Application Note

BQ77915 功能安全时基故障率、FMD 和引脚 FMA

Sandy Xu

内容

,	
1 概述	2
2 功能安全时基故障 (FIT) 率	
3 故障模式分布 (FMD)	
4 引脚故障模式分析(引脚 FMA)	
,	
商标	

所有商标均为其各自所有者的财产。

1 概述

本文档包含有关 BQ77915 (PW [TSSOP] 封装)的信息,可为设计功能安全系统提供帮助。所提供的信息包括:

- 根据业内可靠性标准估算的半导体元件的功能安全时基故障 (FIT) 率
- 基于器件主要功能的元件故障模式及其分布 (FMD)
- 引脚故障模式分析(引脚 FMA)

图 1-1 所示为可供参考的器件功能方框图。

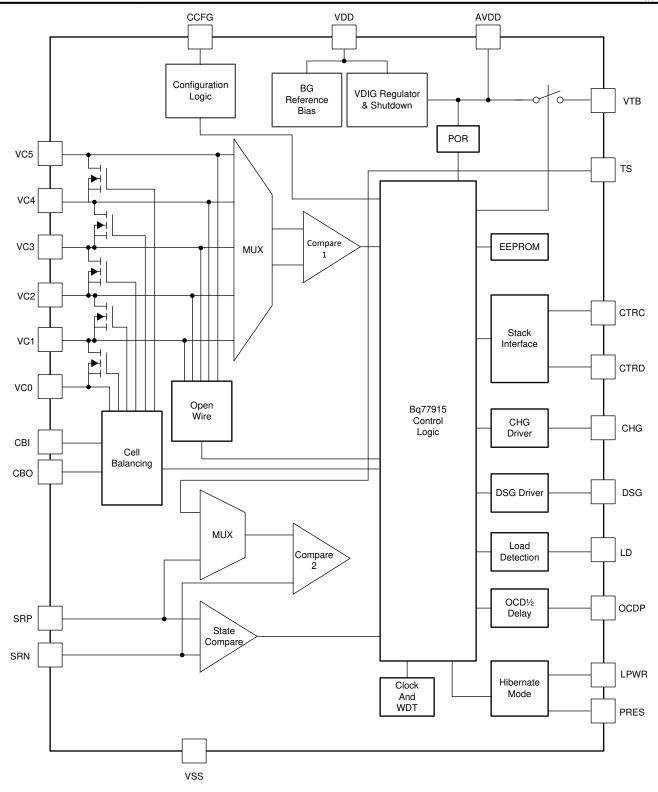


图 1-1. 功能方框图

BQ77915 器件是通过质量管理开发流程开发的,但未遵循 IEC 61508 或 ISO 26262 标准。

2 功能安全时基故障 (FIT) 率

本部分根据业内广泛使用的两种不同的可靠性标准,提供了BQ77915的功能安全时基故障 (FIT)率:

- 表 2-1 提供了符合 IEC TR 62380/ISO 26262 第 11 部分要求的时基故障率
- 表 2-2 提供了符合 Siemens Norm SN 29500-2 要求的时基故障率

表 2-1. 元件故障率符合 IEC TR 62380/ISO 26262 第 11 部分的要求

时基故障 IEC TR 62380/ISO 26262	时基故障(每 10 ⁹ 小时的故障次数)
元件的总时基故障率	17
芯片时基故障率	3
封装时基故障率	4

表 2-1 中的故障率和任务剖面信息摘自可靠性数据手册 IEC TR 62380/ISO 26262 第 11 部分:

• 任务剖面:表 11 中的电机控制

功耗: 1.0mW TBD mW气候类型: 全球范围表 8

• 封装因子 (lambda 3):表 17b:

• 基板材料: FR4

• 假设的 EOS 时基故障率: 0 时基故障

表 2-2. 符合 Siemens Norm SN 29500-2 要求的元件故障率

表	类别	基准时基故障率	基准虚拟 T」
5	CMOS/BICMOS ASIC 模拟和混合 ≤ 50V 电源	60 时基故障	70°C

表 2-2 中的基准时基故障率和基准虚拟 T_J (结温)摘自 Siemens Norm SN 29500-2 表 1 至表 5。工作条件下的故障率是基于 SN 29500-2 第 4 节中的转换信息,并利用基准故障率和虚拟结温计算出的。

3 故障模式分布 (FMD)

