
TMS320C6711, TMS320C6711B,

TMS320C6711C, TMS320C6711D

Digital Signal Processors

Silicon Errata

C6711 Silicon Revisions 1.0, 1.2, and 1.3

C6711B Silicon Revisions 2.0 and 2.1

C6711C Silicon Revision 1.1

C6711D Silicon Revision 2.0

SPRZ173P
 May 2000

Revised August 2005

Copyright  2005, Texas Instruments IncorporatedCopyright  2005, Texas Instruments Incorporated

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

2

REVISION HISTORY

This errata revision history highlights the technical changes made to the SPRZ173O device-specific errata to make it a
SPRZ173P revision.

Scope: Applicable updates to the C67x device family, specifically relating to the C6711/11B and C6711C/11D devices,
have been incorporated.

PAGE(S)
NO. ADDITIONS/CHANGES/DELETIONS

6 Introduction, Revision Identification [C6711/C6711B/C6711C/C6711D] section:
Updated Figure 1, Example, Lot Trace Code for C6711/C6711B (GFN) and C6711C/C6711D (GDP)

16 Table 3, IPU/IPD Condition of JTAG, Clock/PLL Oscillator, McBSP0, McBSP1, and Timer1 if DEVCFG.0 = 1
Clock/PLL Oscillator Pins section:
In CLKOUT3, changed “IPU” to “IPD”

16 C6711D Silicon Revision 2.0 Known Design Exceptions to Functional Specifications and Usage Notes:
Added “EMIF Big Endian Mode Correctness (HD12 = 0) is Not Usable Unless All CE Spaces Have the Same Width”

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

3

Contents
1 Introduction 5.

1.1 Quality and Reliability Conditions 5.

TMX Definition 5.
TMP Definition 5.
TMS Definition 5.

1.2 Revision Identification [C6711/C6711B/C6711C/C6711D] 6.

2 C6711D Silicon Revision 2.0 Known Design Exceptions to Functional Specifications and Usage Notes 7. . . .

2.1 Usage Notes for C6711D Silicon Revision 2.0 7.

EMIF: L2 Cache Operations Block Other EDMA Operations to EMIF
(C671x/C621x Devices: All Silicon Revisions) 7.

HPI: Illegal Memory Access Can Result in Unexpected HPI Behavior 13.
BUSREQ Asserted During HPI Boot 13.
Cache Configuration (CCFG) Register — P-Bit Function [New Enhancement] 14.
EMIF: Control Signals Not Inactive Before Asserting HOLDA 14.
EMIF: Data Corruption can Occur in SDRAM When the HOLD Feature is Used 14.
RESET Pin Has No Internal Pullup Resistor 15.
Boundary Scan: IDCODE is Only Loaded Onto Instruction Register When TRST Becomes Inactive 15.
JTAG, Clock/PLL Oscillator, McBSP0/1, and TIMER1: MCBSP1DIS Control Bit (DEVCFG.0) Affects
IPUs/IPDs on Specific Peripheral Pins 15.
EMIF Big Endian Mode Correctness (HD12 = 0) is Not Usable Unless All CE Spaces Have
the Same Width 16.

2.2 C6711D Silicon Revision 2.0 Known Design Exceptions to Functional Specifications 16.

3 C6711C Silicon Revision 1.1 Known Design Exceptions to Functional Specifications and Usage Notes 17. . .

3.1 Usage Notes for C6711C Silicon Revision 1.1 17.

EMIF/HPI: EMIF Output and HPI Signals Can Drive During Reset
3.2 C6711C Silicon Revision 1.1 Known Design Exceptions to Functional Specifications 17.

Advisory 1.1.1 HPI: HPID Read/Write Accesses Must Be Terminated With a Fixed-Mode Access 17.

Advisory 1.1.3 RESET Pin Has Internal Pullup Resistor 18.

Advisory 1.1.4 PLL: Incorrect PLL Controller Peripheral Identification (PID) Register Value 18.

Advisory 1.1.10 EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the
Same Bank in L2 RAM 19.

4 C6711B Silicon Revision 2.1 Known Design Exceptions to Functional Specifications and Usage Notes 25. . .

4.1 Usage Notes for C6711 Silicon Revision 2.1 25.

HPI: Illegal Memory Access Can Result in Unexpected HPI Behavior 25.
4.2 C6711B Silicon Revision 2.1 Known Design Exceptions to Functional Specifications 25.

