

 Copyright  2009 Texas Instruments, Inc. All rights reserved.

RemoTI Basic Remote Developer's
Guide

Document Number: SWRU224A

RemoTI Basic Remote Developer's Guide SWRU224A

1 Copyright  2009 Texas Instruments, Inc. All rights reserved.

TABLE OF CONTENTS
1. REFERENCES... 4

2. INTRODUCTION.. 5

2.1 PURPOSE.. 5
2.2 SCOPE.. 5

3. REMOTI BASIC REMOTE SAMPLE APPLICATION 5

3.1 FEATURES.. 5
3.2 BUILD CONFIGURATIONS... 5
3.3 FILES.. 8
3.4 ARCHITECTURE.. 10

4. KEY MATRIX SCANNING ... 11

4.1 SCANNING SCHEME...11
4.2 CONFIGURATION... 12

5. KEY CODE TO COMMAND MAPPING... 13

6. LED CONTROL .. 15

7. OSAL TASK SYNCHRONIZATION..16

8. FLASH PAGE MAP AND MEMORY MAP... 19

9. STACK AND HEAP.. 23

10. NETWORK LAYER INTERFACE... 28

11. PAIRING.. 29

12. TARGET DEVICE SELECTION..30

13. NON-VOLATILE MEMORY.. 32

14. IEEE ADDRESS.. 32

15. IR SIGNAL GENERATION .. 35

16. NETWORK LAYER CONFIGURATION.. 39

17. OVER THE AIR DOWNLOAD...40

17.1 OVERVIEW OF THE OVER THE AIR DOWNLOAD DEMO... 40
17.2 OVER THE AIR DOWNLOAD COMMAND PACKET FORMATS... 41

17.2.1 Poll protocol frame format ... 41
17.2.2 General Over the Air Download protocol frame format.. 41
17.2.3 Over the Air Download protocol command identifiers... 41
17.2.4 Status Request command .. 42
17.2.5 Start Request command .. 42
17.2.6 Data Request command.. 42
17.2.7 Enable Request command... 43
17.2.8 Cancel Request command... 43
17.2.9 Status Response command.. 43
17.2.10 Start Response command.. 43
17.2.11 Data Response command.. 44
17.2.12 Enable Response command ..44
17.2.13 Cancel Response command ..45

17.3 OVER THE AIR DOWNLOAD COMMAND FLOW SEQUENCE.. 45
17.4 BASIC REMOTE CONTROLLER SAMPLE APPLICATION CONFIGURATION... 46
17.5 RETENTION OF NON-VOLATILE MEMORY DATA .. 47
17.6 USE OF IMAGE IDENTIFIER... 48
17.7 LOCK BIT PAGE... 48

18. LATENCY TEST MODE ... 48

RemoTI Basic Remote Developer's Guide SWRU224A

2 Copyright  2009 Texas Instruments, Inc. All rights reserved.

19. DMA, PERIPHERAL IO AND TIMERS.. 50

20. RF FRONTEND CHIP CONNECTION ... 50

21. GENERAL INFORMATION... 52

21.1 DOCUMENT HISTORY.. 52
22. ADDRESS INFORMATION.. 52

23. TI WORLDWIDE TECHNICAL SUPPORT... 52

RemoTI Basic Remote Developer's Guide SWRU224A

3 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Acronyms and Definitions

ADC Analog-to-Digital Converter
AES Advanced Encryption Standard
API Application Programming Interface
CERC Consumer Electronics for Remote Control, a name for a Zigbee RF4CE profile
CCM Counter with CBC-MAC (CCM), a mode of operation for cryptographic block ciphers
DMA Direct Memory Access
HAL Hardware Abstraction Layer
IAR IAR Systems, a software development tool vendor
IDATA Internal Data memory
IEEE Institute of Electrical & Electronics Engineers, Inc.
IO Input Output
IR Infra-red
LED Light Emitting Diode
NIB Network Information Base
NSDU Network layer Service Data Unit
NV Non-Volatile, or Non-volatile memory
NWK Network
OAD Over the Air Download
OSAL Operating System Abstraction Layer
PAN Personal Area Network
PER Packet Error Rate
SRAM Static Random Access Memory
TI Texas Instruments Incorporated
XDATA eXternal Data memory
Zigbee RF4CE An 802.15.4 based remote control protocol standard

RemoTI Basic Remote Developer's Guide SWRU224A

4 Copyright  2009 Texas Instruments, Inc. All rights reserved.

1. References

[1] RemoTI Developer’s Guide, SWRU198
[2] RemoTI API, SWRA268
[3] HAL Drivers API, SWRA193
[4] OSAL API, SWRA194
[5] CC253X System-on-Chip Solution for 2.4-GHz IEEE 802.15.4/ZigBee/RF4CE User’s Guide,

SWRU191
[6] RemoTI Sample Applications User’s Guide, SWRU201

RemoTI Basic Remote Developer's Guide SWRU224A

5 Copyright  2009 Texas Instruments, Inc. All rights reserved.

2. Introduction

2.1 Purpose
This document explains the basic remote controller sample application and focuses on areas of potential
customization.

2.2 Scope
This document describes concepts and settings for the Texas Instruments RemoTI software release with
respect to basic remote application development. The general concept of Zigbee RF4CE and RemoTI
architecture is described in [1].

3. RemoTI Basic Remote Sample Application
The RemoTI development kit includes the basic remote sample application. This chapter describes the
features of the sample application and the organization of the sample source code and project files.

3.1 Features
The following summarize the features of RemoTI Basic Remote Sample Application:

• Compliance with Zigbee RF4CE CERC profile, including push button pairing and CERC user
command generation

• Compliance with Zigbee RF4CE network layer specification, playing the controller node role
• Zigbee RF4CE network layer security
• 7 x 8 key matrix scanning
• Four target device selection keys
• Maximum ten pairing entries
• LED feedback for pairing and CERC command transmission
• Latency and PER test mode
• Optional over the air downloading demo
• Optional IR signal generation demo with subset of keys

3.2 Build configurations
The RemoTI Basic Remote Sample application project is located in the
Projects\RemoTI\BasicRemote\CC2530RC folder.
When you open the workspace file (rsa_cc2530.eww), you can select different project configurations as in
Figure 1.

RemoTI Basic Remote Developer's Guide SWRU224A

6 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Figure 1 – Project configuration selection from IAR

Each configuration is explained in Table 1.

Table 1 – Project configurations

Configuration Description

CC2530F64 Configuration for CC2530F64 part.

CC2530F128 Configuration for CC2530F128 part

CC2530F128_OAD Configuration for CC2530F128 part including over the air downloading feature

CC2530F256 Configuration for CC2530F256 part

CC2530F256_OAD Configuration for CC2530F256 part including over the air downloading feature

RemoTI Basic Remote Developer's Guide SWRU224A

7 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Note that IR signal generation feature is not included in any of the above configurations. Details about IR
signal generation demo is described in chapter 15. The project option settings for each configuration, such
as defined symbols (also known as compile flags) for preprocessor, are set to work for the particular
configuration. Table 2 explains compile flags (preprocessor defined symbols) used in the project
configurations.

Table 2 – Compile flags

Compile Flag Description

POWER_SAVING When defined, power saving modes are enabled. Without the
compile flag, CC2530 PM2 and PM3 are not exercised. The
compile flag affects HAL sleep module, OSAL power
management module, RemoTI application framework (RTI)
and network processor module.

CC2530F64 Non-volatile memory configuration selection for CC2530F64

CC2530F128 Non-volatile memory configuration selection for
CC2530F128

CC2530F256OAD Non-volatile memory configuration selection for
CC2530F256 when over the air downloading is enabled.

Note that without CC2530F64, CC2530F128 or
CC2530F256OAD, default non-volatile memory
configuration is set for CC2530F256 without over the air
downloading feature.

A notable difference between the default non-volatile
memory configuration (i.e. configuration for CC2530F256)
and the one set by CC2530F256OAD compile flag is the size
of non-volatile memory pages.

OAD_IMAGE_ID=value Image identifier value for application image used by over-
the-air download can be set with this compile flag value. For
example, OAD_IMAGE_ID=0x25300002 will set image
identifier value to be 0x25300002.

OAD_KEEP_NV_PAGES This compile flag, when defined, suppresses adding non-
volatile memory pages (OSAL NV module) into linker code.
When FEATURE_OAD is defined, this compile flag also has
to be defined if OSAL NV is used.

FEATURE_CONTROLLER_ONLY This compile flag, when defined, reduces RTI code size when
RTI is compiled for remote controller functionality only.

FEATURE_OAD This compile flag, when defined, enables over the air

RemoTI Basic Remote Developer's Guide SWRU224A

8 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Compile Flag Description

download feature in basic remote controller application code.

Note that defining this compile flag alone does not enable
over the air download for the basic remote controller sample
application. Choose the proper configuration (with OAD tag)
in the provided project to enable over the air download
feature. Such configurations include this compile flag
definition in the project settings.

GENERIC=__generic This compile flag shall always be defined as
GENERIC=__generic to be compatible with the RemoTI
library files. The compile flag was devised to add IAR
specific compiler keyword to certain function parameters.

Besides the compile flags, other settings such as code model were also set to fit the configuration. For
instance, CC2530F64 configuration uses near code model while other configurations use banked code
model.

