Application Brief

通过 TI 的 TXV 电平转换器产品系列支持时间和偏斜敏感型接口

Joshua Salinas

引言

物理层器件 (PHY) 在以太网网络协议中发挥着重要作用,因为它们通过许多不同类型的转换介质对数据进行串行化和解串,从而充当来自外部世界的数据通信的桥梁。PHY 连接到通常集成在 FPGA 或 SoC 中的以太网媒体访问控制器 (MAC)。当 SoC、ASIC 和 FPGA 等大型数字器件切换到较低的内核电压时,接口设计通常会遇到挑战。当以低电压运行时,集成式和独立 MAC 通常无法支持更高的 I/O 电压。系统设计人员通常需要解决 MAC 和 PHY 之间的 I/O 电平不匹配问题,同时仍保持接口的信号完整性。此外,简化千兆位媒体独立接口 (RGMII)等以太网接口具有严格的时序要求,在较低电压下更难以满足这些要求。

本应用简报介绍了 RGMII 的时序要求,并展示了 TI 的高速 TXV 系列如何在克服 I/O 电压不匹配的同时满足 RGMII 时序要求。

RGMII 时序要求

RGMII 是在 MAC 与 PHY 之间使用的接口,可支持 10Mbps、100Mbps 和 1000Mbps 的速度。图 1显示了 MAC 和 PHY 之间的连接。以 1000Mbps 速率运行时,由于数据以双数据速率 (DDR) 信令处理,而较低的速度使用单数据速率 (SDR),因此时序要求更严格。本应用简报中通篇使用 1000Mbps 时序,因为满足此时序要求也会满足 10Mbps 和 100Mbps 时序要求。

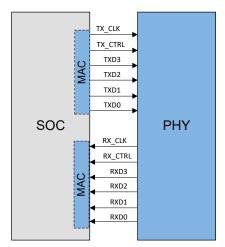


图 1. MAC 和 PHY 之间的 RGMII 接口

表 1、图 2 和图 3 显示了 RGMII 1.3 版和 2.0 版标准的时序要求。1.3 版规定必须在时钟和数据线之间引入偏斜,通常约为 1.5ns 至 2.0ns。在 2.0 版中,可由 MAC 或 PHY 生成偏斜,并通过 T_{setupT} 和 T_{holdT} 给出。RGMII 2.0 版时序以红色突出显示。

表 1. RGMII 1.3 版和 2.0 版时序规格

符号	参数	最小值	典型	最大值	单位
T_{skewT}	数据到时钟输出偏斜 (在变送器处)	-500	0	500	ps

表 1. RGMII 1.3 版和 2.0 版时序规格 (续)

700 11 11 0 11 11 10 10 10 10 10 10 10 10								
符号	参数	最小值	典型	最大值	单位			
T _{skewR}	数据到时钟输入偏斜 (在接收器处)	1	1.8	2.6	ns			
T _{setupT}	数据到时钟输出设置	1.2	2.0		ns			
T_{holdT}	数据到时钟输出保持	1.2	2.0		ns			
T _{setupR}	数据到时钟输入保持	1.0	2.0		ns			
T _{holdR}	数据到时钟输入保持	1.0	2.0		ns			
T _{cyc}	时钟周期时长	7.2	8	8.8	ns			
D _{cyc}	千兆位的占空比	45	50	55	%			
T _R /T _F	上升/下降时间 (20-80%)			0.75	ns			

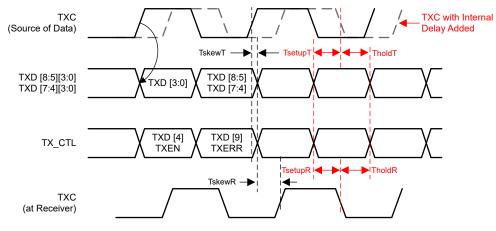


图 2. RGMII 1.3 和 2.0 版发送器时序图

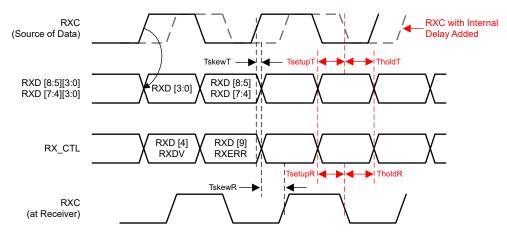


图 3. RGMII 1.3 和 2.0 版接收器时序图

TXV 输出偏斜测量

数据表中的输出通道间偏斜 $T_{sk(o)}$ 值使用两种类型的偏斜测量值来捕获最坏情况下的偏斜、输出和反相偏斜。在图 4 中可找到两者的图解。

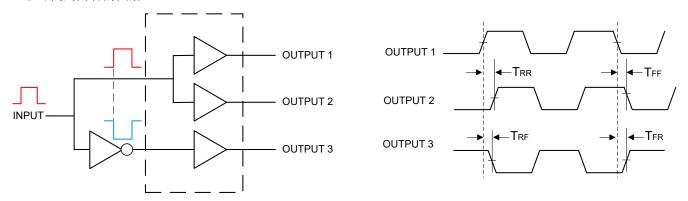


图 4. 输出偏斜 (T_{RR}/T_{FF}) 和反相偏斜 (T_{RF}/T_{FR}) 测量

输出偏斜是驱动相同的指定负载时,同一器件在相同转换条件下任意两个输出之间的偏斜差。输出偏斜测量值通过 T_{RR} 和 T_{FF} 给出。反相偏斜是驱动相同的指定负载时,同一器件在输入转换相反的情况下两个输出之间的偏斜差。反相偏斜测量值通过 T_{RF} 和 T_{FR} 给出。

TXV 时序优势

表 2 给出了 TXV 系列和 RGMII 标准之间的时序差异。下面的比较显示,TXV 最坏情况下的时序不超过 RGMII 标准的最大时序参数。这给 MAC、PHY 和 PCB 留下了时序裕度,表明 TXV 产品系列适用于与 RGMII 连接,即使在 1000Mbps 的速率下也是如此。

χ 2. 1χ το 100/1χ το 100/1χ το 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/								
符号	参数	TXV 最大值 ^{1 2}	RGMII 最大值	単位				
T _{sk(o)}	输出通道间偏斜	± 317	±500	ps				
T_R/T_F	上升/下降时间 (20-80%)	0.48	0.75	ns				
D _{cvc}	占空比	±4	± 5	%				

表 2 TXV0106/TXV0108 和 RGMII 时序规格对比

结论

FPGA、SoC 和 ASIC 等处理器正朝着更低电压 I/O 发展,通过降低功耗而使客户受益。这会导致 I/O 电压不匹配,但许多电平转换器无法满足严格的时序要求(例如上升/下降时间、通道间偏斜和偏斜敏感接口的占空比失真)。本应用简报展示了 TXV 电平转换器系列如何弥合 I/O 电压差距,同时还提供优化的交流性能并满足 RGMII 等低偏斜接口的严格时序要求。

['] V_{CCA} = 1.8V,V_{CCB} = 3.3V,C_{Load} = 5pF,在 125℃ 时每个数据通道为 250Mbps

² 在 TXV0106 和 TXV0108 数据表的时序部分还可以找到不同的电压和负载条件

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司