Advisory 2.1.2 EMIF: Async Read Setup Uses Write Setup Value 25.

Advisory 2.1.4 EMIF: One Cycle Asynchronous Write Setup 25.

Advisory 2.1.5 JTAG: Boundary Scan Shift-DR Register is Latched on the Falling Edge of TCK 26.

Advisory 2.1.6 EDMA/L2 Controller: Potential EDMA Lockout From L2 SRAM 26.

Example GEL File 30.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

4

5 C6711B Silicon Revision 2.0 Known Design Exceptions to Functional Specifications 32.
Advisory 2.0.1 L1D Cache: Data Corruption if L1D Powered up to Wrong State 32.

Assembly Code (bug.asm) 34.

Linker File (lnk.cmd) 34.

6 C6711 Silicon Revision 1.3 Known Design Exceptions to Functional Specifications 35.
Advisory 1.3.2 HPI: Read Data Corrupted in Fixed-Address Mode and FETCH Read Requests 35.

Advisory 1.3.4 JTAG: Boundary Scan Does Not Function 36.

Advisory 1.3.7 HPI: Write Request During HPI Time-Out Causes HPI Lock-Up 36.

Advisory 1.3.13 HPI: HRDY Behavior 37.

7 C6711 Silicon Revision 1.2 Known Design Exceptions to Functional Specifications 37.

8 C6711 Silicon Revision 1.0 Known Design Exceptions to Functional Specifications 37.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

5

1 Introduction

This document describes the known exceptions to the functional specifications for the TMS320C6711,
TMS320C6711B, TMS320C6711C, and TMS320C6711D digital signal processors. [See the TMS320C6711,
TMS320C6711B, TMS320C6711C, TMS320C6711D Floating-Point Digital Signal Processors data sheet (literature
number SPRS088).] These exceptions are applicable to the TMS320C6711 and TMS320C6711B devices (256-pin
Ball Grid Array, GFN suffix) and to the TMS320C6711C and TMS320C6711D devices (272-pin Ball Grid Array,
GDP suffix).

For additional information, see the latest version of TMS320C6000 DSP Peripherals Overview Reference Guide
(literature number SPRU190).

The advisory numbers in this document are not sequential. Some advisories have been moved to the next revision
and others have been removed and documented in the user’s guide. When advisories are moved or deleted, the
remaining advisory numbers remain the same and are not resequenced.

1.1 Quality and Reliability Conditions

TMX Definition

Texas Instruments (TI) does not warranty either (1) electrical performance to specification, or (2) product reliability
for products classified as “TMX.” By definition, the product has not completed data sheet verification or reliability
performance qualification according to TI Quality Systems Specifications.

The mere fact that a “TMX” device was tested over a particular temperature range and voltage range should not, in
any way, be construed as a warranty of performance.

TMP Definition

TI does not warranty product reliability for products classified as “TMP.” By definition, the product has not
completed reliability performance qualification according to TI Quality Systems Specifications; however, products
are tested to a published electrical and mechanical specification.

TMS Definition

Fully-qualified production device

All trademarks are the property of their respective owners.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

6

1.2 Revision Identification [C6711/C6711B/C6711C/C6711D]

The device revision can be determined by the lot trace code on the top of the package. The lot trace codes location
for the GFN and GDP packages are shown in Figure 1 and the revision ID codes are listed in Table 1 and Table 2.
The revision ID described here is not to be confused with the CPU revision ID that is in the Control Status Register.

DSP

TMS320C6711GFN

Cxx-YMLLLLS

DSP

TMS320C6711BGFN

Cxx-YMLLLLS

DSP

TMX320C6711DGDP

Dxx-YMZLLLS

Revision ID Code

DSP

TMS320C6711CGDP

Dxx-YMZLLLS

nnn nnnnnn

“nnn” represents the device speed. For example:

250 = 250 MHz Core [C6711DGDP]
(Blank) = 167 MHz Core [C6711DGDPA and C6711CGDPA (A=Extended Temperature)]
(Blank) = 150 MHz Core [C6711GFN and C6711BGFN]
100 = 100 MHz Core [C6711GFN, C6711BGFN and C6711BGFNA (A=Extended Temperature)]
(Blank) = 200 MHz Core [C6711DGDP and C6711CGDP]

NOTE: Qualified devices are marked with the letters “TMS” at the beginning of the device name, while nonqualified
devices are marked with the letters “TMX” or “TMP” at the beginning of the device name.

