

在系统发生故障后正确读取 UCD3138A 寄存器的方法

Max Han

Power Management /Field Application

摘要

在 UCD3138A 控制的数字电源系统中,当系统发生故障保护,系统通常会关机然后重启,这时由于发生错误时寄存器值被清除或者覆盖,所以难以读取发生故障时的寄存器值进行故障判断,找出故障发生的根本原因。本文针对 UCD3138A 控制的 ACDC 数字电源系统,设计出合理的寄存器读取方法和操作步骤,在系统发生故障保护后,可以有效地进行故障分析。

Contents

4 符入		2
	设计	
	取操作流程设计	
	· · · · · · · · · · · · · · · · · · ·	
		Ŭ
	Figures	
Figure 1.	Boost PFC + Half-bridge LLC 拓扑	2
Figure 2.	不隔离 PMBus 通讯接口	
Figure 3.	USB-to-GPIO Interface Adapter	
Figure 4.	系统 3.3V 供电架构	
Figure 5.	3线 PMBus 接法	
Figure 6.	错误连接方式	
Figure 7.	正确连接方式	
Figure 8.	GUI 程序下载	
Figure 9.	UCD3138A 上电后执行程序的流程	
Figure 10.	ACDC 数字电源的系统框图	
Figure 11.	寄存器读取流程	
Figure 12		g

1. 简介

在 ACDC 数字电源系统中,两级拓扑结构(PFC+LLC)被广泛采用。在 PFC 的拓扑选择中,Boost PFC 拓扑被广泛使用,其在满足效率要求的情况下具有成本优势,为了实现更高的效率,无桥 PFC 也获得了广泛使用。LLC 拓扑根据功率的不同一般选择分裂电容式半桥 LLC 拓扑和全桥 LLC 拓扑。由于 PFC 系统是不隔离系统,数字控制器 UCD3138A 和 PFC 输出侧 Bulk 电容共地,因此在当 AC 电源接入时,想要读取 UCD3138A 的寄存器值,需要考虑系统之间的共模电压问题,以避免造成设备损坏。

本文针对 Boost PFC + Half-bridge LLC 系统,如图 1 所示,设计出合理的寄存器读取方法和操作步骤。

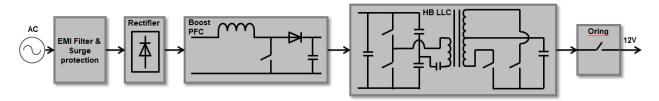


Figure 1. Boost PFC + Half-bridge LLC 拓扑

2. 系统连接设计

2.1 3.3V 供电问题

在 ACDC 数字电源系统中,UCD3138A 有一个独立的 PMBus 通信接口,用来实现软件烧录和故障调试,如图 2 所示,共有 4 个引脚,分别为 PMBus_CLK,PMBus_DATA,+3.3V 和 GND。由于体积和成本考虑,这个 PMBus 通信接口和 UCD3138A 是不隔离连接。

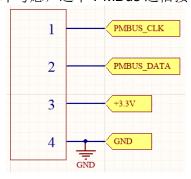


Figure 2. 不隔离 PMBus 通讯接口

TI 提供的 UCD3138A 烧录器为 USB to GPIO,如图 3 所示。其内部有 LDO 将 USB 接口提供的 5V 转换为 3.3V 供内部电路使用,同时这个 3.3V 通过 PMBus +3.3V 引线提供给 UCD3138A,以满足程序烧录^[1]。

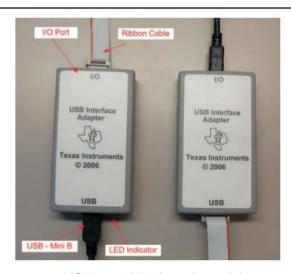


Figure 3. USB-to-GPIO Interface Adapter

在 ACDC 数字电源系统中,辅助电源的输出接 PFC Bulk 电容,通常产生 12V 电源供 PFC MOSFET Driver 使用,同时 Buck 芯片 TPS560430 将 12V 转换为 3.3V,提供 UCD3138A 的 V33A 和 V33D 电压。