3.3 Files
C source files and library files are explained in Table 3 in the order that appears in the IAR workspace
window. Note that there are more files than those listed in the table, such as C header files that define
constants and function prototypes and also note that workspace project itself does not list all header files
referenced by the C files.

Table 3 – Project files

File name Description

Application

rsa_basic.c Key basic remote application code implemented on top of RemoTI
application framework

rcn_config.c Network layer configuration file. The file contains global variables
with initial values which are used as configuration parameters by
RemoTI network layer.

rsa_main.c C main routine implementation which calls all necessary initialization
and then call OSAL

rsa_osal.c OSAL task definition and initialization

CLIB

chipcon_cstartup.s51 Assembly routines to override default C libraries for banked code

RemoTI Basic Remote Developer's Guide SWRU224A

9 Copyright  2009 Texas Instruments, Inc. All rights reserved.

File name Description

HAL

hal_assert.c HAL assertion library

hal_drivers.c Entry point for congregation of HAL drivers, such as initialization for
all HAL drivers, HAL task, as an OSAL task, entry point (event
handler) and polling entry point.

hal_rpc.h Remote procedure call enumerations

hal_adc.c ADC device driver

hal_aes.c AES device driver

hal_board_cfg.h RemoTI basic remote hardware specific configuration parameters and
macros used by HAL. Application also frequently uses board definition
literal (HAL_BOARD_CC2530RC) and HAL feature flags
(HAL_KEY, HAL_LED, etc).

hal_ccm.c CCM implementation using AES device driver

hal_dma.c DMA device driver

hal_flash.c Flash device driver

hal_irgen.c IR signal generation driver

hal_key.c Key matrix driver

hal_led.c LED driver

hal_sleep.c Sleep mode (PM1, PM2, PM3) control implementation

Libraries

rcnctrl-CC2530-banked.lib RemoTI network layer library built for banked code model. This library
will be selected for F128 and F256 configurations. Note that this
library is optimized for controller nodes only.

rcnctrl-CC2530.lib RemoTI network layer library built for near code model. This library
will be selected for F64 configuration. Note that this library is
optimized for controller nodes only.

OAD

RemoTI Basic Remote Developer's Guide SWRU224A

10 Copyright  2009 Texas Instruments, Inc. All rights reserved.

File name Description

oad_appflash.c Implementation of flash driver abstraction for demo over the air
download engine. This implementation is specifically intended for
application image which has hal_flash.c as flash device driver.

oad_client.c Demo over the air download engine

oad_crc.c CRC calculation implementation use by the over the air download
engine

OSAL

OSAL.c OSAL implementation for messaging and main event handling loop

OSAL_Clock.c OSAL clock tick implementation

OSAL_Memory.c OSAL heap implementation

OSAL_Nv.c OSAL non-volatile memory manager

OSAL_PwrMgr.c OSAL power management scheme implementation

OSAL_Timers.c OSAL timer implementation

RTI

rti.c RemoTI application framework implementation

rti_testmode.c RemoTI test mode API function implementation

3.4 Architecture
Basic remote sample application software uses services of HAL, OSAL and RemoTI application
framework. RemoTI application framework abstracts RemoTI network layer stack software by providing
simplified API. RemoTI application framework is provided as source code and is itself part of application
from RF4CE network layer perspective. HAL, OSAL and RemoTI stack interacts with one another.
Figure 2 illustrates an architectural view.

RemoTI Basic Remote Developer's Guide SWRU224A

11 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Basic Remote Application

HAL OSAL

RemoTI

Network

Layer Stack

CC2530 Remote

RemoTI Application

Framework (RTI)

Figure 2 – Basic Remote Software Architecture

4. Key matrix scanning
Key matrix scanning is implemented in hal_key.c file. Note that the
Components\hal\target\CC2530RC\hal_key.c file is specific to the CC2530 basic remote reference
platform and do not confuse this file with other hal_key.c implementations such as
Components\hal\target\CC2530EB_NPI\hal_key.c file.

4.1 Scanning scheme
Key matrix is attached to peripheral IO pins in CC2530 basic remote reference platform, which looks like
Figure 3.

Figure 3 – Key switch matrix circuitry

In the basic remote reference platform, a single IO port is dedicated for either a row or a column of the
key switch matrix. Initially, all row IO port pins are configured as pull-up input pins with falling edge
interrupt setup, and all column port pins are configured to output low so that any key press triggers an
interrupt with the IO port associated with row pins.

Once the interrupt is triggered, the de-bounce timer is triggered to ignore de-bouncing. On expiry of the
de-bounce timer, key scanning is performed periodically till no key press is detected. Periodical key
scanning is used so that a continuous key depress generates repeated key press events. Figure 4 illustrates
the flow of key scanning state changes.

RemoTI Basic Remote Developer's Guide SWRU224A

12 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Key scanning itself is performed by asserting individual column IO port pins (active low) one by one and
reading row IO pin values. For instance, in Figure 3, when SW12 is pressed, ROW1 input pin reads low
when COL2 is set to low. At the end of key scanning, a configured callback function is called to pass the
scanned key code.

Key scan state flows and scanning itself are implemented in hal_key.c module specific to CC2530 basic
remote (CC2530RC) platform.

Figure 4 – Key scanning state flow diagram

4.2 Configuration
In the beginning of the hal_key.c module, certain constants are defined with arbitrary choice. Table 4 lists
configurable constant values.

RemoTI Basic Remote Developer's Guide SWRU224A

13 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Table 4 – HAL key module configurable constants

Constant Name Default Value Description

HAL_KEY_DEBOUNCE_VALUE 25 Key de-bounce timer duration in milliseconds.
Default value is set to 25 milliseconds. The value
should be adjusted to fit the hardware.

HAL_KEY_POLLING_VALUE 100 This constant has no effect.

Note that this value does not determine polling
timer value used in interrupt driven key scanning
scheme as explained in this chapter. Polling
timer value for interrupt driven key scanning
scheme is hard coded to 50 milliseconds to
conform to CERC profile specification.

To change the hard-coded timer value, change
the third argument of
osal_start_timerEx(Hal_TaskID,
HAL_KEY_EVENT, 50) call in HalKeyPoll()
function.

HAL_KEY_COL_BITS 0xFD Bitmap of column IO port pins in use.
‘0b11111101’ as default specifies that pin 1 is
not used for key matrix.

HAL_KEY_ROW_BITS 0xFF Bitmap of row IO port pins in use. ‘0b11111111’
as default specifies that pin 0 to pin 7 all of them
are in use.

HAL_KEY_ROW_PULLDOWN FALSE Whether row IO port mode should be configured
as pull down mode. Setting of pull up or pull
down mode depends on the hardware platform
design.

Note that there are other constants defined in hal_key.c module. However, other configuration constants
such as using port 1 for column and port 0 for row cannot be modified without potentially changing other
parts of the codes or at least testing and verifying the change.

5. Key code to command mapping
The key scan code returned from key scanning is mapped to an appropriate CERC command in
rsa_basic.c module. The key scan code is passed to this module via RSA_KeyCback() function. The
callback function is configured in the main() routine in the rsa_main.c module.

The key callback function has two arguments: keys for key scan code and state for shift state. The
hal_key.c module currently does not implement any shift state and hence state argument is not used.

RemoTI Basic Remote Developer's Guide SWRU224A

14 Copyright  2009 Texas Instruments, Inc. All rights reserved.

The RSA_KeyCback() function does more than mapping a key code to a CERC command and generating
a CERC command packet. It handles key presses differently for test mode, select targets device upon
certain special keys, triggers pairing upon pair key press and optionally could generate IR signals as well.

The description of such special keys can be found in [6] and the source code is self explanatory. This
chapter focuses on how to designate a key for a CERC command or a special function implemented in the
rsa_basic.c module.

The key code map to command is defined in the rsaKeyMap array in the rsa_basic.c file. The array index
is the key code. The key code definition depends on HAL key module implementation of a particular
platform. For CC2530 remote, hal_key.c module generates the key code in the format specified in 5.

Table 5 – Key code format

Bit 0-2 Bit 3-5 Bit 6-7

Column number Row number Reserved

For example, index 0 (0b00 000 000) entry is a map for key row 0, column 0. Index 11 (0b00 0001 011)
entry is a map for key row 1, column 3.

The array contains values that identify either CERC user control pressed command or a special command.
Table 6 shows the value range.

Table 6 – Key map values

Value Range Description

RTI_CERC_SELECT (0x00) –
RTI_CERC_DATA (0x76)

RC command code of CERC user control pressed command frame.
Note that only single byte commands (i.e. no RC payload) are
supported for the values within this range.

0x77 – 0x7F Reserved

RSA_MEDIA_SEL (0x80) – 0xAF CERC user control pressed command for Select Media Function.
RC command payload shall be set to the value - 0x80. For instance,
value 0x92 indicates Select Media Function with payload value
(0x92-0x80) = 0x12.

RSA_ACT_PAIR (0xB0) Trigger pairing

0xB1 Reserved

RSA_ACT_TOGGLE_TGT
(0xB2)

Target device toggle

RemoTI Basic Remote Developer's Guide SWRU224A

15 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Value Range Description

RSA_ACT_TEST_MODE (0xB3) Test mode toggle

RSA_ACT_POLL (0xB4) Poll server (this map is valid only when over the air downloading
feature is in use).

