKM	J14	0	_	interface)	
	CSI2_TXP[1]	H15	0	_	Differential data Out - Lane 1 (for CSI and LVDS	
CSI2 TX	CSI2_TXM[1]	H14	0	_	debug interface)	
	CSI2_TXP[2]	K15	0	_	Differential data Out - Lane 2 (for CSI and LVDS	
	CSI2_TXM[2]	K14	0	_	debug interface)	
	CSI2_TXP[3]	L15	0	_	Differential data Out - Lane 3 (for CSI and LVDS	
	CSI2_TXM[3]	L14	0	_	debug interface)	
	HS_DEBUG1_P	M15	0	_	Differential dobug port 1 (for L)/DS dobug interface)	
	HS_DEBUG1_M	M14	0	_		
	HS_DEBUG2_P	N15	0	_	Differential debug part 2 (for LVDS debug interfac	
	HS_DEBUG2_M	N14	0	_	- Differential debug port 2 (for EVDS debug interface)	
	FM_CW_CLKOUT	B15	0		Deserved Signal Nationalizable in AM/D1242	
Reserved	FM_CW_SYNCOUT	D1			Reserved Signal. Not applicable in AVVR1243.	
Space	FM_CW_SYNCIN1	B1			Deserved Signal Nationalizable in AM/D1242	
	FM_CW_SYNCIN2	D15			Reserved Signal. Not applicable in AVVR 1243.	
Reference clock	OSC_CLKOUT	A14	0	_	Reference clock output from clocking subsystem after cleanup PLL. Can be used by peripheral chip in multichip cascading	
System	SYNC_OUT	P11	0	Pull Down	Low-frequency frame synchronization signal output. Can be used by peripheral chip in multichip cascading	
synchronization	SYNC_IN	N10	I	Pull Down	Low-frequency frame synchronization signal input. This signal could also be used as a hardware trigger for frame start	

AWR1243 ZHCSHS1D - MAY 2017 - REVISED DECEMBER 2021

FUNCTION	SIGNAL NAME	PIN NUMBER	PIN TYPE	DEFAULT PULL STATUS ⁽¹⁾	DESCRIPTION
SPI control	SPI_CS_1	R7	I	Pull Up	SPI chip select
interface from	SPI_CLK_1	R9	I	Pull Down	SPI clock
external MCU	MOSI_1	R8	I	Pull Up	SPI data input
peripheral	MISO_1	P5	0	Pull Up	SPI data output
mode)	SPI_HOST_INTR_1	P6	0	Pull Down	SPI interrupt to host
	RESERVED	R3, R4, R5, P4		_	
	NRESET	P12	I	_	Power on reset for chip. Active low
Reset	WARM_RESET ⁽²⁾	N12	Ю	Open Drain	Open-drain fail-safe warm reset signal. Can be driven from PMIC for diagnostic or can be used as status signal that the device is going through reset.
	SOP2	P13	I		The SOP pins are driven externally (weak drive) and
Sense on Power	SOP1	P11	I	_	the AWR device senses the state of these pins during bootup to decide the bootup mode. After boot
	SOP0	J13	I		the same pins have other functionality. [SOP2 SOP1 SOP0] = [0 0 1] \rightarrow Functional SPI mode [SOP2 SOP1 SOP0] = [1 0 1] \rightarrow Flashing mode [SOP2 SOP1 SOP0] = [0 1 1] \rightarrow debug mode
Safety	NERROR_OUT	N8	0	Open Drain	Open-drain fail-safe output signal. Connected to PMIC/Processor/MCU to indicate that some severe criticality fault has happened. Recovery would be through reset.
	NERROR_IN	P7	I	Open Drain	Fail-safe input to the device. Error output from any other device can be concentrated in the error signaling monitor module inside the device and appropriate action can be taken by firmware
	TMS	L13	I	Pull Up	
	ТСК	M13	I	Pull Down	ITAC port for TI internal development
	TDI	H13	I	Pull Up	
	TDO	J13	0		
Reference oscillator	CLKP	E14	I	_	In XTAL mode: Input for the reference crystal In External clock mode: Single ended input reference clock port
	CLKM	F14	0		In XTAL mode: Feedback drive for the reference crystal In External clock mode: Connect this port to ground
Band-gap voltage	VBGAP	B10	0	_	

AWR1243

ZHCSHS1D - MAY 2017 - REVISED DECEMBER 2021

FUNCTION	SIGNAL NAME	PIN NUMBER	PIN TYPE	DEFAULT PULL STATUS ⁽¹⁾	DESCRIPTION		
	VDDIN	F13,N11,P15 ,R6	POW	_	1.2-V digital power supply		
	VIN_SRAM	R14	POW	—	1.2-V power rail for internal SRAM		
	VNWA	P14	POW	_	1.2-V power rail for SRAM array back bias		
	VIOIN	R13	POW	_	I/O supply (3.3-V or 1.8-V): All CMOS I/Os would operate on this supply.		
	VIOIN_18	K13	POW	_	1.8-V supply for CMOS IO		
	VIN_18CLK	B11	POW	_	1.8-V supply for clock module		
	VIOIN_18DIFF	D13	POW	_	1.8-V supply for CSI2 port		
	Reserved	G13	POW	_	No connect		
	VIN_13RF1	G5,J5,H5	POW	_	1.3-V Analog and RF supply,VIN 13RF1 and		
	VIN_13RF2	C2,D2	POW		VIN_13RF2 could be shorted on the board		
	VIN_18BB	K5,F5	POW		1.8-V Analog baseband power supply		
	VIN_18VCO	B12	POW		1.8-V RF VCO supply		
Power supply	VSS	E5,E6,E8,E1 0,E11,F9,F1 1,G6,G7,G8, G10,H7,H9, H11,J6,J7,J8 ,J10,K7,K8,K 9,K10,K11,L 5,L6,L8,L10, R15	GND	_	Digital ground		
	VSSA	A1,A3,A5,A7 ,A9,A15,B3, B5,B7,B9,B1 3,B14,C1,C3 ,C4,C5,C6,C 7,C8,C9,C15 ,E1,E2,E3,E 13,E15,F3,G 1,G2,G3,H3, J1,J2,J3,K3, L1,L2,L3, M3,N1,N2,N 3,R1	GND	_	Analog ground		
	VOUT_14APLL	A10	0	_			
	VOUT_14SYNTH	A13	0	_			
Internal LDO output/inputs	VOUT_PA	A2,B2	Ю	_	When internal PA LDO is used this pin provides the output voltage of the LDO. When the internal PA LDO is bypassed and disabled 1V supply should be fed on this pin. This is mandatory in 3TX simultaneous use case.		
Entry 1 1 1	PMIC_CLK_OUT	P13	0	_	Dithered clock input to PMIC		
External clock	MCU_CLK_OUT	N9	0	_	Programmable clock given out to external MCU or the processor		
	GPIO[0]	N4	10	Pull Down	General-purpose IO		
General-	GPIO[1]	N7	10	Pull Down	General-purpose IO		
purpose I/Os	GPIO[2]	N13	10	Pull Down	General-purpose IO		

