

 Copyright  2009 Texas Instruments, Inc. All rights reserved.

RemoTI Network Processor Developer's
Guide

Document Number: SWRU223A

RemoTI Network Processor Developer's Guide SWRU223A

1 Copyright  2009 Texas Instruments, Inc. All rights reserved.

TABLE OF CONTENTS
1 REFERENCES... 3

2 INTRODUCTION.. 4

2.1 PURPOSE.. 4
2.2 SCOPE.. 4

3 REMOTI NETWORK PROCESSOR APPLICATION............... .. 4

3.1 FEATURES.. 4
3.2 BUILD CONFIGURATIONS... 4
3.3 FILES.. 8
3.4 ARCHITECTURE.. 11

4 BAUD RATE.. 12

5 UART WAKE UP MECHANISM.. 13

6 ADDING NEW NETWORK PROCESSOR INTERFACE COMMANDS 15

7 UART VS. SPI.. 17

8 FLASH PAGE MAP AND MEMORY MAP... 17

9 STACK AND HEAP.. 21

10 IEEE ADDRESS.. 24

11 NETWORK LAYER CONFIGURATION.. 27

12 SERIAL BOOT LOADER.. 28

12.1 OVERVIEW OF THE SERIAL BOOT LOADER DEMO.. 28
12.2 SERIAL BOOT LOADING COMMANDS .. 28

12.2.1 Handshake Command... 29
12.2.2 Write Command.. 29
12.2.3 Read Command .. 29
12.2.4 Enable Command ... 30

12.3 BOOT LOADING SEQUENCES.. 30
12.4 NETWORK PROCESSOR CONFIGURATION FOR SERIAL BOOT LOADING .. 32
12.5 LOCK BIT PAGE... 32

13 DMA, PERIPHERAL IO AND TIMERS.. 33

14 RF FRONTEND CHIP CONNECTION CONFIGURATION.......... .. 33

15 GENERAL INFORMATION... 35

15.1 DOCUMENT HISTORY.. 35
16 ADDRESS INFORMATION.. 35

17 TI WORLDWIDE TECHNICAL SUPPORT... 35

RemoTI Network Processor Developer's Guide SWRU223A

2 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Acronyms and Definitions

ADC Analog-to-Digital Converter
AES Advanced Encryption Standard
API Application Programming Interface
bps bits per second
CCM Counter with CBC-MAC (CCM), a mode of operation for cryptographic block ciphers
CDC Communications Device Class
CERC Consumer Electronics Remote Control, name of a profile of Zigbee RF4CE
DCE Data Circuit-terminating Equipment
DMA Direct Memory Access
DTE Data Terminal Equipment
GPIO General Purpose Input Output
HAL Hardware Abstraction Layer
I2C Inter-Integrated Circuit
IAR IAR Systems, a software development tool vendor
IDATA Internal Data memory
IEEE Institute of Electrical & Electronics Engineers, Inc.
IO Input Output
IR Infra-red
ISR Interrupt Service Routine
LED Light Emitting Diode
NIB Network Information Base
NV Non-Volatile, or Non-volatile memory
NWK Network
OSAL Operating System Abstraction Layer
RXD Receive Data line
SOP Start Of Packet
SPI Serial Peripheral Interface
SRAM Static Random Access Memory
TI Texas Instruments Incorporated
TXD Transmit Data line
UART Universal Asynchronous Receiver-Transmitter
USB Universal Serial Bus
XDATA eXternal Data memory
Zigbee RF4CE An 802.15.4 based remote control protocol standard

RemoTI Network Processor Developer's Guide SWRU223A

3 Copyright  2009 Texas Instruments, Inc. All rights reserved.

1 References

[1] RemoTI Developer’s Guide, SWRU198
[2] RemoTI API, SWRA268
[3] HAL Drivers API, SWRA193
[4] OSAL API, SWRA194
[5] CC253X System-on-Chip Solution for 2.4-GHz IEEE 802.15.4/ZigBee/RF4CE User’s Guide,

SWRU191
[6] RemoTI Sample Applications User’s Guide, SWRU201
[7] RemoTI Network Processor Interface Specification, SWRA271
[8] RemoTI Host Processor Sample Application and Porting Guide, SWRA259

RemoTI Network Processor Developer's Guide SWRU223A

4 Copyright  2009 Texas Instruments, Inc. All rights reserved.

2 Introduction

2.1 Purpose
This document explains the RemoTI network processor application and topics related to customizing the
application to add custom command set.

2.2 Scope
This document describes concepts and settings for the Texas Instruments RemoTI Release with respect to
network processor development.

As to the general concept of Zigbee RF4CE and RemoTI architecture, please refer to [1].

3 RemoTI Network Processor Application
The RemoTI development kit includes the network processor application. This chapter describes the
features of the network processor application and the organization of the source code and project files.

3.1 Features
The following summarize the features of the RemoTI network processor application:

• Compliance with Zigbee RF4CE network layer specification, either as a controller node or as a
target node, which is dynamically configurable

• Zigbee RF4CE network layer security
• 115200bps baud rate UART connectivity with two pin configuration (TXD, RXD)

o 9600bps, 19200bps, 38400bps and 57600bps alternative baud rate for UART connection
with code modification instruction. Note that host processor emulation tools (PC tools)
included in the development kit do not support the alternative baud rates.

o Configurable to SPI connectivity with code modification instruction. Note that host
processor emulation tools (PC tools) included in the development kit do not support SPI
connection.

• Wakeup on UART protocol
• Optional serial boot loader downloading demo
• Full speed USB CDC support for CC2531 USB dongle

3.2 Build configurations
RemoTI network processor application project is located in the Projects\RemoTI\RNP\CC2530EB folder
of the RemoTI software installation.

When you open the workspace file (rnp_cc2530.eww), you could select different project configurations as
in Figure 1.

RemoTI Network Processor Developer's Guide SWRU223A

5 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Figure 1 – IAR project configuration selection

Each configuration is explained in the following Table 1:

Table 1 – Project configurations

Configuration Description

CC2530F64 Configuration for CC2530F64 part.

CC2530F64_SB Configuration for CC2530F64 part image for serial boot loader downloading

CC2530F128 Configuration for CC2530F128 part

CC2530F128_SB Configuration for CC2530F128 part image for serial boot loader downloading

CC2530F256 Configuration for CC2530F256 part

CC2530F256_SB Configuration for CC2530F256 part image for serial boot loader downloading

CC2531F256 Configuration for CC2531 USB dongle platform

CC2530F64-HEX Configuration for CC2530 hex file generation

RemoTI Network Processor Developer's Guide SWRU223A

6 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Configuration Description

CC2531F256-HEX Configuration for CC2531 dongle platform hex file generation

CC2530F256+CC2591 Configuration for the CC2530F256 part with the CC2591 RF frontend chip

The project option settings for each configuration, such as defined symbols (also known as compile flags)
for preprocessor, are set to work for the particular configuration.

Table 2 explains compile flags (preprocessor defined symbols) used in the project configurations.