Figure 1. Example, Lot Trace Code for C6711/C6711B (GFN) and C6711C/C6711D (GDP)

Silicon revision is identified by a code on the chip. The code is of the format Cxx-YMLLLLS [for C6711/C6711B (GFN)] and
of the format Dxx-YMZLLLS [for C6711C/C6711D (GDP)]. If xx is 10, then the silicon is revision 1.0. If xx is 11, then the
silicon is revision 1.1. If xx is 20, then the silicon is revision 2.0 and so on.

Table 1. Revision ID Codes [C6711C/C6711D]

Revision ID Code Silicon Revision Comments

11 1.1 TMX320C6711C, TMS320C6711C

20 2.0 TMS320C6711D

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

7

Table 2. Revision ID Codes [C6711/C6711B]

Revision ID Code Silicon Revision Comments

10 1.0 TMX320C6711

12 1.2 TMX320C6711

13 1.3

TMS320C6711
Silicon Revision 1.3 is functionally the same as
revision 1.2. It is optimized from revision 1.2 for
yield improvement.

20 2.0 TMX320C6711B

21 2.1 TMS320C6711B

2 C6711D Silicon Revision 2.0 Known Design Exceptions to Functional Specifications and
Usage Notes

2.1 Usage Notes for C6711D Silicon Revision 2.0

Usage Notes highlight and describe particular situations where the device’s behavior may not match presumed or
documented behavior. This may include behaviors that affect device performance or functional correctness. These
notes will be incorporated into future documentation updates for the device (such as the device-specific data
sheet), and the behaviors they describe will not be altered in future silicon revisions.

EMIF: L2 Cache Operations Block Other EDMA Operations to EMIF (C671x/C621x Devices: All Silicon
Revisions)

When using the L2 cache on the C671x/C621x devices, for a given EMIF-to-CPU frequency ratio, an L2 writeback
or L2 writeback-invalidate operation may block other EDMA requests from accessing the EMIF until the operation
completes. If the other EDMA requests to the EMIF have hard real-time deadlines, these deadlines may be missed
if the deadline is shorter than the time required to complete the L2 writeback operation. The McBSP peripheral is
most sensitive to this issue, as the buffering local to the McBSP peripheral can only hold data for at most one
sample at a time before data loss occurs.

On the C671x/C621x devices, all cache requests to EMIF address ranges are serviced on the highest priority level
of the EDMA (priority 0). All programmed EDMA or QDMA transfers (e.g., EDMA transfers to service the McBSP or
paging data from EMIF to/from L2) and peripheral-initiated transfers (such as HPI) are limited to using priority 1 or
priority 2 queues of the EDMA; therefore an L2 writeback or L2 writeback-invalidate operation may block the lower
priority request.

Program-initiated cache coherency operations (such as L2 writeback and L2 writeback-invalidate operations) are
submitted to the EDMA as a long string of cache operations. For block-based writeback commands, the maximum
length of the cache writeback operation is under user control via the programmed address range. The length of the
range writeback directly impacts the amount of time that the cache traffic may block other accesses to EMIF. The
total potential block-out time equals the amount of time for the cache transfer and is calculated as follows:

Cache transfer size * EMIF clock cycle time = Total potential block-out time

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

8

For example, if the user performs an L2 writeback operation to external memory for 2048 words with a 100-MHz
EMIF, the external EMIF bus may be blocked for: 2048 words * 10 ns � 20 µs.

Global cache operations (such as L2 writeback-all or L2 writeback-invalidate-all) are also submitted to the EDMA
as a long string of cache operations. However, the length of the global cache operation is not controllable by the
user and can be as long as the depth of the L2 cache size (up to 64 Kbytes). If the user performs an L2
writeback-all operation to external memory using a 100-MHz EMIF, and L2 is set to the maximum cache size, the
external EMIF bus may be blocked for 16 384 words * 10 ns ≅ 160 µs. Since this can block the EMIF for long
periods of time, the user should avoid using global cache operations at the same time as real-time data transfers.
In general, this is not a limiting factor since global cache operations are primarily performed during system
initialization, task switches, or other non real-time code segments.

As the sample rate is system-dependent, the user must calculate the time between serial samples to determine the
best approach to avoid data loss. The user may break large cache operations into smaller blocks, and transmit
each of these blocks using the CACHE_wbInvL2() and CACHE_wbL2() CSL functions. By breaking the large
cache operations into smaller blocks, other peripherals are then allowed to access the EDMA.

