
MSP-EXP430FR5969

USB

B
o

o
ste

rp
a

ck
 C

o
n

n
e

cto
r

MSP430FR5969

UART

I2C

B
o

o
ste

rp
a

ck
 C

o
n

n
e

cto
r

UART<->USB

MSP-EXP430G2

B
o

o
ste

rp
a

ck
 C

o
n

n
e

cto
r

MSP430G2553

I2C

B
o

o
ste

rp
a

ck
 C

o
n

n
e

cto
r

SMBus Master

SMBus Slave

SMBus

430BOOST-TMP006

B
o

o
ste

rp
a

ck
 C

o
n

n
e

cto
r

TMP006

I2C

B
o

o
ste

rp
a

ck
 C

o
n

n
e

cto
r

SMBus Slave

TimerDimmer

TI Designs
SMBus Design Using MSP430™ Design Guide

TI Designs Design Features
TI Designs provide the foundation that you need • Low Power
including methodology, testing and design files to • Cost Effective
quickly evaluate and customize the system. TI Designs

• Shows Implementation of SMBusLib as Master andhelp you accelerate your time to market.
Slave

Design Resources • Uses TMP006 to Measure Temperature of Objects
Remotely

Tool Folder Containing Design FilesTIDM-SMBUS • Simple LED Dimmer Implementation Using
MSP430FR5969 Product Folder MSP430™ as SMBus Slave
MSP430G2553 Product Folder • Easy-to-use GUI
TMP006 Product Folder

Featured Applications
• Mobile ComputingASK Our E2E Experts

WEBENCH® Calculator Tools • Battery-Powered Applications

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other
important disclaimers and information.

All trademarks are the property of their respective owners.

1TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com/tool/TIDM-SMBUS
http://www.ti.com/product/MSP430FR5969
http://www.ti.com/product/MSP430G2553
http://www.ti.com/product/TMP006
http://e2e.ti.com/
http://e2e.ti.com/support/development_tools/webench_design_center/default.aspx
http://e2e.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

System Description www.ti.com

1 System Description
This design utilizes existing Launchpad™ evaluation kits and BoosterPack™ plug-in modules to
demonstrate the implementation of an SMBus-based system using TI's MSP430™ SMBus Library.

The SMBus system consists of a master device (MSP-EXP430FR5969) that controls two slave devices,
430BOOST-TMP006 and MSP-EXP430G2.

The 430BOOST-TMP006, containing a TMP006 infrared thermopile sensor, can be used to measure the
temperature of objects remotely. The MSP-EXP430G2, using a MSP430G2553 ultra-low-power value line
device, implements a simple LED dimmer with three virtual registers.

The MSP-EXP430FR5969, acting as SMBus master and containing a MSP430FR5969 ultra-low power
microcontroller with FRAM, works as a bridge between UART and SMBus, allowing a PC application to
control the slave devices.

A GUI, provided as source code and executable, allows easy configuration and display of the system.

1.1 MSP-EXP430FR5969
The MSP-EXP430FR5969 Launchpad development kit is an easy-to-use Evaluation Module for the
MSP430FR5969 microcontroller. The kit contains everything needed to start developing on the MSP430
ULP FRAM platform, including on-board emulation. This emulation can not only be used for programming,
debugging, and Energy Measurements, but it can also provide a back-channel UART port to communicate
with a PC.

The MSP-EXP430FR5969 is used as the SMBus master in this design, but it can also be used as SMBus
slave (as explained in Section 6). This design was built on Revision 2.0 of the MSP-EXP430FR5969, but
the version available on TI eStore may be different; users should check for compatibility issues.

The LaunchPad user’s guide includes more details about this board, including schematics, description of
jumpers, and a hardware change log.

Figure 1. MSP430FR5969

2 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/tool/msp430-smbus
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

EEM
(S: 3 + 1)

RTC_A

Comp_E

(up to 16
inputs)

FRAM

64KB
48KB
32KB

RAM

2KB
1KB

Power
Mgmt

LDO
SVS

Brownout

SMCLK

ACLK

MDB

MAB

LFXOUT,
HFXOUT

LFXIN,
HFXIN

Spy-Bi-Wire

CRC16

Bus
Control
Logic

MAB

MDB

MAB

MDB

MCLK

P1.x, P2.x

2x8

I/O Port
PJ

1x8 I/Os

I/O Ports
P3 4

2x8 I/Os

PB
1x16 I/Os

, P
I/O Ports
P1, P2

2x8 I/Os

PA
1x16 I/Os

P3.x, P4.x PJ.x

2 1x x8 8

MPY32

AES256

Security
En
Decryption
(128, 256)

cryption,

ADC12_B

(up to 16
standard
inputs,
up to 8

differential
inputs)

Clock
System

CPUXV2
incl. 16

Registers

JTAG

Interface

DMA

Controller

3 Channel

Watchdog

REF_A

Voltage
Reference

MPU
IP Encap

TB0

Timer_B
7 CC

Registers
(int, ext)

TA0

Timer_A
3 CC

Registers
(int, ext)

TA1

Timer_A
3 CC

Registers
(int, ext)

TA2
TA3

Timer_A
2 CC

Registers
(int. only)

RTC_B

eUSCI_A0
eUSCI_A1

(UART,
IrDA,
SPI)

eUSCI_B0

(I2C,
SPI)

Capacitive Touch IO 0/1

LPM3.5 Domain

EnergyTrace++

www.ti.com System Description

1.1.1 MSP430FR5969
The MSP430 ultra-low-power (ULP) FRAM platform combines uniquely embedded FRAM and a holistic
ultra-low-power system architecture, allowing innovators to increase performance at lowered energy
budgets. FRAM technology combines the speed, flexibility, and endurance of SRAM with the stability and
reliability of flash at much lower power.

Among other features, the MSP430FR59xx includes the following:
• Up to 64KB of FRAM memory
• A 12-bit analog-to-digital converter
• Two enhanced universal serial communication interfaces:

– One supporting UART, IrDA, and SPI (eUSCI_A)
– One supporting I2C and SPI (eUSCI_B)

• DMA
• Five 16-bit timers
• AES256 and CRC16 hardware accelerators
• Up to 40 I/O pins

Figure 2. Functional Block Diagram—MSP430FR59xx

3TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

System Description www.ti.com

1.2 MSP-EXP430G2
The MSP-EXP430G2 LaunchPad™ is an easy-to-use flash programmer and debugging tool for the
MSP430G2xx Value Line microcontrollers. The LaunchPad features everything needed to start developing
on an MSP430 microcontroller device. The MSP-EXP430G2 features a 14 / 20-pin DIP socket, on-board
buttons and LEDs, and BoosterPack™-compatible pinouts that support a wide range of plug-in modules
for added functionality such as wireless, displays, and more. The included eZFET circuitry for on-board
emulation not only allows for programming and debugging of the device, but it also provides a back-
channel UART that can be used to communicate with a PC.

The MSP-EXP430G2 functions as an SMBus slave in this design, but it can also function as SMBus
master as explained in Section 6. This design was built on Revision 1.5 of the MSP-EXP430G2, but the
version available on TI eStore may be different; users should check for compatibility issues.

The LaunchPad user’s guide includes more details about this board, including schematics, a description of
jumpers, and a hardware change log.

Figure 3. MSP-EXP430G2

4 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

Clock

System

Brownout

Protection

RST/NMI

DVCC DVSS

MCLK

Watchdog

WDT+

15-Bit

Timer0_A3

3 CC

Registers

16MHz

CPU

incl. 16

Registers

Emulation

2BP

JTAG

Interface

SMCLK

ACLK

MDB

MAB

Port P1

8 I/O

Interrupt

capability

pullup/down

resistors

P1.x

8

P2.x

Port P2

8 I/O

Interrupt

capability

pullup/down

resistors

Spy-Bi-

Wire

Comp_A+

8 Channels

Timer1_A3

3 CC

Registers

XIN XOUT

Port P3

8 I/O

pullup/

pulldown

resistors

P3.x

8 8

RAM

512B

256B

Flash

16KB

8KB

4KB

2KB

USCI A0

UART/

LIN, IrDA,

SPI

USCI B0

SPI, I2C

ADC

10-Bit

8 Ch.

Autoscan

1 ch DMA

www.ti.com System Description

1.2.1 MSP430G2553
The MSP430G2x13 and MSP430G2x53 series are ultra-low-power mixed-signal microcontrollers with
built-in 16-bit timers, up to 24 I/O capacitive-touch enabled pins, a versatile analog comparator, and built-
in communication capability using the universal serial communication interface. In addition, the
MSP430G2x53 family members have a 10-bit analog-to-digital (A/D) converter.

Typical applications include low-cost sensor systems that capture analog signals, convert them to digital
values, and then process the data for display or for transmission to a host system.

Figure 4. Functional Block Diagram—MSP430G2x53

5TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

16-Bit

DS

ADC
Gain

Die
Temperature

IR
Thermopile

Sensor

Voltage
Reference

Sensor
Amplifier

Digital
Control

Two-Wire
Interface

DRDY

ADR0

ADR1

SCL

SDA

V+

AGND DGND

TMP006

TMP006B

System Description www.ti.com

1.3 430BOOST-TMP006
The TMP006 BoosterPack™ is a simple adapter board that allows the TMP006EVM circuit board to be
used with the MSP430™ LaunchPad™. The TMP006EVM is an evaluation board designed to allow full
evaluation of the TMP006 device. The TMP006EVM features the TMP006 device with the required
specific PCB layout and some simple support circuitry.

The 430BOOST-TMP006, together with the TMP006EVM, acts as an SMBus slave capable of measuring
temperature of objects remotely. This design was built on Revision A of the TMP006EVM, but the version
available on TI eStore may be different; users should check for compatibility issues.