表 3-1 中针对 BQ77915 的故障模式分布估算综合考虑了 IEC 61508 和 ISO 26262 等标准列出的常见失效模式、子电路功能重要性和复杂性比率以及优秀工程设计评价。

本部分列出的故障模式为随机故障事件,且不包括因滥用或过压而导致的故障。

表 3-1. 芯片故障模式及分布

芯片故障模式	故障模式分布 (%)
安全的故障	50%
不安全的故障	50%

4 引脚故障模式分析(引脚 FMA)

本部分介绍了 BQ77915 引脚的故障模式分析 (FMA)。本文档介绍的故障模式包括各个引脚的典型故障场景:

- 引脚对地短路(请参阅表 4-2)
- 引脚开路(请参阅表 4-3)
- 引脚对邻近引脚短路(请参阅表 4-4)
- 引脚对电源短路(请参阅表 4-5)

表 4-2 至表 4-5 还根据表 4-1 中的故障影响类别,说明了这些引脚状况对器件有何影响。

表 4-1. TI 对故障影响的分类

类别	故障影响
Α	器件可能会损坏,并使功能受损
В	器件未损坏,但功能丧失
С	器件未损坏,但性能下降
D	器件未损坏,功能和性能也未受到影响

引脚图 表示 BQ779154 器件引脚排列。有关器件引脚的详细说明,请参阅 BQ77915 数据表中的*引脚配置和功能* 部分。

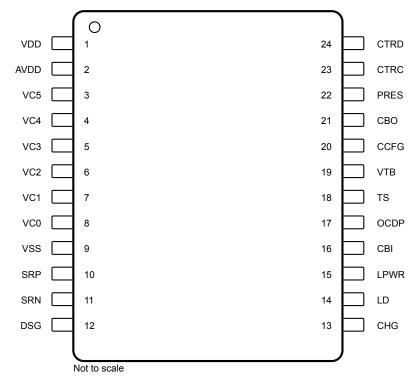


图 4-1. 引脚图

表 4-2. 器件引脚对地短路的引脚 FMA

引脚名称	引脚编号	对潜在故障影响的说明	故障影 响的类 别
VDD	1	由于主电源接地,器件将无法通电。器件将保持在 UVLO 状态,而 CHG/DSG FET 将保持关断。	В
AVDD	2	DPOR_Z 将升高,关闭器件并关断 CHG/DSG FET。	В
VC5	3	电芯 5 的 UV 比较器将跳闸,导致 DSG FET 关断,电池将不再放电。	В
VC4	4	该电芯的 UV 比较器将跳闸,或将对上述电芯触发 OV 事件,CHG/DSG FET 将关断,电池将停止充电。	В

表 4-2. 器件引脚对地短路的引脚 FMA (continued)

		スペーン、 右げ T J JAPA J J B A J J J J J J P W A (CONTINUED)	
引脚名称	引脚编号	对潜在故障影响的说明	故障影 响的类 别
VC3	5	该电芯的 UV 比较器将跳闸,或将对上述电芯触发 OV 事件,CHG/DSG FET 将关断,电池将停止充电。	В
VC2	6	该电芯的 UV 比较器将跳闸,或将对上述电芯触发 OV 事件,CHG/DSG FET 将关断,电池将停止充电。	В
VC1	7	该电芯的 UV 比较器将跳闸,或将对上述电芯触发 OV 事件,CHG/DSG FET 将关断,电池将停止充电。	В
VC0	8	VC0 通常通过电阻器接地。没有影响	D
VSS	9	没有影响	D
SRP	10	SRP 通常都会连接到接地节点,因此这不会产生任何影响。	D
SRN	11	SRN 将接地,保持电压与 SRP 处于相同电位。无过流检测功能。	В
DSG	12	DSG FET 将始终处于关断状态,此外,当启用 DSG 驱动器时,将有大电流进入 DSG 引脚,这可能会损坏电流路径中的某些元件。	Α
CHG	13	CHG FET 将始终处于关断状态,此外,当启用 CHG 驱动器时,将有大电流进入 CHG 引脚,这可能会损坏电流路径中的某些元件。	А
LD	14	负载检测功能将无法正常工作;即使仍有负载,也会检测到负载移除。	В
LWPWR	15	如果堆叠,将保持休眠状态。在非堆叠情况下,AVDD 与接地之间会发生短路,导致 AVDD 崩溃和器件执行 POR。	В
CBI	16	电芯平衡将始终启用且无法关闭。	В
OCDP	17	OCD 延迟编程将无法正确配置,将始终检测到 100K Ω 电阻器,这意味着延迟将由 EEPROM 延迟选项确定。	С
TS	18	过压 (OT) 故障将触发,导致 CHG/DSG FET 关断。	В
VTB	19	过压 (OT) 故障将触发,导致 CHG/DSG FET 关断。	В
CCFG	20	器件将始终处于 4 芯串联配置下,电池组中的任何不同电芯配置将导致 UV 和 DSG FET 关断。	В
СВО	21	对于非堆叠配置,没有变化。如果采用堆叠配置,顶部电芯将始终认为电芯平衡已启用,将无法禁用电芯平衡。	В
PRES	22	器件将一直处于休眠模式,而无法通电进入正常模式。	В
CTRC	23	CHG FET 将正常工作。	D
CTRD	24	放电 FET 将正常工作。	D
	_		