0xB5 – 0xBF Reserved

0xC0 – 0xFE Target device type select (device type = value - 0xBE, for instance
0xC0 corresponds to 0xC0-0xBE = 0x02, Television device type)

RTI_CERC_RESERVED_1
(0xFF)

No action

6. LED control
A CC2530 reference remote has two set of LEDs that can be controlled independently. One set of LEDs
are called activity LEDs and the other set is called backlight LEDs. In hal_board_cfg.h file, the activity
LEDs are mapped to LED2 while the backlight LEDs are mapped to LED1 of HAL LED module.

Table 7 shows configurable constants in hal_board_cfg.h that were set to fit the CC2530 basic remote.

Table 7 – LED configuration constants

Constant Name Value Description

LED1_BV BV(0) Bitmap corresponding to the port pin for LED1,
used for direction register settings, etc.

LED1_SBIT P2_0 Port register (single bit access) to control LED1

LED1_DDR P2DIR Port direction register for LED1

LED1_POLARITY ACTIVE_LOW Polarity of LED1

LED2_BV BV(1) Bitmap corresponding to the port pin for LED2,
used for direction register settings, etc.

LED2_SBIT P1_1 Port register (single bit access) to control LED2

LED2_DDR P1DIR Port direction register for LED2

LED2_POLARITY ACTIVE_LOW Polarity of LED2

RemoTI Basic Remote Developer's Guide SWRU224A

16 Copyright  2009 Texas Instruments, Inc. All rights reserved.

The basic remote controller sample application uses activity LEDs to indicate pairing in progress. That is,
when remote is performing pairing procedure, activity LED will be turned on.

Background LEDs will be turned on while transmitting CERC user control packets. Background LEDs
are also used for various feedback in the test mode (see [6]). The code that controls LEDs reside in the
rsa_basic.c module and the LED control is done through HAL LED API functions. Refer to HAL Drivers
API (SWRA193) document for details on API.

Note that the activity LED control port pin is also used for IR diode connection for the CC2530 remote
hardware platform. Hence, when IR demo code is enabled, activity LEDs control code is commented out.

7. OSAL task synchronization
TI OSAL is a very thin software framework where tasks can be defined with their own entry point and
messages and events are exchanged between tasks. OSAL tasks do not employ any real context switching.
Rather, all tasks defined in OSAL run in the same thread context as opposed to interrupt thread context.

See [4] for OSAL features and interfaces.

The main() routine in rsa_main.c file as quoted below illustrates typical startup sequence of the runtime
system thread using OSAL.

int main(void)
{
 /* Initialize hardware */
 HAL_BOARD_INIT();

 /* Initialze the HAL driver */
 HalDriverInit();

 /* Initialize NV system */
 osal_nv_init(NULL);

 /* Initialize MAC */
 MAC_InitRf4ce();

 /* Initialize the operating system */
 osal_init_system();

 /* Enable interrupts */
 HAL_ENABLE_INTERRUPTS();

 /* Setup Keyboard callback */
 HalKeyConfig(RSA_KEY_INT_ENABLED, RSA_KeyCback);

 /* Start OSAL */
 osal_start_system(); // No Return from here

 return 0;
}

RemoTI Basic Remote Developer's Guide SWRU224A

17 Copyright  2009 Texas Instruments, Inc. All rights reserved.

osal_start_system() routine loops forever updating system timer tick and checking signaled events and
queued messages invoking each user tasks when necessary as illustrated in Figure 5.

Note that task priorities do not work as preemptive context switching as all tasks are running in the same
context. However the priorities affect the order of event handling. Each task has a 16 bit event flag
variable and OSAL checks the event flags from the highest priority task down to the lowest priority task
and calls the task entry function when an event is signaled to the task. Upon completion of the entry
function, OSAL checks the event flags from the highest priority task again. Hence, if a new event is
signaled to a task with higher priority than another task which already had a signaled event, during any
execution (either of an OSAL task or an interrupt service routine), this new event is handled before the
already signaled event. The task priorities are determined by the order of task initialization function calls
from within osalInitTasks() function implementation and the order of task entry functions in tasksArr
array variable. See [4] for details.

RemoTI Basic Remote Developer's Guide SWRU224A

18 Copyright  2009 Texas Instruments, Inc. All rights reserved.

osal_start_system

Update system time tick and signal

timeout events upon checking the

timer request database

HAL driver polling if necessary

(No polling for CC2530 remote.

Network processor for example

would poll UART buffer here.)

Check signaled events from the

highest priority task.

An event is

signaled to a

task

Call corresponding task event

handling entry function and update

the event flags of the task based

on the return value of the entry

function.

yes

All tasks voted

to conserve

power

no

no

halSleep():

Enter power mode 2 (when a timer

request is pending) or power mode

3 (when no timer request is

pending)

yes

halSleep():

Wakeup on interrupt. Timer tick

update, etc.

halSleep():

Need to

wakeup?

no yes

Figure 5 – OSAL loop: User thread flow

RemoTI Basic Remote Developer's Guide SWRU224A

19 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Since all tasks are running in the same thread context, there is no need for inter-task synchronization.
However, OSAL provides task synchronization API functions in order to synchronize between interrupt
service routines and the OSAL tasks. Such API functions can also be used to delay certain initialization
routines till after all other initialization such as peripheral driver initialization is complete and OSAL
loop, i.e., osal_start_system() is entered.

Two events are used in the rsa_basic.c module in all configurations besides the other two events used only
by over the air downloading. Over the air downloading is explained in chapter 17. The two events used
for all configurations are RSA_EVT_INIT and RSA_EVT_RANDOM_BACKOFF_TIMER.

An RSA_EVT_INIT event is triggered from within the RSA_Init() function. The RSA_Init() function is
called when OSAL initializes all its tasks in the osalInitTasks() function of the rsa_osal.c module. The
event is handled in RSA_ProcessEvent() function and performs certain initialization. The reason some
initialization is performed in the event handler in this way instead of all done inside the RSA_Init()
function is that certain initialization has to take place after all drivers and tasks are initialized. Triggering
an event upon the task initialization routine (RSA_Init) and performing some initialization upon event
handling ensures that the latter initialization happens after OSAL completes all driver and task
initialization.

The other event RSA_EVT_RANDOM_BACKOFF_TIMER is a timer event also triggered from the
application task itself (from within rsaRRTSendData() function). This event is used when the remote is in
the test mode.

Communication among application task, RemoTI application framework (RTI) task and network layer is
through direct function call and callback functions. Such function calls are made from within user thread
context and hence no complex synchronization need be considered.

HAL key module callback function, RSA_KeyCback() function is also called from user thread context
and not from interrupt thread context.

In summary, OSAL events are used in basic remote controller sample application in order to postpone
certain actions till after OSAL event handler loop is running or for timer events. OSAL events are
typically used for such purposes. OSAL messages are used more frequently between tasks because the
messaging intuitively involves transfer of ownership of certain data structure. Basic remote controller
sample application itself does not use OSAL messages but direct function calls between the application
task, the application framework and the network layer.

8. Flash page map and memory map
Each configuration of basic remote controller sample application project has a unique flash page map.
Figure 6 illustrates two distinctive flash page maps used by basic remote sample application. One flash
page is 2048 bytes as specified in [5].

For over the air downloading feature enabled configuration, the boot loader code occupies the bottom
page and the top page is reserved just for the lock bits and certain information such as commissioned
IEEE address. The other code space is split into active code space and downloaded code space. The
details of the over-the-air downloading feature enabled configuration are explained in chapter 17.

RemoTI Basic Remote Developer's Guide SWRU224A

20 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Without the over-the-air downloading feature, the code starts from the first page (lowest address page) up.

OSAL non-volatile memory pages occupy configurable number of pages from the second last page down.

The last flash page includes lock bits (last 16 bytes) and commissioned IEEE address (8 bytes, prior to
lock bits). IEEE address is explained more in chapter 14. The remainder of this last flash page can be used
for additional code if the code fills up the reset of the space.

Figure 6 – Flash page map

Number of pages used for OSAL non-volatile memory system is defined in hal_board_cfg.h file. The
configurable constants and their values are listed Table 8.

Table 8 – NV configuration constants

Constant Name Description CC2530F64
value

CC2530F128 CC2530F256

HAL_NV_PAGE_END Last OSAL NV
page plus one

31 63 127

HAL_NV_PAGE_CNT Number of OSAL
NV pages

2 2 6

RemoTI Basic Remote Developer's Guide SWRU224A

21 Copyright  2009 Texas Instruments, Inc. All rights reserved.

In order to change the number of pages used for the non-volatile memory system, both hal_board_cfg.h
file and linker command file have to be updated. In hal_board_cfg.h file, change the
HAL_NV_PAGE_CNT definition. For instance, if you wish to use 4 flash pages and OSAL NV pages for
CC2530F128 part, change hal_board_cfg.h file as follows:

...
#elif defined CC2530F128
#define HAL_FLASH_LOCK_BITS 16
#define HAL_NV_PAGE_END 63
#define HAL_NV_PAGE_CNT 4
...

The linker command file can be located from project option pop up window. For instance after selecting
CC2530F128 configuration, select Project -> Options menu. In project option pop up window, select
linker category and Config tab. Linker command file name and path is displayed as Figure 7.