Table 2 – Compile flags

Compile Flag Description

POWER_SAVING When defined, power-saving modes are enabled. Without the
compile flag, CC2530 PM2 and PM3 are not exercised. The
compile flag affects HAL sleep module, OSAL power
management module, RemoTI application framework (RTI)
and network processor module.

Power-saving modes are not compatible with CC2531 USB
dongle and hence this compile flag must not be added to
configurations for CC2531.

HAL_BOARD_CC2530RB Platform board selection for RemoTI network processor
project.

This compile flag selects RemoTI Target Board as the
hardware platform.

This compile flag is defined by default for all CC2530
configurations, unless HAL_BOARD_CC2530EB_REV13 or
HAL_BOARD_CC2530EB_REV17 is defined.

HAL_BOARD_CC2530EB_REV13 Platform board selection for RemoTI network processor
project.

This compile flag selects SmartRF05 revision 1.3 board with
CC2530EM as the hardware platform.

HAL_BOARD_CC2530EB_REV17 Platform board selection for RemoTI network processor
project.

This compile flag selects SmartRF05 revision 1.7 board with
CC2530EM as the hardware platform.

HAL_KEY HAL key module feature flag. RNP does not include HAL
key module and hence this compile flag has to be set to
FALSE either in the hal_board_cfg.h file as default or in
preprocessor definition setting of a project configuration.
hal_board_cfg.h file for CC2531 set this compile flag to

RemoTI Network Processor Developer's Guide SWRU223A

7 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Compile Flag Description

TRUE since another project which shares this file uses HAL
key module. Hence, the compile flag is set to FALSE in the
preprocessor definition setting for the CC2531F256
configuration.

HAL_PA_LNA The compile flag is for the board configuration of a CC2591
frontend chip connected to the CC2530.

HAL_PA_LNA_CC2590 This compile flag is reserved for the board configuration of a
CC2590 frontend chip connected to the CC2530. This
configuration is not supported with this release.

CC2530F64 Non-volatile memory configuration selection for
CC2530F64. Note that default configuration of non-volatile
memory is for CC2530F256 part without definition of either
CC2530F64 or CC2530F128 compile option.

CC2530F128 Non-volatile memory configuration selection for
CC2530F128. Note that default configuration of non-volatile
memory is for CC2530F256 part without definition of either
CC2530F64 or CC2530F128 compile option.

SB_TRIGGER_BY_GPIO This compile flag directs serial boot loader sample code to
poll an IO pin to determine whether or not to go into boot
loader mode. The compile flag is used for SPI configuration.

FEATURE_TEST_MODE RTI test mode API functions shall be enabled with this
compile flag. The compile flag affects RTI and RTI
surrogate.

FEATURE_CONTROLLER_ONLY This compile flag, when defined, reduces RTI code size when
RTI is compiled for remote controller functionality only.

FEATURE_SERIAL_BOOT This compile flag, when defined, enables serial boot loading
feature in RTI surrogate for RemoTI network processor.

Note that defining this compile flag alone does not enable
serial boot loader for the whole RemoTI network processor
(RNP) sample application. Choose a proper configuration
(with SB tag) in the provided project to enable the serial boot
loading feature. Such a configuration includes this compile
flag definition in the project settings.

GENERIC=__generic This compile flag shall always be defined as
GENERIC=__generic to be compatible with the RemoTI
library files. The compile flag was devised to add IAR
specific compiler keyword to certain function parameters.

RemoTI Network Processor Developer's Guide SWRU223A

8 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Besides the compile flags, other settings such as code model were also set to fit the configuration. For
instance, CC2530F64 configuration uses near code model while other configurations use banked code
model.

3.3 Files
C source files and library files are explained in Table 3 in the order they appear in the IAR workspace
window. Note that there are more files than those listed in the table, such as C header files that defines
constants and function prototypes and that even workspace project does not list all header files referenced
by the C files.

Note that certain driver modules are included although they are not actually used, just for potential use of
the drivers by custom application.

Table 3 – Project files

File name Description

Application

mac_rffrontend.c RF frontend chip (either CC2591 or CC2590) connection
configuration module. This file is default set to fit the connection in
a CC2530-CC2591EM 2.0 board.

np_main.c Application main entry routine. This module initializes OSAL tasks.

np_main.cfg Configuration file. This file includes selection of UART vs. SPI and
OSAL heap size definition.

rcn_config.c Network layer configuration file. The file contains global variables
with initial values which are used as configuration parameters by
RemoTI network layer. The configuration parameters are explained
in chapter 11.

CLIB

chipcon_cstartup.s51 Assembly routines to override default C libraries for banked code

HAL

hal_assert.c HAL assertion library

hal_drivers.c Entry point for congregation of HAL drivers, such as initialization
for all HAL drivers, HAL task, as an OSAL task, entry point (event
handler) and polling entry point.

hal_rpc.h Remote procedure call enumerations

hal_adc.c ADC device driver

RemoTI Network Processor Developer's Guide SWRU223A

9 Copyright  2009 Texas Instruments, Inc. All rights reserved.

File name Description

hal_aes.c AES device driver

hal_board_cfg.h RemoTI hardware platform specific configuration parameters and
macros used by HAL. Application may also use board definition
literal (HAL_BOARD_CC2530RB) and HAL feature flags
(HAL_KEY, HAL_LED, etc).

hal_ccm.c CCM implementation using AES device driver

hal_dma.c DMA device driver

hal_i2c.c I2C peripheral interface driver (not in use)

hal_irgen.c IR signal generation driver (not in use)

hal_led.c LED driver (not in use)

hal_sleep.c Sleep mode (PM1, PM2, PM3) control implementation

hal_spi.c SPI device driver

hal_timer.c Timer module for hardware timer 1, 3 and 4. This module is not
used by network processor.

hal_uart.c UART device driver

hal_flashRtiCc2530.c Flash device driver

HAL / USB CDC class specific modules

usb_cdc_hooks.c hook functions for various USB request processing, specific to USB
CDC class

usb_firmware_library_config.c USB library configuration

usb_RemoTICdcDescriptor.s51 USB descriptors specific to RemoTI USB network processor dongle

HAL / USB generic firmware library for CC2531

usb_board_cfg.h Collection of macros abstracting the hardware details for USB
control.

usb_interrupt.c USB interrupt initialization routine and USB interrupt service
routine

usb_suspend.c USB suspend mode related subroutines

RemoTI Network Processor Developer's Guide SWRU223A

10 Copyright  2009 Texas Instruments, Inc. All rights reserved.

File name Description

usb_descriptor_parser.c Parser for USB descriptor structures

usb_firmware.c Main interface routines for USB generic library

usb_standard_request.c Handlers for USB standard requests

Libraries

rcnsuper-CC2530-banked.lib RemoTI network layer library built for banked code model. This
library will be selected for F128 and F256 configurations.

rcnsuper-CC2530.lib RemoTI network layer library built for near code model. This
library will be selected for F64 configuration.