More information about both boards, including schematics and pinout, is available in the respective user’s
guides.

Figure 5. 430BOOST-TMP006 with TMP006EVM

1.3.1 TMP006
The TMP006 and TMP006B are the first in a series of temperature sensors that measure the temperature
of an object without the need to make contact with the object. This sensor uses a thermopile to absorb the
passive infrared energy emitted from the object being measured and uses the corresponding change in
thermopile voltage to determine the object temperature. The thermopile voltage is digitized and reported
with the die temperature through serial communication.

Figure 6. Functional Block Diagram—TMP006

6 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

MSP-EXP430FR5969

USB

B
o

o
ste

rp
a

ck
 C

o
n

n
e

cto
r

MSP430FR5969

UART

I2C

B
o

o
ste

rp
a

ck
 C

o
n

n
e

cto
r

UART<->USB

MSP-EXP430G2

B
o

o
ste

rp
a

ck
 C

o
n

n
e

cto
r

MSP430G2553

I2C

B
o

o
ste

rp
a

ck
 C

o
n

n
e

cto
r

SMBus Master

SMBus Slave

SMBus

430BOOST-TMP006

B
o

o
ste

rp
a

ck
 C

o
n

n
e

cto
r

TMP006

I2C

B
o

o
ste

rp
a

ck
 C

o
n

n
e

cto
r

SMBus Slave

TimerDimmer

www.ti.com Block Diagram

2 Block Diagram

Figure 7. Block Diagram of the System

3 System Design Theory
The purpose of this TI Design is to show the implementation of an SMBus system using TI’s MSP430™
SMBus Library. The design includes the implementation of a MSP430 as an SMBus slave dimmer, a
TMP006 as an SMBus slave temperature sensor, a PC GUI displaying information about the devices and
allowing control of them, and another MSP430 used as SMBus master and acting as a bridge between the
GUI and the slave devices.

3.1 SMBus
The System Management Bus (SMBus) is a lightweight two-wire interface based on the principles of I2C,
commonly used as a control bus and for power-management tasks in computing, mobile computing, and
battery-operated applications. A device performing data transfers on the bus can be considered a master,
which is the device initiating a transaction and drives the clock, or a slave, which is the target of an
SMBus transaction driven by the master. Both the master and the slave can act as transmitters or as
receivers.

7TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

System Design Theory www.ti.com

SMBus 2.0 shares many similarities with I2C, but some of the most relevant differences include the
following:
• Time-out detection occurs when a device stretches the clock for too long
• Packet Error Checking (PEC) can be optionally appended at the end of each transaction, allowing the

bus to automatically validate packets
• I2C only defines a PHY and Data-Link layers, but SMBus defines a network layer with different SMBus

protocols, which can be used to exchange data between devices
• Optional use of additional lines are available, such as SMBAlert# and SMBSUS#.

For more information about SMBus, please refer to http://smbus.org/specs/. For more information about
I2C, please refer to http://www.nxp.com/documents/user_manual/UM10204.pdf

3.1.1 MSP430 SMBus Library
The MSP430 SMBus Library is a royalty-free API stack intended to enable easy and reliable
communication for MSP430 in an SMBus system. The library provides support for applications where the
MSP430 acts as the master or the slave. The library also includes the implementation of all layers of
SMBus 2.0 as well as application examples allowing for a faster time to market. SMBus Library 1.0
includes support for MSP430FR5xx/FR6xx and MSP430G2xx3 devices.

For more information about SMBus Library, please refer to TIDM-SMBUS.

3.2 SMBus Master
The SMBus master initializes the slave devices and acts as a bridge between them and the PC. This
functionality is shown in Figure 8.

8 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://smbus.org/specs/
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.ti.com/tool/TIDM-SMBUS
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

Master

Initialize

MCU

Initialize SerialComm

(UART)

Initialize SMBus

Master interface

Initialize slave

devices

Slave devices

OK?
Error

Wait for event

Event type

Send command to

corresponding slave

Command OK?

Send

Response_to_PC

Response_to_PC =

error

Response_to_PC=

OK + response from

slave

Get ambient

temperature

Command OK?

Response_to_PC=

OK + response from

slave

Response_to_PC =

error

Send

Response_to_PC

Get object

temperature

Command OK?

Response_to_PC=

OK + response from

slave Response_to_PC =

error

Send

Response_to_PC

N

Y

SerialComm Packet

N

Y

TMP006 DRDY

Y

N

Y

N

www.ti.com System Design Theory

Figure 8. Flow diagram—Master Application

9TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

System Design Theory www.ti.com

After initialization, the master device goes to an idle state in low power mode waiting for any of the
following events:
• A packet from SerialComm (UART) that indicates that the PC is sending a new command
• An asynchronous event from one of the slaves, in this case signaled by the assertion of DRDY signal

from TMP006

The implementation of TMP006 DRDY is explained in more detail in Section 3.4.1, while the SerialComm
protocol is explained in Section 3.2.1.

3.2.1 SerialComm (UART) Protocol Between Master and PC
The MSP-EXP430FR5969 eZ-FET circuitry includes support for a backchannel UART, which is used to
communicate with the PC. A custom protocol, shown in Table 1, was implemented to exchange data with
the PC GUI:

Table 1. Packet from PC to Master

HEADER LENGTH COMMAND DATA
0x80 LEN CMD D1...Dn

Header— Indicates beginning of the frame. Always 0x80

LEN— Number of bytes, including Command and Data

CMD— Command sent to the master device, as explained in Table 2

D1...Dn— Data bytes 1 to n

The commands supported by the master are as follows:

Table 2. Commands Supported by Master Using SerialComm

COMMAND CMD DATA SMBUS PROTOCOL
TMP006_Write_Config ‘C’ (0x43) LSB,MSB WriteWord
TMP006_Read_Config ‘c’ (0x63) - ReadWord

TMP006_Read_Manuf_ID ‘m’ (0x6D) - ReadWord
TMP006_Read_Device_ID ‘d’ (0x64) - ReadWord
TMP006_Read_Sensor_V ‘v’ (0x76) - ReadWord
TMP006_Read_Ambient_T ‘t’ (0x74) - ReadWord

DIM430_Write_Config ‘Y’ (0x59) LSB,MSB WriteWord
DIM430_Read_Config ‘y’ (0x79) - ReadWord

DIM430_Read_Device_ID ‘p’ (0x70) - ReadWord
DIM430_Write_DutyCycle ‘U’ (0x55) LSB,MSB WriteWord
DIM430_Read_DutyCycle ‘u’ (0x75) - ReadWord

Upon receiving a packet, the master validates its contents and starts an SMBus transfer if needed. Each
command access a particular register of the slave devices TMP006 or DIM430. More information about
the slave registers can be found in Section 3.4.3 and Section 3.3.2 respectively.

10 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

www.ti.com System Design Theory

The result of the SMBus transfer is reported back to the PC using the packet shown in Table 3.

Table 3. Response from Master to PC

HEADER LENGTH SMB CONTROL SMB STATUS SMB TXLEN
0x80 LEN Ctrl Stat TxLen

SMB TXADDR SMB TXCMD SMB TXDATA RESPONSE ID SMB RESPDATA
TxAddr TxCMD TxD1…TxDn RespID RxD1…RxDn

Header— Indicates beginning of the frame. Always 0x80.

LEN— Number of bytes, including all fields from SMB Control to SMB RespData

Ctrl— SMBus Control byte with the following contents:

Table 4. SMBus Control Byte

BIT7:BIT5 BIT4 BIT3 BIT2 BIT1 BIT0
Reserved Master PHYEn intEn swackEn pecEn

Check definition of SMBus_Ctrl in SMBusLib for more details.

Stat— SMBus Status byte with the following contents:

Table 5. SMBus Status Byte

BIT7:BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0
Reserved cmdErr byteOvrErr packOvrErr packErr toErr pecErr

Check definition of SMBus_Status in SMBusLib for more details.

TxLen— Number of bytes sent to the slave device via SMBus including command and data

TxAddr— Address of SMBus slave device

TxCMD— SMBus command sent to slave device

TxD1...TxDn— Data sent to the slave device via SMBus

RespID— Response ID indicating if the device was sent correctly, as detailed in Table 6.

RxD1...RxDn— Response data received from the slave device via SMBus.

Table 6. Response IDs Sent by Master Using SerialComm

RESPONSE RESPID RXD1…RXDN DESCRIPTION
SC_OK 0x00 - Command executed OK, no RX data.

SC_RX_ERROR 0x01 - Incorrect packet received from PC
SC_SMB_ERROR 0x02 - Error during SMBus communication

SC_TMP006_V 0x03 LSB,MSB TMP006 Sensor_Voltage
SC_TMP006_T 0x04 LSB,MSB TMP006 Ambient Temperature

SC_TMP006_CONFIG 0x05 LSB,MSB TMP006 Configuration
SC_TMP006_MANID 0x06 LSB,MSB TMP006 Manufacturer ID
SC_TMP006_DEVID 0x07 LSB,MSB TMP006 Device ID
SC_DIM430_DEVID 0x08 LSB,MSB DIM430 Device ID

SC_DIM430_CONFIG 0x09 LSB,MSB DIM430 Configuration
SC_DIM430_DUTY 0x0A LSB,MSB DIM430 Duty cycle

11TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

SMBus Master
|--DriverLib <- MSP430 DriverLib
| |--- MSP430FR5xx_6xx
| |---inc
|
|--smbuslib <- SMBus Library
| |--- MSP430FR5xx_6xx <- PHY for FR5xx eUSCI
| |--- MSO430G2xx3 <- (ignored)
|
|--main.c <- Main application
|--Dim430.c/h <- DIM430 control
|--TMP006.c/h <- TMP006 control
|--TI_SerialComm.c/h <- SerialComm (UART to PC) protocol
|--TI_SerialComm_HAL_FR5969.c <- Hardware Abstraction for SerialComm
|--Master_HAL_FR5969.c <- Hardware Abstraction for application
|--Master_HAL.h <- Header file for Hardware Abstraction

System Design Theory www.ti.com

For more details about the TMP006 or DIM430 register contents, please refer to Section 3.4.3 and
Section 3.3.2 respectively.