In the linker command file, find _ZIGNV_ADDRESS_SPACE_START definition and change the
starting address to match the number of pages defined. For instance, the default linker command file for
CC2530F128 configuration has the following lines:

...
-D_ZIGNV_ADDRESS_SPACE_START=0x3E800
...

If you want four pages for non-volatile memory instead, the non-volatile memory page should be located
at 12th page of the last bank (16 - 1 - 3), and the address should be 0x38000 + (0x800 * (12 - 1)) =
0x3D800. See further below in this section, for flash pages per bank and address ranges. The linker
command file in this case has to be updated as follows:

...
-D_ZIGNV_ADDRESS_SPACE_START=0x3D800
...

XDATA memory map and CODE memory space are described in [5].

CC2530F64 configuration uses near code model and bank area is always occupied with the same code,
non-volatile memory pages and lock bit pages content as in flash page map.

CC2530F128 configuration and CC2530F256 configuration use banked code model and bank area is
dynamically mapped to flash bank (comprised of 16 pages) in use. Code address space is represented in
virtual code address. Virtual address for code bank is listed in Table 9.

RemoTI Basic Remote Developer's Guide SWRU224A

22 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Table 9 – Code bank virtual address

Code
Bank

Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7

Address
Range

0x00000
–
0x07FFF

0x18000
–
0x1FFFF

0x28000
–
0x2FFFF

0x38000
–
0x3FFFF

0x48000
–
0x4FFFF

0x58000
–
0x5FFFF

0x68000
–
0x6FFFF

0x78000
–
0x7FFFF

Bank 0 is constantly mapped to common area (0x0000 – 0x7FFF) and the other banks are mapped to bank
area (0x8000 – 0xFFFF) dynamically. CC2530F128 has up to bank 3. Bank 4 to bank 7 applies only to
CC2530F256.

Such a bank set up is determined at link time and it is configured through linker configuration file. Linker
configuration file can be found through project options in IAR (Linker category and then Config tab) as
illustrated in Figure 7.

RemoTI Basic Remote Developer's Guide SWRU224A

23 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Figure 7 – Basic remote linker configuration option window

9. Stack and Heap
The 8051 micro-controller uses a variety of data memory access methods, among them, most
distinctively, one for internal data memory with 8 bit address space (IDATA) and for external data
memory with 16 bit address space (XDATA). CC2530 maps both memory address space to the same
internal SRAM. See [5] for details. IAR compiler generates code to use stack from both IDATA and
XDATA. How the compiled code uses IDATA and XDATA for stack is highly dependent on the
compiler itself.

With IAR 8051 compiler version 7.51A, RemoTI CC2530 development kit 1.0 basic remote sample
application uses about 207 bytes of XDATA stack and 53 bytes of IDATA stack. However, such stack
usage could change with even slight modification of code as how compiler generates code to use stack is
unpredictable.

Hence, 384 bytes of XDATA stack and 192 bytes of IDATA stack were reserved in project settings for
the RemoTI CC2530 development kit 1.0 basic remote. The stack size settings can be adjusted after
profiling the stack usage with the final application code, by browsing stack memory space through a
debugger.

For instance, XDATA stack is located between addresses 0x100 and 0x27F and IDATA stack is located
between addresses 0x40 and 0xFF in case of RemoTI basic remote CC2530F64 build, as can be found
from a generated map file as in Figure 8.

RemoTI Basic Remote Developer's Guide SWRU224A

24 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Figure 8 – Finding stack location

After running the application for the use cases picked for the deepest stack usage, the stack memory space
can be browsed to determine how much stack was used. In Figure 9, XDATA stack was used down to
0x1DF, which makes the stack depth in this use case to be 0x27F – 0x1DF + 1 = 161 bytes.

IDATA stack usage can be profiled likewise. Just select IData to browse IData memory.

Once stack usage is profiled, the stack size can be adjusted from project settings (General Options
category, Stack/Heap tab).

RemoTI Basic Remote Developer's Guide SWRU224A

25 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Figure 9 – XDATA Stack Profiling

RemoTI software uses heap through OSAL memory management module. Application could also use
heap memory through OSAL memory management module but the basic remote sample application as is
does not.

Heap usage varies per use case even with the same software image. In other words, heap size has to be
determined based on the supported use cases of the product. Heap size can be adjusted by defining
INT_HEAP_LEN in preprocessor definition of the project with the desired number of bytes as its value.
The default value is 2048 (bytes).

RemoTI Basic Remote Developer's Guide SWRU224A

26 Copyright  2009 Texas Instruments, Inc. All rights reserved.

In order to profile heap usage, some OSAL code has to be instrumented. Unlike stack memory space,
heap memory space is not initialized with a certain pattern of data (0xCD). Hence, it is necessary to add
code to initialize the heap memory space before the space is being used.

The best location is inside the osal_mem_init() function of the OSAL_Memory.c module. At the
beginning of the function, add a memory initialization code as follows:

void osal_mem_init(void)
{
 osalMemHdr_t *tmp;

#if (OSALMEM_PROFILER)
 osal_memset(theHeap, OSALMEM_INIT, MAXMEMHEAP);
#endif

// Add this code to initialize memory space
extern void *osal_memset(void *dest, uint8 value, int len);
osal_memset(theHeap, 0xCD, MAXMEMHEAP);

Note that the OSALMEM_PROFILER compile flag is also supported. When the compile flag is used, the
heap space is initialized with OSALMEM_INIT value instead of 0xCD in the above code.
OSALMEM_PROFILE compile flag brings in more code than the heap initialization, which is not
explained in this document.

With the new image, after running the use case with maximum heap usage, break the debugger and check
the _theHeap memory space. The address range of _theHeap variable can be found from map file.

RemoTI Basic Remote Developer's Guide SWRU224A

27 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Figure 10 – Heap usage profiling

If the _theHeap variable occupies 0x290 to 0xA8F address space for example, search from 0xA8F down
to bottom for any foot print of memory usage. In Figure 10, 0x3fb is the highest address of memory space
that was used in the heap space. That amounts to 0x3fb - 0x290 + 1 = 364 bytes of heap usage.

Once heap size is profiled, the heap size can be adjusted by adding INT_HEAP_LEN definition as
compile option. For instance adding INT_HEAP_LEN=1024 to defined symbols window of Preprocessor
tab of C/C++ Compiler category, adjusts heap size to 1,024 bytes.

RemoTI Basic Remote Developer's Guide SWRU224A

28 Copyright  2009 Texas Instruments, Inc. All rights reserved.

10. Network layer interface
The basic remote sample application uses the RemoTI application framework interface instead of directly
accessing network layer interface. RemoTI application framework interface and RemoTI network layer
interface are described in [2].

The RemoTI application framework module, rti.c, uses RemoTI network layer API. The basic remote
controller sample application uses either rcnctrl-CC2530.lib or rcnctrl-CC2530-banked.lib. The selection
is based on whether the desired code model is the near code model or the banked code model. Both
network layer libraries implement a subset of full network layer features. In order to use the full features
of network layer, rcnsuper-CC2530.lib or rcnsuper-CC2530-banked.lib should be used instead. Note that
using rcnsuper-CC2530xxxx.lib increases code size. Table 10 shows difference of features supported by
the two sets of libraries.

Table 10 – Network layer library features

Network layer features rcnctrl rcnsuper

Discovery originator √ √

Discovery recipient √

Pairing originator √ √

Pairing recipient √

Un-pair originator √ √

Un-pair recipient √ √

Frequency agility (specific to target base channel change based on
interference)

 √

Power saving mode (duty cycling active period of receiver on) √

Receiver control (NLME-RX-ENABLE) √ √

Auto discovery √

Security √ √

Controller node capability √ √

Target node capability √

NSDU originator √ √

NSDU recipient √ √

RemoTI Basic Remote Developer's Guide SWRU224A

29 Copyright  2009 Texas Instruments, Inc. All rights reserved.

RTI has a feature compile flag, FEATURE_CONTROLLER_ONLY to reduce code size when used just for
a controller. For basic remote controller sample application, this feature flag is set in project options by
default.

Note that the basic remote controller sample application incorporated a state machine to ensure that
network layer interface is triggered in acceptable state. For instance, when calling RTI_SendDataReq()
which eventually triggers RCN_NldeDataReq() call, application changes its state (rsaState variable) to
RSA_STATE_NDATA state, so that another key press event does not trigger RCN_NldeDataReq() again
till the state changes back to RSA_STATE_READY upon RTI_ReceiveDataInd() called from
RCN_CbackEvent() for NLDE-DATA.confirm event. Note that RemoTI network layer does not queue
data request and hence back to back data requests without waiting for confirmation in between would fail.

11. Pairing
The basic remote controller sample application triggers pairing simply by calling RTI_PairReq() upon
pairing key press event. RTI, in turn, performs discovery and pairing in sequence.

When RTI performs discovery, it specifies CERC profile and searches for any device type. To change this
behavior, modify the rcnNlmeDiscoveryReq_t structure build into rtiReqRspPrim.prim.discoveryReq
buffer in RTI_PairReq() function. Note that discovery related NIB attributes are set up to comply with
CERC profile in rtiResetSA() function.