OSAL

OSAL.c OSAL implementation for messaging and main event handling loop

OSAL_Clock.c OSAL clock tick implementation

OSAL_Memory.c OSAL heap implementation

OSAL_Nv.c OSAL non-volatile memory manager

OSAL_PwrMgr.c OSAL power management scheme implementation

OSAL_Timers.c OSAL timer implementation

RPC

npi.c Network processor interface module. This module includes either
npi_uart.c or npi_spi.c file depending on configuration. By default,
npi_uart.c is included.

rcns.c RemoTI network layer surrogate module. This module is called by
RTI surrogate module and it serializes and de-serializes RemoTI
network layer function call interfaces.

rtis_np.c RemoTI application framework (RTI) surrogate module. This
module handles network processor interface packets and serializes
and de-serializes RemoTI application framework (RTI) function call
interfaces.

RTI

rti.c RemoTI application framework implementation

RemoTI Network Processor Developer's Guide SWRU223A

11 Copyright  2009 Texas Instruments, Inc. All rights reserved.

File name Description

rti_testmode.c RemoTI test mode API function implementation

SerialBoot

sb_target.c Image preamble definition for use by serial boot loader, and serial
boot loading command packet handler.

3.4 Architecture
This section briefly explains the interactions and relationship among the modules represented by files
described in previous section. See [7] for the architectural description of the network processor as a
whole.

Figure 2 – RemoTI network processor component architecture

Figure 2 illustrates inter-module interactions within RemoTI network processor on the right hand. On the
left hand is the inter-module interactions of the PC tools as emulating host processor.
Each network processor module acronym is explained below:

• RCN – RemoTI network layer
• RCNS – RemoTI network layer surrogate
• RTI – RemoTI application framework

RemoTI Network Processor Developer's Guide SWRU223A

12 Copyright  2009 Texas Instruments, Inc. All rights reserved.

• RTIS – RemoTI application framework surrogate
• NPI – Network Processor Interface
• MAC – Medium Access Control layer (it is part of RemoTI network layer library in the file list)
• HAL UART – Hardware Abstraction Layer UART driver

Either RTI or RCN interface is selected dynamically using different path among the modules.

The following modules has their own OSAL tasks (which is different from the generic meaning of OS
tasks: The OSAL task do not own its own thread context. It is merely an entity leveraging OSAL event,
messaging and power management mechanism):

• MAC module
• RCN module
• RTI module
• NPI module
• HAL module
• Application main entry module

Among the above, application main entry module does not use any OSAL services. However it creates an
OSAL task for any custom extension, following usual sample application template.

4 Baud Rate
RemoTI network processor was tested with 115200bps baud rate. However, hal_uart.c module supports
9600bps, 19200bps, 38400bps and 57600bps as well and it is possible to modify network processor to
work with one of these baud rates. Note that use of lower baud rate has to be compatible with the use
cases. For instance, the average throughput over the UART must not be higher than selected baud rate and
heap size has to be adjusted depending on how long peak data rate that is higher than selected baud rate
lasts in the worst case. When data rate of network processor interface packets towards host processor is
higher than that of UART transport, the data packets occupies heap space until they can be processed out
to UART transport layer. Hence, the longer and the higher the peak data rate is, the more heap memory is
used. The default heap size (1024 bytes) is set to fit Target Emulator use case (test mode operation from a
single remote or CERC packets from multiple remotes). For more stressful use case (reception of more
lasting contested traffic from multiple remotes), start with bigger heap size (for instance, 2048 bytes) at
the beginning of development and optimize heap size down. See chapter 9 for method to profile and
adjust heap size.

In order to switch baud rate, change the NPI_UART_BAUD_RATE macro value in
Projects\RemoTI\common\cc2530\npi_uart.c file.

The default setting is as follows:

#define NPI_UART_BAUD_RATE HAL_UART_BR_115200

To change the baud rate to 57600bps for instance, change the line as follows:

#define NPI_UART_BAUD_RATE HAL_UART_BR_57600

Note that the host processor UART baud rate has to be modified to match the changed baud rate of
network processor.

RemoTI Network Processor Developer's Guide SWRU223A

13 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Note that SPI baud rate is controlled by host processor, for host processor SPI is the master and the
network processor SPI is the slave.

CC2531 uses USB as the underlying physical connection with the host processor and supports USB CDC
interface. USB CDC interface baud rate is selectable from the USB host.

5 UART wake up mechanism
Network processor supports two-pin configuration for UART (RXD and TXD).

Hence, there is no difference whether network processor is DTE or DCE. When a PC is used as the host
processor in use with the RemoTI Target Board provided with the development kit, the PC assumes the
role of DTE, but the concept of DTE/DCE ends within PC application and USB virtual serial port driver.

CC2530 does not support wakeup on UART receive line activity and hence network processor software
dynamically configures UART receive pin as a generic IO pin to wake up on UART activity when the
network processor is in sleep mode. In such a mechanism as this, more than one character may be lost till
UART is fully functional exiting sleep mode. Hence, a handshake mechanism is added.

When waking up a network processor a null character (0x00) is sent to network processor and network
processor responds with a null character (0x00) when it has set up UART.

Figure 3 and Figure 4 illustrate the sleep sequence and the wake up sequence each.

Note that the rti.c module changes its power management state to conserve power state during UART
sleep sequence but it does not change its power management state back to hold power state during UART
wakeup sequence. RTI power management state in network processor is used only upon boot up of the
software till the first RTI_EnableSleepReq() and afterwards NPI power management state represents the
latest sleep or wakeup command from host processor. The reason for having RTI power management
state is to re-use the same RTI module implementation that is used by a CC2530 standalone application
and also to have the consistent RTI API behavior.

Network processor did not incorporate any host processor wakeup mechanism as it cannot assume
capabilities of a host processor. For host processors that could wake up its UART block on UART receive
line activity within one character duration, the wakeup mechanism could be simply adding a preamble
null character preceding a transmit UART frame from network processor. For other host processors that
require its own wakeup handshaking, the npi_uart.c module has to be modified to add such handshaking.

Note that UART wakeup mechanism does not apply to CC2531. CC2531 emulates the same interface as
UART over USB CDC interface but the device does not operate in the power-saving mode when
RTI_EnableSleepReq() is called.

RemoTI Network Processor Developer's Guide SWRU223A

14 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Host processor npi_uart.c rtis_np.c rti.c

RTI_EnableSleepReq

NPI_AsynchMsgCback()

NPI_SleepRx()

Suspend UART

receive and re-

configure UART RX

pin as GPIO pin and

enable edge-

triggered interrupt RTI_EnableSleepReq()

Change RTI power

management state

to conserve power

RTI_EnableSleepCnf()

NPI_SendAsynchData()

RTI_EnableSleepCnf

Change NPI power

management state

to conserve power

Change NPI power

management state

to hold power

Change NPI power

management state

to conserve power

Will enter sleep when all tasks switch its power management state to

conserve power state and UART TX activity is complete (HalNpiUartBusy()

returns FALSE).

