

1 2

3 4

# 基于 TPS62933 的 CISPR-22 传导与辐射 EMI 测试

Jared Liu FAE/Shenzhen

#### **ABSTRACT**

电磁干扰 EMI 测试是对电子产品在电磁场方面的干扰强度评定,是电子产品质量最重要的指标之一。电源芯片的 EMI 性能与芯片本身的特性,PCB layout,差模和共模滤波器的设计紧密相关。本文基于一款高效率、易于使用的同步降压转换器 TPS62933,详细介绍了如何凭借优化的芯片引脚排列实现最优 PCB layout,以及差模和共模滤波器的设计方法,从而通过 CISPR-22 传导与辐射 EMI 测试。

#### **Contents**

| TPS62933 介绍           |                                       | 2 |
|-----------------------|---------------------------------------|---|
| TPS62933 针对 EMI 性能的优化 |                                       |   |
|                       | · · · · · · · · · · · · · · · · · · · |   |
| 2.2 抖频技               | [术                                    | 4 |
| 传导 EMI 测试             |                                       | 4 |
| 辐射 EMI 测试             |                                       | 7 |
| 参考文献                  |                                       | 8 |
|                       |                                       |   |
| Figures               |                                       |   |
| Figure 1.             | TPS62933 简化原理图                        | 2 |
| Figure 2.             | Buck 电路的 EMI 噪声来源                     | 2 |
| Figure 3.             | Buck 电路中的高 di/dt 回路                   | 3 |
| Figure 4.             | TPS62933 参考 PCB layout                |   |
| Figure 5.             | 通过"抖频"使开关频率在一定范围内变化                   |   |
| Figure 6.             | CISPR-22 传导 EMI 测试结果(无滤波器)            | 4 |
| Figure 7.             | EMI 差模滤波器的典型电路                        |   |
| Figure 8.             | LC 滤波器转折频率的选取                         |   |
| Figure 9.             | 2.2uH 与 22uH 电感的阻抗 vs 频率特性对比          |   |
| Figure 10.            | 电解电容对谐振峰的阻尼效果                         |   |
| Figure 11.            | CISPR-22 传导 EMI 测试结果(加差模滤波器)          |   |
| Figure 12.            | CISPR-22 辐射 EMI 测试结果(无共模滤波器)          |   |
| Figure 13.            | Buck 电路中的差模和共模噪声路径                    |   |
| Figure 14.            | CISPR-22 辐射 EMI 测试结果(加共模滤波器)          | 8 |



## 1 TPS62933 介绍

TPS62933 是一款高效率、易于使用的同步降压转换器,支持 3.8V 至 30V 宽输入电压,3A 的连续输出电流、0.8V 至 22V 的输出电压和 98% 的最大占空比。该器件采用内部环路补偿的峰值电流控制模式,无需外部补偿元件即可实现快速瞬态响应。TPS62933 采用 FCOL 的 SOT583 封装,对引脚排列进行了优化,同时具有抖频功能,从而有效地减少了 EMI 噪声,有助于轻松通过 CISPR-22 传导和辐射等测试标准。

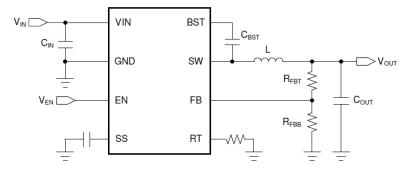



Figure 1. TPS62933 简化原理图

### 2 TPS62933 针对 EMI 性能的优化

开关电源的 EMI 噪声主要来自高 di/dt 的输入电流,高 dv/dt 的开关节点电压,以及由于 PCB 寄生电感引起的开关节点的振铃。图 2 为降压转换器中的主要 EMI 噪声来源。由于开关节点电压的压摆率 dv/dt 和开关损耗相关,降低压摆率尽管可以减少 EMI 噪声,但是开关损耗也会随之增加,造成整体效率降低。所以,在 buck 电路设计中,主要是对针对高 di/dt 输入电流和振铃进行优化,从而降低 EMI 噪声。

