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1 Introduction 

The traditional software method for 
clearing module interrupt flags in TI’s 
8051-based low power wireless System-
on-Chip (LPW SoC) devices can 
unintentionally mask other interrupt flags. 
Depending on the peripheral and the 
application, these masked or missing 
module interrupts can lead to unexpected 
system behavior. For example, in the 
Direct Memory Access (DMA) controller, a 
missing interrupt flag can freeze a channel 
until a system restart reinitializes the 
controller.  
 
Lost interrupts can result from read-
modify-write (RMW) operations to clear 

older interrupt flags in the same module 
flag register. Examples of these traditional 
RMW operations to clear interrupt flags 
can be found in datasheets and sample 
code. This design note describes how 
module interrupt flags can be lost when 
using these operations and recommends 
alternative code that takes advantage of 
the Write-0 design of the module interrupt 
flag bits. 
 
Although this note assumes a working 
knowledge of interrupt programming, a 
brief overview of interrupt flags prefaces 
the issue of lost module interrupt flags and 
its avoidance. 
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2 Abbreviations 

 
CPU   Central Processing Unit 
DMA   Direct Memory Access 
ISR   Interrupt Service Routine 
RMW   Read Modify Write 
SoC   System On Chip 
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3 CPU and Module Interrupt Flags 

For most modules found in TI’s LPW SoC devices, the hardware asserts, or sets to 1, two 
flags when an interrupt condition occurs:  a CPU interrupt flag and a more descriptive flag in a 
module-specific register. The CPU interrupt flag tells the CPU which module has an interrupt 
to service while the flag in the module register gives an indication of what event occurred. 
 
For example, when using the DMA controller and a DMA channel reaches its transfer count, 
both the DMAIF bit in the IRCON CPU flag register and a bit in the DMAIRQ register are 
asserted. DMAIF tells the CPU to call the DMA’s interrupt service routine (ISR). The bit 
asserted in DMAIRQ corresponds to the channel that triggered the transfer complete 
interrupt, i.e. channel 0’s flag is 0x01, channel 1’s flag is 0x02, and so on. The ISR reads the 
value of DMAIRQ to determine which DMA channel reached its transfer count. The SoC 
datasheets ([1], [2], [3], and [4]) each contain a list of all the CPU interrupt flags as well as the 
module-specific interrupt flags and their descriptions.  
 
Unless the flags are cleared by hardware, both the CPU interrupt flag and the flag in the 
module interrupt register must be cleared, or set to 0, during a module’s ISR. If an ISR 
completes without clearing the CPU interrupt flag, the CPU will call the ISR again after 
returning to the interrupted process, which is usually the main program loop. Clearing a 
module interrupt flag prevents the ISR from interpreting old flags as new interrupts on the 
next ISR call. 
 
4 Read-modify-write Operations and Lost Module Interrupt Flags 

Depending on the code used to clear a module interrupt flag, it is possible to accidentally 
mask an incoming interrupt. Consider the C code below for a typical DMA ISR for a system 
using two DMA channels for single block transfers. The ISR uses DMAIRQ to determine 
which channel has an interrupt, clears the flag in DMAIRQ, and rearms the channel: 
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#pragma vector = DMA_VECTOR 
__interrupt void dma_irq (void) 
{ 
    EA = 0;              // Disable all other interrupts           
    DMAIF = 0;           // Clear the main CPU DMA interrupt flag 
     
    if (DMAIRQ & 0x01)   // Check if DMA ch. 0 transfer complete 
    { 
      DMAIRQ &= ~0x01;   // Clear channel 0 interrupt flag 
 
      // Any other desired actions before rearming the channel. 
      // e.g. increment counter, toggle LED, set case variable 
      // for program loop 
 
      DMAARM |= 0x01;  // Rearm the channel so it can be  
                         // triggered again 
    } 
    else if (DMAIRQ & 0x02) // Check if ch. 1 transfer complete 
    { 
      DMAIRQ &= ~0x02;   // Clear channel 1 interrupt flag 
 
      // Any other desired actions before rearming the channel.  
      // e.g. increment counter, toggle LED, set case variable 
      // for program loop 
       
      DMAARM |= 0x02;    // Rearm the channel so it can be  
                         // triggered again 
    } 
     
    EA = 1;   // Re-enable interrupts    
} 
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The line DMAIF = 0 performs a bit-clear on the DMA controller’s CPU interrupt flag in the 
IRCON register. A bit-clear has no effect on the other bits in the same register. This bit-clear 
operation is possible because IRCON is bit-addressable.  In the 8051-based LPW SoC’s, all 
of the CPU interrupt flag registers are bit-addressable except for the S1CON register. S1CON 
contains two identical copies of the general RF interrupt flag RFIF, and the other bits of the 
register are unused.  
 
DMAIRQ, as with most module registers, is not bit-addressable. The lines DMAIRQ &= 
~0x01 and DMAIRQ &= ~0x02 are the statements to clear the module interrupt flags. A 
general form of these statements is RegisterName &= ~FlagBit, an instruction intended 
to clear FlagBit while leaving the remaining bits in RegisterName unaffected. The 8051 CPU 
executes this instruction as a bit-wise AND between a direct data register, RegisterName, 
and an immediate data byte, ~FlagBit, and stores the result back into RegisterName. The 
compiler-generated assembly instruction for the statement is ANL RegisterName, 
#(~FlagBit) and requires 4 clock cycles. 
 