Figure 3 – UART sleep sequence

RemoTI Network Processor Developer's Guide SWRU223A

15 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Host processor RTI surrogate npi_uart.cHost processor app

0x00

GPIO interrupt is

triggered and ISR

reconfigures pin to

UART receive pin

and resumes UART

operation.

0x00

Change NPI power

management state

to hold power

Add a null character

into UART transmit

buffer and sets up

an OSAL event for

transmission

When system wakes

up from sleep mode

and OSAL task loop

runs again, the

OSAL event is

dispatched and npi

sends buffered null

character.

RTI_DisableSleepReq()

RTI_DisableSleepCnf()

Figure 4 – UART wakeup sequence

6 Adding New Network Processor Interface Commands
[7] specifies all supported network processor interface commands. This chapter provides instructions on
how to add additional commands which are not listed in [7].

Additional commands have to comply with the packet format specified in [7]. All network processor
interface commands are forwarded to either NPI_AsynchMsgCback() function or NPI_SyncMsgCback()
function depending on whether the command is an asynchronous request or a synchronous request (See
[7] for the definition of asynchronous request and synchronous request). Both functions are defined in the
rtis_np.c file.

RemoTI Network Processor Developer's Guide SWRU223A

16 Copyright  2009 Texas Instruments, Inc. All rights reserved.

A new command can be added using its own subsystem identifier and command identifier.
NPI_AsynchMsgCback() function and NPI_SyncMsgCback() function simply decodes subsystem
identifier and command identifier and performs proper actions accordingly.

Currently used subsystem identifier values are listed in hal_rpc.h file. The following is an example. Look
at the hal_rpc.h file in the released software to find the correct subsystem identifier values in use.

// RPC Command Field Subsystem
#define RPC_SYS_RES0 0
#define RPC_SYS_SYS 1
#define RPC_SYS_MAC 2
#define RPC_SYS_NWK 3
#define RPC_SYS_AF 4
#define RPC_SYS_ZDO 5
#define RPC_SYS_SAPI 6 // Simple API
#define RPC_SYS_UTIL 7
#define RPC_SYS_DBG 8
#define RPC_SYS_APP 9
#define RPC_SYS_RCAF 10 // Remote Control Application Framework
#define RPC_SYS_RCN 11 // Remote Control Network Layer
#define RPC_SYS_RCN_CLIENT 12 // Remote Control Network Layer Client
#define RPC_SYS_BOOT 13 // Serial Bootloader
#define RPC_SYS_MAX 14 // Maximum value, must be last

Note that NPI_SyncMsgCback() function has to store the response message into the same buffer where
the request command is stored when the function is called. The buffer is de-referenced using the pMsg
pointer argument.

The following code is an example of how a network processor interface command is processed.

void NPI_SynchMsgCback(npiMsgData_t *pMsg)
{
 if (pMsg->subSys == RPC_SYS_RCAF)
 {
 switch(pMsg->cmdId)
 {
 // read item request
 case RTIS_CMD_ID_RTI_READ_ITEM:
 // confirm message length has to be set up
 // and that before pMsg->pData[1] is overwritten.
 pMsg->len = 1 + pMsg->pData[1];

 // unpack itemId and len data and send to RTI to read config interface
 // using input buffer as the reply buffer
 // Note: the status is stored in the first word of the payload
 // Note: the subsystem Id and command Id remain the same, so we only
 // need return to complete the synchronous call
 pMsg->pData[0] = (rStatus_t)RTI_ReadItem(pMsg->pData[0], pMsg->pData[1],
&pMsg->pData[1]);
 break;
 /* Other case statements follow */
 }
 } /* if (pMsg->subSys == RPC_SYS_RCAF) */
/* Other if statement may follow for other subsystems */

}

RemoTI Network Processor Developer's Guide SWRU223A

17 Copyright  2009 Texas Instruments, Inc. All rights reserved.

7 UART vs. SPI

The network processor comes with UART configuration by default but SPI configuration can be selected
by modifying np_main.cfg file. To choose SPI, define HAL_SPI as TRUE and HAL_UART as FALSE as
follows:

//-DHAL_SPI=FALSE
//-DHAL_UART=TRUE
-DHAL_SPI=TRUE
-DHAL_UART=FALSE

Rebuilding the project with the above changes will produce an image with SPI configuration. Table 4
compares UART and SPI.

Table 4 – UART vs. SPI comparison

 UART SPI

Highest peak baud rate 115200bps 4Mbps

Number of signal pin
connections (including network
processor reset line)

3 7

Host processor portability (See
[8])

Generic UART drivers are
available for most of the
platforms (e.g. PC has serial port
driver out of the box).

Network processor interface and
RTI surrogate have to be ported.

Custom SPI driver has to be
written per platform, as
proprietary MRDY and SRDY
line control is necessary.

Network processor interface and
RTI surrogate have to be ported.

8 Flash page map and memory map
Each configuration of network processor has a unique flash page map. Figure 5 illustrates two distinctive
flash page maps used by network processor. One flash page is 2048 bytes as specified in [5].

For serial boot loading feature enabled configuration, the boot loader code occupies the first flash page
(page 0). The last flash page is reserved for the flash lock bits and the commissioned IEEE address.
OSAL non-volatile memory pages occupy configurable number of pages from the second last page down.
Between the NV pages and the first page is the code space. The remainder of the last flash page cannot be
used for code space because this page cannot be updated during serial boot loader execution. The details
of serial boot loading feature enabled configuration are explained in chapter 12. Find more information
about the last flash page and flash lock bits in [5].

Without serial boot loading feature, the code starts at the first page (lowest address page) up. OSAL non-
volatile memory pages occupy configurable number of pages from the second last page down. The last
flash page includes lock bits (last 16 bytes. See [5] for details) and commissioned IEEE address (8 bytes,
prior to lock bits). IEEE address is explained more in chapter 10. The remainder of this last flash page can
be used for additional code if the code fills up the rest of the space.

RemoTI Network Processor Developer's Guide SWRU223A

18 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Figure 5 – Flash page map

Number of pages used for OSAL non-volatile memory system is defined in hal_board_cfg.h file. The
configurable constants and their values are listed in Table 5:

Table 5 – Non-volatile memory configuration in hal_board_cfg.h

Constant Name Description CC2530F64
value

CC2530F128 CC2530F256 CC2531F256

HAL_NV_PAGE_END Last OSAL
NV page plus
one

31 63 127 127

HAL_NV_PAGE_CNT Number of
OSAL NV
pages

2 2 6 6

In order to change the number of pages used for the non-volatile memory system, both hal_board_cfg.h
file and linker command file have to be updated. In hal_board_cfg.h file, change the
HAL_NV_PAGE_CNT definition. For instance, if you wish to use 4 flash pages and OSAL NV pages for
CC2530F128 part, change hal_board_cfg.h file as follows:

...
#elif defined CC2530F128
#define HAL_FLASH_LOCK_BITS 16
#define HAL_NV_PAGE_END 63
#define HAL_NV_PAGE_CNT 4

RemoTI Network Processor Developer's Guide SWRU223A

19 Copyright  2009 Texas Instruments, Inc. All rights reserved.

...