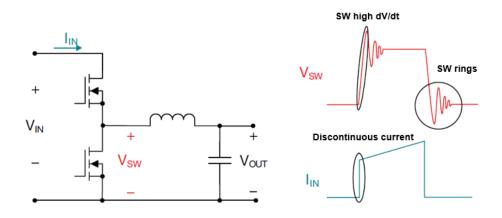



Figure 2. Buck 电路的 EMI 噪声来源



#### 2.1 引脚排列

为了减少 EMI,必须确定 buck 电路中的热回路(高 di/dt 回路)并减少其影响。图 3 显示了一个简化 的 buck 电路原理图,不难看出,热回路(高 di/dt 回路)由输入电容、高边场效应管和低边场效应管 组成。在 buck 电路设计中,最小化这个热回路的面积非常关键,因为回路面积越大,PCB 走线引入的 寄生电感也就越大,从而在开关节点电压产生更大的振铃,引起更大的的 EMI 噪声。

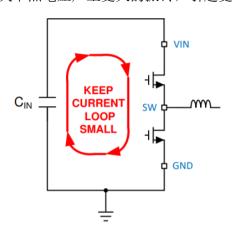



Figure 3. Buck 电路中的高 di/dt 回路

为最小化热回路的面积, TPS62933 针对引脚排列进行了优化,如图 4 所示, VIN 和 GND 引脚相互靠 近,使 layout 时高 di/dt 回路的面积得以最小化,从而有效减小 EMI 噪声。

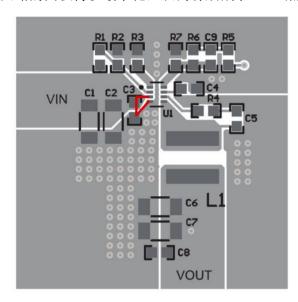



Figure 4. TPS62933 参考 PCB layout

此外,不同于传统的电源芯片封装方式多采用引线键合(wire bonding)工艺,封装引脚和晶圆之间通 过金属细丝相连,具有较大的寄生电感。TPS62933 采用倒装芯片 (Flip chip on lead)的封装工艺,封 装引脚和晶圆之间通过铜柱相连,减小了线路寄生电感,避免了由于寄生电感导致在开关节点上产生 较大的振铃。在实际应用中,也可以增加 RC 阻尼电路,从而进一步抑制开关节点的振铃。



#### 2.2 抖频技术

在固定频率 PWM 控制器中,Buck 电路的 EMI 频谱在开关频率以及谐波频率处具有比较高的峰值,往往容易超出 EMI 标准的限制。TPS62933 采用抖频技术(Frequency Spread Spectrum)使得 Buck 电路的开关频率周期性地在一定范围内变化,将 EMI 噪声分布在较宽的频率范围,从而得以降低基波和谐波频率处的噪声峰值。

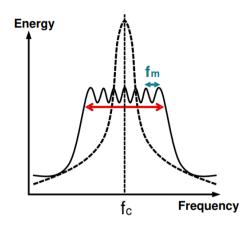



Figure 5. 通过"抖频"使开关频率在一定范围内变化

# 3 传导 EMI 测试

在 CISPR-22 的传导 EMI 测试标准中,测量频率范围覆盖 150kHz 至 30MHz,这一频段的 EMI 噪声以差模噪声为主,往往需要在 Buck 电路的输入端增加差模滤波器来滤除 EMI 噪声。本文所进行的 EMI 测试都是在 TPS62933 EVM 板上完成的。首先进行对 TPS62933 进行 CISPR-22 传导 EMI 测试,由图 6 测试结果可以看到,尽管 TPS62933 通过引脚排列和抖频功能优化了 EMI 性能,但在开关频率600kHz 处仍比 CISPR-22 传导 EMI 标准的平均值上限高出了 44dB,需要设计合适的差模滤波器。

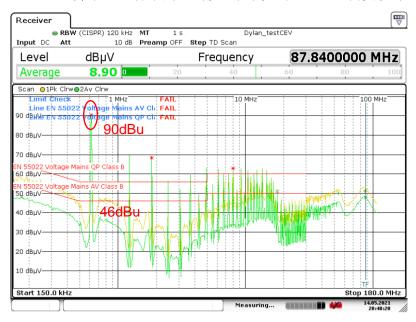



Figure 6. CISPR-22 传导 EMI 测试结果(无滤波器)