The possibility of losing interrupt flags arises because this instruction requires a read-modify-
write operation. The CPU reads the value from RegisterName, the necessary operations are 
performed with the read value, and the computed value is written back to RegisterName. 
Suppose DMAIRQ is initially 0x01 due to a channel 0 interrupt and the example DMA ISR has 
been called. The ISR finds the channel 0 flag in DMAIRQ and executes DMAIRQ &= ~0x01 
to clear the flag. In executing this instruction, the CPU first reads the value of DMAIRQ, or 
0x01. A bit-wise AND is then performed between this read value and 0xFE (i.e. ~0x01), 
resulting in 0x00. Finally, the CPU writes 0x00 back to the DMAIRQ register.  
 
Suppose another channel, DMA channel 1, reaches its transfer count in the time between the 
read and write in the RMW operation above. DMAIF is reasserted and the channel 1 interrupt 
bit in DMAIRQ is asserted by hardware so that the physical value of DMAIRQ is 0x03. 
However, the CPU is performing operations on the previously read value of DMAIRQ, 0x01. 
The CPU calculates 0x01 & 0xFE = 0x00, and writes 0x00 to DMAIRQ, clearing the 
interrupt flag for DMA channel 1. The ISR continues and completes with no apparent errors. 
Figure 1 illustrates this sequence by showing the operations of the CPU and the physical 
contents of the register. 

 

 
Figure 1. Timing diagram showing a missed interrupt flag on DMA channel 1 due to the 

instruction, DMAIRQ &= ~0x01, to clear the DMA channel 0 interrupt flag. 

Continuing the above scenario, the CPU calls the DMA ISR again (since DMAIF = 1) 
immediately after the previous ISR execution completes. This time, DMAIRQ is 0x00 and both 
if-statements fail. DMA channel 1 is not rearmed and will not process new transfers when 
triggered. If channel 1 is not rearmed anywhere else in the program code, the channel 
remains idle until the DMA initialization code (which arms the channels) executes again due 
to a system reset or fresh power-up. In single transfer modes, a DMA channel must be 
rearmed after each completed transfer count before it can be triggered again to execute other 

Read: DMAIRQ register = 0x01 

Modify: 0x01 & 0xFE = 0x00  

Write: 0x00 to DMAIRQ register  

Time CPU 
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transfers. Refer to the “DMA Controller” section in the SoC datasheets ([1], [2], [3], and [4]) for 
more detailed information about the DMA controller. 
 
Imagine another application that relies on Port 0 input interrupts:  five logic-level signals from 
sensors and a power supply. Like the DMA, Port 0 has a CPU interrupt flag, P0IF, and a 
module flag register, P0IFG, where each bit of P0IFG corresponds to an interrupt flag for a 
pin. While P0IF is a flag bit in the bit-addressable IRCON register, the module register P0IFG 
is not bit-addressable. If the timing between interrupt-triggering edges on the port pins fall just 
right, clearing an interrupt flag bit using P0IFG &= ~FlagBit can lead to lost interrupts and 
erroneous system operation.  
 
5 Write-0 Registers 

Fortunately, a quick modification to existing code can prevent missing interrupt flags. In TI’s 
8051-based LPW SoC devices, all module interrupt flags are Write-0 bits, or W0 as listed in 
the datasheets. Write-0 bits cannot be set to 1 by software; that is, writing a 1 into a Write-0 
bit has no effect on the bit’s value. However, a Write-0 bit that has been set to 1 by hardware 
due to an interrupt can be cleared by writing a 0 to the bit. Figure 2 shows a simplified model 
of a Write-0 bit consisting of a D flip-flop with a feedback AND gate between the data to be 
written and the current bit value, Q. An interrupt event changes the bit value to 1 via the flip-
flop’s Preset pin. Writing a 0 to the input AND gate will clear the bit value to 0. Writing a 1 to 
the input AND gate will maintain whatever value is already in the flip-flop. 

 
Figure 2. Simplified Write-0 Bit Model 

The solution to prevent missing interrupts takes advantage of the Write-0 bit behavior. For the 
DMA example, instead of using DMAIRQ &= ~0x01 and DMAIRQ &= ~0x02, the ISR should 
use DMAIRQ = ~0x01 and DMAIRQ = ~0x02, respectively. These instructions will clear the 
desired bit with a 0 and write 1s to the other bits to preserve the physical register values. In a 
general form, for a module interrupt flag register with all Write-0 bits, replace RegisterName 
&= ~FlagBit with RegisterName = ~FlagBit. 
 
The compiler-generated assembly instruction for the new statement is a memory move 
operation:  MOV RegisterName, #(~FlagBit). Though the operation still requires 3 clock 
cycles, it carries no risk of inadvertently clearing new interrupt flag bits. 
 
Some Write-0 interrupt flag bits share a register with non-Write-0 bits. For example, the upper 
four bits of the T1CTL register are Write-0 interrupt flags for Timer 1 while the lower four bits 
of the register control the timer settings. To clear a flag, use the following code: 
 
T1CTL = (~FlagBit & 0xF0) | (T1CTL & 0x0F); 
 
This will preserve the values for the lower four bits, write a 0 to the flag bit to be cleared, and 
write 1s to the remaining flag bits. Again, the 1s written to the other Write-0 flag bits pass the 
existing values in the T1CTL register. This is a safer approach than using T1CTL &= 
~FlagBit. 
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6 Summary 

To avoid losing module interrupt flags, take advantage of the Write-0 design of the module 
interrupt flag bits. Replace instructions that require read-modify-write operations with 
instructions that write 1s to the flags not being cleared. Often, this is as simple as removing a 
single symbol, &, to change the read-modify-write operation RegisterName &= ~FlagBit 
to RegisterName = ~FlagBit.  
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