If the EMIF frequency is more than half of the CPU frequency, the device is able to service the L2 writeback
requests faster than the requests can be issued, leaving some EMIF bandwidth available to service other EDMA
requests, so the block-out problem is less noticeable. Therefore, breaking down cache operations into smaller
blocks is more critical when the EMIF frequency is less than half of the CPU frequency. Figure 2 shows the
minimum required latency between McBSP transfers to EMIF at 200-MHz CPU and 50-MHz EMIF when breaking
down the cache operations. These McBSP transfers were performed with concurrent cache operations to EMIF,
creating a block-out scenario. With the 1024-word cache writeback-invalidate operation broken into 32-word
blocks, the McBSP is able to perform almost 10 times faster. The performance improvement is similar when
breaking down the writeback-only operation.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

9

10

9

8

7

6

5

4

3

2

1

0
0

CACHE_wblnvL2
(Entire Operation)

(256-Word Blocks)
CACHE_wblnvL2

(128-Word Blocks)
CACHE_wblnvL2

(64-Word Blocks)
CACHE_wblnvL2

CACHE_wblnvL2
(32-Word Blocks)

Number of Words in Writeback-Invalidate

Minimum
Latency

(�s)

64 128 256 512 1024

Figure 2. Minimum Required Latency Between McBSP Events for a Successful Transfer with
Concurrent L2 Writeback-Invalidates at 200-MHz CPU and 50-MHz EMIF, Using Entire Operations and

Block Breakdown

For example, if the CPU is running at 200 MHz with a 50-MHz EMIF and there is a McBSP hard real-time deadline
of 5 µs, Figure 2 shows that a 1024-word L2 writeback-invalidate may cause data loss since back-to-back McBSP
events can only be serviced at ~8 µs. By breaking down the L2 writeback-invalidate into 256-word blocks, the 5-µs
McBSP deadline can then be met. In other words, when performing a 1024-word L2 writeback-invalidate operation
with the CPU and EMIF conditions cited above, the McBSP events can be serviced in ~8 µs for the entire operation
(one whole block), in ~4 µs when breaking it into 256-word blocks, in ~2.5 µs when breaking it into 128-word
blocks, etc.

When the CPU is set to 225 MHz and the EMIF is set to 100 MHz, breaking down the cache operations will still
improve the block-out problem. Figure 3 shows the improvement in the McBSP’s performance with this frequency
ratio.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

Original CACHE_wblnvL2
(Entire Operation)

(256-Word Blocks)
CACHE_wblnvL2

(128-Word Blocks)
CACHE_wblnvL2

(64-Word Blocks)
CACHE_wblnvL2

CACHE_wblnvL2
(32-Word Blocks)

Number of Words in Writeback-Invalidate

Minimum
Latency

(�s)

64 128 256 512 1024

Figure 3. Minimum Required Latency Between McBSP Events for a Successful Transfer With
Concurrent Writeback-Invalidates at 225-MHz CPU and 100-MHz EMIF, Using Entire Operations and

Block Breakdown

When the CPU is set to 150 MHz and the EMIF is set to 100 MHz, there is virtually no benefit from breaking down
the coherency cache operations. Figure 4 shows the McBSP’s performance with this frequency ratio.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

11

0.375

0.370

0.365

0.360

0.355

0.350

0.345

0.340

0.335

0.330

0.325
0

CACHE_wblnvL2
(Entire Operation)

(256-Word Blocks)
CACHE_wblnvL2

(128-Word Blocks)
CACHE_wblnvL2

(64-Word Blocks)
CACHE_wblnvL2

CACHE_wblnvL2
(32-Word Blocks)

Number of Words in Writeback-Invalidate

Minimum
Latency

(�s)

64 128 256 512 1024

Figure 4. Minimum Required Latency Between McBSP Events for a Successful Transfer With
Concurrent Writeback-Invalidates at 150-MHz CPU and 100-MHz EMIF, Using Entire Operations and

Block Breakdown

Breaking down the cache operations into smaller blocks takes longer to complete than performing the entire cache
function as one large block. Figure 5 shows how much extra overhead is incurred by breaking down an L2
writeback-invalidate operation to transfer 1024 words with different sized blocks and at various frequency ratios.
Notice that for the 200-MHz CPU and the 50-MHz EMIF frequency ratio, where the new functions are most critical
for peripherals such as the McBSP, the least overhead is incurred.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

