

📕 Order

Now

ZHCS179F - AUGUST 2011 - REVISED JULY 2016

INA826 具有轨到轨输出的高精度、200µA 电源电流、3V 至 36V 电源 仪表放大器

Technical

Documents

1 特性

- 输入共模范围:包括 V-
- 共模抑制:
 - 最小值为 104dB (G = 10)
 - 5kHz 时的最小值为 100dB (G = 10)
- 电源抑制:最小值为 100dB (G = 1)
- 低偏移电压:最大值为 150µV
- 增益漂移: 1ppm/°C (G = 1), 35ppm/°C (G > 1)
- 噪声: 18nV/√Hz, G ≥ 100
- 带宽: 1MHz (G = 1), 60kHz (G = 100)
- 输入保护电压高达 ±40 V
- 轨到轨输出
- 电源电流: 200µA
- 电源范围:
 - 单电源: 3V 至 36V
 - 双电源: ±1.5V 至 ±18V
- 特定温度范围:
 -40°C 至 +125°C
- 封装: 8 引脚 VSSOP、SOIC 和 WSON

2 应用

- 工业过程控制
- 断路器
- 电池检测仪
- 心电图 (ECG) 放大器
- 电力自动化
- 医疗仪表
- 便携式仪表

3 说明

🥖 Tools &

Software

INA826为低成本仪表放大器,功耗极低且能够在极宽的单电源或双电源范围内工作。可通过单个外部电阻在1到1000范围内设置增益。该器件在过热条件下具有很好的稳定性,即使在G>1时,也可实现只有35ppm/℃(最大值)的低增益漂移。

Support &

Community

20

INA826 经优化可在频率高达 5kHz 时提供超过 100dB 的出色共模抑制比 (G = 10)。G = 1 时,在从负电源直 至 1V 正电源的整个输入共模范围内共模抑制比将超过 84dB。INA826 采用轨到轨输出,非常适合通过 3V 单 电源和高达 ±18V 的双电源供电的低电压操作。

附加电路可通过将输入电流限制在 8mA 以下来防止输入出现超出电源电压的过压情况(高达 ±40V)。

INA826 采用 8 引脚 SOIC、VSSOP 以及微型 3mm × 3mm WSON 表面贴装封装。所有版本的额定工作温度 范围均为 -40°C 至 +125°C。

器件信息(1)

器件型号	封装	封装尺寸(标称值)			
	SOIC (8)	4.90mm x 3.91mm			
INA826	WSON (8)	3.00mm × 3.00mm			
	VSSOP (8)	3.00mm x 3.00mm			

(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。

(1) 如果输入电压始终高于 [(V-) - 2V] 或将单电源电流驱动能力限制在 3.5mA 以下,则此电阻可选;更多详细信息,请参见*Input Protection*部分。

9

10 11

12

1	特性	
2	应用	
3	说明	
4	修订	历史记录 2
5	Devi	ice Comparison Table 4
6	Pin	Configuration and Functions 4
7	Spe	cifications5
	7.1	Absolute Maximum Ratings 5
	7.2	ESD Ratings 5
	7.3	Recommended Operating Conditions 5
	7.4	Thermal Information 5
	7.5	Electrical Characteristics
	7.6	Typical Characteristics 8
8	Deta	niled Description
	8.1	Overview

8.2 Functional Block Diagram 18

8.3 Feature Description..... 19

4 修订历史记录

2

Changes from Revision E (April 2013) to Revision F

•	已增加器件信息表、ESD 额定值表、建议运行条件表、特性 说明部分、器件功能模式部分、应用和实施部分、电源相关建议部分、布局部分、器件和文档支持部分以及机械、封装和可订购信息部分	1
•	已增加 TI 设计	1
•	已将文档标题中的 2.7V 更改为 3V	1
•	已通篇将微型小外形尺寸 (MSOP) 更改为超薄小外形尺寸 (VSSOP),将小外形尺寸 (SO)更改为小外形尺寸集成电路 (SOIC),将 DRG 更改为晶圆级小外形无引线 (WSON)	1
•	己更改 <i>电源范围</i> 特性 分项的最小电压	1
•	已更改封装 特性 要点	1
•	已更改第 1 页的图	1
•	已更改 描述 部分,其中包括对少量内容进行重新编写、对封装进行重命名以及将单电源电压值从 2.7V 更改为 3V	1
•	Changed title of Device Comparison Table	4
•	Deleted DGK PackagePackage/Ordering Information table	4
•	Changed Temperature parameter symbols in Absolute Maximum Ratings table	5
•	Changed Input, Differential impedance and Common-mode impedance parameter symbols in Electrical	0
_	Characteristics table	6
•	Changed Input, V _{CM} parameter test conditions in <i>Electrical Characteristics</i> table	6
•	Deleted Gain, Range of gain parameter symbol from Electrical Characteristics table	7
•	Changed Power Supply, V _S parameter test conditions and minimum specifications in <i>Electrical Characteristics</i> table	7
•	Changed V _S voltage to 3.0 V and red V _{REF} trace to 1.5 V in Figure 9 and Figure 10	9
•	Changed V _s voltage level to 3.0 V in Figure 29	12
•	Changed blue V _s trace value to 3.0 V in Figure 36	. 13
•	Changed conditions of Figure 47 and Figure 48	. 15
•	Changed 2.7 V to 3 V and 1.35 V to 1.5 V in Operating Voltage section	24
•	Changed TINA-TI simulation circuit links in Using TINA-TI SPICE-Based Analog Simulation Program with the INA826 section	29

8.4	Device Functional Modes	. 25
Арр	lication and Implementation	26
9.1	Application Information	. 26
9.2	Typical Application	. 26
9.3	System Examples	. 28
Pov	ver Supply Recommendations	34
Lay	out	34
11.1	Layout Guidelines	. 34
11.2	Layout Example	. 35
器件	=和文档支持	36
12.1	文档支持	. 36
12.2	接收文档更新通知	. 36
12.3	社区资源	. 36
12.4	商标	. 36
12.5	静电放电警告	. 36
12.6	Glossary	. 36