Command Examples:

Table 7. PC Sends Command to Write DIM430 Duty Cycle to 50%

HEADER LENGTH COMMAND DATA
0x80 0x03 ‘U’ (0x55) 0x32 0x00

Table 8. Expected Response from Master

HEADER LENGTH SMB CONTROL SMB STATUS SMB TXLEN
0x80 0x08 0x1C 0x00 0x04

SMB TxAddr SMB TxCmd SMB TxData Response ID SMB RespData
0x43 0x01 0x32 0x00 0x00 -

Table 9. PC Sends Command to Read TMP006 Device ID

HEADER LENGTH COMMAND
0x80 0x01 ‘d’ (0x64)

Table 10. Expected Response from Master

HEADER LENGTH SMB CONTROL SMB STATUS SMB TXLEN
0x80 0x08 0x1C 0x00 0x02

SMB TxAddr SMB TxCmd SMB TxData Response ID SMB RespData
0x40 0xFF - 0x07 0x67 0X00

3.2.2 Software—Master
The master application consists of the following files:

Figure 9. Software Files for SMBus Master Example

The application is structured in a modular way with a hardware abstraction layer (HAL), which allows easy
migration to other devices. This procedure is explained in Section 6.

12 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

+3.3V

P4.2

P4.3

P2.6

P2.4

P2.2

P3.4

P3.5

P3.6

P2.5
UART

RX

TX

Analog In

Analog In

SPI CLK

I2C*
SCL

SDA

A10

TB0.1UCA1RXDUCA1SOMI

TB0.0UCA1TXDUCA1SIMO

A11

TA1.0UCA1CLKA7C11

TB0.2UCB0CLK

TB0.3SMCLK

TB0.4COUT

TB0.5

MSP-EXP430FR5969 Pin Map

+3.3V

GPIO (!)

GPIO (!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

GND

P1.2

P3.0

RST

P1.6

P1.5

P1.4

P1.3

P1.7

A2TA1.1 TA0CLK COUT C2

A12 C12

TB0.3 UCB0SDA TA0.0

TB0.4 UCB0SCL TA1.0UCB0SOMI

A5TB0.2 UCA0CLK C5

A4TB0.1 UCA0STE C4

A3TA1.2 UCB0STE C3

UCB0SIMO
SPI

MOSI

MISO

SPI CS Wireless

SPI CS Display

SPI CS Other

BoosterPack Standard

GND

NC

RST

PWM Out GPIO (!)

GPIO (!)

GPIO (!)

GPIO (!)

GPIO (!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

MSP-EXP430FR5969 Pin Map

BoosterPack

Standard

GPIO**

TI Design

SMBus Master

Output

Output

Output

Output

Output

Output

Output

TI Design

SMBus Master

Output

Output

Output

Output

+3.3V

GND

Input

Output

SMB
SDA

SCL

RST

Input

TMP006 DRDY

www.ti.com System Design Theory

3.2.3 Hardware—Master
The software for the master application was developed for MSP430FR5969 using the following resources:

Table 11. Master Hardware Resources—MSP430FR5969

FUNCTION PERIPHERAL GPIO CONNECTION TO OTHER BOARDS
SDA: P1.6/UCB0SDA SDA of both slavesSMBus eUSCI_B0 SCL: P1.7/UCB0SCL SCL of both slaves
TXD: P2.0/UCA0TXDUART eUSCI_A0 -RXD: P2.1/UCA0RXD

LED0: P1.0LEDs - -LED1: P4.6
TMP006 DRDY - P3.5 DRDY of TMP006 slave

The application can be executed in practically any hardware, but the examples were developed and tested
in the MSP-EXP430FR5969 LaunchPad. This LaunchPad is explained in more detail in the MSP-
EXP430FR5969 LaunchPad Development Kit User's Guide (slau535).

The application can execute with just the external connections to the other two boards as shown in
Table 11; or the three boards can be stacked on top of each other. The software takes special
considerations to avoid electrical conflicts when stacking the boards and this procedure is used in the
Getting Started guide included in Section 4.

The BoosterPack pinout when using the MSP-EXP430FR5969 as a master is shown in Figure 10.

Figure 10. BoosterPack Pinout for MSP-EXP430FR5969 as Master

13TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/slau535
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

System Design Theory www.ti.com

• “Output” pins are actively driven low by the application. These pins are not used by the master or any
of the slaves, and users must take care when changing the configuration of these pins to avoid a
conflict with the other boards.

• “Input” pins are floating because they are not used by the master but they are driven by a slave.
• “TMP006 DRDY” is connected to TMP006’s DRDY signal and is used by the master as explained in

Section 3.4.1.
• “SMB SDA” and “SMB SCL” signals are connected between the master and both slaves. Note that this

configuration differs from the BoosterPack standard.

The board includes several jumpers that must be configured properly to download, debug, and execute
the application. Table 12 shows the configuration:

Table 12. MSP-EXP430FR5969 Configuration as Master

JUMPER PROGRAMMING / DEBUGGING EXECUTION – STACKED
J1 OFF OFF
J2 Bypass Bypass
J6 ON ON
J9 ON ON
J10 Debugger Debugger
J11 OFF OFF
J12 OFF OFF

J13 – GND ON ON
J13 – 5V ON ON
J13 – V+ ON ON

J13 – RTS OFF OFF
J13 – CTS OFF OFF
J13 – RXD ON ON
J13 – TXD ON ON
J13 – RST ON OFF
J13 – TST ON OFF

Note that the application can actually execute using the “Debugging” configuration but there could be
problems if the three boards are stacked on top of each other. The step-by-step procedure on how to
debug and execute the application is shown in Section 4 and Section 5.

3.3 SMBus Slave – LED Dimmer (DIM430)
This reference design shows an implementation of an SMBus slave using MSP430G2553 acting as a
simple LED Dimmer. The purpose of this example is to show a simple implementation of an SMBus slave
that can be used as a starting point for more complex implementations. Developers can implement more
commands, registers, and functionality as needed.

14 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

0h

0FFFFh

EQU0
TAIFG

Output Mode 6: Toggle/Set

TAxCCR0

TAxCCR1

EQU1 EQU0
TAIFG

EQU1 EQU0
TAIFG

Interrupt Events

DIM430

Initialize

MCU

Initialize

Dimmer

Initialize SMBus

Slave interface

Wait for Event

New valid SMBus

Command

Write

corresponding

Register

Send Contents of

register

WriteWord ReadWord
Command

Y

N

www.ti.com System Design Theory

The flow diagram for the slave application is shown in Figure 11.

Figure 11. Flow diagram—Slave DIM430 Application

The dimmer is implemented using a Timer_A instance that is sourced by ACLK to consume low power
even when the PWM is enabled. VLO (Very-Low Power Low-Frequency Oscillator) is used to source
ACLK to avoid using an external crystal.

The PWM is configured to run at ~200Hz using Timer_A in Toggle/Set mode as shown in the following
figure:

Figure 12. Timer_A Toggle/Set Mode

15TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

DIM430 Slave Address 0x43

Percentage

V
al

ue

0 20 40 60 80 100
0

10

20

30

40

50

60

TimerCLKFreq 12,000Hz
PWMSteps 60

PWMFreq 200Hz
= = =

System Design Theory www.ti.com

The granularity and tolerance of the PWM is limited by the clock source being ACLK, which is sourced by
VLO. Because VLO is expected to have a typical frequency of 12 KHz and the output frequency of the
PWM is 200 Hz, the granularity is calculated as follows:

(1)

This indicates that there are 60 steps between a 0% and a 100% duty cycle. As a result, some duty cycle
percentages will result in repeated values of the duty cycle as shown in Figure 13.

Figure 13. Duty Cycle, Percentage vs Value

It’s also important to remark that the frequency of VLO can vary from 4 KHz to 20 KHz, which indicates
that the PWM frequency can vary as shown in Table 13:

Table 13. PWM Frequency

PARAMETER MIN TYP MAX UNIT
PWM Frequency (from VLO, 66.66 200 333.33 HzG2553)

Applications requiring more tolerance or better granularity on the PWM output can use an external clock
source or the DCO.

The device implements three virtual registers that can be read and written by the master device to control
the DIM430:
• CONFIG register enables the PWM output using CONFIG.EN0
• DUTY_CYCLE register is used to set the duty cycle percentage from 0% to 100%
• DEV_ID register returns the device ID.

These registers are explained in more detail in Section 3.3.2, and they can be read or written as explained
in the following section.