12

40

35

30

25

20

15

10

5

0

Latency

(�s)

CPU/EMIF Frequency Ratio (MHz)

200 CPU
50 EMIF

225 CPU
100 EMIF

150 CPU
100 EMIF

CACHE_wblnvL2
(Entire Operation)

(256-Word Blocks)
CACHE_wblnvL2

(128-Word Blocks)
CACHE_wblnvL2

(64-Word Blocks)
CACHE_wblnvL2

CACHE_wblnvL2
(32-Word Blocks)

Figure 5. 1024-Word L2 Writeback-Invalidate Performance at Various Frequency Ratios With Old and
New CACHE-wbInvL2()

To avoid cache operations blocking other time-sensitive EDMA accesses, observe the following guidelines:

1. Avoid placing real-time data in EMIF address range. Instead, real-time data should be placed in the L2
address range.

2. If data must be placed in the EMIF address range:

− Avoid global cache operations in favor of block-based cache operations.

− Block-based cache operations should be submitted in small blocks, such that the total amount of time
that the EMIF is blocked is less than the amount of time between serial samples.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

13

HPI: Illegal Memory Access Can Result in Unexpected HPI Behavior

On all silicon revisions of C6711/C6711B/C6711C/C6711D, the DSP has a reserved memory range that is mapped
to the internal FIFO of the HPI for EDMA engine usage. This reserved memory range is located at 0x60000000 −
0x7FFFFFFF in the memory map. If CPU code (or a host access) happens to read/write from/to this memory
range, the internal HPI state machine can be corrupted, causing one or more of the following occurrences:

• Host reads/writes through the HPI fail. HPI reads return incorrect data, and/or HPI writes result in incorrect
data being written.

• Host reads/writes through the HPI take an unexpectedly long time. The HRDY signal stays high (not ready)
for an extended period of time.

• HPI locks up. HRDY stays high indefinitely.

The most common cause of this illegal access is uninitialized or stray pointers. To verify that the DSP program
does not perform this illegal memory access, the user can use the Advanced Event Triggering tools featured in
Code Composer Studio Integrated Development Environment (IDE) version 2.1 or later, with the latest emulation
driver. Below are the step-by-step instructions on how to trap a CPU access to the memory range 0x60000000 −
0x7FFFFFFF:

1. Start Code Composer Studio IDE with the proper setup and GEL file.

2. Load the program.

3. Under the Tools menu, select Advanced Event Triggering > Event Analysis

4. Right-click on the bottom left panel that appears, select “Set Hardware Watchpoint”.

5 Name the watchpoint; choose to watch for “Data Memory Reads” or “Data Memory Writes”; select the
inclusive range start address (0x60000000) and end address (0x7FFFFFFF); select the data size from 32-,
16-, or 8-bit to watch for word, halfword, or byte reads/writes, respectively. Then, click Apply.

6 The watchpoint now is enabled, indicated by the blue “E” icon. Now, run the program.

7. When a read/write to the specified memory range is detected, the CPU halts, and the blue “E” icon changes
to a red “T” icon.

Notes:

The CPU halts a few cycles after the specified memory access is detected. Without a CPU stall, the number of
cycles is around 4 cycles. This means that when the CPU halts, the PC points to a few instructions after the one
that caused the trap to trigger.

The hardware watchpoint restricts the trap to be set up for either read or write accesses, but not both. Therefore,
the user may need to repeat this procedure several times for each read and write trap.

The above step-by-step method only catches illegal accesses made by the CPU, and does not catch illegal
accesses made by the EDMA (through the McBSP or the HPI).

BUSREQ Asserted During HPI Boot

On C6711D silicon revision 2.0 and C6711C silicon revision 1.1, the EMIF Bus Request (BUSREQ) signal goes
active during an HPI boot when the internal SDRAM refresh counter reaches zero, even though the EMIF does not
default to SDRAM use. The BUSREQ remains active until the first EMIF access after the HPI boot completes.

The BUSREQ signal is typically only used by systems that share external memory between several DSPs. When
constructing such a system the false assertion of BUSREQ during reset should be taken into account when
designing the external arbitration logic.