13 机械、封装和可订购信息...... 36

	Texas
Y	INSTRUMENTS

www.ti.com.cn

Page

Changes from Revision D (March 2013) to Revision E	Page
Deleted package marking column from Package/Ordering Information table	
Changes from Revision C (March 2012) to Revision D	Page
• Changed Input voltage range parameter specification value in Absolute Maximum Ratings table	
Changes from Revision B (December 2011) to Revision C	Page
• 已更改产品状态,从混合状态更改为量产数据	1
Deleted gray shading and footnote 2 from Package/Ordering Information table	
Changed DFN-8 package to production data	
Changes from Revision A (September 2011) to Revision B	Page
Deleted gray from SO-8 row in Package/Ordering Information	4

Texas Instruments

www.ti.com.cn

5 Device Comparison Table

DEVICE	DESCRIPTION
INA333	25- μ V V _{OS} , 0.1 μ V/°C V _{OS} drift, 1.8-V to 5-V, RRO, 50- μ A I _Q , chopper-stabilized INA
PGA280	20-mV to ±10-V programmable gain IA with 3-V or 5-V differential output; analog supply up to ±18 V
INA159	G = 0.2 V differential amplifier for ±10-V to 3-V and 5-V conversion
PGA112	Precision programmable gain op amp with SPI™ interface

6 Pin Configuration and Functions

Pin Functions

	PIN				
	N	0.	1/0	DESCRIPTION	
NAME	SOIC, VSSOP	WSON			
–IN	1	1	I	Negative (inverting) input	
+IN	4	4	I	Positive (noninverting) input	
REF	6	6	I	Reference input. This pin must be driven by low impedance.	
D	2	2		Onia potting sin Diana a spin registry between sin 0 and sin 0	
RG	3	3	1 —	Gain setting pin. Place a gain resistor between pin 2 and pin 3.	
V _{OUT}	7	7	0	Output	
-V _S	5	5	_	Negative supply	
+V _S	8	8	_	Positive supply	

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT	
Supply voltage		-20	20	V	
Signal input pipe	Voltage	(–V _S) – 40	$(+V_{\rm S}) + 40$	V	
Signal input pins	REF pin	-20	+20	V	
Output short-circuit ⁽²⁾		Conti	nuous		
	Operating, T _A	-50	150		
Temperature	Junction, T _J		175	°C	
	Storage, T _{sta}	-65	150		

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Short-circuit to $V_S / 2$.

7.2 ESD Ratings

			VALUE	UNIT
V _(ESD) Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2500		
	Electrostatic discharge Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾ Machine model (MM)	±1500	V	
		Machine model (MM)	±150	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
Supply voltage	Single supply	3	36	V
Supply voltage	Dual supply	±1.5	±18	v
Specified temperature		-40	+125	°C
Operating temperature		-50	+150	°C

7.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	D (SOIC)	DGK (VSSOP)	DRG (WSON)	UNIT
		8 PINS	8 PINS	8 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	141.4	215.4	50.9	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	75.4	66.3	60.0	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	59.6	97.8	25.4	°C/W
ΨЈТ	Junction-to-top characterization parameter	27.4	10.5	1.2	°C/W
ΨJB	Junction-to-board characterization parameter	59.1	96.1	25.5	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	n/a	7.2	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953).

TRUMENTS www.ti.com.cn

XAS

7.5 Electrical Characteristics

at $T_A = 25^{\circ}$ C, $V_S = \pm 15$ V, $R_L = 10$ k Ω , $V_{REF} = 0$ V, and G = 1 (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	
INPUT								
V	land the second state of the sec (1)	RTI			40	150	μV	
V _{OSI} Input stage offset voltage		vs temperatu	re, $T_A = -40^{\circ}C$ to +125°C		0.4	2	µV/°C	
V	Output stage offset	RTI			200	700	μV	
VOSO	voltage ⁽¹⁾	vs temperatu	re, $T_A = -40^{\circ}C$ to +125°C		2	10	μV/°C	
		G = 1, RTI		100	124			
DODD	Rower curply rejection ratio	G = 10, RTI		115	130		dD	
		G = 100, RTI		120	140		uВ	
	G = 1000, RT	ΓI	120	140				
z _{id}	Differential impedance				20 1		GΩ∥pF	
z _{ic}	Common-mode impedance				10 5		GΩ∥pF	
	RFI filter, -3-dB frequency				20		MHz	
V	Operating input range (2)			V-	(\	/+) – 1	V	
V _{CM} Operating input range ⁽²⁾		V _S = ±1.5 V t	o ±18 V, $T_A = -40^{\circ}C$ to +125°C	See Figur	e 41 to Figure 44		v	
	Input overvoltage range	$T_A = -40^{\circ}C$ to	o 125°C			±40	V	
CMRR	Common-mode rejection ratio		G = 1, V_{CM} = (V–) to (V+) – 1 V	84	95			
		At dc to 60 Hz, RTI	G = 10, V_{CM} = (V–) to (V+) – 1 V	104	115			
			G = 100, V_{CM} = (V–) to (V+) – 1 V	120	130			
			G = 1000, V_{CM} = (V–) to (V+) – 1 V	120	130			
			G = 1, V_{CM} = (V–) to (V+) – 1 V, T _A = –40°C to +125°C	80			dB	
		At 5 kHz,	G = 1, V_{CM} = (V–) to (V+) – 1 V	84				
			G = 10, V_{CM} = (V–) to (V+) – 1 V	100				
		RTI	G = 100, V_{CM} = (V–) to (V+) – 1 V	105				
			G = 1000, V_{CM} = (V–) to (V+) – 1 V	105				
BIAS CU	RRENT							
		$V_{CM} = V_S / 2$			35	65	2	
в	Input bias current	$T_A = -40^{\circ}C$ to	o +125°C			95	- nA	
	Input offect ourrent	$V_{CM} = V_S / 2$			0.7	5	n۸	
OS	input onset current	$T_A = -40^{\circ}C$ to	o +125℃			10	IIA	
NOISE V	OLTAGE							
	Input stage voltage poice ⁽³⁾	f = 1 kHz, G =	= 100, R _S = 0 Ω		18	20	nV/√Hz	
e _{NI}	Input stage voltage holse ??	$\rm f_B$ = 0.1 Hz to 10 Hz, G = 100, R_S = 0 Ω			0.52		μV_{PP}	
	Output stage voltage poice $^{(3)}$	$f = 1 \text{ kHz}, G = 1, R_S = 0 \Omega$			110	115	nV/√Hz	
SNO	Julput stage voltage noise	$f_B = 0.1$ Hz to	= 10 Hz, G = 1, R _S = 0 Ω		3.3		μV _{PP}	
	Noiso current	f = 1 kHz			100		fA/√Hz	
I _n Noise current		$f_B = 0.1 \text{ Hz to}$	9 10 Hz		5		pA _{PP}	