图 7 为 Buck 电路 EMI 差模滤波器的典型结构,主要由滤波电感 LF、滤波电容 CF、电解电容 Cd 组成。其中,LF 和 CF 构成低通滤波器,用于衰减高频 EMI 噪声,而电解电容对 LC 谐振峰起到阻尼作用。

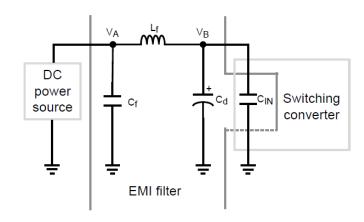



Figure 7. EMI 差模滤波器的典型电路

图 8 为 LC 滤波器的伯德图,可以看到,LC 滤波器在转折频率处有一个二重极点,因此在转折频率之后的幅值增益以-40dB 每 10 倍频衰减,因此对高频 EMI 噪声起到滤波的作用。LC 滤波的转折频率越低,在开关频率 600kHz 处对噪声的衰减作用越明显,但需要 LC 滤波器的体积越大。

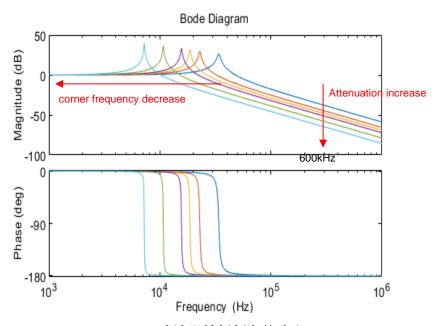



Figure 8. LC 滤波器转折频率的选取

为通过 CISPR-22 传导测试标准,并留有一定裕度,希望 EMI 噪声在开关频率 f=600kHz 处可以被衰减 A=55dB,根据衰减幅值与频率的关系,可以计算得到 LC 滤波器的转折频率为 25.3kHz。

$$A[dB\mu V] = 40\log\left(\frac{f}{fc}\right)$$



不同于理想电感,实际电感由于等效并联电容等寄生参数的影响,在自谐振频率(SRF)处阻抗达到最大值,超出自谐振频率(SRF)之后,电感的阻抗开始下降,会影响到对高频噪声的衰减效果。电感的自谐振频率(SRF)和电感尺寸相关,一般来说,电感的感值越大,尺寸也就越大,寄生参数也就越大,自谐振频率(SRF)往往较低。如图 9,同一工艺的电感相比,2.2uH 电感的自谐振频率(SRF)为 50MHz,而22uH 电感的自谐振频率(SRF)只有 17.5MHz。因此,在满足转折频率的情况下,应尽量选取较小的感值,在本设计中选取了 2.2uH 电感 Lf,并根据 25.3kHz 的转折频率选取 22uF 电容 Cf。

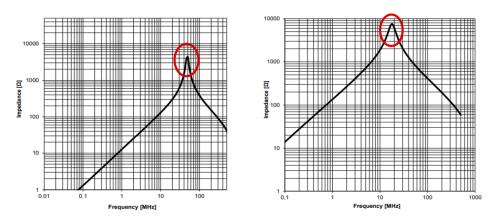



Figure 9. 2.2uH 与 22uH 电感的阻抗 vs 频率特性对比

LC 低通滤波器在转折频率处存在谐振峰值,会导致低频噪声的放大,同时可能会影响到 Buck 变换器的运行稳定性,因此需要进行阻尼。阻尼滤波器的典型方法是在 LC 滤波器之后并联 RC 电路,在本设计中利用了电解电容本身 ESR 较大的特点,采用电解电容来对谐振峰起到较好的阻尼效果。电解电容的容值一般取 4 倍的输入电容容值,以达到较好的阻尼效果。如图 10 所示,在阻尼之后,谐振峰幅值被削减了约 10dB 左右。