表 4-3. 器件引脚开路的引脚 FMA

引脚名称	引脚编号	对潜在故障影响的说明	故障影 响的类 别
VDD	1	器件将不会通电,因为没有电压进入内部 VDD,器件将一直处于 UVLO 状态,CHG/DSG FET 将保持关断	В
AVDD	2	电源仍将连接到所有模拟块,但如果没有 1uF 上限,电源将更容易因负载瞬态或任何其他干扰而崩溃	С
VC5	3	器件将失去对该电芯进行 OV/UV 检测的能力	В
VC4	4	器件将失去对该电芯进行 OV/UV 检测的能力	В
VC3	5	器件将失去对该电芯进行 OV/UV 检测的能力	В
VC2	6	器件将失去对该电芯进行 OV/UV 检测的能力	В
VC1	7	器件将失去对该电芯进行 OV/UV 检测的能力	В
VC0	8	器件将失去对该电芯进行 OV/UV 检测的能力	В
VSS	9	基板悬空时,器件的电源将丢失,器件将无法正常工作。	В
SRP	10	SRP 处的电压将浮动,并将随机测量电流,可能会发生一些错误的 OCD 触发,这将关断 CHG/DSG FET。	В
SRN	11	SRP 处的电压将浮动,并将随机测量电流,可能会发生一些错误的 OCD 触发,这将关断 CHG/DSG FET。	В

表 4-3. 器件引脚开路的引脚 FMA (continued)

引脚名称	引脚编号	对潜在故障影响的说明	故障影 响的类 别	
DSG	12	DSG Fet 将被禁用。	В	
CHG	13	充电 FET 将被禁用。	В	
LD	14	负载检测功能将不起作用,因为 LD 引脚没有连接来自负载的分压器。当故障发生时,LD 引脚将下拉至地并保持。	В	
LWPWR	15	对于单个器件,没有性能差异。对于可堆叠接口,休眠功能将无法正常使用。	В	
CBI	16	将启用 CBI,对于堆叠器件,顶部和底部器件之间的电芯平衡启用通信功能将不起作用。	В	
OCDP	17	CD1/2 延迟设置将始终读取为最高电阻器选项 (750K), OCD 延迟将设置为最高数字。		
TS	18	在过热/欠温检查期间,TS 引脚悬空将产生不良结果。可能的错误触发会导致 CHG/DSG FET 关 所,电池停止充电/放电。		
VTB	19	从 VTB 到 gnd 的分配器(通过 TS 引脚)将不会连接。TS 引脚将始终接地,导致出现过热故障。CHG/DSG FET 将被关断。	В	
CCFG	20	当该引脚悬空时,内部偏置将器件设置为 5 芯配置。如果电池组实际未配置为 5 芯串联 模式(4 芯串联或 3 芯串联),则会检测到 UV,DSG Fet 将关断	В	
СВО	21	对于非堆叠配置,没有性能差异。对于堆叠配置,顶部器件将始终禁用电芯平衡。	В	
PRES	22	器件将保持处于休眠模式,而无法通电进入正常模式。	В	
CTRC	23	电压引脚将悬空,如果它上升到 0.6V (VMIN) 以上,将导致 CHG FET 关断,器件将无法工作。	В	
CTRD	24	电压引脚将悬空,如果它上升到 0.6V (VMIN) 以上,将导致 DSCHG FET 关断,器件将无法放电。	В	