FUNCTION	SIGNAL NAME	PIN NUMBER	PIN TYPE	DEFAULT PULL STATUS ⁽¹⁾	DESCRIPTION	
	QSPI_CS	P8	0	Pull Up	Chip-select output from the device. Device is a controller connected to serial flash peripheral.	
OSPI for Serial	QSPI_CLK	R10	0	Pull Down	Clock output from the device. Device is a controller connected to serial flash peripheral.	
Flash	QSPI[0]	R11	10	Pull Down	Data IN/OUT	
	QSPI[1]	P9	10	Pull Down	Data IN/OUT	
	QSPI[2]	R12	10	Pull Up	Data IN/OUT	
	QSPI[3]	P10	10	Pull Up	Data IN/OUT	
Flash programming and RS232 UART	RS232_TX	N6	0	Pull Down		
	RS232_RX	N5	I	Pull Up	UART pins for programming external flash	
Test and Debug	Analog Test1	P1	10	_	Internal test signal	
output for	Analog Test2	P2	10	_	Internal test signal	
phase. Can be	Analog Test3	P3	10	_	Internal test signal	
pinned out on	Analog Test4	R2	10	_	Internal test signal	
hardware for	ANAMUX	C13	10	_	Internal test signal	
field debug	VSENSE	C14	10	_	Internal test signal	

Status of PULL structures associated with the IO after device POWER UP.
For the AWR1243 WARM_RESET can be used as an output only pin for status indication.

8 Specifications

8.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)

	PARAMETERS ⁽¹⁾ ⁽²⁾	MIN	МАХ	UNIT
VDDIN	1.2 V digital power supply	- 0.5	1.4	V
VIN_SRAM	1.2 V power rail for internal SRAM	- 0.5	1.4	V
VNWA	1.2 V power rail for SRAM array back bias	- 0.5	1.4	V
VIOIN	I/O supply (3.3 V or 1.8 V): All CMOS I/Os would operate on this supply.	- 0.5	3.8	V
VIOIN_18	1.8 V supply for CMOS IO	- 0.5	2	V
VIN_18CLK	1.8 V supply for clock module	- 0.5	2	V
VIOIN_18DIFF	1.8 V supply for CSI2 port	- 0.5	2	V
VIN_13RF1	1.3 V Analog and RF supply, VIN_13RF1 and VIN_13RF2 could	0.5	1 45	V
VIN_13RF2	be shorted on the board.	- 0.5	1.45	v
VIN_13RF1 VIN_13RF2	1-V Internal LDO bypass mode. Device supports mode where external Power Management block can supply 1 V on VIN_13RF1 and VIN_13RF2 rails. In this configuration, the internal LDO of the device would be kept bypassed.	- 0.5	1.4	V
VIN_18BB	1.8-V Analog baseband power supply	- 0.5	2	V
VIN_18VCO supply	1.8-V RF VCO supply	- 0.5	2	V
RX1-4	Externally applied power on RF inputs		10	dBm
TX1-3	Externally applied power on RF outputs ⁽³⁾		10	dBm
Input and output	Dual-voltage LVCMOS inputs, 3.3 V or 1.8 V (Steady State)	- 0.3V	VIOIN + 0.3	
voltage range	nput and output voltage range Dual-voltage LVCMOS inputs, operated at 3.3 V/1.8 V (Transient Overshoot/Undershoot) or external oscillator input		IOIN + 20% up to % of signal period	V
CLKP, CLKM	Input ports for reference crystal	- 0.5	2	V
Clamp current	Input or Output Voltages 0.3 V above or below their respective power rails. Limit clamp current that flows through the internal diode protection cells of the I/O.	- 20	20	mA
TJ	Operating junction temperature range	- 40	125	°C
T _{STG}	Storage temperature range after soldered onto PC board	- 55	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to $V_{\text{SS}},$ unless otherwise noted.

(3) This value is for an externally applied signal level on the TX. Additionally, a reflection coefficient up to Gamma = 1 can be applied on the TX output.

8.2 ESD Ratings

				VALUE	UNIT
V _(ESD) Electrostatic discharge		Human-body model (HBM), per AEC Q100-002 ⁽¹⁾		±2000	
	Electrostatic discharge	Charged-device model (CDM), per AEC	All other pins	±500	V
		Q100-011	Corner pins	±750	

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

8.3 Power-On Hours (POH)

JUNCTION TEMPERATURE (T _j) (1) (2)	OPERATING CONDITION	NOMINAL CVDD VOLTAGE (V)	POWER-ON HOURS [POH] (HOURS)
- 40°C	100% duty cycle		600 (6%)
75°C			2000 (20%)
95°C		1.2	6500 (65%)
125°C			900 (9%)

(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard terms and conditions for TI semiconductor products.

(2) The specified POH are applicable with max Tx output power settings using the default firmware gain tables. The specified POH would not be applicable, if the Tx gain table is overwritten using an API.

8.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
VDDIN	1.2 V digital power supply	1.14	1.2	1.32	V
VIN_SRAM	1.2 V power rail for internal SRAM	1.14	1.2	1.32	V
VNWA	1.2 V power rail for SRAM array back bias	1.14	1.2	1.32	V
	I/O supply (3.3 V or 1.8 V):	3.135	3.3	3.465	V
VIOIN	All CMOS I/Os would operate on this supply.	1.71	1.8	1.89	v
VIOIN_18	1.8 V supply for CMOS IO	1.71	1.8	1.9	V
VIN_18CLK	1.8 V supply for clock module	1.71	1.8	1.9	V
VIOIN_18DIFF	1.8 V supply for CSI2 port	1.71	1.8	1.9	V
VIN_13RF1	1.3 V Analog and RF supply. VIN_13RF1 and VIN_13RF2	1.02	1.0	1.26	V
VIN_13RF2	could be shorted on the board	1.23	1.3	1.30	v
VIN_13RF1 (1-V Internal LDO bypass mode)		0.95	1	1.05	V
VIN_13RF2 (1-V Internal LDO bypass mode)		0.55	·	1.03	v
VIN18BB	1.8-V Analog baseband power supply	1.71	1.8	1.9	V
VIN_18VCO	1.8V RF VCO supply	1.71	1.8	1.9	V
V	Voltage Input High (1.8 V mode)	1.17			V
VIH	Voltage Input High (3.3 V mode)	2.25			v
V	Voltage Input Low (1.8 V mode)			0.3*VIOIN	V
VIL	Voltage Input Low (3.3 V mode)			0.62	v
V _{OH}	High-level output threshold (I _{OH} = 6 mA)	VIOIN - 450			mV
V _{OL}	Low-level output threshold (I _{OL} = 6 mA)			450	mV
	V _{IL} (1.8V Mode)			0.2	
NRESET	V _{IH} (1.8V Mode)	0.96			
SOP[2:0]	V _{IL} (3.3V Mode)			0.3	v
	V _{IH} (3.3V Mode)	1.57			