Linker command file can be located from project option pop up window. For instance after selecting
CC2530F128 configuration, select Project -> Options menu. In project option pop up window, select
linker category and Config tab. Linker command file name and path is displayed as Figure 6.

In the linker command file, find _ZIGNV_ADDRESS_SPACE_START definition and change the
starting address to match the number of pages defined. For instance, the default linker command file for
CC2530F128 configuration has the following lines:

...
-D_ZIGNV_ADDRESS_SPACE_START=0x3E800
...

If you want four pages for non-volatile memory instead, the non-volatile memory page should be located
at 12th page of the last bank (16 - 1 - 3), and the address should be 0x38000 + (0x800 * (12 - 1)) =
0x3D800. See further below in this section, for flash pages per bank and address ranges. The linker
command file in this case has to be updated as follows:

...
-D_ZIGNV_ADDRESS_SPACE_START=0x3D800
...

RemoTI Network Processor Developer's Guide SWRU223A

20 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Figure 6 – Locating linker command file

XDATA memory map and CODE memory space are described in [5].

CC2530F64 configuration uses near code model and bank area is always occupied with the same code,
non-volatile memory pages and lock bit pages content as in flash page map.

CC2530F128 configuration, CC2530F256 configuration and CC2531F256 configuration use banked code
model and bank area is dynamically mapped to flash bank (comprised of 16 pages) in use. Code address
space is represented in virtual code address. Virtual address for code bank is listed in Table 6.

Table 6 – Virtual address of banked code

Code
Bank

Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7

Address
Range

0x00000
–
0x07FFF

0x18000
–
0x1FFFF

0x28000
–
0x2FFFF

0x38000
–
0x3FFFF

0x48000
–
0x4FFFF

0x58000
–
0x5FFFF

0x68000
–
0x6FFFF

0x78000
–
0x7FFFF

RemoTI Network Processor Developer's Guide SWRU223A

21 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Bank 0 is constantly mapped to common area (0x0000 – 0x7FFF) and the other banks are mapped to bank
area (0x8000 – 0xFFFF) dynamically. CC2530F128 has up to bank 3. Bank 4 to bank 7 applies only to
CC2530F256 and CC2531F256.

Such a bank set up is determined at link time and it is configured through linker configuration file. Linker
configuration file can be found through project options in IAR (Linker category and then Config tab) as
illustrated in Figure 6.

Figure 7 shows where to find near code model or banked code model setting in an IAR project options
window.

Figure 7 – Code model of a project

9 Stack and Heap
8051 micro-controller uses a variety of data memory access methods. Generic data memory (i.e. not one
specific for register access) are the internal data memory with 8 bit address space (IDATA) and the
external data memory with 16 bit address space (XDATA). CC253x maps both memory address space to
the same internal SRAM. See [5] for details. IAR compiler generates code to use stack from both IDATA
and XDATA. How a compiled code uses IDATA and XDATA for stack is highly dependent on compiler
itself.

RemoTI Network Processor Developer's Guide SWRU223A

22 Copyright  2009 Texas Instruments, Inc. All rights reserved.

With IAR 8051 compiler version 7.51A, RemoTI CC2530 development kit 1.0 network processor uses
about 282 bytes of XDATA stack and 56 bytes of IDATA stack. However, the depth of the used stacks
could change with even slight modification of the code as how compiler generates code to use stack is
unpredictable.

Hence, 384 bytes of XDATA stack and 192 bytes of IDATA stack were reserved in project settings for
RemoTI CC2530 development kit 1.0 network processor. Stack sizes can be adjusted after profiling the
stack usage with the final application code, by browsing stack memory space through debugger.

For instance, XDATA stack is located between addresses 0x100 and 0x27F and IDATA stack is located
between addresses 0x40 and 0xFF in case of RemoTI network processor CC2530F64 build, as could be
found from generated map file.

IAR embedded workbench populates the value 0xCD to the entire XDATA stack and IDATA stack space
when debugger resets CC253x.

Figure 8 – Finding stack location

After running the application for the use cases picked for the deepest stack usage, the stack memory space
can be browsed to determine how much stack was in use. In Figure 9, XDATA stack was used down to
0x170, which makes the stack depth in this use case to be 0x27F – 0x170 + 1 = 272 bytes.

IDATA stack usage can be profiled likewise. Just select IData to browse IData memory.

Once stack usage is profiled, the stack size can be adjusted from project settings (General Options
category, Stack/Heap tab).

RemoTI Network Processor Developer's Guide SWRU223A

23 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Figure 9 – XDATA Stack Profiling

RemoTI software uses heap through OSAL memory management module. The default heap size is set to
1024 bytes in np_main.cfg file. Heap usage varies drastically per use case even with the same software
image. In other words, heap size has to be determined based on the supported use cases of the products.
See chapter 4 for correlation with baud rate.

In order to profile heap usage, some OSAL code has to be instrumented. Unlike stack memory space,
heap memory space is not initialized with a certain pattern of data (0xCD). Hence, it is necessary to add
code to initialize the heap memory space before the space is being used.

The best location is osal_mem_init() function in OSAL_Memory.c module.

At the beginning of the function, add memory initialization code as follows:

void osal_mem_init(void)
{
 osalMemHdr_t *tmp;

#if (OSALMEM_PROFILER)
 osal_memset(theHeap, OSALMEM_INIT, MAXMEMHEAP);
#endif

// Add this code to initialize memory space
extern void *osal_memset(void *dest, uint8 value, int len);
osal_memset(theHeap, 0xCD, MAXMEMHEAP);

Note that the OSALMEM_PROFILER compile flag is also supported. When the compile flag is defined
as TRUE, the heap space is initialized with OSALMEM_INIT value instead of 0xCD in the above code.

RemoTI Network Processor Developer's Guide SWRU223A

24 Copyright  2009 Texas Instruments, Inc. All rights reserved.

OSALMEM_PROFILE compile flag brings in more code than the heap initialization, which is not
explained in this document.

With the new image, after running the use case with maximum heap usage, break the debugger and check
the _theHeap memory space.

Address range of _theHeap variable can be found from map file.

Figure 10 – Heap usage profiling

If the _theHeap variable occupies 0x4ef to 0x8ee address space for example, search from 0x4ef up to
0x8ee for any foot print of memory usage. In Figure 10, 0x727 is the highest address of memory space
that was used in the heap space. That amounts to 0x727 - 0x4ef + 1 = 569 bytes of heap usage.

Once heap size is profiled, the heap size can be adjusted by changing INT_HEAP_LEN definition as
compile option in np_main.cfg file. For instance, replacing -DINT_HEAP_LEN=1024 with -
DINT_HEAP_LEN=2048 in np_main.cfg file adjusts heap size to 2,048 bytes.

