
TEXAS INSTRUMENTS

从笔记本电脑等消费类电子产品到机器人等工业设备,任何由交流电网供电的设备都存在着复杂的负载条件,其 行为并非纯电阻那么简单。如果负载阻抗包括电感或电容部分,则输入电流不再与瞬时线路电压同相,如图 1 所 示。如果负载仅接受直流输入,并且直流输入由二极管电桥+输入电容器提供,则仅当交流电压超过电容器上的直 流电压时,电流才会导通,波形如图2所示。这两种情况都会在负载和电源之间产生明显的功率输送,因此需要 电网上有更高的峰值功率,并会在传输线路上出现能量损耗。

200. 2.0 150 1.5 Line Voltage (V) 100 1.0 50 0.5 Current 0 0.0 0.5 - 50 - 100 1.0 - 150 1.5 - 200. 0 20 30 40 Time (ms)

图 1. 电感负载的输入电压和电流波形

图 2. 二极管桥式整流的输入电压和电流波形

因此,负载和电网之间需要一个功率因数校正 (PFC) 电路将输入电流整形为与瞬时交流线路电压同相,从而更大 限度降低能量损耗。PFC 功能可以通过无源或有源方式实现。无源 PFC 电路仅由电容器和电感器组成,在某些情 况下具有价格合理、简单易行的优点,但在较宽的工作条件下实现大于 0.9PF 的值有一定难度。相比之下,现代 有源 PFC 电路可轻松实现高于 0.99 的 PF 值,且效率高于 97%。

TI 提供各种 PFC 解决方案,较常见的拓扑是升压拓扑,如图 3 所示。PFC 级位于直流/直流转换器和整流交流线 路之间。由于升压电感器从本质上限制了输入电流的 dl/dt, 因此该拓扑能够更好地实现低输入电流失真。

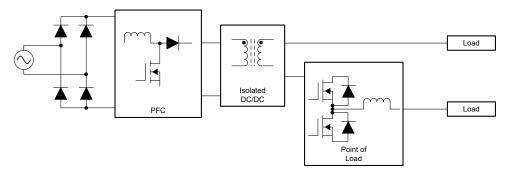
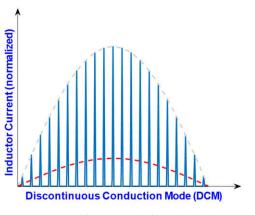



图 3. 常见的交流/直流电源方框图

升压 PFC 具有三种基于电感器电流波形的工作模式:非连续导通模式(DCM)、临界导通模式(CRCM)和连续导 通模式 (CCM)。在一些文献中, CrCM 也称为转换模式 (TM)。每种模式的电感器电流波形如图 4 所示。DCM 和 CrCM 模式与 CCM 模式之间存在着一个重要区别:在 DCM 和 CrCM 模式下,电流在每个开关周期中始终达到 零,而在 CCM 模式下则不是如此。

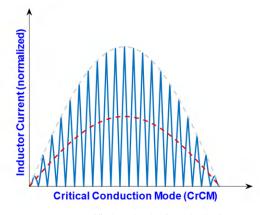


图 4. DCM 模式下的电感器电流波形

图 5. CrCM 模式下的电感器电流波形

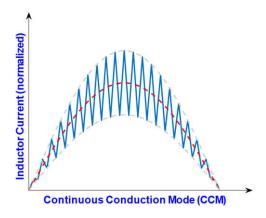


图 6. CCM 模式下的电感器电流波形

表 1 突出显示了每种工作模式的优缺点。简言之,DCM/CrCM 更适合小功率应用,而 CCM 更适合大功率应用。如今,CrCM 比纯粹的 DCM 控制器更受欢迎,因为 CrCM 可以提供更大的功率,并可以通过出色的 IP 轻松解决设计复杂性问题,而成本增加很少。所以,本指南将重点介绍 CrCM 和 CCM 控制器。

表 1. 不同工作模式之间的比较

模式	重要区别	Pro	Con
DCM	零电流开关 (ZCS) 通常为定频,支持脉宽调制	轻负载时效率较高(无二极管反向恢复) 简单的 IC 设计和最低的成本	iTHD(总谐波失真)在所有模式下 最差 在相同输出功率级别下具有最高的 导通损耗
CrCM	零电流开关 (ZCS) 通常为变频,具有固定 Ton 时间	轻负载时效率较高(无二极管反向恢复) 比 DCM 的效率更高	变频设计,因此比 DCM 更复杂 iTHD 比 CCM 更差
ССМ	电流谷值大于零通常为定频,支持脉宽调制	与 CrCM 和 CCM 相比具有最佳 iTHD 在更高功率的应用中的效率更高 在相同的功率级别下需要更小的电感器	需要昂贵的快速恢复二极管(肖特基/SiC)更难设计和补偿轻负载效率较低