8.5 Power Supply Specifications

表 8-1 describes the four rails from an external power supply block of the AWR1243 device.

SUPPLY	DEVICE BLOCKS POWERED FROM THE SUPPLY	RELEVANT IOS IN THE DEVICE				
1.8 V	Synthesizer and APLL VCOs, crystal oscillator, IF Amplifier stages, ADC, CSI2	Input: VIN_18VCO, VIN18CLK, VIN_18BB, VIOIN_18DIFF, VIOIN_18IO LDO Output: VOUT_14SYNTH, VOUT_14APLL				
1.3 V (or 1 V in internal LDO bypass mode) ⁽¹⁾	Power Amplifier, Low Noise Amplifier, Mixers and LO Distribution	Input: VIN_13RF2, VIN_13RF1 LDO Output: VOUT_PA				
3.3 V (or 1.8 V for 1.8 V I/O mode)	Digital I/Os	Input VIOIN				
1.2 V	Core Digital and SRAMs	Input: VDDIN, VIN_SRAM				

表 8-1. Power Supply Rails Characteristics

(1) The device only supports simultaneous operation of 2 transmitters. In the 1-V LDO bypass mode, 1V supply needs to be fed on the VOUT PA pin.

The 1.3-V (1.0 V) and 1.8-V power supply ripple specifications mentioned in $\frac{1}{8}$ 8-2 are defined to meet a target spur level of - 105 dBc (RF Pin = - 15 dBm) at the RX. The spur and ripple levels have a dB-to-dB relationship, for example, a 1-dB increase in supply ripple leads to a ~1 dB increase in spur level. Values quoted are rms levels for a sinusoidal input applied at the specified frequency.

	RF RAIL	VCO/IF RAIL				
FREQUENCY (kHz)	1.0 V (INTERNAL LDO BYPASS) (μV _{RMS})	1.3 V (μV _{RMS})	1.8 V (μV _{RMS})			
137.5	7	648	83			
275	5	76	21			
550	3	22	11			
1100	2	4	6			
2200	11	82	13			
4400	13	93	19			
6600	22	117	29			

表 8-2. Ripple Specifications

8.6 Power Consumption Summary

 \pm 8-3 and \pm 8-4 summarize the power consumption at the power terminals.

PARAMETER	SUPPLY NAME	DESCRIPTION	MIN	TYP N	IAX	UNIT		
	VDDIN, VIN_SRAM, VNWA	Total current drawn by all nodes driven by 1.2V rail			500			
Current consumption ⁽¹⁾	VIN_13RF1, VIN_13RF2	Total current drawn by all nodes driven by 1.3V (or 1V in LDO Bypass mode) rail		2	000	٣٨		
	VIOIN_18, VIN_18CLK, VIOIN_18DIFF, VIN_18BB, VIN_18VCO	Total current drawn by all nodes driven by 1.8V rail			850	ША		
	VIOIN	Total current drawn by all nodes driven by 3.3V rail ⁽²⁾		50				

表 8-3. Maximum Current Ratings at Power Terminals

(1) The specified current values are at typical supply voltage level.

(2) The exact VIOIN current depends on the peripherals used and their frequency of operation.

CONDITION DESCRIPTION PARAMETER MIN TYP MAX UNIT 1.0-V internal 1TX, 4RX 1.62 Sampling: 16.66 MSps complex LDO bypass 2TX, 4RX Transceiver, 40-ms frame time, 512 1.79 mode Average power chirps, 512 samples/chirp, 8.5- µ s W consumption 1.3-V internal 1TX, 4RX 1.80 interchirp time (50% duty cycle) LDO enabled Data Port: MIPI-CSI-2 2TX, 4RX 2.01 mode

表 8-4. Average Power Consumption at Power Terminals

8.7 RF Specification

over recommended operating conditions and with run time calibrations enabled (unless otherwise noted)

	PARAMETER		MIN	TYP	MAX	UNIT	
	Noice figure	76 to 77 GHz (VCO1)		14		٩D	
	Noise ligure	77 to 81 GHz (VCO2)	15			uБ	
	1-dB compression point (Out Of Band) ⁽¹⁾			- 8		dBm	
	Maximum gain			48		dB	
	Gain range			24		dB	
	Gain step size			2		dB	
	Image Rejection Ratio (IMRR)			30		dB	
	IF bandwidth ⁽²⁾				15	MHz	
	ADC sampling rate (real/complex 2x)				37.5	Msps	
Receiver	ADC sampling rate (complex 1x)			18.75	Msps		
	ADC resolution			12		Bits	
	Return loss (S11)			< - 10		dB	
	Gain mismatch variation (over temperature)			±0.5		dB	
	Phase mismatch variation (over temperature)			±3		٥	
	In-band IIP2	RX gain = 30dB IF = 1.5, 2 MHz at - 12 dBFS		16		dBm	
	Out-of-band IIP2	RX gain = 24dB IF = 10 kHz at -10dBm, 1.9 MHz at -30 dBm		24		dBm	
	Idle Channel Spurs			- 90		dBFS	
Transmittar	Output power			12		dBm	
Transmiller	Amplitude noise			- 145		dBc/Hz	
	Frequency range		76		81	GHz	
Clock	Ramp rate				100	MHz/µs	
subsystem	Dhase poice at 1 MHz offect	76 to 77 GHz (VCO1)		- 95		dDo/U-	
	Phase noise at 1-MHz offset 77 to 81 GHz (VCO2)			- 93		dBc/Hz	

(1) 1-dB Compression Point (Out Of Band) is measured by feed a Continuous wave Tone (10 kHz) well below the lowest HPF cut-off frequency.