USB to GPIO 的 3.3V 和 ACDC 数字电源中的 3.3V 在电源板上接在一起。当 AC 电压上电后, ACDC 数字电源系统中的 3.3V 和 USB to GPIO 的 3.3V 会冲突, 有可能会导致 USB to GPIO 内部电路损坏。

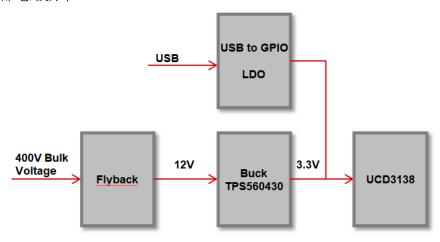


Figure 4. 系统 3.3V 供电架构

所以在发生故障需要读取 PFC 控制器 UCD3138A 寄存器时,USB to GPIO 需要 3 线接法 与 ACDC 数字电源相连,如图 5 所示。UCD3138A 的 3.3V 电压由 ACDC 数字电源中的 Buck TPS560430 提供。

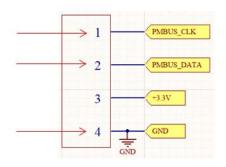


Figure 5. 3线 PMBus 接法

2.2 共模电压问题

由于 PFC 拓扑为不隔离拓扑,PFC 控制器 UCD3138A 与 PFC Bulk 电容共地,PMBus 通讯为不隔离连接,所以笔记本电脑和 PFC 电路共地。在实验室中,由于 AC power supply 为大功率设备,所以它的供电和市电供电通常是独立的,即它们的 Earth 大地不同。在读取数据时,如果笔记本电脑连接 adapter 供电,如图 6 所示,系统中会出现两个 Earth 大地,会造成电路承受一定的共模电压差,容易造成芯片的损坏。常见的现象是 UCD3138A 无法被识别,不能下载新程序,也不能进行 PMBus 通讯。

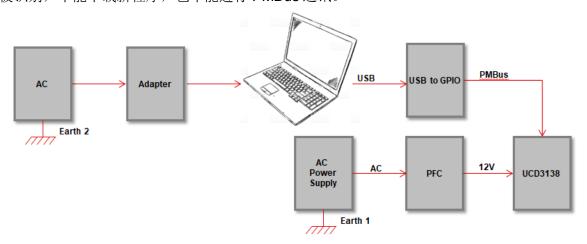


Figure 6. 错误连接方式

因此,正确的接线方式如图 7 所示,笔记本电脑不要接 adapter 电源,这样笔记本电脑浮地,然后通过 PMbus 总线与 PFC 电路共地。

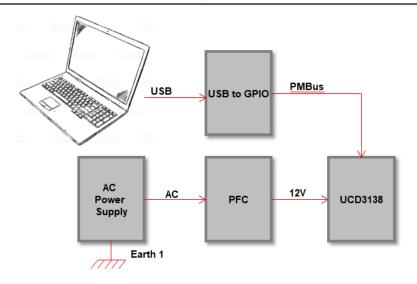


Figure 7. 正确连接方式

3. 软件烧录设计

UCD3138A 有两种工作模式,ROM Mode 和 Flash Mode。这两种方式的选择可以通过GUI来实现。如图 8 所示,当选择"DO NOT write program checksum (Stay in ROM)",程序下载成功后,UCD3138A 运行在 ROM Mode。当选择"WRITE program checksum (Automatically execute program)",程序下载成功后,UCD3138A 运行在 Flash Mode^[2].