(1)

Total offset, referred-to-input (RTI): $V_{OS} = (V_{OSI}) + (V_{OSO} / G)$. Input voltage range of the INA826 input stage. The input range depends on the common-mode voltage, differential voltage, gain, and reference voltage. See *Typical Characteristic* curves Figure 9 through Figure 16 and Figure 41 through Figure 44 for more information. (2)

(3)

 $\sqrt{\left(e_{NI}\right)^{2} + \left(\frac{e_{NO}}{G}\right)^{2}}$

Total RTI voltage noise =

Electrical Characteristics (continued)

at $T_A = 25^{\circ}$ C, $V_S = \pm 15$ V, $R_L = 10$ k Ω , $V_{REF} = 0$ V, and G = 1 (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN T	YP MAX	UNIT	
GAIN							
G	Gain equation			$1 + \left(\frac{49.4 \text{ kG}}{\text{R}_{\text{G}}}\right)$	<u>!</u>]	V/V	
	Range of gain			1	1000	V/V	
		G = 1, V _O =	±10 V	±0.00	3% ±0.015%		
CE.	Cain arrar	G = 10, V _O =	= ±10 V	±0.0	3% ±0.15%		
GL Gairenti	Gain enor	G = 100, V _O	= ±10 V	±0.0	4% ±0.15%		
		G = 1000, V	_D = ±10 V	±0.0	4% ±0.15%		
	Gain vs temperature ⁽⁴⁾	G = 1, T _A = -	-40°C to +125°C	±	0.1 ±1	nnm/°C	
		$G > 1, T_A = -$	-40°C to +125°C	=	±10 ±35		
	Gain nonlinearity	G = 1 to 100	$V_{\rm O} = -10 \text{ V to } +10 \text{ V}$		1 5	nnm	
	Call Hollinoanty	G = 1000, V	_D = -10 V to +10 V		5 20	PPIII	
OUTPUT		I				I	
	Voltage swing	$R_L = 10 \ k\Omega$		(V–) + 0.1	(V+) – 0.15	V	
	Load capacitance stability			10	000	pF	
ZO	Open-loop output impedance			See Figure	∍ 56		
I _{SC}	Short-circuit current	Continuous t	to V _S / 2	:	±16	mA	
FREQUE	NCY RESPONSE						
	Bandwidth, –3 dB	G = 1			1	MHz	
BW		G = 10			300		
		G = 100			60	kHz	
		G = 1000			6		
SR	Slew rate	G = 1, V _O = :	±14.5 V		1	V/µs	
		G = 100, V _O	= ±14.5 V		1		
		0.01%	G = 1, V _{STEP} = 10 V		12		
			$G = 10, V_{STEP} = 10 V$		12	-	
			$G = 100, V_{STEP} = 10 V$		24		
ts	Settling time		$G = 1000, V_{STEP} = 10 V$:	224	μs	
			$G = 1, V_{\text{STEP}} = 10 \text{ V}$		14		
		0.001%	$G = 10, V_{STEP} = 10 V$		14		
			$G = 100, V_{STEP} = 10 V$		31		
DEFER			$G = 1000, V_{STEP} = 10 V$		278		
REFERE					100	kO	
RIN				()()	()(1)	K52	
				(V-)	(V+)	V	
	Balin to output			0.0	10/	V/V	
POWER				0.0	1 /0		
TOWER		Single suppl	N	3	36		
Vs	Power-supply voltage		y	+1 5	+18	V	
		$V_{\rm m} = 0.V$		-1.0	200 250		
Ι _Q	Quiescent current	$v_{\rm IN} = 0$ v vs temperature T40°C to +125°C			250 300	μA	
TEMPER	ATURE RANGE			·			
	Specified			-40	125	°C	
	Operating			-50	150	°C	

(4) The values specified for G > 1 do not include the effects of the external gain-setting resistor, R_{G} .