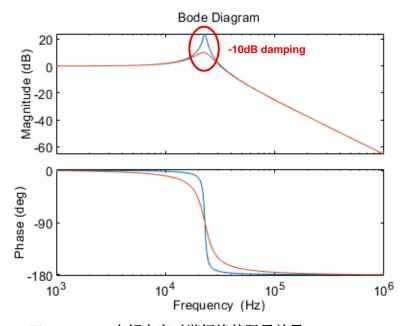



Figure 10. 电解电容对谐振峰的阻尼效果



在完成差模滤波器设计后,再次对 TPS62933 进行 CISPR-22 传导 EMI 测试,由图 11 测试结果可以看到,TPS62933 顺利通过了测试,在开关频率 600kHz 处比 CISPR-22 传导测试的平均值上限低出了11dB,具有较多的裕度。

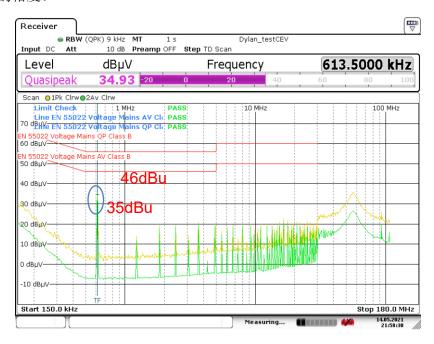



Figure 11. CISPR-22 传导 EMI 测试结果(加差模滤波器)

# 4 辐射 EMI 测试

在 CISPR-22 的辐射 EMI 测试标准中,测量频率范围覆盖 30MHz 至 1GHz,包括水平和垂直两个方向。由图 12 可以看到,TPS62933 的辐射 EMI 幅值在 400Mhz 至 600MHz 之间超出了限制。

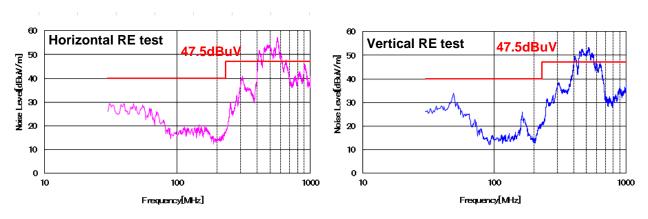



Figure 12. CISPR-22 辐射 EMI 测试结果(无共模滤波器)

这是因为如 13 图所示,buck 电路中的 EMI 噪声由差模噪声和共模噪声共同组成,而 30MHz 至 1GHz 频段的 EMI 噪声以共模噪声为主导,因此往往需要在 buck 电路输入端额外设计共模滤波器来滤除共模噪声。



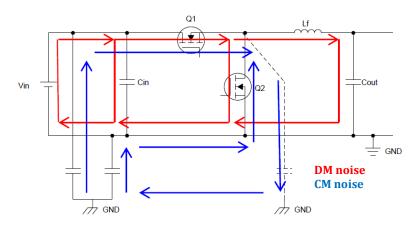



Figure 13. Buck 电路中的差模和共模噪声路径

滤除共模噪声最有效的办法是增加共模电感,共模电感的缺点是体积较大且价格昂贵。由于TPS62933 本身通过优化引脚排列,有利于实现较优的 layout,使得辐射 EMI 噪声超出限制的幅值并不多,因此本文采用在正负电源线上分别串入磁珠的方式来抑制共模噪声。相比共模电感,磁珠在有效抑制共模噪声的同时,可以减小体积并降低成本。如图 14 所示,在正负电源线上分别串入磁珠之后,TPS62933 顺利通过了 CISPR-22 辐射 EMI 测试。

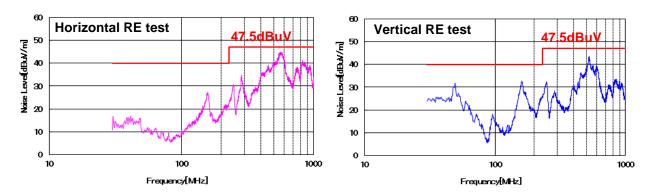



Figure 14. CISPR-22 辐射 EMI 测试结果(加共模滤波器)

# 5 参考文献

- 1. SLYY136 An overview of conducted EMI specifications for power supplies
- 2. SLYY142 An overview of radiated EMI specifications for power supplies
- 3. SNVA721 Low Radiated EMI Layout Made SIMPLE with LM4360x and LM4600x
- 4. AN-2162 Simple Success with Conducted EMI From DC-DC Converters

#### 重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021,德州仪器 (TI) 公司