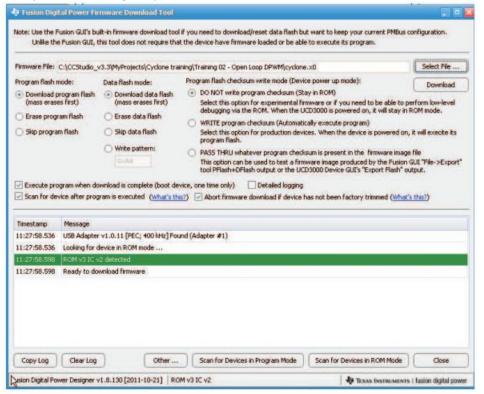


Figure 8. GUI 程序下载

UCD3138A上电后执行程序的流程如图 9 所示,在参考文章[3]中有详细描述。

当选择"DO NOT write program checksum (Stay in ROM)",芯片 RESET 后,执行"检测 Pflash 前 2KB 的检验和是否合法"和"检测 Pflash 整个 32KB 的检验和是否合法",其结果均为不合法,因此程序会跳转到"用户程序无效,继续留在 ROM,等待 PMBus 命令",此时程序将停止执行,等待上位机发送 PMBus 执行命令。因此在 ROM Mode,当 UCD3138A 因外部故障而 reset 后,内部程序会停止运行,所有寄存器的值会停留在错误发生时,此时通过合理方式读取相应寄存器值,便可以诊断出故障类型。

当选择"WRITE program checksum (Automatically execute program)",芯片 RESET 后,执行"检测 Pflash 前 2KB 的检验和是否合法"或"检测 Pflash 整个 32KB 的检验和是否合法",结果为合法,因此程序会跳转到"用户烧写程序成功,将 Pflash 的地址设置为 0,CPU 跳转到 Pflash 执行程序",此时程序开始重新执行。因此在 Flash Mode,当 UCD3138A 因外部故障而 reset 后,内部程序会重新自动执行,因此错误发生时的寄存器值会被新的值覆盖,此时读取寄存器,将无法进行故障判断。

因此,在本实验中,UCD3138A选择ROM Mode工作模式。

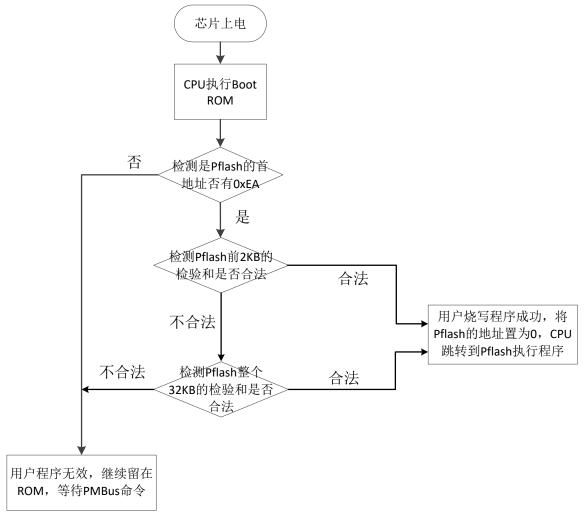


Figure 9. UCD3138A 上电后执行程序的流程

4. 寄存器读取操作流程设计

ACDC 数字电源的系统框图如图 10 所示,UCD3138A 为 PFC 控制器,辅助电源的输入电压为 PFC 的 Bulk 电压,它分别产生两路 12V 供给高压侧和低压侧,12V 通过 Buck 芯片转换为 3.3V 供给 PFC 控制芯片和 LLC 控制芯片。LLC 控制器在接收到辅助电源过压过流等保护信号后会通过 IO 口关闭辅助电源,实现系统的关机重启功能,以保护辅助电源不会损坏。根据系统架构,当 PFC 控制器因系统故障 reset 后,LLC 控制器不会关闭辅助电源,PFC 控制器的 3.3V 供电依然稳定,因此可以实现寄存器的正常读取。