3.3.1 SMBus Communication
This address of the DIM430 can be customized, but the default value is as follows:

Figure 14. DIM430 Slave Address

16 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

1 7 1 1 8 1 1 7 1 1 8 1 8 1 1

S SlaveAddr Wr A Reg A S SlaveAddr Rd A DataL A DataH A P

S 0x43 0 A 0xFF A S 0x43 1 A 0x43 A 0x00 A P

1 7 1 1 8 1 8 1 8 1 1

S SlaveAddr Wr A Reg A DataL A DataH A P

S 0x43 0 A 0x01 A 0x32 A 0x00 A P

Master to Slave

Slave to Master

1 7 1 1 8 1 1 7 1 1 8 1 8 1 1

S SlaveAddr Wr A Reg A S SlaveAddr Rd A DataL A DataH A P

1 7 1 1 8 1 8 1 8 1 1

S SlaveAddr Wr A Reg A DataL A DataH A P

www.ti.com System Design Theory

A master device can write the contents of the DIM430 registers using the SMBus Write Word protocol, and
it can read their contents using the Read Word protocol:

Figure 15. Write Word Protocol

Figure 16. Read Word Protocol

S: Start / Repeated Start
SlaveAddr: Slave address
Wr: Write bit (0)
Rd: Read bit (1)
A: Acknowledge (‘1’ = NACK, ‘0’ = ACK)
P: Stop
Reg: Register being addressed as described in Section 3.3.2
DataL: Low byte of Data
DataH: High byte of Data

Examples:

Figure 17. Master Writes Duty Cycle to 50%

Figure 18. Master Reads DIM430 Device ID

3.3.2 Registers – Slave – DIM430
The following registers are implemented in DIM430:

Table 14. DIM430 Registers

REGISTER ADDRESS TYPE RESET
CONFIG 0x00 Read / Write 0x0000
DUTY_CYCLE 0x01 Read / Write 0x0000
DEV_ID 0xFF Read 0x0043

17TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

15 14 13 12 11 10 9 8

ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8

R R R R R R R R

7 6 5 4 3 2 1 0

ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0

R R R R R R R R

15 14 13 12 11 10 9 8

Duty15 Duty14 Duty13 Duty12 Duty11 Duty10 Duty9 Duty8

R/W R/W R/W R/W R/W R/W R/W R/W

7 6 5 4 3 2 1 0

Duty7 Duty6 Duty5 Duty4 Duty3 Duty2 Duty1 Duty0

R/W R/W R/W R/W R/W R/W R/W R/W

15 14 13 12 11 10 9 8

- - - - - - - -

R R R R R R R R

7 6 5 4 3 2 1 0

- - - - - - - EN0

R R R R R R R R/W

System Design Theory www.ti.com

3.3.2.1 CONFIG Register
The CONFIG register is a read-and-write register that enables the PWM output. Setting CONFIG.EN0=1
will enable the PWM output at the current duty cycle, while clearing this bit has the opposite effect.

Address = 0x00

Reset value = 0x0000

Figure 19. DIM430 CONFIG Register

Bits [15:1] Unused
Read-only, always returns to 0

Bit [0] EN0
0 = Disable PWM0 output
1 = Enable PWM0 output

3.3.2.2 DUTY_CYCLE Register
The DUTY_CYCLE register is a read-and-write register that sets the PWM duty cycle percentage. The
duty cycle can be configured to go from 0% (0x0000) to 100% (0x0064).

Address = 0x01

Reset value = 0x0000

Figure 20. DIM430 DUTY_CYCLE Register

Bits [15:0] Duty[15:0]
Sets the Duty Cycle percentage of PWM0. The value is limited from 0% to 100%.

3.3.2.3 DEV_ID Register
The DEV_ID register is a read-only register that returns the device ID of DIM430. The Device ID is set to
0x0043.

Address = 0xFF

Reset value = 0x0043

Figure 21. DIM430 DEV_ID Register

18 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

SMBus Slave
|--DriverLib <- (ignored for MSP430G2553)
| |--- MSP430FR5xx_6xx
| |---inc
|
|--smbuslib <- SMBus Library
| |--- MSP430FR5xx_6xx <- (ignored)
| |--- MSO430G2xx3 <- PHY for G2xx3 USCI
|
|--main.c <- Main application
|--Slave_HAL_G2553.c <- Hardware Abstraction for application
|--Slave_HAL.h <- Header file for Hardware Abstraction

www.ti.com System Design Theory

Bits [15:0] ID[15:0]
Contains the Device ID for DIM430, fixed at 0x0043.

3.3.3 Software – Slave – DIM430
The DIM430 slave application consists of the following files:

Figure 22. Software Files for SMBus DIM430 Slave Example

The application is structured in a modular way with a hardware abstraction layer (HAL), which allows easy
migration to other devices. This procedure is explained in Section 6.

3.3.4 Hardware – Slave – DIM430
The software for the DIM430 slave application was developed for MSP430G2553 using the following
resources.

Table 15. DIM430 Slave Hardware Resources—MSP430G2553

FUNCTION PERIPHERAL GPIO CONNECTION TO OTHER BOARDS
SDA: P1.7/UCB0SDA SDA of master and TMP006SMBus USCI_B0 SCL: P1.6/UCB0SCL SCL of master and TMP006

TA1Dimmer PWM PWM: P2.4/TA1.2 LED1 of TMP006 BoosterPackTA1.2

The application can be executed in practically any hardware, but the examples were developed and tested
in the MSP-EXP430G2 LaunchPad. For more information about this LaunchPad, visit the MSP-EXP430G2
LaunchPad Evaluation Kit User's Guide (slau318).

The application can execute with just the external connections to the other two boards as shown in
Table 15; or the three boards can be stacked on top of each other. The software takes special
considerations to avoid electrical conflicts when stacking the boards and this procedure is used in the
Getting Started guide included in Section 4.

The BoosterPack pinout when using the MSP-EXP430G2 as a slave is shown in Figure 23.

19TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/slau318
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

+3.3V

P1.0

P1.3

P1.1

P1.4

P1.5

P2.0

P2.1

P2.2

P1.2
UART

RX

TX

Analog In

Analog In

SPI CLK

I2C*
SCL

SDA

A0

UCA0RXDUCA0SOMI

UCA0TXDUCA0SIMO

TA1.0

TA1.1

TA1.1

MSP-EXP430G2 Pin Map

+3.3V

GPIO (!)

GPIO (!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

GND

P2.6

P2.7

RST

P1.7

P2.5

P2.4

P2.3

P1.6

TA0.1 XIN

XOUT

CAOUT UCB0SDA A7

TA0.1 UCB0SCLUCB0SOMI

TA1.2

TA1.2

TA1.0

UCB0SIMO
SPI

MOSI

MISO

SPI CS Wireless

SPI CS Display

SPI CS Other

BoosterPack Standard

GND

TEST

RST

PWM Out GPIO (!)

GPIO (!)

GPIO (!)

GPIO (!)

GPIO (!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

MSP-EXP430G2 Pin Map

BoosterPack

Standard

GPIO**

TI Design

SMBus Slave

Output

Output

Output

Output

Output

Output

Output

TI Design

SMBus Slave

Output

Output

Output

Output

+3.3V

GND

Output

SMB
SDA

SCL

Input

CA0ACLKTA0CLK

A1CA1TA0.0

A2CA2TA0.1

A3CA3VEREF-VREF-CAOUTADC10CLK

A4CA4VEREF+VREF+TCKUCA0CLKUCB0STESMCLK

A5CA5UCB0CLKUCA0STETA0.0TMS

SBWTCK

NMI SBWTDIO

CA7 TDO TDI

A6 CA6 TDI TCLK

Dimmer PWM

LED0

RST

System Design Theory www.ti.com

Figure 23. BoosterPack Pinout for MSP-EXP430G2 as Slave

• “Output” pins are actively driven low by the application. These pins are not used by the master or any
of the slaves, and users must take care when changing the configuration of these pins to avoid a
conflict with the other boards.

• “Input” pins are floating because they are not used by this slave, but they are used by the other
boards.

• “DIMMER PWM” is the PWM output signal that connects to LED1 from TMP006 BoosterPack.
• “LED0” is connected directly to an LED in this Launchpad and can be used by the application.
• “SMB SDA” and “SMB SCL” signals are connected between the master and both slaves. Note that this

configuration differs from the BoosterPack standard.

The board includes several jumpers that must be configured properly to download, debug, and execute
the application. The jumpers and the default configuration are shown in Table 16:

Table 16. MSP-EXP430G2 Jumper Configuration as Slave

JUMPER PROGRAMMING / DEBUGGING EXECUTION—STACKED
J3 – TXD OFF OFF
J3 – RXD OFF OFF
J3 – RST ON OFF

J3 – TEST ON OFF
J3 – VCC ON OFF
J5 – P1.0 ON ON
J5 – P1.6 OFF OFF

J6 OFF OFF

Note that the application can execute using the “Debugging” configuration, but problems may occur if the
three boards are stacked on top of each other. The step-by-step procedure on how to debug and execute
the application is shown in Section 4 and Section 5.

20 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

Master to Slave

Slave to Master

1 7 1 1 8 1 1 7 1 1 8 1 8 1 1

S SlaveAddr Wr A Reg A S SlaveAddr Rd A DataL A DataH A P

1 7 1 1 8 1 8 1 8 1 1

S SlaveAddr Wr A Reg A DataL A DataH A P

TMP006 Slave Address 0x40

www.ti.com System Design Theory

3.4 SMBus Slave—TMP006
This design uses a TMP006 as a second slave device to read the temperature of objects remotely. This
device has five registers that the master device can read and write to control the functionality:
• The Sensor Voltage Result register is a 16-bit register in binary twos complement format containing the

result of the last object temperature measurement. Data from this register is used in conjunction with
data from the Local Temperature register to calculate the object temperature.

• The Temperature register is a 14-bit register that stores the result of the most recent conversion for the
die temperature.

• The Configuration register determines the operational mode, conversion rate, and DRDY control;
initiates a single conversion; performs a software reset; or puts the device into shutdown mode.

• The Manufacturer ID register always reads 0x5449
• The Device ID register always reads 0x0067

These registers are explained in more detail in the TMP006 datasheet. The method to calculate the object
temperature is described in the TMP006 User’s Guide (sbou107).