Code Composer Studio is a trademark of Texas Instruments.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

14

Cache Configuration (CCFG) Register — P-Bit Function [New Enhancement]

On C6711D silicon revision 2.0, the “P” bit in the cache configuration (CCFG) register ensures that requests to L2
memory by the transfer crossbar (TC) [such as the important class of TC accesses originating from the EDMA
controller] will have priority over the L1D requests to L2 memory. As noted in “Workaround” of Advisory 1.1.10,
EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank in L2 RAM, without the
“P” bit set it is possible to construct a loop that creates a long string of stores to the same bank in L2 RAM which
could block an EDMA transfer and cause a missed deadline on time critical peripherals such as the McBSP.

Step 2 in the “Workaround” of Advisory 1.1.10, “EDMA: EDMA Blocked from Accessing L2 During Long String of
Stores to the Same Bank in L2 RAM” , explains how to use the compiler switch to identify and fix these types of
loops.

With the “P” bit set on silicon revision 2.0 and later, the problem described in Advisory 1.1.10 does not occur
because in general priority is given to the TC over the L1D when the “P” bit is set. However, there still is one case
where the TC request can be stalled for a very short duration while stores from L1D to the L2 RAM are taking
place.

This “stalled” case occurs when the L1D is storing data to the same block of data in the L2 cache as the TC is
attempting to access. The blocks of data in L2 consists of contiguous groups of 32 words aligned at 32-word
boundaries. When both the L1D and TC are operating on the same block of data in L2, the L1D has priority even if
the “P” bit is set.

Since this priority inversion is bounded by the time it takes for the L1D to complete writing 32 words to L2 memory
(256 cycles assuming bytes are written or approximately 1.3 µs for a 200-MHz DSP clock rate).

It is recommended, as good practice, to avoid this delay by design. This can be accomplished simply by locating
the current buffer on which the DSP is operating in a different 32-word aligned, 32-word block of data of L2 RAM
than the current buffer on which the EDMA is transferring (through TC).

EMIF: Control Signals Not Inactive Before Asserting HOLDA

On all silicon revisions of C6711/C6711B/C6711C/C6711D, when the HOLDA signal is asserted in an EMIF clock
cycle, the EMIF deasserts its control signals. This deassertion may cause the control signals to float in the
asserted state as well as cause undesired memory accesses.

To prevent the possible actions caused by the EMIF deasserting its control signals, connect a weak pullup resistor
(1 kΩ) to each CE pin where the HOLDA signal is used.

EMIF: Data Corruption can Occur in SDRAM When the HOLD Feature is Used

On all silicon revisions of C6711/C6711B/C6711C/C6711D, data can be corrupted in the SDRAM found on the
EMIF when the HOLD features is used. When the SDRAM refresh counter, found in the EMIF, expires around the
same time a HOLD request is asserted, the DSP starts a refresh of tee SDRAM. Before the tRFC specification is
met, the DSP generates a DCAB command and asserts HOLDA, thus violating the tRFC specification for SDRAM.

Since both the DSP and the other processor can act as a master, external arbitration logic is needed. Three
options for providing external arbitration logic exist:

• Program the arbitration logic to take care of SDRAM refresh. Disable refresh on DSP. Since the DSP is no
longer responsible for refresh of SDRAM, the arbitration logic ensures tRFC specification is not violated.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

15

• Use one of the DSP internal timers to provide an output signal to the arbitration logic that indicates refresh
is pending. The arbitration logic would then be responsible for de-asserting HOLD and starting its own
timer to estimate when the refresh operation has completed. Once the timer within the arbitration logic
expires, the arbitration logic should assert HOLD if needed.

• Use two of the DSP internal timers to output two signals that indicate the start and end of a refresh
operation to the arbitration logic. The arbitration logic would then be responsible for de-asserting HOLD
between the start and end of a refresh operation.

RESET Pin Has No Internal Pullup Resistor

On the C6711D silicon revision 2.0, the RESET pin does not have an internal pullup resistor.

When designing a new PCB using C6711D silicon revision 2.0, either incorporate a voltage supervisor that drives
when in the inactive state (RESET = 1) or include an external pullup resistor on the RESET pin.

Boundary Scan: IDCODE is Only Loaded Onto Instruction Register When TRST Becomes Inactive

The IDCODE instruction is loaded into the instruction register only when the Test Logic Reset state is entered by
transitioning TRST from low to high, but not when the Test Logic Reset state is entered by holding TMS high and
clocking TCK five times.

JTAG, Clock/PLL Oscillator, McBSP0/1, and TIMER1: MCBSP1DIS Control Bit (DEVCFG.0) Affects
IPUs/IPDs on Specific Peripheral Pins

On the C6711D silicon revision 2.0, if a 1 is written to the MCBSP1DIS control bit (bit 0) of the DEVCFG register,
the pins listed in Table 3 lose their internal pullup or pulldown resistor and external resistors must be added.