本实验中,系统的故障发生在 PFC 和 LLC 同时工作时,所以开机顺序是 PFC 先开启,然后再开通 LLC。关机时,先关闭 LLC,再关闭 AC 电源。

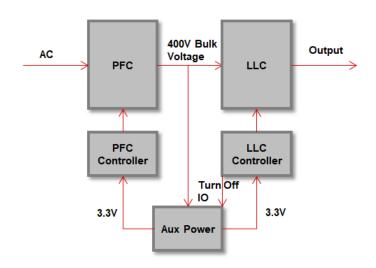


Figure 10. ACDC 数字电源的系统框图

根据以上系统分析,设计出以下寄存器读取流程,如图 11 所示。

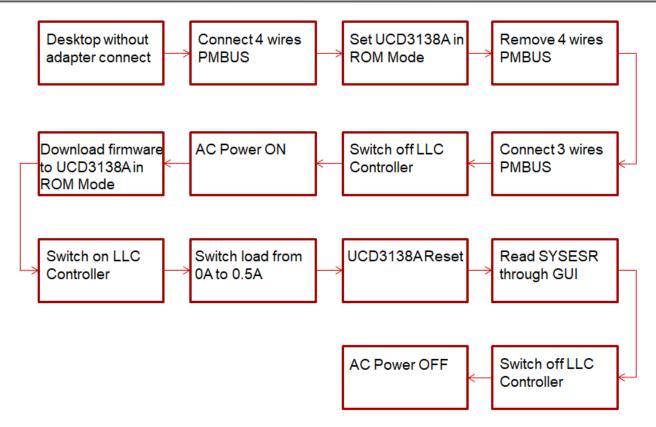


Figure 11. 寄存器读取流程

- 1. 装有 GUI 的笔记本电脑不要连接电源适配器。
- 2. 将 USB TO GPIO adapter 一端连接至笔记本电脑,另外一端通过 4 根线 PMBus 连接 UCD3138A。
- 3. 通过 GUI 下载程序至 UCD3138A,选择"DO NOT write program checksum (Stay in ROM)",使 UCD3138A 在 ROM mode 运行。
- 4. 移除 4 根线 PMBus 连接,由于 AC 电源还未开启,所以 UCD3138A 的 3.3V 会掉电。
- 5. 接上 3 根线 PMBus 连接。
- 6. 将控制 LLC 控制器工作的开关切到 turn off 状态。
- 7. 开通 AC 电源, UCD3138A 的 3.3V 上电,由于此时 UCD3138A 处于 ROM mode,所以 PFC 程序不执行。
- 8. 通过 GUI 下载程序至 UCD3138A,选择 ROM mode,GUI 在程序下载完成后会自动发送使程序开始执行的 PMBus 命令,因此 PFC 程序开始执行。
- 9. 将控制 LLC 控制器工作的开关切到 turn on 状态, LLC 程序开始执行。
- 10. 将输出负载电流从空载调到 0.5A 或者更大, 触发系统故障。

- 11. UCD3138A 发生 RESET。
- 12. 通过 GUI 的 Memory Debug 读取寄存器值。
- 13. 将控制 LLC 控制器工作的开关切到 turn off 状态。
- 14. 关闭 AC 电源。
- 图 12 为最终的寄存器读取结果,从寄存器显示的值可以看出,在 UCD3138A reset 时, PORRST 寄存器被置位。

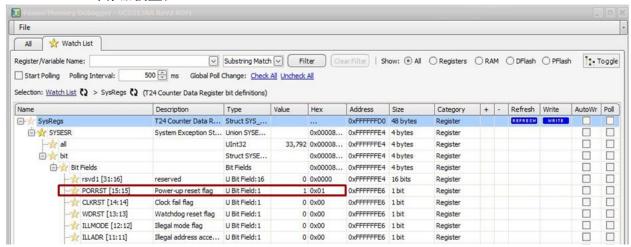


Figure 12. 寄存器读取结果

5. 结论

本文根据 ACDC 数字电源的系统架构,详细分析了系统的 3.3V 供电问题和共模电压问题,并对 UCD3138A 工作在 ROM Mode 和 Flash Mode 出现 Reset 时的不同工作模态进行了分析,最后依据系统辅助电源的控制逻辑,3.3V 供电问题,共模电压问题和 UCD3138A 的工作模态,设计了完整的寄存器读取流程。按照这个流程,成功读取寄存器值。

Reference:

- [1] UCD3138AOL40EVM-032 User's Guide. SLUUA80, January 2013.
- [2] UCD3138A064 Enhancements Programmer's Manual. SLUUAD8B, May 2014.
- [3] 如何防止 UCD3138 无法再次烧录. ZHCA646, October 2015.

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2019 德州仪器半导体技术(上海)有限公司