RTI filters the discovered node descriptor by looking at the device type of the node descriptor. The device
type list of a node descriptor is compared against supported target device type list set by RTI
configuration parameter (RTI_CP_ITEM_NODE_SUPPORTED_TGT_TYPES). Supported target types
can be set up to six entries. In order to change this behavior, modify rtiOnNlmeDiscoveredEvent()
function. In order to simply increase maximum number of supported target types, change
RTI_MAX_NUM_SUPPORTED_TGT_TYPES constant in rti.h file and rebuild RTI module, rti.c file.

Once discovery completes with acceptable node descriptor, rcnNlmePairReq_t structure is built and
RCN_NlmePairReq() function is called to move on with network layer pairing procedure. See
rtiOnNlmeDiscoverCnf() function for details.

When pairing successfully completes, the application sets destination target (rsaDestIndex, used for
destination of any CERC command till next change) with the newly paired entry in RTI_PairCnf()
callback function. This RTI callback function is triggered from RCN_CbackEvent() callback
corresponding to NLME-PAIR.confim event.

Once pairing table is full, the basic remote sample application won’t be able to pair with a new device any
longer. Depressing any key that is mapped to CERC Stop user control command, for five seconds,
triggers RTI level state clearing. Refer to [2] for the effect of state attribute clearing. In short, application
will restart with NIB including pairing table reset to default values. In order to change such usage of a
CERC Stop key, modify RSA_KeyCback() function.

Basic remote controller sample application does not handle any cancellation of on-going pairing
procedure. Cancellation of on-going pairing by the user is not recommended as the pairing progress

RemoTI Basic Remote Developer's Guide SWRU224A

30 Copyright  2009 Texas Instruments, Inc. All rights reserved.

unknown to the user. In case it is required for certain use cases, cancellation can be done by resetting the
system (e.g., by calling RTI_SwResetReq() function).

12. Target device selection
As described in chapter 11, newly paired target is selected as destination device. When there are multiple
devices already paired and application wants to allow multiple pairing, a mechanism to switch back to
another paired device is necessary. CC2530 remote platform has four keys right below power key, labeled
as TV, DVD, STB and AUX. Basic remote controller sample application uses these keys as target
designator keys to use them to switch to another paired entry as destination. See chapter 5 for configuring
key code to target device type select command mapping.

RemoTI Basic Remote Developer's Guide SWRU224A

31 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Start

rsaSelectInitialTargetDevice()

rsaTargetDeviceToggleKeyAction()

RSA_KeyCback():

User key press

Target device

toggle key?

yes

Target type

select key?

no

rsaTgtDevType Wildcard

no

yes

rsaTgtDevType selected

device type

rsaTgtDevType Wildcard

rsaTargetDeviceToggleAction()

i rsaDestIndex + 1

Is rsaDestIndex

valid?

i 0

yes no

Read pairing table entry

index i

Does the pairing entry

include device type that

matches rsaTgtDevType?

rsaDestIndex i

yes

i (i + 1) mod (pairing

table size)

i == rsaDestIndex

no

returns

yes no

Figure 11 – Destination Target Selection Algorithm

Figure 11 illustrates algorithm used for selecting the destination target device.
rsaSelectInitialTargetDevice() simply goes through pairing table and finds the first valid entry and select
the entry as destination device.

The difference between target device toggle key and target type select key is that target device toggle key
triggers selection of any next valid pairing entry as destination while target type select key triggers
selection of a next valid pairing entry that includes the designated device type in its device type list.

Note that the initial target device selection algorithm can be improved, for example, by storing
rsaDestIndex value into OSAL NV memory and restoring it in rsaSelectInitialTargetDevice() function.

RemoTI Basic Remote Developer's Guide SWRU224A

32 Copyright  2009 Texas Instruments, Inc. All rights reserved.

13. Non-volatile memory
The basic remote sample application does not use its own OSAL NV item but application can be modified
to use its own NV items if necessary. See [4] for API details.

When application uses its own OSAL NV items, the NV item identifiers must not conflict with the ones
used by network layer and RemoTI application framework (RTI module). Table 11 shows the NV item
identifiers reserved by network layer and RemoTI application framework.

Table 11 – NV item identifier ranges

Reserved NV item identifier range Description

0x0000 NULL identifier

0x0001 – 0x01FF Reserved for future usage

0x0200 – 0x0300 Reserved for RemoTI network layer

0x0301 – 0x0400 Reserved for RemoTI application framework (Search for
RTI_NVID_xxx constants in rti.c file to find exact identifiers used)

0x0401 – 0x0FF Application

0x1000 – 0xFFFF Reserved

14. IEEE address
CC2530 has its own IEEE address built into the chip (information page IEEE address). RemoTI network
layer uses this IEEE address unless the IEEE address is overridden with a custom IEEE address by
RCN_NlmeSetReq() call for RCN_NIB_IEEE_ADDRESS attribute. Once the IEEE address is overridden,
network layer uses the custom IEEE address till this custom IEEE address is overwritten with another
RCN_NlmeSetReq() call. If upper layer writes 0xFFFFFFFFFFFFFFFF as the custom IEEE address,
network layer uses this null IEEE address till next power cycle. From next power cycle, network layer
will start using the IEEE address built into the chip again.

RemoTI application framework, rti.c module, uses RCN_NlmeSetReq() to prioritize an IEEE address
programmed to a specific last flash page location. See rtiProgramIeeeAddr() function for the source code.
This function is called upon every system reset and the function reads the commissioned IEEE address in
the special location and if it is valid (non-0xFFFFFFFFFFFFFFFF), this IEEE address is set to the
network layer using RCN_NlmeSetReq() call. The special location is offset 0x7E8 of the last page stored
in little endian order, which neighbors lock bits which starts from offset 0x7F0. This is the location where
SmartRF programmer will program the secondary IEEE address.

RemoTI Basic Remote Developer's Guide SWRU224A

33 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Figure 12 – SmartRF programmer

Hence, with RemoTI application framework, the hierarchy of IEEE address upon CC2530 reset is as
follows:

• If the commissioned IEEE address is valid, use the commissioned IEEE address
• Otherwise, use the information page IEEE address

Figure 13 illustrates the flow chart of selecting the network layer IEEE address, during startup of a
device.

RemoTI Basic Remote Developer's Guide SWRU224A

34 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Figure 13 – IEEE address selection flow during startup

RemoTI Basic Remote Developer's Guide SWRU224A

35 Copyright  2009 Texas Instruments, Inc. All rights reserved.

15. IR signal generation
The basic remote sample application includes IR signal generation driver as a demonstration of the
CC2530 capability. Note that there are a variety of IR signal formats and signal generation driver has to
be optimized in terms of its memory usage and code (data table) size to suit the signal format.

The included IR signal generation driver (hal_irgen.c and hal_irgen.h) is optimized for IR signal formats
that have all carrier on and off time duration derived as a relatively small multiples of a certain time
duration. For example, Manchester coding would use the same time unit for carrier on and carrier off
duration to compose a bit.

Some other IR signals transmit carrier for certain duration and turns off carrier for two different durations
to discriminate bit value 0 and 1. Both carrier-off durations are usually a certain multiple of the carrier on
duration. If both are small multiples of the carrier on duration, sample IR generation driver included in the
package is suitable for the particular signal generation.

The sample driver uses a single DMA channel and there isn’t any software interaction while an entire
command signal is being generated, ensuring correct signal format regardless of interrupt latency.

The IR generation driver outputs the signal to peripheral IO port 1 pin 1. The hal_irgen.c module has to
be modified in order to use a different port pin.

The sample IR generation driver (hal_irgen.c, hal_irgen.h) uses a single timing unit as a basis for all
timing generation. The common factor timing duration is determined by HAL_IRGEN_TICKSPD,
HAL_IRGEN_BIT_TIMING_PRESCALER and HAL_IRGEN_BIT_TIMING_TICKS compile flags.
Compile flags follow in this chapter.

Bit 0 and bit 1 signal formats are then defined as a sequence of carrier on and carrier off durations as
multiples of the aforementioned common factor duration.

The driver also supports generically adding preamble signal that precedes all bits for a single command.
Preamble is also defined using carrier on and carrier off durations as multiples of the common factor
duration.

Table 12 lists compile flags used for configuring the timing and signal formats.