(2) The analog IF stages include high-pass filtering, with two independently configurable first-order high-pass corner frequencies. The set of available HPF corners is summarized as follows:

Available HPF Corner Frequencies (kHz)

HPF1 HPF2

175, 235, 350, 700 350, 700, 1400, 2800

The filtering performed by the digital baseband chain is targeted to provide:

- Less than ±0.5 dB pass-band ripple/droop, and
- Better than 60 dB anti-aliasing attenuation for any frequency that can alias back into the pass-band.

图 8-1 shows variations of noise figure and in-band P1dB parameters with respect to receiver gain programmed.

8.8 Thermal Resistance Characteristics for FCBGA Package [ABL0161]

THERMAL MET	THERMAL METRICS ⁽¹⁾	
R⊕ _{JC}	Junction-to-case	5
R ⊕ _{JB}	Junction-to-board	5.9
R⊕ _{JA}	Junction-to-free air	21.6
R _{JMA}	Junction-to-moving air	15.3 ⁽⁴⁾
Psi _{JT}	Junction-to-package top	0.69
Psi _{JB}	Junction-to-board	5.8

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

(2) °C/W = degrees Celsius per watt.

(3) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [R ⊕ _{JC}] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/ JEDEC standards:

- JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions Natural Convection (Still Air)
- JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
- JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
- JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
- (4) Air flow = 1 m/s

8.9 Timing and Switching Characteristics

8.9.1 Power Supply Sequencing and Reset Timing

The AWR1243 device expects all external voltage rails and SOP lines to be stable before reset is deasserted. 8-2 describes the device wake-up sequence.

AWR1243

ZHCSHS1D - MAY 2017 - REVISED DECEMBER 2021

图 8-2. Device Wake-up Sequence

8.9.2 Synchronized Frame Triggering

The AWR1243 device supports a hardware based mechanism to trigger radar frames. An external host can pulse the SYNC_IN signal to start radar frames. The typical time difference between the rising edge of the external pulse and the frame transmission on air (Tlag) is about 160 ns. There is also an additional programmable delay that the user can set to control the frame start time.

The periodicity of the external SYNC_IN pulse should be always greater than the programmed frame periodic in the frame configurations in all instances.

图 8-3. Sync In Hardware Trigger

表 8-5. Frame Trigger Timing

PARAMETER	DESCRIPTION	MIN	MAX	UNIT
T _{active_frame}	Active frame duration	User defined		nc
T _{pulse}		25	4000	115

8.9.3 Input Clocks and Oscillators

8.9.3.1 Clock Specifications

An external crystal is connected to the device pins. 🛽 8-4 shows the crystal implementation.

图 8-4. Crystal Implementation

备注

The load capacitors, Cf1 and Cf2 in 图 8-4, should be chosen such that 方程式 1 is satisfied. CL in the equation is the load specified by the crystal manufacturer. All discrete components used to implement the oscillator circuit should be placed as close as possible to the associated oscillator CLKP and CLKM pins.Note that Cf1 and Cf2 include the parasitic capacitances due to PCB routing.

$$C_{L} = C_{f1} \times \frac{C_{f2}}{C_{f1} + C_{f2}} + C_{P}$$
(1)

表 8-6 lists the electrical characteristics of the clock crystal.

NAME	DESCRIPTION	MIN	ТҮР	MAX	UNIT	ĺ
f _P	Parallel resonance crystal frequency		40		MHz	
CL	Crystal load capacitance	5	8	12	pF	
ESR	Crystal ESR			50	Ω	
Temperature range	Expected temperature range of operation	- 40		125	°C	
Frequency tolerance	Crystal frequency tolerance ⁽¹⁾ ⁽²⁾	- 200		200	ppm	
Drive level			50	200	μŴ	

表 8-6 Crystal Electrical Characteristics (Oscillator Mode)

The crystal manufacturer's specification must satisfy this requirement. (1)

Includes initial tolerance of the crystal, drift over temperature, aging and frequency pulling due to incorrect load capacitance. (2)

In the case where an external clock is used as the clock resource, the signal is fed to the CLKP pin only; CLKM is grounded. The phase noise requirement is very important when a 40-MHz clock is fed externally. 表 8-7 lists the electrical characteristics of the external clock signal.

PARAMETER		SPECIFICATION				
		MIN	TYP	MAX		
	Frequency		40		MHz	
	AC-Amplitude	700		1200	mV (pp)	
	DC-t _{rise/fall}			10	ns	
Input Clock:	Phase Noise at 1 kHz			- 132	dBc/Hz	
External AC-coupled sine wave or DC-	Phase Noise at 10 kHz			- 143	dBc/Hz	
Phase Noise referred to 40 MHz	Phase Noise at 100 kHz			- 152	dBc/Hz	
	Phase Noise at 1 MHz			- 153	dBc/Hz	
	Duty Cycle	35		65	%	
	Freq Tolerance	- 100		100	ppm	

表 8-7. External Clock Mode Specifications

8.9.4 Multibuffered / Standard Serial Peripheral Interface (MibSPI)

8.9.4.1 Peripheral Description

The SPI uses a MibSPI Protocol by TI.

The MibSPI/SPI is a high-speed synchronous serial input/output port that allows a serial bit stream to be shifted into and out of the device at a programmed bit-transfer rate. The MibSPI/SPI is normally used for communication between the microcontroller and external peripherals or another microcontroller.

 \ddagger 8.9.4.1.2 and \ddagger 8.9.4.1.3 assume the operating conditions stated in \ddagger 8.9.4.1.1. \ddagger 8.9.4.1.2, \ddagger 8.9.4.1.3, and \boxtimes 8-5 describe the timing and switching characteristics of the MibSPI.