INA826 ZHCS179F – AUGUST 2011 – REVISED JULY 2016 NSTRUMENTS

EXAS

7.6 Typical Characteristics

Typical Characteristics (continued)

INA826 ZHCS179F-AUGUST 2011-REVISED JULY 2016

www.ti.com.cn

Typical Characteristics (continued)

Typical Characteristics (continued)

ÈXAS NSTRUMENTS

www.ti.com.cn

10

10

G008

G007

Typical Characteristics (continued)

-70

-80

, –16

-12

-4

 $V_S = \pm 15 V$

-8

0

Common Mode Voltage (V)

Figure 30. Input Bias Current vs Common-Mode Voltage

4

8

12

16

G055

-70

-80

-1

-0.5

0

0.5

 $V_{\rm S} = 3.0 \, \rm V$

1

Common Mode Voltage (V)

Figure 29. Input Bias Current vs Common-Mode Voltage

1.5

2.5

3

G056

2

Typical Characteristics (continued)

Typical Characteristics (continued)

Typical Characteristics (continued)

at $T_A = 25^{\circ}C$, $V_S = \pm 15$ V, $R_L = 10$ k Ω , $V_{REF} = 0$ V, and G = 1 (unless otherwise noted)

Figure 47. Positive Output Voltage Swing vs Output Current

Figure 48. Negative Output Voltage Swing vs Output Current

Typical Characteristics (continued)

at $T_A = 25^{\circ}$ C, $V_S = \pm 15$ V, $R_L = 10$ k Ω , $V_{REF} = 0$ V, and G = 1 (unless otherwise noted)

Figure 53. Small-Signal Response

Figure 54. Small-Signal Response

Typical Characteristics (continued)

Texas Instruments

8 Detailed Description

8.1 Overview

The *Functional Block Diagram* section shows the basic connections required for operation of the INA826. Good layout practice mandates the use of bypass capacitors placed as close to the device pins as possible.

The output of the INA826 is referred to the output reference (REF) terminal, which is normally grounded. This connection must be low-impedance to assure good common-mode rejection. Although 5 Ω or less of stray resistance can be tolerated when maintaining specified CMRR, small stray resistances of tens of ohms in series with the REF pin can cause noticeable degradation in CMRR.

8.2 Functional Block Diagram

(1) This resistor is optional if the input voltage stays above [(V-) - 2 V] or if the signal source current drive capability is limited to less than 3.5 mA; see the *Input Protection* section for more details.

8.3 Feature Description

8.3.1 Inside the INA826

ZHCS179F-AUGUST 2011-REVISED JULY 2016

INA826

See the *Functional Block Diagram* section for a simplified representation of the INA826. A more detailed diagram (shown in Figure 58) provides additional insight into the INA826 operation.

Each input is protected by two field-effect transistors (FETs) that provide a low series resistance under normal signal conditions, and preserve excellent noise performance. When excessive voltage is applied, these transistors limit input current to approximately 8 mA.

The differential input voltage is buffered by Q_1 and Q_2 and is impressed across R_G , causing a signal current to flow through R_G , R_1 , and R_2 . The output difference amplifier, A_3 , removes the common-mode component of the input signal and refers the output signal to the REF terminal.

The equations shown in Figure 58 describe the output voltages of A_1 and A_2 . The V_{BE} and voltage drop across R_1 and R_2 produce output voltages on A_1 and A_2 that are approximately 0.8 V higher than the input voltages.

Feature Description (continued)

8.3.2 Setting the Gain

Gain of the INA826 is set by a single external resistor, R_G , connected between pins 2 and 3. The value of R_G is selected according to Equation 1:

$$G = 1 + \left(\frac{49.4 \text{ k}\Omega}{\text{R}_{\text{G}}}\right)$$

Table 1 lists several commonly-used gains and resistor values. The 49.4-k Ω term in Equation 1 comes from the sum of the two internal 24.7-k Ω feedback resistors. These on-chip resistors are laser-trimmed to accurate absolute values. The accuracy and temperature coefficients of these resistors are included in the gain accuracy and drift specifications of the INA826.

,									
DESIRED GAIN (V/V)	R _G (Ω)	NEAREST 1% R _G (Ω)							
1	_	_							
2	49.4 k	49.9 k							
5	12.35 k	12.4 k							
10	5.489 k	5.49 k							
20	2.600 k	2.61 k							
50	1.008 k	1 k							
100	499	499							
200	248	249							
500	99	100							
1000	49.5	49.9							

Table 1. Commonly-Used Gains and Resistor Values

8.3.2.1 Gain Drift

The stability and temperature drift of the external gain setting resistor, R_G , also affects gain. The contribution of R_G to gain accuracy and drift can be directly inferred from the gain of Equation 1.

The best gain drift of 1 ppm/°C can be achieved when the INA826 uses G = 1 without R_G connected. In this case, the gain drift is limited only by the slight mismatch of the temperature coefficient of the integrated 50-k Ω resistors in the differential amplifier (A₃). At G greater than 1, the gain drift increases as a result of the individual drift of the 24.7-k Ω resistors in the feedback of A₁ and A₂, relative to the drift of the external gain resistor R_G. Process improvements of the temperature coefficient of the feedback resistors now make possible specifying a maximum gain drift of the feedback resistors of 35 ppm/°C, thus significantly improving the overall temperature stability of applications using gains greater than 1.

Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring resistance and contribute additional gain error (such as a possible unstable gain error) at gains of approximately 100 or greater. To ensure stability, avoid parasitic capacitance of more than a few picofarads at R_G connections. Careful matching of any parasitics on both R_G pins maintains optimal CMRR over frequency; see the *Typical Characteristics* curves (Figure 19 and Figure 20).

(1)

8.3.3 Offset Trimming

Most applications require no external offset adjustment; however, if necessary, adjustments can be made by applying a voltage to the REF terminal. Figure 59 shows an optional circuit for trimming the output offset voltage. The voltage applied to the REF terminal is summed at the output. The op amp buffer provides low impedance at the REF terminal to preserve good common-mode rejection.

Figure 59. Optional Trimming of the Output Offset Voltage

8.3.4 Input Common-Mode Range

The linear input voltage range of the INA826 input circuitry extends from the negative supply voltage to 1 V below the positive supply and maintains 84-dB (minimum) common-mode rejection throughout this range. The common-mode range for most common operating conditions is described in the input common-mode voltage versus output voltage *Typical Characteristics* curves (Figure 9 through Figure 15) and the offset voltage versus common-mode voltage curves (Figure 41 through Figure 43). The INA826 can operate over a wide range of power supplies and V_{REF} configurations, thus providing a comprehensive guide to common-mode range limits for all possible conditions is impractical.