Table 12 – HAL IR generation driver compile flags

Compile Flag Description

HAL_IRGEN Set to TRUE in order to include HAL IR signal
generation driver

HAL_IRGEN_ACTIVE_HIGH Set to TRUE when active state should be asserted
high on port output, and set to FALSE otherwise

HAL_IRGEN_TICKSPD Set to HAL_IRGEN_TICKSPD_xxxHZ macro for
configuring tick speed

RemoTI Basic Remote Developer's Guide SWRU224A

36 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Compile Flag Description

HAL_IRGEN_CARRIER_PRESCALER Set to
HAL_IRGEN_CARRIER_PRESCALER_DIVxxx
macro for configuring prescaler for carrier PWM
generation

HAL_IRGEN_CARRIER_DUTY_CYCLE Set to timer tick counter comparator value for duty
cycle duration setup for carrier PWM

HAL_IRGEN_CARRIER_PULSE_WIDTH Set to timer tick counter comparator value for pulse
width duration of carrier PWM. For non-modulated
IR signal generation, this macro should be set to 0xff

HAL_IRGEN_BIT_TIMING_PRESCALER Set to
HAL_IRGEN_BIT_TIMING_PRESCALER_DIVxxx
macro for configuring prescaler for bit information
common factor duration

HAL_IRGEN_BIT_TIMING_TICKS Set to timer tick counter value for bit information
common factor duration

HAL_IRGEN_BIT_0_PRE_CARRIER_DUR Set to value of a multiple of common factor duration,
corresponding to carrier non-transmission duration for
bit value 0 preceding carrier transmission

HAL_IRGEN_BIT_1_PRE_CARRIER_DUR Set to value of a multiple of common factor duration,
corresponding to carrier non-transmission duration for
bit value 1 preceding carrier transmission

HAL_IRGEN_BIT_0_CARRIER_DUR Set to value of a multiple of common factor duration,
corresponding to carrier transmission duration for bit
value 0

HAL_IRGEN_BIT_1_CARRIER_DUR Set to value of a multiple of common factor duration,
corresponding to carrier transmission duration for bit
value 1

HAL_IRGEN_BIT_0_POST_CARRIER_DUR Set to value of a multiple of common factor duration,
corresponding to carrier non-transmission duration for
bit value 0 following carrier transmission

HAL_IRGEN_BIT_1_POST_CARRIER_DUR Set to value of a multiple of common factor duration,
corresponding to carrier non-transmission duration for
bit value 1 following carrier transmission

RemoTI Basic Remote Developer's Guide SWRU224A

37 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Compile Flag Description

HAL_IRGEN_PREAMBLE_PAUSE_1_DUR Set to value of a multiple of common factor duration,
corresponding to the carrier non-transmission
preceding the first carrier transmission for a preamble

HAL_IRGEN_PREAMBLE_CARRIER_1_DUR Set to value of a multiple of common factor duration,
corresponding to the first carrier transmission for a
preamble

HAL_IRGEN_PREAMBLE_PAUSE_2_DUR Set to value of a multiple of common factor duration,
corresponding to the carrier non-transmission
preceding the second carrier transmission for a
preamble

HAL_IRGEN_PREAMBLE_CARRIER_2_DUR Set to value of a multiple of common factor duration,
corresponding to the second carrier transmission for a
preamble

HAL_IRGEN_PREAMBLE_PAUSE_3_DUR Set to value of a multiple of common factor duration,
corresponding to carrier non transmission following
the second carrier transmission of a preamble, and
preceding data bit transmission

HAL_IRGEN_DOUBLE_LENGTH_BIT_IDX Set to the index (from the least significant bit location
as index 0) of bit location of a command which has to
extend to double the length of a normal bit signal. The
value should be set to
HAL_IRGEN_CMD_LENGTH if no bit should have
such an exception. Example usage of this compile
flag is the trailing bit location of RC6 signal format.

Also, compile flags HAL_IRGEN_RC5_CONFIG and HAL_IRGEN_RC6_CONFIG define all the above
compile flag parameters for RC5 and RC6 signal formats.

Note that none of the default project configurations enable HAL_IRGEN option.

Figure 14 shows example preamble format which precedes all command data signal format.

RemoTI Basic Remote Developer's Guide SWRU224A

38 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Carrier PWM

signal

Carrier Tx Carrier Tx

carrier

1

pause

2

pause

3

Peamble

Carrier Pulse

Width

Carrier Duty

Cycle

Pause

1

carrier

2

Figure 14 – IR preamble signal format

Figure 15 shows an example data signal format following preamble:

Carrier PWM

signal

Carrier Tx Carrier Tx Carrier Tx

1

carrier

dur

1 post-

carrier

dur

2

carrier

dur

2 post-

carrier

dur

3

carrier

dur

Bit sequence

of ‘100…’

Carrier Pulse

Width

Carrier Duty

Cycle

1 pre-

carrier

dur

2 pre-

carrier

dur

3 pre-

carrier

dur

3 post-

carrier

dur

Figure 15 – IR bit signal format

RemoTI Basic Remote Developer's Guide SWRU224A

39 Copyright  2009 Texas Instruments, Inc. All rights reserved.

16. Network layer configuration
The standard NIB attributes can be configured and updated at run time through RTI_WriteItem() function
or RCN_NlmeSetReq() function in case the rti.c module is not used.

In rti.c module, rtiResetSA() function implementation shows example of RCN_NlmeSetReq() calls to set
standard defined NIB attributes.

Network layer attributes that can be used with either RTI_WriteItem or RCN_NlmeSetReq() are
enumerated in rcn_attribs.h file. Note that several non-standard attributes are also provided.

Table 13 explains the non-standard attributes.

Table 13 – Non-standard network layer attributes

Attribute identifier Description

RCN_NIB_NWK_NODE_CAPABILITIES This attribute corresponds to standard constant
nwkcNodeCapabilities.

The value of this attribute should not change in product.

RCN_NIB_NWK_VENDOR_IDENTIFIER This attribute corresponds to standard constant
nwkcVendorIdentifier.

The value of this attribute should not change in product.

RCN_NIB_NWK_VENDOR_STRING This attribute corresponds to standard constant
nwkcVendorString.

The value of this attribute should not change in product.

RCN_NIB_STARTED It is an attribute to indicate whether network layer has
started (‘1’) or not (‘0’). This attribute is useful for
application to determine whether it has to perform cold
boot procedure or warm boot procedure.

RTI module (rti.c) uses this attribute to determine cold
boot or warm boot procedure.

RCN_NIB_IEEE_ADDRESS IEEE address attribute. By default, network layer will
program IEEE address using chip IEEE addresss.

Application can override chip IEEE address with this
attribute. Note that RTI module (rti.c) writes into this
attribute upon system reset. Application should consider
conflict with RTI module when writing this attribute. See
chapter 14.

RemoTI Basic Remote Developer's Guide SWRU224A

40 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Attribute identifier Description

RCN_NIB_AGILITY_ENABLE Enable/disable frequency agility

RCN_NIB_TRANSMIT_POWER Set transmission power level in dBm.

Note that other non-standard attributes such as RCN_NIB_PAN_ID and RCN_NIB_SHORT_ADDRESS
are not configurable items. Those attribute values can be read for debug purpose.

Certain set of network layer implementation parameters can also be modified at build time by changing
rcn_config.c file. The file is configured with default recommended values.

17. Over the air download

17.1 Overview of the over the air download demo
Over the air download is a feature that enables a RemoTI controller device to download its embedded
software image from a RemoTI target device over the air. It is out of scope of this document how the
target node gets a software image for a particular controller device.

Over the air download demo consists of a basic remote controller sample application which is built in
OAD specific configuration, a network processor and OAD demo PC tool. See [6] for build, setup and
execution instruction.

Over the air downloading demo is implemented using two way data exchange using RemoTI network
layer service data unit transmission and reception feature. The network layer service data unit payload
used for image downloading is Texas Instruments vendor specific data. TI vendor specific data format
was designed to work with any profile identifier. Note that TI vendor specific data format is solely
defined by TI. Customers are allowed to use the format as is based on the governing product license
agreement terms but they are not allowed to use a derived, modified or newly created data format
and use the TI vendor identifier with such a format. Such use of TI vendor identifier with
unauthorized format could break inter-operability with products that use TI vendor specific
commands and further cause significant damage to TI business.

See section 17.2 for the format of frames used for over the air download demo. The demo uses over the
air download protocol frames and poll protocol frame.

A typical remote controller optimizes current consumption by turning off radio receiver whenever
possible. Basic remote controller sample application incorporates the same logic. When idling, radio
receiver is turned off and radio processor enters power mode 3 to save power consumption. As such is the
case, a target device which has a new software image to download to a remote controller paired with that
device does not know when the remote controller wakes up and is ready to receive packets from the target
device, unless it is notified by the controller device. Hence, a poll command is used by the basic remote

RemoTI Basic Remote Developer's Guide SWRU224A

41 Copyright  2009 Texas Instruments, Inc. All rights reserved.

controller sample application to notify a designated target that the remote has turned on its receiver for a
short timing window. In the sample application, the poll command is transmitted upon user key input and
to a currently designated target device as unicast transmission. In real product remote controllers, the
triggering mechanism could vary such as periodic transmission, selecting target based on target device
type, use of broadcast transmission, etc. Periodic transmission and choice of poll command recipient
should be considered with power consumption and timing.

Once the poll command is received by a target device (in demo, OAD demo PC tool via connected
network processor), the target device knows that it could start sending a data to the remote controller
within a short period of time. In the OAD demo, the OAD demo PC tool sends OAD command packets
and the basic remote enters OAD mode and leaves the receiver on till watchdog timer expires (note that
this is application watchdog timer, different from CC2530 watchdog timer) or till OAD command directs
remote to exit OAD mode. The target device controls the OAD downloading procedure and remote
controller receives the command, performs the requested actions and sends back responses.

In the demo, OAD replaces entire image of basic remote controller including RemoTI network layer
image. The only exception is a small boot code that resides in the first page of flash (See chapter 8). The
basic remote controller stores the image to downloaded code area of the flash and resets itself to run the
boot code which copies the downloaded image to the active image area and executes active image.

17.2 Over the air download command packet formats

17.2.1 Poll protocol frame format
Poll protocol shall a single frame type to be called Poll frame, and its format is illustrated in Figure 16.
Protocol payload size shall be zero.