8.9.4.1.1 SPI Timing Conditions

		MIN	TYP MAX	UNIT			
Input Conditions							
t _R	Input rise time	1	3	ns			
t _F	Input fall time	1	3	ns			
Output Conditions							
C _{LOAD}	Output load capacitance	2	15	pF			

8.9.4.1.2 SPI Peripheral Mode Switching Parameters (SPICLK = input, SPISIMO = input, and SPISOMI = output)

NO.		PARAMETER	MIN	TYP MA	X UNIT
1	t _{c(SPC)S}	Cycle time, SPICLK	25		ns
2	t _{w(SPCH)S}	Pulse duration, SPICLK high	10		ns
3	t _{w(SPCL)S}	Pulse duration, SPICLK low	10		ns
4	t _{d(SPCL-SOMI)S}	Delay time, SPISOMI valid after SPICLK low			0 ns
5	t _{h(SPCL-SOMI)S}	Hold time, SPISOMI data valid after SPICLK low	2		ns

8.9.4.1.3 SPI Peripheral Mode Timing Requirements (SPICLK = input, SPISIMO = input, and SPISOMI = output)

NO.			MIN	TYP MA	X UNIT
6	t _{su(SIMO-SPCH)S} Setup time, SI	PISIMO before SPICLK high	3		ns
7	t _{h(SPCH-SIMO)S} Hold time, SP	SIMO data valid after SPICLK high	1		ns

图 8-5. SPI Peripheral Mode External Timing

8.9.4.2 Typical Interface Protocol Diagram (Peripheral Mode)

- 1. Host should ensure that there is a delay of at least two SPI clocks between CS going low and start of SPI clock.
- 2. Host should ensure that CS is toggled for every 16 bits of transfer through SPI.

8-6 shows the SPI communication timing of the typical interface protocol.

图 8-6. SPI Communication

8.9.5 LVDS Interface Configuration

The AWR1243 supports seven differential LVDS IOs/Lanes to support debug where raw ADC data could be extracted. The lane configuration supported is four Data lanes (LVDS_TXP/M), one Bit Clock lane (LVDS_CLKP/M) one Frame clock lane (LVDS_FRCLKP/M). The LVDS interface supports the following data rates:

- 900 Mbps (450 MHz DDR Clock)
- 600 Mbps (300 MHz DDR Clock)
- 450 Mbps (225 MHz DDR Clock)
- 400 Mbps (200 MHz DDR Clock)
- 300 Mbps (150 MHz DDR Clock)
- 225 Mbps (112.5 MHz DDR Clock)
- 150 Mbps (75 MHz DDR Clock)

Note that the bit clock is in DDR format and hence the numbers of toggles in the clock is equivalent to data.

图 8-7. LVDS Interface Lane Configuration And Relative Timings

8.9.5.1 LVDS Interface Timings

Output Offset Voltage

Trise and Tfall

Jitter (pk-pk)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX
Duty Cycle Requirements	max 1 pF lumped capacitive load on LVDS lanes	48%		52%
Output Differential Voltage	peak-to-peak single-ended with 100 Ω resistive load between differential pairs	250		450

20%-80%, 900 Mbps

900 Mbps

1125

表 8-8. LVDS Electrical Characteristics

UNIT

mV

mV

ps

ps

1275

330

80

AWR1243

图 8-8. Timing Parameters

8.9.6 General-Purpose Input/Output

8.9.6.1 lists the switching characteristics of output timing relative to load capacitance.

PARAMETER ⁽¹⁾		TEST CONDITIONS	VIOIN = 1.8V	VIOIN = 3.3V	UNIT
t _r		C _L = 20 pF	2.8	3.0	
	Max rise time	C _L = 50 pF	6.4	6.9	ns
		C _L = 75 pF	9.4	10.2	
t _f		C _L = 20 pF	2.8	2.8	
	Max fall time	C _L = 50 pF	6.4	6.6	ns
		C _L = 75 pF	9.4	9.8	

8.9.6.1 Switching Characteristics for Output Timing versus Load Capacitance (C_L)

(1) The rise/fall time is measured as the time taken by the signal to transition from 10% and 90% of VIOIN voltage.

8.9.7 Camera Serial Interface (CSI)

The CSI is a MIPI D-PHY compliant interface for connecting this device to a camera receiver module. This interface is made of four differential lanes; each lane is configurable for carrying data or clock. The polarity of each wire of a lane is also configurable. 节 8.9.7.1, 图 8-9, 图 8-10, and 图 8-11 describe the clock and data timing of the CSI. The clock is always ON once the CSI IP is enabled. Hence it remains in HS mode.

8.9.7.1 CSI Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER		MIN	UNIT	
HPTX					
HSTX _{DBR}	Data bit rate	(1/2/4 data lane PHY)	150	600	Mbps
f _{CLK}	DDR clock frequency	(1/2/4 data lane PHY)	75	300	MHz
[∆] VCMTX(LF)	Common-level variation	•	- 50	50	mV
t _R and t _F	20% to 80% rise time and fall time			0.3	UI
LPTX DRIVER	•				
t _{EOT}	Time from start of THS-TRAIL period to s	start of LP-11 state		105 + 12*UI	ns
DATA-CLOCK Timing Speci	fication				
UINOM	Nominal Unit Interval	1.67	13.33	ns	
UIINST,MIN	Minimum instantaneous Unit Interval		1.131		ns
TSKEW[TX]	Data to clock skew measured at transmit	- 0.15	0.15	UIINST, MIN	
CSI2 TIMING SPECIFICATI	ON				
T _{CLK-PRE}	Time that the HS clock shall be driven by any associated data lane beginning the t mode.	8		ns	
T _{CLK-PREPARE}	Time that the transmitter drives the clock immediately before the HS-0 line state st transmission.	tane LP-00 line state tarting the HS	38	95	ns
T _{CLK-PREPARE} + T _{CLK-ZERO}	T _{CLK-PREPARE} + time that the transmitter before starting the clock.	drives the HS-0 state	300		ns
T _{EOT}	Transmitted time interval from the start o to the start of the LP-11 state following a	f T _{HS-TRAIL} or T _{CLKTRAIL} , HS burst.		105 ns + 12*UI	ns
T _{HS-PREPARE}	Time that the transmitter drives the data immediately before the HS-0 line state si transmission	40 + 4*UI	85 + 6*UI	ns	
T _{HS-PREPARE} + T _{HS-ZERO}	T _{HS-PREPARE} + time that the transmitter d to transmitting the Sync sequence.	lrives the HS-0 state prior	145 ns + 10*UI		ns
T _{HS-EXIT}	Time that the transmitter drives LP-11 for	llowing a HS burst.	100		ns
T _{HS-TRAIL}	Time that the transmitter drives the flippe last payload data bit of a HS transmissio	ed differential state after n burst	max(8*UI, 60 ns + 4*UI)		ns
T _{LPX}	TXXXransmitted length of any low-powe	r state period	50		ns

A. The HS to LP transition of the CLK does not actually take place since the CLK is always ON in HS mode.

图 8-11. Switching the Clock Lane Between Clock Transmission and Low-Power Mode

9 Detailed Description

9.1 Overview

The AWR1243 device is a single-chip highly integrated 77-GHz transceiver and front end that includes three transmit and four receive chains. The device can be used in long-range automotive radar applications such as automatic emergency braking and automatic adaptive cruise control. The AWR1243 has extremely small form factor and provides ultra-high resolution with very low power consumption. This device, when used with the TDA3X or TD2X, offers higher levels of performance and flexibility through a programmable digital signal processor (DSP); thus addressing the standard short-, mid-, and long-range automotive radar applications.