表 4-4. 器件引脚对邻近引脚短路的引脚 FMA

引脚名称	引脚编号	短路至	对潜在故障影响的说明	故障影 响的类 别
VDD	1	AVDD	短接至 AVDD: VDD 高压将施加到 AVDD 引脚,导致连接至 AVDD 的所有低压元件上产生过压应力。	А
AVDD	2	VC5	短接至 VC5: VC5 高压将施加到 AVDD 引脚(来自 VDD 或 VC5),导致连接到 AVDD 的所有低压元件上产生过压应力。	А
VC5	3	VC4	短接至 VC4:电芯 5 的 UV 比较器将跳闸,导致 DSG FET 关断,电池将停止放电。	В
VC4	4	VC3	短接至 VC3: 此电芯或上/下电芯将触发 OV/UV。CHG/DSG FET 将关断,电池将停止充电。	В
VC3	5	VC2	短接至 VC2:此电芯或上/下电芯将触发 OV/UV。CHG/DSG FET 将关断,电池将停止充电。	В
VC2	6	VC1	短接至 VC1: 此电芯或上/下电芯将触发 OV/UV。CHG/DSG FET 将关断,电池将停止充电。	В
VC1	7	VC0	短接至 VC0: 此电芯或上/下电芯将触发 OV/UV。CHG/DSG FET 将关断,电池将停止充电。	В
VC0	8	VSS	短接至 VSS: VC0 通过 RIN 电阻器接地,因此无变化。	D
VSS	9	SRP	短接至 SRP: SRP 通常都会连接到接地节点,因此这不会产生任何影响。	D
SRP	10	SRN	短接至 SRN: SPR 和 SRN 将短接在一起,所有过流保护功能均不起作用。	В
SRN	11	DSG	SRN 将产生高压,导致 ESD 钳被激活,保持引脚约为 4V,SRN 路径中的元件可能会受损。	А
DSG	12	CHG	如果发生仅一个 DSG/CHG 关断的故障,这将导致直通电流通过 NMOS 和 PMOS 器件驱动器。大电流将从 CHG/DSG 轨流向地面,导致电源崩溃并关断所有 FET,或因大电流造成损坏。	A
CHG	13	LD	短接至 LD:负载检测功能将不工作,因为 CHG 引脚将干扰 RLD 分压器。将不会检测到负载移除。	В
LD	14	LWPWR	在负载检测过程中,LPWR 引脚可能产生高压,导致 ESD 产生火花;大电流灌入 LPWR 引脚,可能使 LPWR 引脚上的低压元件受损。	А

表 4-4. 器件引脚对邻近引脚短路的引脚 FMA (continued)

引脚名称	引脚编号	短路至	对潜在故障影响的说明	故障影 响的类 别
LWPWR	15	СВІ	短接至 CBI: 如果 CBI 被驱动为低电平(电芯平衡已启用),短接至 CBI 将导致 AVDD 崩溃,因为 AVDD 通过 LPWR-CBI 引脚对地短路。	В
СВІ	16	OCDP	短接至 OCDP:OCDP 通过电阻器对地短路,CBI 将接地,将始终启用电芯平衡功能。将失去关闭电芯平衡的能力。	В
OCDP	17	TS	短接至 TS:由于电流源将电流倾入 OCDP 引脚,温度测量将发生偏差。器件的测量温度将始终较低。	С
TS	18	VTB	短接至 VTB:将始终在 VTB 处测量 TS 引脚,这将触发欠温故障。CHG FET 将被关断。	В
VTB	19	CCFG	短接至 CCFG:在正常运行期间,VTB 将在 AVDD 和地面之间切换,因此 CCFG 将从 3 芯串联配置更改为 4 芯串联配置(取决于 VTB 的当前状态)。 这将导致 UV 保护错误地启动和关断 DSG FET。	В
CCFG	20	СВО	短接至 CBO:如果电芯平衡功能启用,CCFG将被拉至低电平,使器件进入3 芯配置,并导致电芯4和5出现 UV 故障。	В
СВО	21	PRES	短接至 PRES: CBO 将强制 PRES 接地,器件将进入休眠模式并停留在此模式下。	В
PRES	22	CTRC	短接至 CTRC:如果休眠结束,则 PRES 引脚保持在 VDD。如果 CTRC 产生此高压,将禁用 FET 驱动器,不再充电。	В
CTRC	23	CTRD	短接至 CTRD:CHG 和 DSG FET 都将遵循 CTRD/C 中指示的内容,器件将不再能够独立控制 CHG/DSG。	В
CTRD	24	CTRC	短接至 CTRD:CHG 和 DSG FET 都将遵循 CTRD/C 中指示的内容,器件将不再能够独立控制 CHG/DSG。	В