10 IEEE address

CC253x has its own IEEE address built into the chip (information page IEEE address). RemoTI network
layer uses this IEEE address unless the IEEE address is overridden with a custom IEEE address by
RCN_NlmeSetReq() call for RCN_NIB_IEEE_ADDRESS attribute. Once the IEEE address is overridden,
network layer uses the custom IEEE address till this custom IEEE address is overwritten with another
RCN_NlmeSetReq() call. If upper layer writes 0xFFFFFFFFFFFFFFFF as the custom IEEE address,
network layer uses this null IEEE address till next power cycle. From next power cycle, network layer
will start using the IEEE address built into the chip again.

RemoTI Network Processor Developer's Guide SWRU223A

25 Copyright  2009 Texas Instruments, Inc. All rights reserved.

RemoTI application framework, rti.c module, uses RCN_NlmeSetReq() to prioritize an IEEE address
programmed to a specific last flash page location. See rtiProgramIeeeAddr() function for the source code.
This function is called upon every system reset and the function reads the commissioned IEEE address in
the special location and if it is valid (non-0xFFFFFFFFFFFFFFFF), this IEEE address is set to the
network layer using RCN_NlmeSetReq() call. The special location is offset 0x7E8 of the last page stored
in little-endian order, which neighbors lock bits which starts from offset 0x7F0. This is the location where
SmartRF programmer will program the secondary IEEE address. The secondary location of IEEE address
on the SmartRF Flash programmer window as in Figure 11 corresponds to the commissioned IEEE
address while the primary location of IEEE address corresponds to the afore-mentioned information page
IEEE address.

Figure 11 – SmartRF programmer

Hence, with RemoTI application framework, the hierarchy of IEEE address upon CC253x reset is as
follows:

• If the commissioned IEEE address is valid, use the commissioned IEEE address
• Otherwise, use the information page IEEE address

Figure 12 illustrates the flow chart of selecting the network layer IEEE address, during startup of a
device.

RemoTI Network Processor Developer's Guide SWRU223A

26 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Figure 12 – IEEE address selection flow during startup

RemoTI Network Processor Developer's Guide SWRU223A

27 Copyright  2009 Texas Instruments, Inc. All rights reserved.

11 Network layer configuration
The standard NIB attributes can be configured and updated at run time through RTI_WriteItem() function
or RCN_NlmeSetReq() function in case rti.c module is not used.

In rti.c module, rtiResetSA() function implementation shows example of RCN_NlmeSetReq() calls to set
standard defined NIB attributes.

Network layer attributes that can be used with either RTI_WriteItem or RCN_NlmeSetReq() are
enumerated in rcn_attribs.h file. Note that several non-standard attributes are also provided.

The following Table 7 explains non-standard attributes.

Table 7 – Network layer custom attributes

Attribute identifier Description

RCN_NIB_NWK_NODE_CAPABILITIES This attribute corresponds to standard constant
nwkcNodeCapabilities.

The value of this attribute should not change in product.

RCN_NIB_NWK_VENDOR_IDENTIFIER This attribute corresponds to standard constant
nwkcVendorIdentifier.

The value of this attribute should not change in product.

RCN_NIB_NWK_VENDOR_STRING This attribute corresponds to standard constant
nwkcVendorString.

The value of this attribute should not change in product.

RCN_NIB_STARTED It is an attribute to indicate whether network layer has
started (‘1’) or not (‘0’). This attribute is useful for
application to determine whether it has to perform cold
boot procedure or warm boot procedure.

RTI module (rti.c) uses this attribute to determine cold
boot or warm boot procedure.

RCN_NIB_IEEE_ADDRESS IEEE address attribute. By default, network layer will
program IEEE address using chip IEEE addresss.

Application can override chip IEEE address with this
attribute. Note that RTI module (rti.c) writes into this
attribute upon system reset. Application should consider
conflict with RTI module when writing this attribute. See
chapter 10.

RCN_NIB_AGILITY_ENABLE Enable/disable frequency agility

RCN_NIB_TRANSMIT_POWER Set transmission power level in dBm.

RemoTI Network Processor Developer's Guide SWRU223A

28 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Note that other non-standard attributes such as RCN_NIB_PAN_ID and RCN_NIB_SHORT_ADDRESS
are not configurable items. Those attribute values can be read in order for debug purpose.

Certain set of network layer implementation parameters can also be modified at build time by changing
rcn_config.c file. The file is configured with default recommended values.

12 Serial Boot Loader

12.1 Overview of the serial boot loader demo
Serial boot loading is a feature that enables a RemoTI network processor device to download its
embedded software image from a host processor through serial interface, such as UART and SPI. It is out
of scope of this document how the host processor gets a software image for a particular network
processor.

Serial boot loader demo consists of a network processor image which is built in serial boot loading
enabled configuration, a serial boot loader programmed network processor device and serial boot loader
demo PC tool. See [6] for build, setup and execution instructions.

Serial boot loader code resides at the bottom of the flash memory map as in Figure 5. Upon power cycle,
serial boot loader decides whether to start serial boot loading or to jump to the downloaded image area.
How the decision is made is implementation specific. In the UART serial boot loader demo code, serial
boot loader makes a decision by validity of the downloaded image. If the image in the downloaded image
area is not a valid image, the serial boot loader starts in serial boot loading mode and waits for commands
from host processor. If the image in the downloaded image area is valid, the boot loader jumps to the
valid image area. A network processor application which supports this UART serial boot loader
mechanism has to clear the image preamble area and triggers a watchdog reset, as a result of processing a
command from host processor to trigger serial boot loading.

In SPI version of the serial boot loader configuration, the serial boot loader makes decision of entering
serial boot loading mode simply by reading the state of MRDY pin upon power up.

Use of the GPI such as MRDY as in SPI configuration demo is recommended because it removes
dependency on network processor image to support serial boot loading. The mechanism deployed in the
UART serial boot loader demo code is recommended only for the connections where an additional GPIO
control is either physically impossible or unaffordable.

Once in serial boot loading mode, the serial boot loader receives commands from host processor and
executes them. Host processor is the intelligent part of the protocol. Host processor chooses image sector
to download, reads back downloaded image area sector to verify the written image and authorize the use
of the image, etc.

In the demo, host processor is emulated by a PC demo tool.

12.2 Serial boot loading commands

Serial boot loading command packets follow the same format as regular network processor interface
commands. However, they are not exactly the same as serial boot loading commands are accepted only by
the serial boot loader in serial boot loading mode and underlying transport mechanism could be different

RemoTI Network Processor Developer's Guide SWRU223A

29 Copyright  2009 Texas Instruments, Inc. All rights reserved.

from the one used by network processor image. For instance, serial boot loader might be running 9600bps
baud rate while network processor interface could be running 115200bps baud rate.

The serial boot loading command is always triggered by host processor first and then the serial boot
loader of the network processor sends a respond command. Each command is described in the
subsections.