9.2 Functional Block Diagram

A. Phase Shift Control:

• 0° / 180° BPM for AWR1243

B. Internal temperature sensor accuracy is \pm 7 °C.

图 9-1. Functional Block Diagram

9.3 Subsystems

9.3.1 RF and Analog Subsystem

The RF and analog subsystem includes the RF and analog circuitry – namely, the synthesizer, PA, LNA, mixer, IF, and ADC. This subsystem also includes the crystal oscillator and temperature sensors. The three transmit channels can be operated simultaneously for transmit beamforming purpose as required; whereas the four receive channels can all be operated simultaneously.

Please note that AWR1243 device supports simultaneous operation of 2 transmitters only.

9.3.1.1 Clock Subsystem

The AWR1243 clock subsystem generates 76 to 81 GHz from an input reference of 40-MHz crystal. It has a built-in oscillator circuit followed by a clean-up PLL and a RF synthesizer circuit. The output of the RF synthesizer is then processed by an X4 multiplier to create the required frequency in the 76 to 81 GHz spectrum. The RF synthesizer output is modulated by the timing engine block to create the required waveforms for effective sensor operation.

The output of the RF synthesizer is available at the device pin boundary for multichip cascaded configuration. The clean-up PLL also provides a reference clock for the host processor after system wakeup.

The clock subsystem also has built-in mechanisms for detecting the presence of a crystal and monitoring the quality of the generated clock.

图 9-2 describes the clock subsystem.

 * These pins are 20GHz LO input pins. Connect LO to one pin while grounding the other pin.

图 9-2. Clock Subsystem

9.3.1.2 Transmit Subsystem

The AWR1243 transmit subsystem consists of three parallel transmit chains, each with independent phase and amplitude control. A maximum of two transmit chains can be operational at the same time, however all three chains can be operated together in a time-multiplexed fashion. The device supports binary phase modulation for MIMO radar and interference mitigation.

Each transmit chain can deliver a maximum of 12 dBm at the antenna port on the PCB. The transmit chains also support programmable backoff for system optimization.

8 9-3 describes the transmit subsystem.

图 9-3. Transmit Subsystem (Per Channel)

9.3.1.3 Receive Subsystem

The AWR1243 receive subsystem consists of four parallel channels. A single receive channel consists of an LNA, mixer, IF filtering, ADC conversion, and decimation. All four receive channels can be operational at the same time an individual power-down option is also available for system optimization.

Unlike conventional real-only receivers, the AWR1243 device supports a complex baseband architecture, which uses quadrature mixer and dual IF and ADC chains to provide complex I and Q outputs for each receiver channel. The AWR1243 is targeted for fast chirp systems. The band-pass IF chain has configurable lower cutoff frequencies above 175 kHz and can support bandwidths up to 15 MHz.

图 9-4 describes the receive subsystem.

9.3.2 Host Interface

The AWR1243 device communicates with the host radar processor over the following main interfaces:

- Reference Clock Reference clock available for host processor after device wakeup
- Control 4-port standard SPI (peripheral) for host control along with HOST INTR pin for async events.. All radio control commands (and response) flow through this interface.
- Data High-speed serial port following the MIPI CSI2 format. Four data and one clock lane (all differential). Data from different receive channels can be multiplexed on a single data lane to optimize board routing. This is a unidirectional interface used for data transfer only.
- · Reset Active-low reset for device wakeup from host
- Out-of-band interrupt
- Error Used for notifying the host in case the radio controller detects a fault

9.4 Other Subsystems

9.4.1 ADC Data Format Over CSI2 Interface

The AWR1243 device uses MIPI D-PHY / CSI2-based format to transfer the raw ADC samples to the external MCU. This is shown in <u>8</u> 9-5.

- Supports four data lanes
- · CSI-2 data rate scalable from 150 Mbps to 600 Mbps per lane
- Virtual channel based
- CRC generation

Frame Start - CSi2 VSYNC Start Short PacketLine Start - CSi2 HSYNC Start Short PacketLine End - CSi2 HSYNC End Short PacketFrame End - CSi2 VSYNC End Short Packet

图 9-5. CSI-2 Transmission Format

The data payload is constructed with the following three types of information:

- Chirp profile information
- The actual chirp number
- ADC data corresponding to chirps of all four channels
 - Interleaved fashion
- Chirp quality data (configurable)

The payload is then split across the four physical data lanes and transmitted to the receiving D-PHY. The data packet packing format is shown in $\boxed{8}$ 9-6

First

图 9-6. Data Packet Packing Format for 12-Bit Complex Configuration

10 Monitoring and Diagnostics

10.1 Monitoring and Diagnostic Mechanisms

Below is the list given for the main monitoring and diagnostic mechanisms available in the AWR1243.

MSS R4F is the processor used for running TI's Functional Firmware stored in the ROM that helps in the execution of the API calls issued by the host processor (It is not a customer programmable core).