3.4.1 DRDY Functionality
The TMP006 can use the DRDY (Data Ready) pin to inform the master when a new conversion of voltage
and temperature is available. This event allows a master to use an interrupt-based approach instead of
polling.

This implementation is independent from SMBus specification, but the master device used for this TI
Design uses an input pin as an interrupt to detect falling edges on this pin. The master device also triggers
a read transaction of both the Sensor Voltage Result register and the Temperature register. The pin used
by the master is mentioned in Section 3.2.3.

The DRDY is automatically de-asserted when the master reads the contents of these registers, allowing
for automatic periodic conversions.

3.4.2 SMBus Communication
This address of the TMP006 can be modified depending on the settings of ADR1 and ADR0 pins, but the
address used in this design is as shown in Figure 24:

Figure 24. TMP006 Slave Address

A master device can write the contents of the TMP006 registers using the SMBus Write Word protocol,
and it can read their contents using the Read Word protocol:

Figure 25. Write Word Protocol

Figure 26. Read Word Protocol

21TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/ds/symlink/tmp006.pdf
http://www.ti.com/lit/pdf/sbou107
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

1 7 1 1 8 1 1 7 1 1 8 1 8 1 1

S SlaveAddr Wr A Reg A S SlaveAddr Rd A DataL* A DataH* A P

S 0x40 0 A 0xFF A S 0x40 1 A 0x00 A 0x67 A P

* Note that the TMP006 sends the MSB first.

1 7 1 1 8 1 8 1 8 1 1

S SlaveAddr Wr A Reg A DataL* A DataH* A P

S 0x40 0 A 0x02 A 0x75 A 0x00 A P

* Note that the TMP006 expects the MSB first.

System Design Theory www.ti.com

S: Start / Repeated Start
SlaveAddr: Slave address
Wr: Write bit (0)
Rd: Read bit (1)
A: Acknowledge (‘1’ = NACK, ‘0’ = ACK)
P: Stop
Reg: Register being addressed as described in Section 3.3.2
DataL: Low byte of Data
DataH: High byte of Data

Examples:
• Master enables TMP006 in Sensor and die continuous conversion mode, with a conversion rate of 1

conversion per second, and with DRDY enabled:

• Master reads TMP006 Device ID:

3.4.3 Registers—Slave—TMP006
The following registers are implemented in TMP006 as shown in Table 17:

Table 17. TMP006 Registers

REGISTER ADDRESS TYPE RESET
SENSOR VOLTAGE RESULT 0x00 Read 0x0000

TEMPERATURE 0x01 Read 0x0000
CONFIGURATION 0x02 Read / Write 0x7400

MANUFACTURER ID 0xFE Read 0x5449
DEVICE ID 0xFF Read 0x0067

3.4.4 Hardware—Slave—TMP006
The application can be executed in practically any hardware, but the examples were developed and tested
in the 430BOOST-TMP006 BoosterPack using TMP006EVM. The BoosterPack is explained in more detail
in the 430BOOST-TMP006 BoosterPack™ User's Guide (slau440), and the EVM is explained in the
TMP006EVM User Guide and Software Tutorial (sbou109).

The Boosterpack can be stacked on top of the LaunchPads. The software takes special considerations to
avoid conflicts when stacking boards as explained in the Getting Started guide included in Section 4.

The 430BOOST-TMP006 can use two TMP006EVM simultaneously, but the software included in this TI
Design only supports one board placed in Input #1.

The pinout of the BoosterPack when the TMP006EVM is placed in Input #1 is shown in Figure 27.

22 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/slau440
http://www.ti.com/lit/pdf/sbou109
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

+3.3V

UART
RX

TX

Analog In

Analog In

SPI CLK

I2C*
SCL

SDA

430BOOST-TMP006 Pin Map

+3.3V

GPIO (!)

GPIO (!)

GND

RST

LED1

LED2

SCL
SPI

MOSI

MISO

SPI CS Wireless

SPI CS Display

SPI CS Other

BoosterPack Standard

GND

PWM Out GPIO (!)

GPIO (!)

GPIO (!)

GPIO (!)

GPIO (!)

430BOOST-TMP006 Pin Map

BoosterPack

Standard

GPIO**

TI Design

TMP006 Slave

TI Design

TMP006 Slave

+3.3V

GND

SMB
SDA

SCL

Dimmer PWM

NC

NC

NC

NC

NC

NC

NC

TMP006 DRDY DRDY

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

SDA

DRDY2

NC

NC

NC

NC

NC

LOW

www.ti.com System Design Theory

Figure 27. BoosterPack Pinout for 430BOOST-TMP006 with TMP006 in Input #1

• “NC” pins are not connected in this Boosterpack. These pins are driven low by the LaunchPads.
• “LOW” pins are driven low by the LaunchPads, but these pins are not used by application.
• “TMP006_DRDY” is connected to the master to indicate when a new conversion is available as

explained in Section 3.4.1.
• “DIMMER PWM” is a PWM signal driven by DIM430 Launchpad connected to LED1 in this

BoosterPack.
• “SMB SDA” and “SMB SCL” signals are connected between the master and both slaves. Note that this

configuration differs from the BoosterPack standard.

The step-by-step procedure on how to connect and use this BoosterPack is shown in Section 4.

3.5 GUI
The graphical user interface (GUI) for this TI design is intended to provide an easy-to-use interface for
users and developers to control the slave devices and observe the activity on SMBus. The project for the
GUI was implemented in Java using Netbeans IDE as a development platform, using the following
versions:
• JDK 7 Update 71
• Netbeans IDE 8.0.2

A pre-built executable .jar and full source code is provided with the software package. The GUI is divided
in different panels as shown in Figure 28:

23TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

TMP006

Control

DIM430

Control

Ambient

temperature

Remote object

temperature

Serial Port

control

SMBus

Log

Communication

flow

System Design Theory www.ti.com

Figure 28. GUI Panels

The panels consist of the following:
• TMP006 Control: Shows when a TMP006 slave is connected and allows users to control this device.

This panel contains the following fields:
– TMP006 LED: shows if the TMP006 is connected and responding correctly to periodic packets
– Manufacturer ID: Result of reading Manufacturer ID register in hexadecimal format
– Device ID: Result of reading Device ID register in hexadecimal format
– Conversion Rate: Configures the conversion rate to the 5 possible values: 4, 2, 1, 0.5, or 0.25

conversions/sec
– Mode of Operation: Configures the mode of operation as Power-down mode, or Sensor and die

continuous conversion
– Enable DRDY interrupts: Enables/disables the DRDY pin in TMP006. More details about this

functionality are discussed in Section 3.4.1
– Read TMP006 Sensor Voltage: Performs manual read of Sensor Voltage Result register. The result

is shown in hexadecimal and converted to volts.
– Read TMP006 Ambient Temp: Performs manual read of Temperature register. The result is shown

in hexadecimal and converted to Celsius degrees.
• DIM430 Control: Shows when a DIM430 slave is connected and allows users to control this device.

This panel contains the following fields:
– DIM430 LED: Shows if the DIM430 is connected and responding correctly to periodic packets
– Device ID: Result of reading DEV_ID register in hexadecimal format
– Enable Dimmer Output: Enables/disables the PWM output by setting/clearing CONFIG.EN0
– PWM Duty Cycle: Controls the duty cycle from 0% to 100%

• Ambient temperature: graphical representation of the latest result of ambient temperature as read by
TMP006

• Remote object temperature: graphical representation of the latest result of object temperature,
calculated with TMP006’s ambient temperature and sensor voltage

24 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

Comm !OK,

Slave !OK
Comm OK,

Slave !OK

Slave !OK

Poll

PC-to-Master-

to-Slave

Command

Slave-to-Master-

to-PC

Update

Periodic trigger (500ms)

Slave Response

Error

Slave OK

Slave OK

Poll

S
la

v
e

 R
e

sp
o

n
se

O
K

Periodic trigger (2sec)

Slave Response OK

Slave Response Error

SerialPort Disconnected

Command Execution
Complete

Data pro
cessi

ng complete

SerialPort Connection OK

Data event

fro
m Slave

GUI event

SerialPort Disconnected

Start

www.ti.com System Design Theory

• Serial Port control: allows connection to the serial port. This panel contains the following fields:
– Select Serial port: Shows ports available and allows users to select the corresponding port
– Connect: Connects to the selected port
– Disconnect: Disconnects from the selected port

• SMBus Communication: Shows the results of SMBus communications
• Communication Flow: Graphically represents the flow of communication.

– Blocks are highlighted when communication occurs in the corresponding channel.
– Communication from PC to master is performed via SerialComm (UART)
– Communication between master and slaves is performed via SMBus.

The state diagram of the application is as shown in Figure 29:

Figure 29. GUI State Diagram

The diagram applies for communication with both slave devices. During this communication, the GUI will
poll both the TMP006 and DIM430 periodically to check if they are connected and enabled. If one of the
slaves does not respond as expected, this slave will move to the “Communication Enabled, Slave
Disconnected” state, but the other device will stay in “Slave Connected” state if it keeps responding as
expected.

25TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

System Design Theory www.ti.com

The states of the application are as follows:
• Comm !OK, Slave !OK: Initial state of the GUI since the SerialPort is disconnected. Disconnecting the

SerialPort will return the application to this state.
• Comm OK, Slave !OK: Opening a valid SerialPort connection moves the application to this state

indicating that Serial communication is valid, but communication with slave devices has not been
established.

• Slave !OK Poll: To establish valid communication with the slave device, the PC will poll the device
periodically every 500 ms, checking for a valid response.
– For TMP006, the GUI reads the Device ID, Manufacturer ID, and Configuration, in that order. If

successful, the GUI goes to “Slave OK” state and populates the corresponding fields in the
TMP006 Control panel. If unsuccessful, the GUI goes back to “Comm OK, Slave !OK” state.