12.2.1 Handshake Command
The Handshake is command ID 0x04. The handshake has no parameters. The handshake is sent by the
host processor to determine if the boot loader is running on the network processor device.
Handshake Command

1 Byte 1 Byte 1 Byte 1 Byte
SOP Len Sys (13) CMD (0x4)

The network processor boot loader responds with a 1 byte status code containing SB_SUCCESS.
Handshake Response

1 Byte 1 Byte 1 Byte 1 Byte 1 Bytes
SOP Len Sys (13) CMD

(0x84)
Status (0)

12.2.2 Write Command
The Write command is command ID 0x01. The write is sent by the host processor to write image portion
to the flash on the network processor device. The write command has the following parameters:
Write Command:

1 Byte 1 Byte 1 Byte 1 Byte 2 Bytes 64 Bytes
SOP Len Sys (13) CMD (0x1) Address Data

The address contains a word aligned address of the image. The network processor boot loader must add
the base address of the network processor program area to the address. The network processor boot
loader responds to the write command with the status of the operation.
Write Response

1 Byte 1 Byte 1 Byte 1 Byte 1 Bytes
SOP Len Sys (13) CMD

(0x81)
Status

12.2.3 Read Command
The Read command is command ID 0x02. The read command is sent by the host processor to read from
the flash on the network processor. The read command has the following parameters:
Read Command:

1 Byte 1 Byte 1 Byte 1 Byte 2 Bytes
SOP Len Sys (13) CMD (0x2) Address

The address contains a word aligned address of the image. The network processor boot loader must add
the base address of the network processor program area to the address. The network processor responds
to the read command with the status of the operation, the address, and the data.
Write Response

1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 2 Bytes 64 Bytes
SOP Len Sys

(13)
CMD
(0x82)

Status Address Data

RemoTI Network Processor Developer's Guide SWRU223A

30 Copyright  2009 Texas Instruments, Inc. All rights reserved.

12.2.4 Enable Command
The Enable command is command ID 0x03. The enable command is sent by the host processor to
indicate the image on the network processor is valid. When the network processor boot loader has
received the enable, it writes SB_ENABLED_VALUE to the enabled parameter of the preamble in the
application image. The boot loader uses the enabled parameter of the preamble at startup to determine if
a valid image is present in the application memory space.
Enable Command

1 Byte 1 Byte 1 Byte 1 Byte
SOP Len Sys (13) CMD (0x3)

The network processor boot loader responds with a 1 byte status code containing SB_SUCCESS.
Enable Response

1 Byte 1 Byte 1 Byte 1 Byte 1 Bytes
SOP Len Sys (13) CMD

(0x83)
Status (0)

12.3 Boot loading sequences

Figure 13 and Figure 14 illustrate boot loading sequences and application image downloading sequences
performed during boot loading.

Note that validity of the image is determined by checking preamble of the application image area, which
is updated only as the last transaction of image download sequence. If anything goes wrong during
download of the image, such as power failure, the preamble of the image area is not updated and serial
boot loader stays in boot loading mode waiting for boot loading command from host processor.

When the image is valid, the boot loader jumps to the image area.

The afore-mentioned boot loading sequence is a solution used in UART serial boot loader sample code.
The SPI serial boot loader sample code uses the status of MRDY signal line status to decide whether to
stay in boot loading mode or to jump to application image in addition to the validity of the application
image. In such a case, host processor can force running network processor to jump to boot loader by
simply setting MRDY signal line properly and resetting the network processor by RESETCC signal
assert.

Note that host processor reads back application image before enabling the image. The idea is to validate
written image without having to impose CRC checking in the serial boot loader. It was done so to
minimize code size of the serial boot loader. On the other hand, the time taken for serial downloading
would take longer than using CRC validation mechanism since the entire image has to be read back.

RemoTI Network Processor Developer's Guide SWRU223A

31 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Host Procesor Serial Boot Loader Network Processor App

RemoTI Network Processor

RESETCC

No Image

Image is not valid hence

stay in serial boot loading

mode

Handshake cmd

Handshake response

Write cmd

Write response

Continue writing the network processor app image

Image Being

Written

Interim Image

(not yet enabled)

Read cmd

Read response

Continue reading the network processor app image.

Host processor verifies the read-back image.

Enable cmd

Enable response

Valid Image

(enabled)

Update image preamble

Reset by watchdog

Upon startup jump to

image area since image is

valid.

Bootload cmd

Do nothing
Pause for a

while

Figure 13 – Initial Application Image Download Sequence

RemoTI Network Processor Developer's Guide SWRU223A

32 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Host Procesor Serial Boot Loader Network Processor App

RemoTI Network Processor

RESETCC

Image is valid and reset

reason is Power-On

Reset and hence jump to

image area

Network processor interface for normal network processor operation

Upon reset, boot loader

detects invalid image.

Boot load cmd

Network processor

erases preamble page

and resets itself

App image downloading (starting from Handshake

command)

Invalid image (based on

preamble)

Image being written

Figure 14 – Consequent Application Image Download Sequence

12.4 Network processor configuration for serial boo t loading
RemoTI network processor includes serial boot loading demo feature in certain configurations
(CC2530F64_SB, CC2530F128_SB and CC2530F256_SB). When the serial boot loading enabling
configuration is in use, the sb_target.c module is compiled together and serial boot loading specific linker
command file is selected. Serial boot loader configuration also adds FEATURE_SERIAL_BOOT compile
flag definition, which enables handling of serial boot loader mode command which triggers software reset
to serial boot loading mode from normal network processor operation.

Such a command might not be necessary if serial boot loader makes decision through other means than
reading validity of the image alone. For example, the SPI serial boot loader demo code uses MRDY line
and hence host processor could reset the network processor without having to send any special command
over the serial interface.

12.5 Lock bit page
When building network processor image for serial boot loading, lock bit page cannot be used to store the
downloaded code image as lock bit page itself cannot be overwritten during execution of code. Lock bit

RemoTI Network Processor Developer's Guide SWRU223A

33 Copyright  2009 Texas Instruments, Inc. All rights reserved.

page can be updated only though debug interface. That is why the lock bit page usage is reserved in
Figure 5.

13 DMA, peripheral IO and timers
RemoTI network processor uses the following resources:

• USART0 when configured for UART
• USART1 when configured for SPI
• Peripheral IO pins P0_2 and P0_3 when configured for UART
• Peripheral IO pins P0_3, P0_4, P1_4, P1_5, P1_6 and P1_7 when configured for SPI
• Peripheral IO pins P0_7, P1_1 and P1_4 when configured for CC2530-CC2591EM 2.0.
• DMA channel 0 for non-volatile memory access
• DMA channel 3 and 4 for UART or SPI
• Timer2 (MAC timer) and sleep timer
• USB controller for CC2531

Other peripheral IO might be set up by default (for instance, IO pin connected to LEDs on RemoTI Target
Board platform) by HAL but they are not used by the network processor application and they are free to
use by custom code.

14 RF frontend chip connection configuration
Transmit power and receiver gain of CC2530 can be increased by adding an RF frontend chip such as
CC2591. The network processor project includes a configuration (CC2530F256+CC2591) for use of the
RF frontend chip.

If the CC2591 is in use, the security feature of the RemoTI stack when used as a target node has to be
disabled by setting RCN_NIB_NWK_NODE_CAPABILITIES attribute accordingly (See [2]). It is
because a target node is required to transmit key seed command frames at maximum -15dBm but with use
of CC2591, such low power transmission is not possible. The Target Emulator tool is not configured to
disable security feature and hence cannot be used with a CC2530+CC2591 device while complying with
the standard.