The most commonly overlooked overload condition occurs when a circuit exceeds the output swing of A_1 and A_2 , which are internal circuit nodes that cannot be measured. Calculating the expected voltages at the output of A_1 and A_2 (see Figure 58) provides a check for the most common overload conditions. The designs of A_1 and A_2 are identical and the outputs can swing to within approximately 100 mV of the power-supply rails. For example, when the A_2 output is saturated, A_1 can still be in linear operation, responding to changes in the noninverting input voltage. This difference can give the appearance of linear operation but the output voltage is invalid.

A single-supply instrumentation amplifier has special design considerations. To achieve a common-mode range that extends to single-supply ground, the INA826 employs a current-feedback topology with PNP input transistors; see Figure 58. The matched PNP transistors Q_1 and Q_2 shift the input voltages of both inputs up by a diode drop, and (through the feedback network) shift the output of A_1 and A_2 by approximately 0.8 V. With both inputs and V_{REF} at single-supply ground (negative power supply), the output of A_1 and A_2 is well within the linear range, allowing differential measurements to be made at the GND level. As a result of this input level-shifting, the voltages at pin 2 and pin 3 are not equal to the respective input terminal voltages (pin 1 and pin 4). For most applications, this inequality is not important because only the gain-setting resistor connects to these pins.

8.3.5 Input Protection

The inputs of the INA826 are individually protected for voltages up to ± 40 V. For example, a condition of -40 V on one input and 40 V on the other input does not cause damage. However, if the input voltage exceeds (V–) – 2 V and the signal source current drive capability exceeds 3.5 mA, the output voltage switches to the opposite polarity; see Figure 17. This polarity reversal can easily be avoided by adding resistance of 10 k Ω in series with both inputs.

Internal circuitry on each input provides low series impedance under normal signal conditions. If the input is overloaded, the protection circuitry limits the input current to a safe value of approximately 8 mA. Figure 17 and Figure 18 illustrate this input current limit behavior. The inputs are protected even if the power supplies are disconnected or turned off.

8.3.6 Input Bias Current Return Path

The input impedance of the INA826 is extremely high—approximately 20 G Ω . However, a path must be provided for the input bias current of both inputs. This input bias current is typically 35 nA. High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current for proper operation. Figure 60 shows various provisions for an input bias current path. Without a bias current path, the inputs float to a potential that exceeds the common-mode range of the INA826 and the input amplifiers saturate. If the differential source resistance is low, the bias current return path can be connected to one input (as shown in the thermocouple example in Figure 60). With higher source impedance, using two equal resistors provides a balanced input with possible advantages of lower input offset voltage as a result of bias current and better high-frequency common-mode rejection.

Figure 60. Providing an Input Common-Mode Current Path

8.3.7 Reference Terminal

The output voltage of the INA826 is developed with respect to the voltage on the reference terminal. Often, in dual-supply operation, the reference pin (pin 6) is connected to the low-impedance system ground. In single-supply operation, offsetting the output signal to a precise mid-supply level can be useful (for example, 2.5 V in a 5-V supply environment). To accomplish this level shift, a voltage source can be tied to the REF pin to level-shift the output so that the INA826 can drive a single-supply ADC, for example.

For the best performance, keep the source impedance to the REF terminal below 5 Ω . As illustrated in the *Functional Block Diagram* section, the reference resistor is at one end of a 50-k Ω resistor. Additional impedance at the REF pin adds to this 50-k Ω resistor. The imbalance in the resistor ratios results in degraded common-mode rejection ratio (CMRR).

Figure 61 shows two different methods of driving the reference pin with low impedance. The OPA330 is a lowpower, chopper-stabilized amplifier and therefore offers excellent stability over temperature. The OPA330 is available in the space-saving SC70 and even smaller chip-scale package. The REF3225 is a precision reference in the small SOT23-6 package.

a) Level shifting using the OPA330 as a low-impedance buffer

b) Level shifting using the low-impedance output of the REF3225

Figure 61. Options for Low-Impedance Level Shifting

8.3.8 Dynamic Performance

Figure 23 illustrates that, despite its low quiescent current of only 200 μ A, the INA826 achieves much wider bandwidth than other INAs in its class. This achievement is a result of using TI's proprietary high-speed precision bipolar process technology. The current-feedback topology provides the INA826 with wide bandwidth even at high gains. Settling time also remains excellent at high gain because of a high slew rate of 1 V/µs.

INA826

ZHCS179F-AUGUST 2011-REVISED JULY 2016

INA826 ZHCS179F – AUGUST 2011 – REVISED JULY 2016

8.3.9 Operating Voltage

The INA826 operates over a power-supply range of 3 V to 36 V (\pm 1.5 V to \pm 18 V). Supply voltages higher than 40 V (\pm 20 V) can permanently damage the device. Parameters that vary over supply voltage or temperature are shown in the *Typical Characteristics* section of this data sheet.

8.3.9.1 Low-Voltage Operation

The INA826 can operate on power supplies as low as ± 1.5 V. Most parameters vary only slightly throughout this supply voltage range; see the *Typical Characteristics* section. Operation at very low supply voltage requires careful attention to assure that the input voltages remain within the linear range. Voltage swing requirements of internal nodes limit the input common-mode range with low power-supply voltage. The *Typical Characteristics* curves Figure 9 through Figure 15 and Figure 41 through Figure 43 describe the range of linear operation for various supply voltages, reference connections, and gains.

8.3.10 Error Sources

Most modern signal-conditioning systems calibrate errors at room temperature. However, calibration of errors that result from a change in temperature is normally difficult and costly. Therefore, minimizing these errors is important by choosing high-precision components such as the INA826 that have improved specifications in critical areas that impact the precision of the overall system. Figure 62 shows an example application.