– For DIM430, the GUI reads the Device ID and Configuration, in that order. If successful, the GUI
goes to “Slave OK” state and populates the corresponding fields in the DIM430 Control panel. If
unsuccessful, the GUI goes back to “Comm OK, Slave !OK” state.

• Slave OK: This state indicates that valid serial connections from the PC to the master device and from
the master to slave device were established. The corresponding slave device is fully functional and the
corresponding fields in the control panel are enabled.

• Slave OK Poll: The GUI checks for disconnection from the slave devices periodically (every 2
seconds).
– For TMP006, the GUI reads the Device ID. If successful, the application stays in “Slave OK” state

and populates the corresponding fields in the TMP006 Control panel. If unsuccessful, the GUI goes
back to “Comm OK, Slave !OK” state.

– For DIM430, the GUI reads the Device ID. If successful, the application stays in “Slave OK” state
and populates the corresponding fields in the DIM430 Control panel. If unsuccessful, the GUI goes
back to “Comm OK, Slave !OK” state.

• PC-to-Master-to-Slave Command: Any user-triggered event using the GUI sends a command to the
master device, which in turn will send it to the corresponding slave.
– For TMP006, the available GUI events are as follows:

• Changing the conversion rate
• Changing mode of operation
• Enabling and disabling DRDY interrupts
• Manually reading sensor voltage
• Manually reading ambient temperature

– For DIM430, the available GUI events are as follows:
• Enabling/disabling dimmer output
• Changing the PWM duty cycle

• Slave-to-Master-to-PC update: When data events from slave are detected as asynchronous events or
in response from previous command, the host will inform the GUI that will process the data, updating
the corresponding fields in the respective control panel.
– For TMP006, the data events include the following:

• Sensor voltage: Triggered by manual read events or DRDY interrupt events. This data event
updates TMP006 Control and Remote Object Temperature panels.

• Ambient temperature: Triggered by manual read events or DRDY interrupt events. This data
event updates TMP006 Control and Ambient Temperature panels.

– For DIM430, there are no data events.

3.5.1 Software—GUI
The GUI source code consists of the following files:

26 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

src
|- Resources <- Images used by GUI
|- SMBusDemo <- Source code

|-- GUI.form <- Used by IDE
|-- GUI.java <- Main panel including all GUI components
|-- MainFrame.form <- Used by IDE
|-- MainFrame.java <- Main Frame of application
|-- Communicator.java <- Class controlling Serial communication
|-- MyThermometer.java <- Class implementing gauge for graphical
| representation of temperature
|--Slave_Comm.java <- Class handling communication with slave
| devices
|--DIM430_Comm.java <- Class extended from Slave_Comm to control
| DIM430
|--TMP006_Comm.java <- Class extended from Slave_Comm to control
| TMP006

www.ti.com Getting Started Hardware

Figure 30. Software Files for GUI

4 Getting Started Hardware

4.1 Programming the Boards

4.1.1 Master—MSP-EXP430FR5969
1. Disconnect board from USB
2. If stacked, unstack MSP-EXP430FR5969 from MSP-EXP430G2.
3. Set jumpers of MSP-EXP430FR5969 as shown in the “Programming / Debugging” configuration of

Table 12
4. Connect USB to PC
5. Build program in CCS or IAR and download as explained in Section 5.

4.1.2 DIM430 Slave—MSP-EXP430G2
1. Disconnect board from USB.
2. If stacked, unstack MSP-EXP430G2 from MSP-EXP430FR5969.
3. Set jumpers of MSP-EXP430G2 as shown in the “Programming / Debugging” configuration of

Table 16.
4. Connect USB to PC.
5. Build program in CCS or IAR and download as explained in Section 5.

4.2 Executing the Application
1. Ensure that the master and DIM430 slave are programmed according to Section 4.1.
2. Disconnect both boards from USB.
3. Set jumpers of MSP-EXP430FR5969 according to “Execution—Stacked” configuration of Table 12.
4. Set jumpers of MSP-EXP430G2 according to “Execution—Stacked” configuration of Table 16.
5. Connect TMP006EVM to Input#1 of 430BOOST-TMP006.
6. Stack MSP-EXP430FR5969 on top of MSP-EXP430G2 (note that MSP-EXP430G2 usually only has a

male connector, while MSP-EXP430FR5969 has a connector with both female headers and male
leads).

7. Stack 430BOOST-TMP006 on top of MSP-EXP430FR5969 (note that 430BOOST-TMP006 has a
female connector, while MSP-EXP430FR5969 has a male/female connector).

27TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

Getting Started Hardware www.ti.com

Figure 31. Boards Stacked for Demo

8. Connect MSP-EXP430FR5969 USB to PC (note that the other boards will get power from the master).
9. Check the COM port in the Device Manager (device will be installed as “MSP Application UART” under

"Ports (COM & LPT)”.

Figure 32. COM Port in Device Manager

10. Execute the application
.\PC_App\TID SMBus GUI\dist\TID_SMBus_GUI.jar

11. Select the corresponding COM port in the GUI.
12. Click the “Connect” button.
13. The GUI should connect with the master. The master will try to establish communication with slaves,

and if successful, all the GUI components will be enabled.

28 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

www.ti.com Getting Started Hardware

Figure 33. Steps to Connect with Master Using GUI

4.3 Testing USBKBD Configuration
1. Follow steps described in Section 4.2 to execute the application.
2. Using the GUI, click the “Enable DRDY Interrupts” in TMP006 Control panel.

• This will enable continuous conversions of the TMP006.
• The master will obtain the latest conversion automatically and will send it to the PC.
• The GUI will update all corresponding fields including the graphical gauges.

3. In the GUI, click the “Enable Dimmer Output” checkbox in the DIM430 Control panel.
4. Move slider “PWM Duty Cycle” slider to control the intensity of the LED.

• Note that the LED is located in the 430BOOST-TMP006 board, but it is controlled by the DIM430
slave (MSP-EXP430G2).

5. Modify other GUI fields as needed.

29TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

tidm-smbus-msp430
|--TID_App <- Firmware for master and slave
| |---smbuslib <- Source code for SMBus Library
| | |----MSP430FR5xx_6xx <- SMBus PHY for FR5xx/6xx eUSCI
| | |----MSP430G2xx3 <- SMBus PHY for G2xx3 USCI
| |
| |---driverlib <- MSP430 Driverlib
| | |----MSP430FR5xx_6xx <- Driverlib for FR5xx/6xx
| | |----deprecated
| | |----inc
| |
| |---CCS <- CCS project folder
| | |---SMBus_Master <- CCS project for master
| | |---SMBus_Slave <- CCS project for slave
| |
| |---IAR <- IAR project folder
| | |---SMBus_Master <- IAR project for master
| | |---SMBus_Slave <- IAR project for slave
| |
| |---src <- Source code for application
| | |---Master <- Source code for master
| | |---Slave <- Source code for slave

Getting Started Firmware www.ti.com

6. Check the SMBus Log for details on SMBus packets.

5 Getting Started Firmware
The firmware included in this reference design has the following structure:

Figure 34. Firmware File Structure

The projects included in the software package have been built and tested in the following IDEs:
• Code Composer Studio 6.0.1
• IAR for MSP430 6.20.1

The procedure to build code for these IDEs is explained in the following sections.

5.1 Building Projects in IAR
1. Open the IAR workspace for the corresponding project:

tidm-smbus-msp430\TID_App\IAR\SMBus_TID_Workspace.eww

2. Select the SMBus_Master Project and the MSP430FR5969 target configuration.

30 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

www.ti.com Getting Started Firmware

Figure 35. SMBus_Master Project in IAR

3. Connect MSP-EXP430FR5969 board as described in Section 4.1.1.

4. Build project (F7, Menu → Project → rebuild All, or).

5. Download project to device (Ctrl + D, Menu → Project → Download and Debug, or).
6. Close Debugger.
7. Select the SMBus_Slave Project and the MSP430G2553 target configuration.
8. Connect MSP-EXP430G2 as described in Section 4.1.2.
9. Repeat steps 4 through 6 to flash the slave device 1.
10. Follow procedure in Section 4.2 to execute the example.

31TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

Getting Started Firmware www.ti.com

5.2 Building Projects in CCS
1. Import the projects in CCS (Menu → Project → Import CCS Project).

tidm-smbus-msp430\TID_App\CCS

Figure 36. Importing SMBus Projects in CCS

2. Select the SMBus_Master Project and the MSP430FR5969 target configuration.

32 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

www.ti.com Changing Functionality of MSP430™ Devices

Figure 37. SMBus_Master Project in CCS

3. Connect MSP-EXP430FR5969 board as described in Section 4.1.1.

4. Build project (Ctrl+B, Menu → Project → Build All, or).

5. Download project to device (F11, Menu → Run → Debug, or).
6. Close Debugger.
7. Select the SMBus_Slave Project and the MSP430G2553 target configuration.
8. Connect MSP-EXP430G2 as described in Section 4.1.2.
9. Repeat steps 4–6 to flash the slave device 1.
10. Follow procedure in Section 4.2 to execute the example.

6 Changing Functionality of MSP430™ Devices
The default configuration of this TI Design uses the MSP430FR5969 as master and MSP430G2553 as
DIM430 slave, but the application is modular enough to allow swapping the functionality of these devices.