When the HAL_PA_LNA compile flag is defined, the network processor application is compiled to create
a binary image for a CC2530-CC2591EM 2.0 board. The chip to chip connection is configured partially
by the stack and partially by the MAC_RfFrontendSetup() function defined in the mac_rffrontend.c file.
The PAEN pin and EN pin of CC2591 must be connected to P1_1 and P1_4 of CC2530 each just like it is
done on the CC2530-CC2591 EM 2.0 board. MAC_RfFrontendSetup() function can be modified to
customize HGM pin connection. On the CC2530-CC2591 EM 2.0 board, the pin is connected to P0_7 pin
of CC2530 but in custom design it could be either grounded or connected to Vcc instead.

MAC_RfFrontendSetup() function not only configures the HGM pin connection but it also selects TX
power register value table and RSSI value adjustment value table entry through a function call to
MAC_SetRadioRegTable().MAC_SetRadioRegTable() function takes two arguments, TX power register
value table index and RSSI adjustment value index. Note that the tables for CC2591 are included only in
the rcnsuper-CC2530-banked.lib file.

rcnsuper-CC2530-banked.lib supports the following table indices.

RemoTI Network Processor Developer's Guide SWRU223A

34 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Index Parameter Table Index

CC2530 with no frontend 0 TX power register value table
index (txPwrTblIdx)

CC2530 + CC2591 1

CC2530 with no frontend 0

CC2530 + CC2591 in high gain mode 1

RSSI adjustment value index
(rssiAdjIdx)

CC2530 + CC2591 in low gain mode 2

Note that regardless of RF frontend selection, an application can set the transmit power level using the
same Texas Instruments proprietary network layer attribute, RCN_NIB_TRANSMIT_POWER (See [2]).

RemoTI Network Processor Developer's Guide SWRU223A

35 Copyright  2009 Texas Instruments, Inc. All rights reserved.

15 General Information

15.1 Document History

Table 8 – Document History

Revision Date Description/Changes

1.0 2009-07-06 Initial release

swru223a 2009-09-18 New configurations for CC2531 dongle platform and
CC2591 RF frontend were added.
UART serial boot loading decision making algorithm was
modified.

16 Address Information

Texas Instruments Norway AS
Gaustadalléen 21
N-0349 Oslo
NORWAY
Tel: +47 22 95 85 44
Fax: +47 22 95 85 46
Web site: http://www.ti.com/lpw

17 TI Worldwide Technical Support
Internet
TI Semiconductor Product Information Center Home Page: support.ti.com

TI Semiconductor KnowledgeBase Home Page: support.ti.com/sc/knowledgebase
TI LPRF forum E2E community http://www.ti.com/lprf-forum

Product Information Centers
Americas
Phone: +1(972) 644-5580

Fax: +1(972) 927-6377

Internet/Email: support.ti.com/sc/pic/americas.htm

Europe, Middle East and Africa
Phone:

Belgium (English) +32 (0) 27 45 54 32

Finland (English) +358 (0) 9 25173948

France +33 (0) 1 30 70 11 64

Germany +49 (0) 8161 80 33 11

Israel (English) 180 949 0107

Italy 800 79 11 37

Netherlands (English) +31 (0) 546 87 95 45

Russia +7 (0) 95 363 4824

Spain +34 902 35 40 28

Sweden (English) +46 (0) 8587 555 22

United Kingdom +44 (0) 1604 66 33 99

Fax: +49 (0) 8161 80 2045

http://www.ti.com/lpw
http://focus.ti.com/general/docs/dsnsuprt.tsp
http://www-k.ext.ti.com/sc/technical-support/knowledgebase.htm
http://www-k.ext.ti.com/sc/technical-support/pic/americas.htm

RemoTI Network Processor Developer's Guide SWRU223A

36 Copyright  2009 Texas Instruments, Inc. All rights reserved.

Internet: support.ti.com/sc/pic/euro.htm

Japan
Fax International +81-3-3344-5317

 Domestic 0120-81-0036

Internet/Email International support.ti.com/sc/pic/japan.htm

 Domestic www.tij.co.jp/pic

Asia
Phone International +886-2-23786800

 Domestic Toll-Free Number

 Australia 1-800-999-084

 China 800-820-8682

 Hong Kon 800-96-5941

 India +91-80-51381665 (Toll)

 Indonesia 001-803-8861-1006

 Korea 080-551-2804

 Malaysia 1-800-80-3973

 New Zealand 0800-446-934

 Philippines 1-800-765-7404

 Singapore 800-886-1028

 Taiwan 0800-006800

 Thailand 001-800-886-0010

Fax +886-2-2378-6808

Email tiasia@ti.com or ti-china@ti.com

Internet support.ti.com/sc/pic/asia.htm

http://www-k.ext.ti.com/sc/technical-support/pic/euro.htm
http://www-k.ext.ti.com/sc/technical-support/pic/japan.htm
http://www.tij.co.jp/pic
mailto:tiasia@ti.com
mailto:ti-china@ti.com
http://www-k.ext.ti.com/sc/technical-support/pic/asia.htm

RemoTI Network Processor Developer's Guide SWRU223A

37 Copyright  2009 Texas Instruments, Inc. All rights reserved.

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and
other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest
relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s
terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.
Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using
TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and
operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or
other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third
party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all
associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible
or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be
expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use.
Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree
that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in
such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers
must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically
designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers
acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they
are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated
by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive
applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

 Telephony www.ti.com/telephony

 Video & Imaging www.ti.com/video

 Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright 2008, Texas Instruments Incorporated

http://amplifier.ti.com/
http://www.ti.com/audio
http://dataconverter.ti.com/
http://www.ti.com/automotive
http://dsp.ti.com/
http://www.ti.com/broadband
http://interface.ti.com/
http://www.ti.com/digitalcontrol
http://logic.ti.com/
http://www.ti.com/military
http://power.ti.com/
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com/
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	1 References
	2 Introduction
	2.1 Purpose
	2.2 Scope

	3 RemoTI Network Processor Application
	3.1 Features
	3.2 Build configurations
	3.3 Files
	3.4 Architecture

	4 Baud Rate
	5 UART wake up mechanism
	6 Adding New Network Processor Interface Commands
	7 UART vs. SPI
	8 Flash page map and memory map
	9 Stack and Heap
	10 IEEE address
	11 Network layer configuration
	12 Serial Boot Loader
	12.1 Overview of the serial boot loader demo
	12.2 Serial boot loading commands
	12.2.1 Handshake Command
	12.2.2 Write Command
	12.2.3 Read Command
	12.2.4 Enable Command

	12.3 Boot loading sequences
	12.4 Network processor configuration for serial boot loading
	12.5 Lock bit page

	13 DMA, peripheral IO and timers
	14 RF frontend chip connection configuration
	15 General Information
	15.1 Document History

	16 Address Information
	17 TI Worldwide Technical Support