Figure 62. Example Application with G = 10 V/V and 1-V Differential Voltage

Resistor-adjustable INAs such as the INA826 show the lowest gain error in G = 1 because of the inherently wellmatched drift of the internal resistors of the differential amplifier. At gains greater than 1 (for instance, G = 10 V/Vor G = 100 V/V) the gain error becomes a significant error source because of the contribution of the resistor drift of the 24.7-k Ω feedback resistors in conjunction with the external gain resistor. Except for very high gain applications, the gain drift is by far the largest error contributor compared to other drift errors, such as offset drift.

The INA826 offers excellent gain error over temperature for both G > 1 and G = 1 (no external gain resistor). Table 2 summarizes the major error sources in common INA applications and compares the two cases of G = 1 (no external resistor) and G = 10 (5.49-k Ω external resistor). As can be seen in Table 2, although the static errors (absolute accuracy errors) in G = 1 are almost twice as great as compared to G = 10, there are much fewer drift errors because of the much lower gain error drift. In most applications, these static errors can readily be removed during calibration in production. All calculations refer the error to the input for easy comparison and system evaluation.

Table 2. Error Calculation	ble 2. Error Calcula	ation
----------------------------	----------------------	-------

		INA826					
ERROR SOURCE	ERROR CALCULATION	SPECIFICATION	G = 10 ERROR (ppm)	G = 1 ERROR (ppm)			
ABSOLUTE ACCURACY AT 25°C							
Input offset voltage (µV)	V _{OSI} / V _{DIFF}	150	150	150			
Output offset voltage (µV)	V_{OSO} / (G × V_{DIFF})	700	70	700			
Input offset current (nA)	I_{OS} × maximum (R _{S+} , R _{S-}) / V _{DIFF}	5	50	50			
CMRR (dB)	V_{CM} / (10 ^{CMRR/20} × V_{DIFF})	104 (G = 10), 84 (G = 1)	63	631			
Total absolute accuracy error (ppm)			333	1531			
DRIFT TO 105°C							
Sain drift (ppm/°C) $GTC \times (T_A - 25)$		35 (G = 10), 1 (G = 1) 2800		80			
Input offset voltage drift (µV/°C)	$(V_{OSI_{TC}} / V_{DIFF}) \times (T_A - 25)$	2	160	160			
Output offset voltage drift (μ V/°C)	$[V_{OSO_{TC}} / (G \times V_{DIFF})] \times (T_A - 25)$	10	80	800			
Offset current drift (pA/°C) $ \begin{array}{c} I_{OS_{-TC}} \times maximum (R_{S+}, R_{S-}) \times \\ (T_A - 25) / V_{DIFF} \end{array} $		60	48	48			
Total drift error (ppm)			3088	1088			
RESOLUTION							
Gain nonlinearity (ppm of FS)		5	5	5			
Voltage noise (1 kHz)	$\sqrt{BW} \times \sqrt{\left(e_{NI}^2 + \left(\frac{e_{NO}}{G}\right)^2\right)^2} \times \frac{6}{V_{DIFF}}$	$\frac{\overline{e_{NO}}}{G}\right]^2 \times \frac{6}{V_{DIFF}} \qquad e_{NI} = 18, \\ e_{NO} = 110$		10			
Total resolution error (ppm)			15	15			
TOTAL ERROR							
Total error	Total error = sum of all error sources		3436	2634			

8.4 Device Functional Modes

The INA826 has a single functional mode and is operational when the power-supply voltage is greater than 3 V (\pm 1.5 V). The maximum power-supply voltage for the INA826 is 36 V (\pm 18 V).

FXAS NSTRUMENTS

www.ti.com.cn

Application and Implementation 9

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The low power consumption, high performance, and low cost of the INA826 make the device an excellent instrumentation amplifier for many applications. The INA826 can be used in many low-power, portable applications because the device has a low quiescent current (200 µA, typ) and comes in a small 8-pin WSON package. The input protection circuitry, low maximum gain drift, low offset voltage, and 36-V maximum supply voltage also make the INA826 an ideal choice for industrial applications as well.

9.2 Typical Application

Figure 63 shows a three-terminal programmable-logic controller (PLC) design for the INA826. This PLC reference design accepts inputs of ±10 V or ±20 mA. The output is a single-ended voltage of 2.5 V ±2.3 V (or 200 mV to 4.8 V). Many PLCs typically have these input and output ranges.

Figure 63. Three-Terminal PLC Design

9.2.1 Design Requirements

This design has these requirements:

- Supply voltage: ±15 V, 5 V
- Inputs: ±10 V, ±20 mA
- Output: 2.5 V, ±2.3 V

9.2.2 Detailed Design Procedure

There are two modes of operation for the circuit shown in Figure 63: current input and voltage input. This design requires $R_1 >> R_2 >> R_3$. Given this relationship, the current input mode transfer function is given by Equation 2. ١,

$$V_{OUT-I} = V_D \times G + V_{REF} = -(I_{IN} \times R_3) \times G + V_{REF}$$

where

G represents the gain of the instrumentation amplifier

(2)

Typical Application (continued)

The transfer function for the voltage input mode is shown by Equation 3.

$$V_{OUT-V} = V_D \times G + V_{REF} = -\left[V_{IN} \times \frac{R_2}{R_1 + R_2}\right] \times G + V_{REF}$$
(3)

 R_1 sets the input impedance of the voltage input mode. The minimum typical input impedance is 100 k Ω . 100 k Ω is selected for R_1 because increasing the R_1 value also increases noise. The value of R_3 must be extremely small compared to R_1 and R_2 . 20 Ω for R_3 is selected because that resistance value is much smaller than R_1 and yields an input voltage of ±400 mV when operated in current mode (±20 mA).