Bits : 8

Protocol
Identifier

Figure 16 – Poll frame format

17.2.2 General Over the Air Download protocol frame format
General Over the Air Download protocol frame format is illustrated in Figure 17.
Over the Air Download protocol frames have 8 bit command identifier followed by command payload as
protocol payload.

Bits : 8 8 Variable

Protocol
Identifier

Command
Identifier

Command
Payload

Figure 17 – General Over the Air Download protocol frame Format

17.2.3 Over the Air Download protocol command ident ifiers
All valid command identifiers are listed in Table 14.

RemoTI Basic Remote Developer's Guide SWRU224A

42 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Table 14 – Over the Air Download Server protocol command Identifiers

Command
identifier

Command

0x00 Status Request

0x01 Start Request

0x02 Data Request

0x03 Enable Request

0x04 Cancel Request

0x80 Status Response

0x81 Start Response

0x82 Data Response

0x83 Enable Response

0x84 Cancel Response

17.2.4 Status Request command
Status Request command has zero length command payload.

17.2.5 Start Request command
Start Request command payload format is illustrated in Figure 18.

Bits : 16

Image Size

Figure 18 – Start Request command frame format

17.2.6 Data Request command
Data Request command payload format is illustrated in Figure 19.

Bits : 16 16 512

Sequence
Number

Address Data

Figure 19 – Data Request command frame format

RemoTI Basic Remote Developer's Guide SWRU224A

43 Copyright  2009 Texas Instruments, Inc. All rights reserved.

17.2.7 Enable Request command
Enable Request command payload format is illustrated in Figure 20.

Bits : 32 32

Image ID CRC

Figure 20 – Enable Request command frame format

17.2.8 Cancel Request command
Cancel Request command has zero length command payload.

17.2.9 Status Response command
Status Response command payload format is illustrated in Figure 21.

Bits : 8 8 32 32 24

OAD State Last Rx
Sequence
Number

Active Image ID Secondary Image ID Secondary
Storage Size

Figure 21 – Status Response command frame format

Valid OAD State field values are listed in Table 15.

Table 15 – OAD State Field Values

Value State

0x00 Idle

0x01 Download

0x02 Validate

17.2.10 Start Response command
Start Response command payload format is illustrated in Figure 22.

Bits : 8

Status

Figure 22 – Start Response command frame format

Valid Status field values are listed in Table 16.

RemoTI Basic Remote Developer's Guide SWRU224A

44 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Table 16 – OAD Response Status Field Value

Value Status

0x00 Success

0x01 General Failure

0x02 Already Started

0x03 Not Started

0x04 Invalid Sequence Number

0x05 Download Incomplete

0x06 Bad CRC

0x07 Invalid File

0x08 No Response

0x09 Cancelled

0x0A No Resources

0x0B File System Error

0x0C Image Too Big

17.2.11 Data Response command
Data Response command payload format is illustrated in Figure 23.

Bits : 8 16

Status Sequence
Number

Figure 23 – Data Response command frame format

Valid Status field values are listed in Table 16.

17.2.12 Enable Response command
Enable Response command payload format is illustrated in Figure 24.

RemoTI Basic Remote Developer's Guide SWRU224A

45 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Bits : 8

Status

Figure 24 – Enable Response command frame format

Valid Status field values are listed in Table 16.

17.2.13 Cancel Response command
Cancel Response command payload format is illustrated in Figure 25.

Bits : 8

Status

Figure 25 – Cancel Response command frame format

Valid Status field values are listed in Table 16.

17.3 Over the air download command flow sequence
Figure 26 illustrates flow of over the air download commands between a device which triggers over the
air download and transmits a new image and a remote that receives the new image over the air.

The over the air download demo PC tool in the RemoTI development kit plays the role of image
distributor device. The demo tool sends status request command prior to sending start request in order to
update its window display of the image status before initiating download.

RemoTI Basic Remote Developer's Guide SWRU224A

46 Copyright  2009 Texas Instruments, Inc. All rights reserved.

OAD image distribution device OAD capable remote

Start Request

Image is downloaded to downloaded

code area
Data Request and Data Response are repeated till the entire

image is downloaded.

Application resets.

Upon reset, downloaded code area

preamble is read and as the preamble

indicates that the image is enabled but not

copied to active code area, the image in

downloaded code area is copied over to

the active code area.

Enable Request

CRC is calculated from the image and

compared to the one included in Enable

Request command. If CRC matches, the

preamble of the image is written with

enabled state.

When copying completes, CRC is

calculated off the image in the active code

area and if CRC matches, the preamble in

the downloaded code area is overwritten

to indicate that image is already copied.

This is to ensure that if CRC does not

match, boot code retries copying over the

image even if it is power cycled in the

middle of the boot loading process.

Start Response

Data Request

Data Response

Enable Response

When CRC matched, boot code jumps into

application code in the active code area,

which must have been a copy of the

downloaded image.

Figure 26 – OAD command flow

17.4 Basic remote controller sample application con figuration
Basic remote controller sample application includes over the air download demo feature in certain
configurations (CC2530F128_OAD and CC2530F256_OAD).

RemoTI Basic Remote Developer's Guide SWRU224A

47 Copyright  2009 Texas Instruments, Inc. All rights reserved.

When the OAD enabling configuration is in use, OAD files are compiled together (oad_appflash.c,
oad_client.c, oad_crc.c. See section 3.3), proper OSAL non-volatile memory configuration is selected
(CC2530F128 or CC2530F256OAD. See section 3.2) and OAD specific linker command file is selected.

Such a configuration also adds FEATURE_OAD compile flag definition, which enables OAD
configuration specific key command map change and actions in rsa_basic.c module.

Basic remote controller sample application takes charge of the following tasks with related to OAD demo:

• Transmission of poll command (triggered by user key input) and receiver turn on for a short
period.

• Forwarding received OAD protocol frames to OAD module (OAD_ReceiveDataInd() function in
oad_client.c module)

• Blocking other user activities while OAD is active (use of rsaState variable. Whether OAD is
active or not can be determined by return value of OAD_ReceiveDataInd() call).

• Leaving the radio receiver on while OAD is active and turning it off when exiting OAD mode.
• Managing application watchdog timer to monitor OAD activity.
• Resetting the system when requested by OAD module (as a return value of

OAD_ReceiveDataInd() call).
See the code wrapped within FEATURE_OAD compile flag in rsa_basic.c file to see the code
corresponding to the above tasks.

17.5 Retention of non-volatile memory data
The build configuration of the basic remote controller sample application projects creates a downloadable
image of the entire application including RemoTI network layer code. The downloadable image does not
include OSAL non-volatile memory data pages so that the non-volatile image data pages are retained.

However, this imposes a restriction that the new OSAL NV driver that is included in new image has to be
backward compatible with the non-volatile memory data pages that previous image has created.

There are several ideas to address the issue of retaining non-volatile memory data content while
upgrading OSAL NV driver to a non-compatible driver as follows. Note that these ideas are not
implemented in the OAD demo and they are presented just for information purpose:

• New NV driver has built-in conversion routine, which convert old NV pages with the new one.
This results in bigger code with the conversion code which is going to be used only once.

• Target downloads a special image that only has conversion logic and OAD download feature as
application first. Once the special image completes execution, it should trigger downloading of a
new image.

• Target device reads NV page content from controller device first and composes new NV pages
images to be compatible with the new NV driver. It then attaches new NV pages into
downloadable image and performs OAD with this combined application/NV data image. This has
potential issue of updating target device not only with a new controller image but also with target
device code that executes NV page update.

RemoTI Basic Remote Developer's Guide SWRU224A

48 Copyright  2009 Texas Instruments, Inc. All rights reserved.

17.6 Use of image identifier
An image identifier is used to identify an image. The OAD PC tool will read the current image identifier
after downloading the image.

OAD demo uses 16 most significant bits of image identifier to identify compatibility of image. That is,
the most significant 16 bit of image identifier of the currently active image has to be equal to the image
identifier of the new image to download. The target side, i.e. the OAD PC demo tool checks the match of
the image identifiers.

Use of 16 most significant bits was arbitrary decision for the demo. Manufacturers have to decide how big
their number space should be and if necessary, they could add a new field to image preamble. Image
preamble is defined in oad.h file as preamble_t type. Note that OAD PC tool is fixed with the 16 bit use
of 32 bit image identifier.

17.7 Lock bit page
When building application for over the air download, lock big page cannot be used to download code
image as lock bit page itself cannot be overwritten during execution of code. Lock bit page can be
updated only though debug interface.

18. Latency test mode

Basic remote controller sample application includes code for latency testing. Pressing a test mode key
(mapped to RSA_ACT_TEST_MODE. See chapter 5) puts the application into test mode and key actions
in this mode are handled differently. Radio receiver is also turned on during test mode. See
rsaToggleTestModeKeyAction() function for the action triggered by the test mode key.

In test mode, the key commands are handled in rsaRRTRunTest() function.

A timer event RSA_EVT_RANDOM_BACKOFF_TIMER is used during the test mode. See
RSA_ProcessEvent() function for the code that handles this event.

When test completes, rsaState variable changes its state to RSA_STATE_TEST_COMPLETED state and
the only key accepted is a key mapped to CERC SELECT user control command, which triggers sending
test report. See RSA_KeyCback() function and rsaRRTSendReport() function for details.

RTI_SendDataCnf() callback function also include logics for test mode.

Figure 27 illustrates latency test mode algorithm.