6.1 Using MSP430G2553 as Master
The resources used from MSP430G2553 when configured as master are as shown in Table 18:

33TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

+3.3V

P1.0

P1.3

P1.1

P1.4

P1.5

P2.0

P2.1

P2.2

P1.2
UART

RX

TX

Analog In

Analog In

SPI CLK

I2C*
SCL

SDA

A0

UCA0RXDUCA0SOMI

UCA0TXDUCA0SIMO

TA1.0

TA1.1

TA1.1

MSP-EXP430G2 Pin Map

+3.3V

GPIO (!)

GPIO (!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

GND

P2.6

P2.7

RST

P1.7

P2.5

P2.4

P2.3

P1.6

TA0.1 XIN

XOUT

CAOUT UCB0SDA A7

TA0.1 UCB0SCLUCB0SOMI

TA1.2

TA1.2

TA1.0

UCB0SIMO
SPI

MOSI

MISO

SPI CS Wireless

SPI CS Display

SPI CS Other

BoosterPack Standard

GND

TEST

RST

PWM Out GPIO (!)

GPIO (!)

GPIO (!)

GPIO (!)

GPIO (!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

MSP-EXP430G2 Pin Map

BoosterPack

Standard

GPIO**

CA0ACLKTA0CLK

A1CA1TA0.0

A2CA2TA0.1

A3CA3VEREF-VREF-CAOUTADC10CLK

A4CA4VEREF+VREF+TCKUCA0CLKUCB0STESMCLK

A5CA5UCB0CLKUCA0STETA0.0TMS

SBWTCK

NMI SBWTDIO

CA7 TDO TDI

A6 CA6 TDI TCLK

TI Design

SMBus Master

RXD

Output

Output

Output

Output

Output

+3.3V

TMP006 DRDY

TI Design

SMBus Master

Output

Output

Output

Output

GND

Input

Output

SMB
SDA

SCL

LED0

RST

TXD

Changing Functionality of MSP430™ Devices www.ti.com

Table 18. Master Hardware Resources—MSP430G2553

FUNCTION PERIPHERAL GPIO CONNECTION TO OTHER BOARDS
SDA: P1.7/UCB0SDA SDA of both slavesSMBus USCI_B0 SCL: P1.6/UCB0SCL SCL of both slaves
TXD: P1.2/UCA0TXDUART USCI_A0 -RXD: P1.1/UCA0RXD

LED0: P1.0LEDs - -LED1: X
TMP006 DRDY - P2.1 DRDY of TMP006 slave

Figure 38 shows the pinout of the MSP-EXP430G2 board when used as master:

Figure 38. BoosterPack Pinout for MSP-EXP430G2 as Master

Table 19 shows the jumper configuration:

Table 19. MSP-EXP430G2 Jumper Configuration as Master

JUMPER PROGRAMMING / DEBUGGING EXECUTION—STACKED
J3 – TXD ON – HW UART ON – HW UART
J3 – RXD ON – HW UART ON – HW UART
J3 – RST ON OFF
J3 – TEST ON OFF
J3 – VCC ON ON
J5 – P1.0 ON ON
J5 – P1.6 OFF OFF

J6 OFF OFF

34 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

+3.3V

P4.2

P4.3

P2.6

P2.4

P2.2

P3.4

P3.5

P3.6

P2.5
UART

RX

TX

Analog In

Analog In

SPI CLK

I2C*
SCL

SDA

A10

TB0.1UCA1RXDUCA1SOMI

TB0.0UCA1TXDUCA1SIMO

A11

TA1.0UCA1CLKA7C11

TB0.2UCB0CLK

TB0.3SMCLK

TB0.4COUT

TB0.5

MSP-EXP430FR5969 Pin Map

+3.3V

GPIO (!)

GPIO (!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

GND

P1.2

P3.0

RST

P1.6

P1.5

P1.4

P1.3

P1.7

A2TA1.1 TA0CLK COUT C2

A12 C12

TB0.3 UCB0SDA TA0.0

TB0.4 UCB0SCL TA1.0UCB0SOMI

A5TB0.2 UCA0CLK C5

A4TB0.1 UCA0STE C4

A3TA1.2 UCB0STE C3

UCB0SIMO
SPI

MOSI

MISO

SPI CS Wireless

SPI CS Display

SPI CS Other

BoosterPack Standard

GND

NC

RST

PWM Out GPIO (!)

GPIO (!)

GPIO (!)

GPIO (!)

GPIO (!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

MSP-EXP430FR5969 Pin Map

BoosterPack

Standard

GPIO**

TI Design

SMBus Slave

Output

Output

Output

Output

Output

+3.3V

Input

TI Design

SMBus Slave

Output

Output

Output

Output

GND

Output

SMB
SDA

SCL

Dimmer PWM

Input

RST

Input

Input

www.ti.com Changing Functionality of MSP430™ Devices

6.2 Using MSP430FR5969 as Slave
Table 20 shows the resources used from MSP430FR5969 when configured as slave:

Table 20. DIM430 Slave Hardware Resources—MSP430FR5969

FUNCTION PERIPHERAL GPIO CONNECTION TO OTHER BOARDS
SDA: P1.6/UCB0SDA SDA of master and TMP006SMBus eUSCI_B0 SCL: P1.7/UCB0SCL SCL of master and TMP006

TB0Dimmer PWM PWM: P1.4/TB0.1 LED1 of TMP006 BoosterPackTB0.1

Figure 39 shows the pinout of the MSP-EXP430FR5969 board when used as master:

Figure 39. BoosterPack Pinout for MSP-EXP430FR5969 as Slave

35TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

Changing Functionality of MSP430™ Devices www.ti.com

Table 21 shows the jumper configuration:

Table 21. MSP-EXP430G2 Jumper Configuration as Master

JUMPER PROGRAMMING / DEBUGGING EXECUTION – STACKED
J1 OFF OFF
J2 Bypass Bypass
J6 ON ON
J9 ON ON
J10 Debugger External
J11 OFF OFF
J12 OFF OFF

J13 – GND ON ON
J13 – 5V OFF OFF
J13 – V+ ON OFF

J13 – RTS OFF OFF
J13 – CTS OFF OFF
J13 – RXD OFF OFF
J13 – TXD OFF OFF
J13 – RST ON OFF
J13 – TST ON OFF

6.3 Building and Testing the Project
1. Use the same procedure explained in Section 5 to build the project with the following changes:

• Use MSP430G2553 target configuration for the SMBus_Master Project and program the MSP-
EXP430G2 LaunchPad.

• Use MSP430FR5969 target configuration for the SMBus_Slave Project and program the MSP-
EXP430FR5969 LaunchPad.

2. Program the boards following the procedure mentioned in Section 4.1.1 and Section 4.1.2, but using
the corresponding LaunchPad.

3. Use the procedure mentioned in Section 4.2 and Section 4.3 to execute and test the application with
the following change:
• In step 8 of Section 4.2, connect MSP-EXP430G2 USB to PC (instead of MSP-EXP430FR5969).

7 Test Data

7.1 Test Setup
The board should be connected following the guidelines described in Section 4.

To measure power consumption of MSP-EXP430FR5969:
• Disconnect J9 and connect an ammeter in series

To measure power consumption of MSP-EXP430G2:
• Isolate the VCC for this board from the rest and connect an ammeter in series.
• This procedure will probably require unstacking the board and using jumper wires to connect the

required signals.

36 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

1

3

4

5

2

...

S
e

ria
l C

o
m

m

R
e

ce
p

tio
n

 E
v

e
n

t

S
e

ria
lC

o
m

m

P
a

ck
e

t P
ro

ce
ssin

g

S
M

B
u

s T
ra

n
sfe

r

Active

LMP3

OFF

P
o

w
e

r

S
e

ria
l C

o
m

m

T
ra

n
sm

issio
n

R
e

sp
o

n
se

p
ro

ce
ssin

g

T
M

P
0

0
6

 D
R

D
Y

E
v

e
n

t

S
M

B
u

s T
ra

n
sfe

r

S
e

ria
l C

o
m

m

T
ra

n
sm

issio
n

R
e

sp
o

n
se

p
ro

ce
ssin

g

www.ti.com Test Data

7.2 Power Consumption

7.2.1 Master Application
Figure 40 shows the expected power profile for the master application:

Figure 40. Expected Power Profile for Master

The following profile in Figure 41 was observed for a serial packet reception from the PC when running
the MSP430FR5969 as a master at 8 Mhz:

Figure 41. Power Profile for SerialComm Reception—Master Using MSP430FR5969

The labels from Figure 41 show the different steps of the process:
1. Serial packet is received from the PC.
2. MCU wakes-up periodically to get each byte.
3. When the packet is complete, the devices processes it.
4. Device sends a command to the corresponding slave via SMBus.
5. After the SMBus packet is sent, the response is sent to the PC.

37TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

1

2

3

4

Test Data www.ti.com

Similarly, a DRDY event generates the following profile seen in Figure 42 when using the same
MSP430FR5969 at 8 Mhz:

Figure 42. Power Profile for DRDY Event—Master Using MSP430FR5969

The labels from Figure 42 show the different steps of the process:
1. Device wakes up and sends command via SMBus to TMP006 (sensor voltage)
2. Result from SMBus transfer is sent to PC
3. A second packet is sent to TMP006 (ambient temperature)
4. Result from SMBus transfer is sent to PC

Table 22 shows the power consumption measured on MSP-EXP430FR5969:

Table 22. Power Consumption Measurements for MSP430FR5969 as Master

DEVICE MODE CURRENT POWER
Active
VCC = 3.3 V
MCLK = SMCLK = DCO = 8 1.032 mA 3.4 mW
Mhz

MSP430FR5969 ACLK = VLO
LPM3
VCC = 3.3 V 0.8 µA 2.64 µW
ACLK = VLO, SVS Enabled

The average power consumption will depend on the bus load, both from PC to host, and from the slaves
through SMBus. As an example, with two periodic serial commands every two seconds and periodic
TMP006 DRDY events every 0.5 seconds, the average power consumption was measured as follows:

Table 23. Average Power Consumption for MSP430FR5969 as Master

DEVICE MODE CURRENT (AVG) POWER (AVG)
Periodic updates

2 TMP006 DRDY events x secMSP430FR5969 60.4 µA 199.32 µA1 TMP0006 DEV_ID read x 2 secs
1 DIM430 DEV_ID read x 2 secs

38 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

1

2 3

4

...