S No	Feature	
1	Boot time LBIST For MSS R4F Core and associated VIM	AWR1243 architecture supports hardware logic BIST (LBIST) engine self-test Controller (STC). This logic is used to provide a very high diagnostic coverage (>90%) on the MSS R4F CPU core and Vectored Interrupt Module (VIM) at a transistor level. LBIST for the CPU and VIM are triggered by the bootloader.
2	Boot time PBIST for MSS R4F TCM Memories	MSS R4F has three Tightly coupled Memories (TCM) memories TCMA, TCMB0 and TCMB1. AWR1243 architecture supports a hardware programmable memory BIST (PBIST) engine. This logic is used to provide a very high diagnostic coverage (March-13n) on the implemented MSS R4F TCMs at a transistor level. PBIST for TCM memories is triggered by Bootloader at the boot time . CPU stays there in while loop and does not proceed further if a fault is identified.
3	End to End ECC for MSS R4F TCM Memories	TCMs diagnostic is supported by Single error correction double error detection (SECDED) ECC diagnostic. An 8-bit code word is used to store the ECC data as calculated over the 64- bit data bus. ECC evaluation is done by the ECC control logic inside the CPU. This scheme provides end-to-end diagnostics on the transmissions between CPU and TCM. CPU is configured to have predetermined response (Ignore or Abort generation) to single and double bit error conditions.
4	MSS R4F TCM bit multiplexing	Logical TCM word and its associated ECC code is split and stored in two physical SRAM banks. This scheme provides an inherent diagnostic mechanism for address decode failures in the physical SRAM banks. Faults in the bank addressing are detected by the CPU as an ECC fault.Further, bit multiplexing scheme implemented such that the bits accessed to generate a logical (CPU) word are not physically adjacent. This scheme helps to reduce the probability of physical multi-bit faults resulting in logical multi-bit faults; rather they manifest as multiple single bit faults. As the SECDED TCM ECC can correct a single bit fault in a logical word, this scheme improves the usefulness of the TCM ECC diagnostic.
5	Clock Monitor	AWR1243 architecture supports Three Digital Clock Comparators (DCCs) and an internal RCOSC. Dual functionality is provided by these modules – Clock detection and Clock Monitoring. DCCint is used to check the availability/range of Reference clock at boot otherwise the device is moved into limp mode (Device still boots but on 10MHz RCOSC clock source. This provides debug capability). DCCint is only used by boot loader during boot time. It is disabled once the APLL is enabled and locked. DCC1 is dedicated for APLL lock detection monitoring, comparing the APLL output divided version with the Reference input clock of the device. Initially (before configuring APLL), DCC1 is used by bootloader to identify the precise frequency of reference input clock against the internal RCOSC clock source. Failure detection for DCC1 would cause the device to go into limp mode. Clock Compare module (CCC) module is used to compare the APLL divided down frequency with reference clock (XTAL). Failure detection is indicated by the nERROR OUT signal.
6	RTI/WD for MSS R4F	Internal watchdog is enabled by the bootloader in a windowed watchdog (DWWD) mode Watchdog expiry issues an internal warm reset and nERROR OUT signal to the host.
7	MPU for MSS R4F	Cortex-R4F CPU includes an MPU. The MPU logic can be used to provide spatial separation of software tasks in the device memory. Cortex-R4F MPU supports 12 regions. It is expected that the operating system controls the MPU and changes the MPU settings based on the needs of each task. A violation of a configured memory protection policy results in a CPU abort.
8	PBIST for Peripheral interface SRAMs - SPI, I2C	AWR1243 architecture supports a hardware programmable memory BIST (PBIST) engine for Peripheral SRAMs as well. PBIST for peripheral SRAM memories is triggered by the bootloader. The PBIST tests are destructive to memory contents, and as such are typically run only at boot time Any fault detected by the PBIST results in an error indicated in PBIST and boot status response message.

表 10-1. Monitoring and Diagnostic Mechanisms for AWR1243

	表 10-1. Monitoring and Diagnostic Mechanisms for AWR1243 (continued)								
S No	Feature	Description							
9	ECC for Peripheral interface SRAMs - SPI, I2C	Peripheral interface SRAMs diagnostic is supported by Single error correction double error detection (SECDED) ECC diagnostic. When a single or double bit error is detected the error is indicated by nERROR (double bit error) or via SPI message (single bit error).							

10	Cyclic Redundancy Check - Main SS	Cyclic Redundancy Check (CRC) module is available for the Main SS. The firmware uses this feature for data transfer checks in mailbox and SPI communication.
11	MPU for DMAs	AWR1243 architecture supports MPUs on Main SS DMAs. The firmware uses this for stack protection.
12	Boot time LBIST For BIST R4F Core and associated VIM	AWR1243 architecture supports hardware logic BIST (LBIST) even for BIST R4F core and associated VIM module. This logic provides very high diagnostic coverage (>90%) on the BIST R4F CPU core and VIM. This is triggered by MSS R4F boot loader at boot time and it does not proceed further if the fault is detected.
13	Boot time PBIST for BIST R4F TCM Memories	AWR1243 architecture supports a hardware programmable memory BIST (PBIST) engine for BIST R4F TCMs which provide a very high diagnostic coverage (March-13n) on the BIST R4F TCMs. PBIST is triggered at the power up of the BIST R4F.
14	End to End ECC for BIST R4F TCM Memories	BIST R4F TCMs diagnostic is supported by Single error correction double error detection (SECDED) ECC diagnostic. Single bit error is communicated to the BIST R4FCPU while double bit error is communicated to MSS R4F as an interrupt which sends a async event to the host.
15	BIST R4F TCM bit multiplexing	Logical TCM word and its associated ECC code is split and stored in two physical SRAM banks. This scheme provides an inherent diagnostic mechanism for address decode failures in the physical SRAM banks and helps to reduce the probability of physical multi-bit faults resulting in logical multi-bit faults.
16	Temperature Sensors	AWR1243 architecture supports various temperature sensors all across the device (next to power hungry modules such as PAs, DSP etc) which is monitored during the inter-frame period. ⁽¹⁾
17	Tx Power Monitors	AWR1243 architecture supports power detectors at the Tx output. ⁽²⁾
18	Error Signaling Error Output	When a diagnostic detects a fault, the error must be indicated. The AWR1243 architecture provides aggregation of fault indication from internal monitoring/diagnostic mechanisms using nERROR signaling or async event over SPI interface.
19	Synthesizer (Chirp) frequency monitor	Monitors Synthesizer's frequency ramp by counting (divided-down) clock cycles and comparing to ideal frequency ramp. Excess frequency errors above a certain threshold, if any, are detected and reported.
20	Ball break detection for TX ports (TX Ball break monitor)	AWR1243 architecture supports a ball break detection mechanism based on Impedance measurement at the TX output(s) to detect and report any large deviations that can indicate a ball break. Monitoring is done by TIs code running on BIST R4F and failure is reported to the host. It is completely up to customer SW to decide on the appropriate action based on the message from BIST R4F.
21	RX loopback test	Built-in TX to RX loopback to enable detection of failures in the RX path(s), including Gain, inter-RX balance, etc.
22	IF loopback test	Built-in IF (square wave) test tone input to monitor IF filter's frequency response and detect failure.
23	RX saturation detect	Provision to detect ADC saturation due to excessive incoming signal level and/or interference.
16 17 18 19 20 21 21 22 23	Temperature Sensors Tx Power Monitors Error Signaling Error Output Synthesizer (Chirp) frequency monitor Ball break detection for TX ports (TX Ball break monitor) RX loopback test IF loopback test RX saturation detect	resulting in logical multi-bit faults. AWR1243 architecture supports various temperature sensors all across the device (i power hungry modules such as PAs, DSP etc) which is monitored during the inter-fra period. ⁽¹⁾ AWR1243 architecture supports power detectors at the Tx output. ⁽²⁾ When a diagnostic detects a fault, the error must be indicated. The AWR1243 archite provides aggregation of fault indication from internal monitoring/diagnostic mechanis using nERROR signaling or async event over SPI interface. Monitors Synthesizer' s frequency ramp by counting (divided-down) clock cycles an comparing to ideal frequency ramp. Excess frequency errors above a certain thresho any, are detected and reported. AWR1243 architecture supports a ball break detection mechanism based on Impeda measurement at the TX output(s) to detect and report any large deviations that can i a ball break. Monitoring is done by TIs code running on BIST R4F and failure is reported to the ho It is completely up to customer SW to decide on the appropriate action based on the message from BIST R4F. Built-in TX to RX loopback to enable detection of failures in the RX path(s), including inter-RX balance, etc. Built-in IF (square wave) test tone input to monitor IF filter' s frequency response ar failure. Provision to detect ADC saturation due to excessive incoming signal level and/or interference.