如果需要更大的功率,一种实用的方法是交错运行两个彼此相位相差 180°的升压功率级,如下所示。图 7 所示为典型图,图 8 所示为每个电感器的电流波形以及负载的总电流。除了扩展功率范围外,通过取消两个交错的功率级可显著降低总纹波电流,从而实现更好的 iTHD。

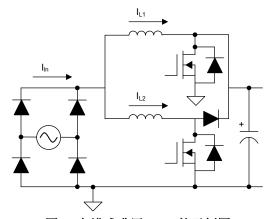


图 7. 交错式升压 PFC 的示例图

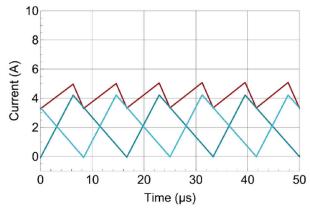


图 8. 电感器电流(两条蓝色)和总电流(红色)波形

交错式 CrCM 和单相 CCM 均可用于 300W 到 600W 的输出功率范围。表 2 显示了主要差异。

表 2. 交错式 CrCM 和单相 CCM 之间的比较

设计特性	交错式 CrCM	单相 CCM
元件应力	谷底开关,对功率 FET 的应力较小	硬开关,对功率 FET 的应力较大
功率密度	较低	较高
系统高度	较小(例如,更适合纤薄电视设计)	较高
热管理	较简单,因为分布在更大的空间中	较难,因为处于集中区域
系统成本	元件数量较多,但每个元件的成本较低	元件数量较少,但每个元件的成本较高

TI 提供 75W 到数千瓦功率范围的 PFC 控制器,如图 9 所示。在有多个器件重叠的功率范围内,需要仔细检查系统要求以获取良好的建议。

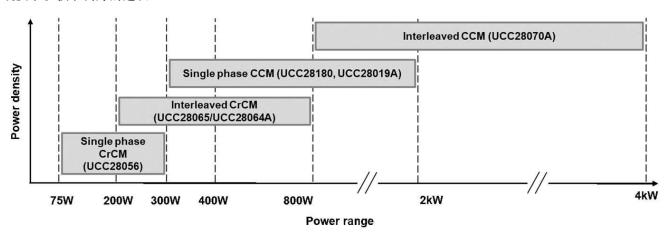


图 9. 按系统功率要求列出的控制器选择表

例如,在交错式 CrCM PFC 控制器系列中,UCC28065 在整个频率和电感值范围内提供持续的低 iTHD,而 UCC28064A 在低开关频率范围内提供出色的 iTHD 性能,如图 10 所示。因此,UCC28065 更适合于需要更小设计尺寸的系统,例如超薄电视,而 UCC28064A 更适合于寻求绝对低 iTHD 的系统,例如照明系统。

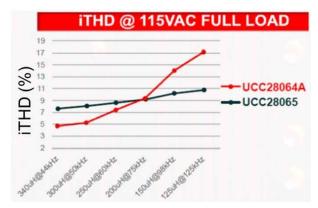


图 10. 在不同电感值和开关频率下,低压线路的 iTHD 性能

图 11. 在不同电感值和开关频率下,高压线路的 iTHD 性能

以单相 CCM PFC 系列为例,可编程开关频率的特性使 UCC28180 能够与各种功率 FET (无论是 Si、IGBT 还是 GaN/SiC) 匹配。内置的欠压保护特性使得 UCC28019A 在服务器 PSU 等安全要求极高的应用中更为常用。

表 3 显示了 TI 提供的独立 PFC 控制器的简单总结。更多有关产品的信息,请访问*功率因数校正控制器* 主页。

表 3. 独立 PFC 控制器的简单总结

GPN	工作模式	相位	软电流限制	开环检测	输出欠压保 护	欠压保护	过热保护	外部时钟同 步	噪声降低	空闲电流	开关频率	封装
UCC28056	CrCM	单通道				是	是		是	<45uA	54kHz	SOT23-6
UCC28064A	CrCM	交错式		是		是	是		是	<200uA	400kHz	SOIC-16
UCC28065	CrCM	交错式		是		是	是		是	<200uA	800kHz	SOIC-16
UCC28019A	CCM	单通道		是	是	是				<200uA	65kHz	SOIC-8
UCC28180	CCM	单通道		是	是				是	<75uA	18-150kHz	SOIC-8
UCC28070A	ССМ	交错式	是	是			是	是		<200uA	30-300kHz	SOIC/ SOP-20

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司