S
M

B
u

s
 T

r
a

n
s
fe

r

Active

LMP3

OFF

P
o

w
e

r

S
M

B
u

s
 T

r
a

n
s
fe

r

S
M

B
u

s
 T

r
a

n
s
fe

r

www.ti.com Test Data

7.2.2 Slave Application
Figure 43 shows the expected power profile for the slave application:

Figure 43. Expected Power Profile for Slave

The profile in Figure 44 was observed for a Read Word packet using MSP430G2553 as a slave at 8 Mhz:

Figure 44. Power Profile for ReadWord Packet—Slave Using MSP430G2553

The labels from Figure 44 show the different steps of the process:
1. Master sends a packet via SMBus
2. Slave wakes periodically to get each byte
3. During Repeated Start, the slave processes the packet and prepares response
4. Slave wakes to send each response byte

Similarly, a Write Word packet shows the profile in Figure 45:

39TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

1

2

3

Test Data www.ti.com

Figure 45. Power Profile for WriteWord Packet—Slave Using MSP430G2553

The steps shown in Figure 45 are:
1. Master sends a packet via SMBus
2. Slave wakes periodically to get each byte
3. Slave processes end of packet

Table 24 shows the power consumption measured on MSP-EXP430G2:

Table 24. Power Consumption Measurements for MSP430G2553 as Slave

DEVICE MODE CURRENT POWER
Active

VCC = 3.3 V
MCLK = SMCLK = DCO = 8 2.45 mA 8.08 mW

Mhz
MSP430G2553 ACLK = VLO

LPM3
VCC = 3.3 V 0.6 µA 1.98 µW
ACLK = VLO

The average power consumption depends on the SMBus activity. However, with a periodic Write Word
packet every 500 ms, and a periodic Read Word packet every two seconds, the average power
consumption measured is as shown in Table 25:

Table 25. Average Power Consumption for MSP430G2553 as Slave

DEVICE MODE CURRENT (AVG) POWER (AVG)
Periodic updates

MSP430G2553 2 WriteWord packets × sec 1.8 µA 5.94 µA
1 ReadWord packet × 2 secs

40 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

www.ti.com Test Data

7.3 Memory Footprint
The memory footprint in Table 26 was obtained using IAR for MSP430 6.20.1 using optimization level
“High-Balanced”:

Table 26. Memory Footprint

MSP430FR5969 MASTER MSP430G2553 SLAVE
CODE 4,786B 1,796B

1,528B 1,116BSMBusLib

902B -driverlib

2,200B 570BApp

156B 110Bothers
CONSTANTS 284B 256B

SMB CRC 256B 256B
lookup_table

28B -Other
DATA 357B 178B

160B 80BStack

80B -Heap

117B 98BApp

8 Design Files

8.1 Schematics
To download the Schematics for each board, see the design files at http://www.ti.com/tool/TIDM-SMBUS.

8.2 Bill of Materials
To download the bill of materials (BOM), see the design files at http://www.ti.com/tool/TIDM-SMBUS.

8.3 Layer Plots
To download the layer plots, see the design files at http://www.ti.com/tool/TIDM-SMBUS.

8.4 Altium Project
To download the Altium project files, see the design files at http://www.ti.com/tool/TIDM-SMBUS.

8.5 Layout Guidelines
To download the layout guidelines, see the design files at http://www.ti.com/tool/TIDM-SMBUS.

8.6 Gerber Files
To download the Gerber files, see the design files at http://www.ti.com/tool/TIDM-SMBUS.

8.7 Assembly Drawings
To download the assembly drawings, see the design files at http://www.ti.com/tool/TIDM-SMBUS.

41TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/tool/TIDM-SMBUS
http://www.ti.com/tool/TIDM-SMBUS
http://www.ti.com/tool/TIDM-SMBUS
http://www.ti.com/tool/TIDM-SMBUS
http://www.ti.com/tool/TIDM-SMBUS
http://www.ti.com/tool/TIDM-SMBUS
http://www.ti.com/tool/TIDM-SMBUS
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

Design Files www.ti.com

8.8 Software Files
To download the software files, see the design files at http://www.ti.com/tool/TIDM-SMBUS.

9 References

1. SMBus 2.0 specification (http://www.smbus.org/)
2. MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User’s Guide

(slau367)
3. MSP430FR59xx datasheet (slas704)
4. MSP-EXP430FR5969 LaunchPad Development Kit User’s Guide (slau535)
5. MSP430x2xx Family User’s Guide (slau144)
6. MSP430G2xx3 datasheet (slas735)
7. MSP-EXP430G2 LaunchPad Evaluation Kit User's Guide (slau318)
8. TMP006 User’s Guide (sbou107)
9. TMP006 datasheet (sbos518)
10. 430BOOST-TMP006 BoosterPack User's Guide (slau440)
11. TMP006EVM User’s Guide (sbou109)
12. MSP430 DriverLib for MSP430FR5xx 6xx Devices User’s Guide

(http://www.ti.com/tool/msp430driverlib)
13. MSP430 Smbus Library User’s Guide (http://www.ti.com/tool/TIDM-SMBUS)

42 SMBus Design Using MSP430™ Design Guide TIDU741–March 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/tool/TIDM-SMBUS
http://www.smbus.org/
http://www.ti.com/lit/pdf/slau367
http://www.ti.com/lit/pdf/slas704
http://www.ti.com/lit/pdf/slau535
http://www.ti.com/lit/pdf/slau144
http://www.ti.com/lit/pdf/slas735
http://www.ti.com/lit/pdf/slau318
http://www.ti.com/lit/pdf/sbou107
http://www.ti.com/lit/pdf/sbos518
http://www.ti.com/lit/pdf/slau440
http://www.ti.com/lit/pdf/sbou109
http://www.ti.com/tool/msp430driverlib
http://www.ti.com/tool/TIDM-SMBUS
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

www.ti.com About the Author

10 About the Author
LUIS REYNOSO is an Applications Engineer at Texas Instruments. He has taken multiple customer-facing
roles in the embedded industry, and during this time he has published several Applications Notes and
papers for microcontrollers. He joined the MSP430™ Applications team in 2010.

43TIDU741–March 2015 SMBus Design Using MSP430™ Design Guide
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU741

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers (“Buyers”) who are developing systems that
incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains
responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.
TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any
testing other than that specifically described in the published documentation for a particular reference design. TI may make
corrections, enhancements, improvements and other changes to its reference designs.
Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the
reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY
OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right,
or other intellectual property right relating to any combination, machine, or process in which TI components or services are used.
Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE
REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR
COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY
INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE
FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO
OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE
LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY
THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN
ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.
TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per
JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant
information before placing orders and should verify that such information is current and complete. All semiconductor products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI
deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not
necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is
without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for
such altered documentation. Information of third parties may be subject to additional restrictions.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that
anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate
remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in
Buyer’s safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed an agreement specifically governing such use.
Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that
have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory
requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated

	SMBus Design Using MSP430™ Design Guide
	1 System Description
	1.1 MSP-EXP430FR5969
	1.1.1 MSP430FR5969

	1.2 MSP-EXP430G2
	1.2.1 MSP430G2553

	1.3 430BOOST-TMP006
	1.3.1 TMP006

	2 Block Diagram
	3 System Design Theory
	3.1 SMBus
	3.1.1 MSP430 SMBus Library

	3.2 SMBus Master
	3.2.1 SerialComm (UART) Protocol Between Master and PC
	3.2.2 Software—Master
	3.2.3 Hardware—Master

	3.3 SMBus Slave – LED Dimmer (DIM430)
	3.3.1 SMBus Communication
	3.3.2 Registers – Slave – DIM430
	3.3.2.1 CONFIG Register
	3.3.2.2 DUTY_CYCLE Register
	3.3.2.3 DEV_ID Register

	3.3.3 Software – Slave – DIM430
	3.3.4 Hardware – Slave – DIM430

	3.4 SMBus Slave—TMP006
	3.4.1 DRDY Functionality
	3.4.2 SMBus Communication
	3.4.3 Registers—Slave—TMP006
	3.4.4 Hardware—Slave—TMP006

	3.5 GUI
	3.5.1 Software—GUI

	4 Getting Started Hardware
	4.1 Programming the Boards
	4.1.1 Master—MSP-EXP430FR5969
	4.1.2 DIM430 Slave—MSP-EXP430G2

	4.2 Executing the Application
	4.3 Testing USBKBD Configuration

	5 Getting Started Firmware
	5.1 Building Projects in IAR
	5.2 Building Projects in CCS

	6 Changing Functionality of MSP430™ Devices
	6.1 Using MSP430G2553 as Master
	6.2 Using MSP430FR5969 as Slave
	6.3 Building and Testing the Project

	7 Test Data
	7.1 Test Setup
	7.2 Power Consumption
	7.2.1 Master Application
	7.2.2 Slave Application

	7.3 Memory Footprint

	8 Design Files
	8.1 Schematics
	8.2 Bill of Materials
	8.3 Layer Plots
	8.4 Altium Project
	8.5 Layout Guidelines
	8.6 Gerber Files
	8.7 Assembly Drawings
	8.8 Software Files

	9 References
	10 About the Author

	Important Notice