(1) Monitoring is done by the TI's code running on BIST R4F. There are two modes in which it could be configured to report the temperature sensed via API by customer application.

- a. Report the temperature sensed after every N frames
- b. Report the condition once the temperature crosses programmed threshold.

It is completely up to customer SW to decide on the appropriate action based on the message from BIST R4Fvia Mailbox. Monitoring is done by the TI's code running on BIST R4F.

- There are two modes in which it could be configured to report the detected output power via API by customer application.
- a. Report the power detected after every N frames
- b. Report the condition once the output power degrades by more than configured threshold from the configured.

It is completely up to customer SW to decide on the appropriate action based on the message from BIST R4F.

(2)

备注

Refer to the Device Safety Manual or other relevant collaterals for more details on applicability of all diagnostics mechanisms. For certification details, refer to the device product folder.

11 Applications, Implementation, and Layout

备注

Information in the following Applications section is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

11.1 Application Information

A typical application addresses the standard short-, mid-, long-range, and high-performance imaging radar applications with this radar front end and external programmable MCU. 🛽 11-1 shows a short-, medium-, or long-range radar application.

11.2 Short-, Medium-, and Long-Range Radar

图 11-1. Short-, Medium-, and Long-Range Radar

11.3 Reference Schematic

The reference schematic and power supply information can be found in the AWR1243 EVM Documentation.

Listed for convenience are: Design Files, Schematics, Layouts, and Stack up for PCB.

- Altium AWR1243 EVM Design Files
- AWR1243 EVM Schematic Drawing, Assembly Drawing, and Bill of Materials

12 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions follow.

12.1 Device Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for example, *AWR1243*). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS).

Device development evolutionary flow:

- **X** Experimental device that is not necessarily representative of the final device's electrical specifications and may not use production assembly flow.
- **P** Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications.

null Production version of the silicon die that is fully qualified.

Support tool development evolutionary flow:

TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.

TMDS Fully-qualified development-support product.

X and P devices and TMDX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

Production devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, ABL0161 ALB0161), the temperature range (for example, blank is the default commercial temperature range). 图 12-1 provides a legend for reading the complete device name for any *AWR1243* device.

For orderable part numbers of *AWR1243* devices in the ABL0161 package types, see the Package Option Addendum of this document, the TI website (www.ti.com), or contact your TI sales representative.

For additional description of the device nomenclature markings on the die, see the AWR1243 Device Errata .

B = Functional Safety Complaint, ASIL-B

图 12-1. Device Nomenclature

12.2 Tools and Software

Development Tools

AWR1243 cascade applica	tion note Describes TI's cascaded mmWave radar system.
Models	
AWR1243 BSDL model	Boundary scan database of testable input and output pins for IEEE 1149.1 of the specific device.
AWR1x43 IBIS model	IO buffer information model for the IO buffers of the device. For simulation on a circuit board, see IBIS Open Forum.
AWR1243 checklist for schematic review, layout review, bringup/wakeup	A set of steps in spreadsheet form to select system functions and pinmux options. Specific EVM schematic and layout notes to apply to customer engineering. A bringup checklist is suggested for customers.

12.3 Documentation Support

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

The current documentation that describes the DSP, related peripherals, and other technical collateral follows.

Errata

AWR1243 device errata Describes known advisories, limitations, and cautions on silicon and provides workarounds.

12.4 支持资源

TI E2E[™] 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。

AWR1243 ZHCSHS1D - MAY 2017 - REVISED DECEMBER 2021

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

12.5 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

12.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.7 术语表

TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。

13 Mechanical, Packaging, and Orderable Information

13.1 Packaging Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

13.2 Tray Information for

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	(3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
AWR1243FBIGABLQ1	Active	Production	FCCSP (ABL) 161	176 JEDEC TRAY (10+1)	Yes	Call TI	Level-3-260C-168 HR	-40 to 125	AWR1243 IG 964FC
AWR1243FBIGABLQ1.B	Active	Production	FCCSP (ABL) 161	176 JEDEC TRAY (10+1)	Yes	Call TI	Level-3-260C-168 HR	-40 to 125	AWR1243 IG 964FC
AWR1243FBIGABLRQ1	Active	Production	FCCSP (ABL) 161	1000 LARGE T&R	Yes	Call TI	Level-3-260C-168 HR	-40 to 125	AWR1243 IG 964FC ABL G1
AWR1243FBIGABLRQ1.B	Active	Production	FCCSP (ABL) 161	1000 LARGE T&R	Yes	Call TI	Level-3-260C-168 HR	-40 to 125	AWR1243 IG 964FC ABL G1

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

www.ti.com

PACKAGE OPTION ADDENDUM

23-May-2025

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Texas **INSTRUMENTS**

www.ti.com

TRAY

23-May-2025

Chamfer on Tray corner indicates Pin 1 orientation of packed units.

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	K0 (µm)	P1 (mm)	CL (mm)	CW (mm)
AWR1243FBIGABLQ1	ABL	FCCSP	161	176	8 x 22	150	315	135.9	7620	13.4	16.8	17.2
AWR1243FBIGABLQ1.B	ABL	FCCSP	161	176	8 x 22	150	315	135.9	7620	13.4	16.8	17.2

*All dimensions are nominal

ABL 161

GENERIC PACKAGE VIEW

FCBGA - 1.17 mm max height

10.4 x 10.4, 0.65 mm pitch

PLASTIC BALL GRID ARRAY

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行 复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索 赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司