Equation 4 can be used to calculate R_2 given $V_D = \pm 400$ mV, $V_{IN} = \pm 10$ V, and $R_1 = 100$ k Ω .

$$V_{\rm D} = V_{\rm IN} \times \frac{R_2}{R_1 + R_2} \rightarrow R_2 = \frac{R_1 \times V_{\rm D}}{V_{\rm IN} - V_{\rm D}} = 4.167 \text{ k}\Omega$$

$$\tag{4}$$

The value obtained from Equation 4 is not a standard 0.1% value, so 4.12 k Ω is selected. R₁ and R₂ also use 0.1% tolerance resistors to minimize error.

The ideal gain of the instrumentation amplifier is calculated with Equation 5.

$$G = \frac{V_{OUT} - V_{REF}}{V_{D}} = \frac{4.8 \text{ V} - 2.5 \text{ V}}{400 \text{ mV}} = 5.75 \frac{\text{V}}{\text{V}}$$
(5)

Using the INA826 gain equation, the gain-setting resistor value is calculated as shown by Equation 6.

$$G_{INA826} = 1 + \frac{49.4 \text{ k}\Omega}{\text{R}_{\text{G}}} \rightarrow \text{R}_{\text{G}} = \frac{49.4 \text{ k}\Omega}{\text{G}_{INA826} - 1} = \frac{49.4 \text{ k}\Omega}{5.75 - 1} = 10.4 \text{ k}\Omega$$
(6)

10.4 k Ω is a standard 0.1% resistor value that can be used in this design. Finally, the output RC filter components are selected to have a –3-dB cutoff frequency of 1 MHz.

9.2.3 Application Curves

Figure 64 and Figure 65 illustrate typical characteristic curves for Figure 63.

INA826 ZHCS179F – AUGUST 2011 – REVISED JULY 2016

www.ti.com.cn

9.3 System Examples

9.3.1 Circuit Breaker

Figure 66 shows the INA826 used in a circuit breaker application.

Figure 66. Circuit Breaker Example

9.3.2 Programmable Logic Controller (PLC) Input

The INA826 used in an example programmable logic controller (PLC) input application is shown in Figure 67.

Copyright © 2016, Texas Instruments Incorporated

Figure 67. ±10-V, 4-mA to 20-mA PLC Input

Additional application ideas are illustrated in Figure 68 to Figure 72.

System Examples (continued)

9.3.3 Using TINA-TI SPICE-Based Analog Simulation Program with the INA826

TINA is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI is a free, fully-functional version of the TINA software, preloaded with a library of macromodels in addition to a range of both passive and active models. TINA provides all the conventional dc, transient, and frequency domain analysis of SPICE as well as additional design capabilities.

Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer users the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.

Figure 68 and Figure 70 illustrate example TINA-TI circuits for the INA826 that can be used to develop, modify, and assess the circuit design for specific applications. Links to download these simulation files are provided in this section.

NOTE

These files require that either the TINA software (from DesignSoft) or TINA-TI software be installed. Download the free TINA-TI software from the TINA-TI folder.

The circuit in Figure 68 is used to convert inputs of ± 10 V, ± 5 V, or ± 20 mA to an output voltage range from 0.5 V to 4.5 V. The input selection depends on the settings of SW₁ and SW₂. Further explanation as well as the TINA-TI simulation circuit is provided in the compressed file that can be downloaded at the following link: *PLC Circuit*.

System Examples (continued)

Figure 69 is an example of a LEAD I ECG circuit. The input signals come from leads attached to the right arm (RA) and left arm (LA). These signals are simulated with the circuitry in the corresponding boxes. Protection resistors (R_{PROT1} and R_{PROT2}) and filtering are also provided. The OPA333 is used as an integrator to remove the gained-up dc offsets and servo the INA826 outputs to V_{REF}. Finally, the right leg drive is biased to a potential (+V_S / 2) and inverts and amplifies the average common-mode signal back into the patient's right leg. This architecture reduces the 50- and 60-Hz noise pickup.

Figure 69. ECG Circuit

System Examples (continued)

Figure 70 shows an example of how the INA826 can be used for low-side current sensing. The load current (I_{LOAD}) creates a voltage drop across the shunt resistor (R_{SHUNT}). This voltage is amplified by the INA826 with gain set to 100. The output swing of the INA826 is set by the common-mode voltage (which is 0 V in low-side current sensing) and power supplies. Therefore, a dual-supply circuit is implemented. The load current is set from 1 A to 10 A, corresponding to an output voltage range from 350 mV to 3.5 V. The output range can be adjusted by changing the shunt resistor and the gain of the INA826. Click the following link to download the TINA-TI file: *Current Sensing Circuit*.

Copyright © 2016, Texas Instruments Incorporated

Figure 70. Low-Side Current Sensing

System Examples (continued)

Figure 71 shows an example of how the INA826 can be used for RTD signal conditioning. This circuit creates an excitation current (I_{SET}) by forcing 2.5 V from the REF5025 across R_{SET} . The zero-drift, low-noise OPA188 creates the virtual ground that maintains a constant differential voltage across R_{SET} with changing common-mode voltage. This voltage is necessary because the voltage on the positive input of the INA826 fluctuates over temperature as a result of the changing RTD resistance. Click the following link to download the TINA-TI file: *RTD Circuit*.

Figure 71. RTD Signal Conditioning

System Examples (continued)

The circuit in Figure 72 creates a precision current I_{SET} by forcing the INA826 V_{DIFF} across R_{SET} . The input voltage V_{IN} is amplified to the output of the INA826 and then divided down by the gain of the INA826 to create V_{DIFF} . I_{SET} can be controlled either by changing the value of the gain-set resistor R_G , the set resistor R_{SET} , or by changing V_{OUT} through the gain of the composite loop. Care must be taken to ensure that the changing load resistance R_L does not create a voltage on the negative input of the INA826 that violates the compliance of the common-mode input range. Likewise, the voltage on the output of the OPA170 must remain compliant throughout the changing load resistance for this circuit to function properly.