In order to remove latency test mode code to reduce code size, remove rsaToggleTestModeKeyAction()
function, rsaRRTRunTestMode() function, rsaRRTSendData() function, rsaRRTSendReport() function
and all references to the functions (for instance, remove RSA_STATE_TEST,
RSA_STATE_TEST_COMPLETED state code from RTI_SendDataCnf() function).

RemoTI Basic Remote Developer's Guide SWRU224A

49 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Figure 27 – Latency Test Mode Algorithm

RemoTI Basic Remote Developer's Guide SWRU224A

50 Copyright  2009 Texas Instruments, Inc. All rights reserved.

19. DMA, peripheral IO and timers
Basic remote sample application uses the following resources:

• Peripheral IO pin P2_0 for LED
• Peripheral IO pin P1_1 for either LED or IR signal generation.
• Peripheral IO pins P1_0, P1_2, P1_3, P1_4, P1_5, P1_6, P1_7 and all P0 for key matrix.
• DMA channel 0 for non-volatile memory access
• DMA channel 1 for IR signal generation (if IR signal generation is enabled)
• Timer2 (MAC timer) and sleep timer.
• Optionally (with IR generation), timer 1 and timer 4.

20. RF frontend chip connection
Transmit power and receiver gain of CC2530 can be increased by adding an RF frontend chip such as
CC2591. A remote sample application has to configure pin-to-pin connections, TX power register table
and RSSI adjustment value table in order to support a new remote board design with a CC2591 added to a
CC2530.

Both RemoTI stack library files do not support register value table, etc. for CC2591 frontend. Only the
rcnctrl-CC2530-banked.lib includes such a table and hence the banked code model has to be used and
either the CC2530F128 part or the CC2530F256 part is recommended.

The supported library requires PAEN pin and EN pin of CC2591 to be connected to P1_1 and P1_4 of
CC2530 each. If HGM pin of CC2591 is connected to CC2530, the application must set this pin. The
sample configuration is in MAC_RfFrontendSetup() function of the
Components\mac\low_level\srf04\single_chip\mac_frontend.c file from the development kit installation
path. The sample code assumes that the HGM pin of CC2591 is connected to P0_7 of CC2530. But the
pin could be connected to Vdd or ground instead. The sample MAC_RfFrontendSetup() function assumes
that the HGM pin of CC2591 is connected to P0_7 of CC2530 and P0_7 direction is set to output prior to
the call to this function.

Any other GPIO pin configuration has to be consistent with the board design (i.e. not conflicting with
those pins). The proper place to call MAC_RfFrontendSetup() function is together with other hardware
initializations such as right after the HAL_BOARD_INIT() macro call in the main function of the basic
remote sample application.

The MAC_RfFrontendSetup() function also calls MAC_SetRadioRegTable() to select power register
value table and RSSI adjustment value table. MAC_SetRadioRegTable() function takes two arguments,
TX power register value table index and RSSI adjustment value index. The table indices, i.e. arguments to
MAC_SetRadioRegTable() function are dependent on the RemoTI stack library. The rcnctrl-CC2530-
banked.lib supports the following table indices:

RemoTI Basic Remote Developer's Guide SWRU224A

51 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Index Parameter Table Index

CC2530 with no frontend 0 TX power register value table
index (txPwrTblIdx)

CC2530 + CC2591 1

CC2530 with no frontend 0

CC2530 + CC2591 in high gain mode 1

RSSI adjustment value index
(rssiAdjIdx)

CC2530 + CC2591 in low gain mode 2

Note that regardless of RF frontend selection, an application can set the transmit power level using the
same Texas Instruments proprietary network layer attribute, RCN_NIB_TRANSMIT_POWER (See [2]).

RemoTI Basic Remote Developer's Guide SWRU224A

52 Copyright  2009 Texas Instruments, Inc. All rights reserved.

21. General Information

21.1 Document History

Table 17 – Document History

Revision Date Description/Changes

1.0 2009-07-06 Initial release

swru224a 2009-09-18 Added the RF frontend chip connection chapter.
Corrected figure 14 and figure 15 captions.

22. Address Information

Texas Instruments Norway AS
Gaustadalléen 21
N-0349 Oslo
NORWAY
Tel: +47 22 95 85 44
Fax: +47 22 95 85 46
Web site: http://www.ti.com/lpw

23. TI Worldwide Technical Support
Internet
TI Semiconductor Product Information Center Home Page: support.ti.com

TI Semiconductor KnowledgeBase Home Page: support.ti.com/sc/knowledgebase
TI LPRF forum E2E community http://www.ti.com/lprf-forum

Product Information Centers
Americas
Phone: +1(972) 644-5580

Fax: +1(972) 927-6377

Internet/Email: support.ti.com/sc/pic/americas.htm

Europe, Middle East and Africa
Phone:

Belgium (English) +32 (0) 27 45 54 32

Finland (English) +358 (0) 9 25173948

France +33 (0) 1 30 70 11 64

Germany +49 (0) 8161 80 33 11

Israel (English) 180 949 0107

Italy 800 79 11 37

Netherlands (English) +31 (0) 546 87 95 45

Russia +7 (0) 95 363 4824

Spain +34 902 35 40 28

Sweden (English) +46 (0) 8587 555 22

United Kingdom +44 (0) 1604 66 33 99

Fax: +49 (0) 8161 80 2045

http://www.ti.com/lpw
http://focus.ti.com/general/docs/dsnsuprt.tsp
http://www-k.ext.ti.com/sc/technical-support/knowledgebase.htm
http://www-k.ext.ti.com/sc/technical-support/pic/americas.htm

RemoTI Basic Remote Developer's Guide SWRU224A

53 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Internet: support.ti.com/sc/pic/euro.htm

Japan
Fax International +81-3-3344-5317

 Domestic 0120-81-0036

Internet/Email International support.ti.com/sc/pic/japan.htm

 Domestic www.tij.co.jp/pic

Asia
Phone International +886-2-23786800

 Domestic Toll-Free Number

 Australia 1-800-999-084

 China 800-820-8682

 Hong Kon 800-96-5941

 India +91-80-51381665 (Toll)

 Indonesia 001-803-8861-1006

 Korea 080-551-2804

 Malaysia 1-800-80-3973

 New Zealand 0800-446-934

 Philippines 1-800-765-7404

 Singapore 800-886-1028

 Taiwan 0800-006800

 Thailand 001-800-886-0010

Fax +886-2-2378-6808

Email tiasia@ti.com or ti-china@ti.com

Internet support.ti.com/sc/pic/asia.htm

http://www-k.ext.ti.com/sc/technical-support/pic/euro.htm
http://www-k.ext.ti.com/sc/technical-support/pic/japan.htm
http://www.tij.co.jp/pic
mailto:tiasia@ti.com
mailto:ti-china@ti.com
http://www-k.ext.ti.com/sc/technical-support/pic/asia.htm

RemoTI Basic Remote Developer's Guide SWRU224A

54 Copyright  2009 Texas Instruments, Inc. All rights reserved.

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and
other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest
relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s
terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.
Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using
TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and
operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or
other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third
party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all
associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible
or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be
expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use.
Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree
that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in
such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers
must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically
designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers
acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they
are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated
by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive
applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

 Telephony www.ti.com/telephony

 Video & Imaging www.ti.com/video

 Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright 2008, Texas Instruments Incorporated

http://amplifier.ti.com/
http://www.ti.com/audio
http://dataconverter.ti.com/
http://www.ti.com/automotive
http://dsp.ti.com/
http://www.ti.com/broadband
http://interface.ti.com/
http://www.ti.com/digitalcontrol
http://logic.ti.com/
http://www.ti.com/military
http://power.ti.com/
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com/
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	1 References
	2 Introduction
	2.1 Purpose
	2.2 Scope

	3 RemoTI Basic Remote Sample Application
	3.1 Features
	3.2 Build configurations
	3.3 Files
	3.4 Architecture

	4 Key matrix scanning
	4.1 Scanning scheme
	4.2 Configuration

	5 Key code to command mapping
	6 LED control
	7 OSAL task synchronization
	8 Flash page map and memory map
	9 Stack and Heap
	10 Network layer interface
	11 Pairing
	12 Target device selection
	13 Non-volatile memory
	14 IEEE address
	15 IR signal generation
	16 Network layer configuration
	17 Over the air download
	17.1 Overview of the over the air download demo
	17.2 Over the air download command packet formats
	17.2.1 Poll protocol frame format
	17.2.2 General Over the Air Download protocol frame format
	17.2.3 Over the Air Download protocol command identifiers
	17.2.4 Status Request command
	17.2.5 Start Request command
	17.2.6 Data Request command
	17.2.7 Enable Request command
	17.2.8 Cancel Request command
	17.2.9 Status Response command
	17.2.10 Start Response command
	17.2.11 Data Response command
	17.2.12 Enable Response command
	17.2.13 Cancel Response command

	17.3 Over the air download command flow sequence
	17.4 Basic remote controller sample application configuration
	17.5 Retention of non-volatile memory data
	17.6 Use of image identifier
	17.7 Lock bit page

	18 Latency test mode
	19 DMA, peripheral IO and timers
	20 RF frontend chip connection
	21 General Information
	21.1 Document History

	22 Address Information
	23 TI Worldwide Technical Support