表 4-5. 器件引脚对电源短路的引脚 FMA

引脚名称	引脚编号	对潜在故障影响的说明	故障影 响的类 别
VDD	1	正常操作,因为该引脚是电源。	D
AVDD	2	AVDD 将对高压短路,导致 ESD 钳位开始发挥作用,钳位引脚电压达到约 4V,并导致大电流从 VDD 流向 AVDD,可能因过热导致损坏。	А
VC5	3	VC5 的正常工作电压与 VDD (TOPSTACK) 的电压相同。	D
VC4	4	连接电源将触发上述电芯的 OV 事件或 UV 事件,CHG/DSG FET 将关断,电池将停止充电。	В
VC3	5	连接电源将触发上述电芯的 OV 事件或 UV 事件,CHG/DSG FET 将关断,电池将停止充电。	В
VC2	6	连接电源将触发上述电芯的 OV 事件或 UV 事件,CHG/DSG FET 将关断,电池将停止充电。	В
VC1	7	连接电源将触发上述电芯的 OV 事件或 UV 事件,CHG/DSG FET 将关断,电池将停止充电。	В
VC0	8	由于 VC0 与接地相连,器件将不会通电,器件将保持为 UVLO 状态,CHG/DSG FET 将保持关断状态。	В
VSS	9	由于主电源接地,器件将无法通电。器件将保持在 UVLO 状态,而 CHG/DSG FET 将保持关断。	В
SRP	10	将向 SRP 施加高压,导致 ESD 触发并将该引脚钳制在 4V 左右。大电流将从 VDD 流向 SRP,可能导致损坏/过热。	Α
SRN	11	将向 SRN 施加高压,导致 ESD 触发并将该引脚钳制在 4V 左右。大电流将从 VDD 流向 SRN,可能导致损坏/过热。	А
DSG	12	当 EN_DSG 变为低电平时,将有大电流从 VDD 流向 GND,可能对电流路径中的元件造成损坏。	Α
CHG	13	CHG 引脚将 (在内部)钳制在 20V,如果发生会拉低 CHG 电平的故障,大电流将从 CHG 流向地面,可能损坏电流路径中的元件。	А
LD	14	负载检测引脚将(在内部)钳制在 18V,将通过 LD 从 VDD 引出约 450 μ A。负载检测功能将无法正常工作。	В
LWPWR	15	将向 LPWR 引脚施加高压,导致 ESD 触发并将该引脚钳制在 4V 左右。大电流将从 VDD 流向 LPWR,可能导致损坏/过热。	А
СВІ	16	将向 CBI 引脚施加高压,导致 ESD 触发并将该引脚钳制在 4V 左右。大电流将从 VDD 流向 CBI,可能导致损坏/过热。	А

表 4-5. 器件引脚对电源短路的引脚 FMA (continued)

引脚名称	引脚编号	对潜在故障影响的说明	故障影 响的类 别
OCDP	17	将向 OCDP 引脚施加高压,导致 ESD 触发并将该引脚钳制在 4V 左右。大电流将从 VDD 流向 OCDP,可能导致损坏/过热。	Α
TS	18	引脚上的过压将导致 ESD 保护被激活,将电压钳制在约 5V。大电流将从 VDD 流过 TS 引脚,可能导致元件损坏和应力过大。	Α
VTB	19	引脚上的过压将导致 ESD 保护被激活,将电压钳制在约 5V。大电流将从 VDD 流过 VTB 引脚,可能导致元件损坏和应力过大。TS 引脚也可能通过分压器电阻器出现高压。	Α
CCFG	20	引脚上的过压将导致 ESD 保护被激活,将电压钳制在约 5V。大电流将从 VDD 流过 CCFG 引脚,可能导致元件损坏和应力过大。	Α
СВО	21	在堆叠配置中,顶部器件将无法驱动到低位以实现电芯平衡。顶部器件的电芯平衡将保持禁用状态。	В
PRES	22	由于引脚对电源短路,器件将无法进入休眠模式。	В
CTRC	23	充电 FET 将被禁用;器件将不会运行。	В
CTRD	24	放电 FET 将被禁用;器件将不会运行。	В

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司