Figure 72. Precision Current Source

10 Power Supply Recommendations

The nominal performance of the INA826 is specified with a supply voltage of ± 15 V and mid-supply reference voltage. The device can also be operated using power supplies from ± 1.5 V (3 V) to ± 18 V (36 V) and non mid-supply reference voltages with excellent performance. Parameters that can vary significantly with operating voltage and reference voltage are illustrated in the *Typical Characteristics* section.

11 Layout

11.1 Layout Guidelines

Attention to good layout practices is always recommended. Keep traces short and, when possible, use a printed circuit board (PCB) ground plane with surface-mount components placed as close to the device pins as possible. Place 0.1-µF bypass capacitors close to the supply pins. Apply these guidelines throughout the analog circuit to improve performance and provide benefits such as reducing the electromagnetic-interference (EMI) susceptibility.

The INA826EVM is intended to provide basic functional evaluation of the INA826. An image of the INA826EVM is provided in Figure 73. The INA826EVM is also available for purchase through the TI eStore.

11.1.1 CMRR vs Frequency

The INA826 pinout is optimized for achieving maximum CMRR performance over a wide range of frequencies. However, care must be taken to ensure that both input paths are well-matched for source impedance and capacitance to avoid converting common-mode signals into differential signals. In addition, parasitic capacitance at the gain-setting pins can also affect CMRR over frequency. For example, in applications that implement gain switching using switches or PhotoMOS[®] relays to change the value of R_G , choose the component so that the switch capacitance is as small as possible.

11.2 Layout Example

Figure 73. INA826 Example Layout

The INA826EVM provides the following features:

- Intuitive evaluation with silkscreen schematic
- · Easy access to nodes with surface-mount test points
- Advanced evaluation with two prototype areas
- Reference voltage source flexibility
- Convenient input and output filtering

TEXAS INSTRUMENTS

www.ti.com.cn

12 器件和文档支持

12.1 文档支持

12.1.1 相关文档

《OPAx330 50µV VOS、0.25µV/°C、35µA CMOS 运算放大器零漂移系列》(文献编号: SBOS432)
 《REF32xx 4ppm/°C、100µA、SOT23-6 系列电压基准》(文献编号: SBVS058)
 《REF50xx 低噪声、极低漂移、高精度电压基准》(文献编号: SBOS410)
 《INA333 微功耗 (50µA)、零漂移、轨到轨输出仪表放大器》(文献编号: SBOS445)
 《PGA280 零漂移高压可编程增益仪表放大器》(文献编号: SBOS487)
 《INA159 高精度、0.2 级增益转换差分放大器》(文献编号: SBOS333)
 《PGA11x 带多路复用器的零漂移可编程增益放大器》(文献编号: SBOS424)
 《INA826EVM 用户指南》(文献编号: SBOU115)

TINA-TI 软件文件夹

12.2 接收文档更新通知

如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册 后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。

12.3 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 商标

E2E is a trademark of Texas Instruments. PhotoMOS is a registered trademark of Panasonic Electric Works Europe AG. All other trademarks are the property of their respective owners.

12.5 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对 本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(3)	(4)	(5)		(0)
INA826AID	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	INA826
INA826AID.B	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	INA826
INA826AIDGK	Active	Production	VSSOP (DGK) 8	80 BULK	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	IPDI
INA826AIDGK.B	Active	Production	VSSOP (DGK) 8	80 BULK	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	IPDI
INA826AIDGKR	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	IPDI
INA826AIDGKR.B	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	IPDI
INA826AIDGKRG4.B	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	IPDI
INA826AIDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	INA826
INA826AIDR.B	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	INA826
INA826AIDRG4.B	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	INA826
INA826AIDRGR	Active	Production	SON (DRG) 8	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	IPEI
INA826AIDRGR.B	Active	Production	SON (DRG) 8	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	IPEI
INA826AIDRGRG4.B	Active	Production	SON (DRG) 8	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	IPEI
INA826AIDRGT	Active	Production	SON (DRG) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	IPEI
INA826AIDRGT.B	Active	Production	SON (DRG) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	IPEI

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

(2) Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

www.ti.com

PACKAGE OPTION ADDENDUM

23-May-2025

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Texas

*All dimensions are nominal

STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
INA826AIDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA826AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
INA826AIDRGR	SON	DRG	8	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
INA826AIDRGT	SON	DRG	8	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

www.ti.com

PACKAGE MATERIALS INFORMATION

23-May-2025

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
INA826AIDGKR	VSSOP	DGK	8	2500	346.0	346.0	41.0
INA826AIDR	SOIC	D	8	2500	356.0	356.0	35.0
INA826AIDRGR	SON	DRG	8	3000	346.0	346.0	33.0
INA826AIDRGT	SON	DRG	8	250	210.0	185.0	35.0

TEXAS INSTRUMENTS

www.ti.com

23-May-2025

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
INA826AID	D	SOIC	8	75	506.6	8	3940	4.32
INA826AID.B	D	SOIC	8	75	506.6	8	3940	4.32

D0008A

PACKAGE OUTLINE

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

D0008A

EXAMPLE BOARD LAYOUT

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

D0008A

EXAMPLE STENCIL DESIGN

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

E. JEDEC MO-229 package registration pending.

DRG0008A

PACKAGE OUTLINE

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

DRG0008A

EXAMPLE BOARD LAYOUT

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

- This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

DRG0008A

EXAMPLE STENCIL DESIGN

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

DGK0008A

PACKAGE OUTLINE

VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

DGK0008A

EXAMPLE BOARD LAYOUT

[™] VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown

on this view. It is recommended that vias under paste be filled, plugged or tented.

9. Size of metal pad may vary due to creepage requirement.

DGK0008A

EXAMPLE STENCIL DESIGN

[™] VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

12. Board assembly site may have different recommendations for stencil design.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行 复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索 赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司