If the pins that are listed in Table 3 are not continuously driven after DEVCFG.0 = 1, an external 10-kΩ pullup or
pulldown resistor is required to maintain a valid logic level.

Table 3. IPU/IPD Condition of JTAG, Clock/PLL Oscillator, McBSP0, McBSP1, and
Timer1 if DEVCFG.0 = 1

PIN NAME IPU/IPD DESCRIPTION

JTAG Pins

If DEVCFG.0 = 1:

TRST

CAUTION:
If DEVCFG.0 = 1, TRST must be externally pulled down to ensure the device scan chain logic
does not become active. Even if DEVCFG.0 = 0 and TRST is routed out and not driven, it is
recommended that this pin be externally pulled down.

IPD Removed

TMS IPU Removed

TDO IPU Removed

TDI IPU Removed

TCK IPU Removed

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

16

Table 3. IPU/IPD Condition of JTAG, Clock/PLL Oscillator, McBSP0, McBSP1, and
Timer1 if DEVCFG.0 = 1 (Continued)

PIN NAME IPU/IPD DESCRIPTION

Clock/PLL Oscillator Pins

If DEVCFG.0 = 1:

CLKIN IPD Removed

CLKOUT3 IPD Removed

McBSP0 Pins

If DEVCFG.0 = 1:

CLKR0 IPD Removed

CLKX0 IPD Removed

FSR0 IPD Removed

FSX0 IPD Removed

McBSP1 Pins

If DEVCFG.0 = 1:

CLKX1 IPD Removed

FSX1 IPD Removed

Timer1 Pins

If DEVCFG.0 = 1:

TINP1 IPD Removed

EMIF Big Endian Mode Correctness (HD12 = 0) is Not Usable Unless All CE Spaces Have the Same Width

On the C6711D silicon revision 2.0, when using EMIF big endian mode correctness (HD12 = 0) and the device is in
big endian mode (HD8 = 0), data corruption can occur if CE spaces are configured to different widths.

No data corruption occurs:

• If CE spaces have the same width when using EMIF big endian mode correctness (HD12 = 0) and the
device is in big endian mode (HD8 = 0)

• When little endian mode (HD8 = 1) is selected

• When big endian mode without EMIF big endian correctness (HD8 = 0, HD12 = 1) is selected

2.2 C6711D Silicon Revision 2.0 Known Design Exceptions to Functional Specifications

There are no known advisories for the TMS320C6711D silicon revision 2.0.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

17

3 C6711C Silicon Revision 1.1 Known Design Exceptions to Functional Specifications and
Usage Notes

3.1 Usage Notes for C6711C Silicon Revision 1.1

All usage notes for silicon revision 1.1 still apply and have been moved up to the Usage Notes for C6711D Silicon
Revision 2.0 section of this document except the “EPI/HPI: EMIF Output and HPI Signals Can Drive During Reset”
usage note, which is applicable to silicon revision 1.1 only.

EMIF/HPI: EMIF Output and HPI Signals Can Drive During Reset

On silicon revision 1.1 of C6711C, the EMIF output pins and HPI pins can drive the bus for a small amount of time
while the external RESET signal is asserted. In normal operation, the EMIF output and HPI pins should be 3-stated
when the external RESET signal is low until the internal reset signal is deasserted. However, the actual C6711C
silicon revision 1.1 behavior is as follows:

• The EMIF output pins become properly 3-stated on the first SYSCLK3 clock edge after the external reset
deassertion. Note that SYSCLK3 oscillates at CLKIN/2 by default after the external reset signal is
deasserted.

• The HPI pins become properly 3-stated three cycles of CLKIN/8 frequency after the external RESET signal
is asserted (CLKIN is the input clock to the DSP).

However, if these EMIF output and HPI signals are 3-stated at the time that the external reset goes low, these
signals stay 3-stated and not driven.

This behavior has been corrected in silicon revision 2.0.

3.2 C6711C Silicon Revision 1.1 Known Design Exceptions to Functional Specifications

HPI: HPID Read/Write Accesses Must Be Terminated With a Fixed-Mode AccessAdvisory 1.1.1

Revision(s) Affected: 2.0 and 2.1 [for C6711B] and 1.1 [for C6711C]

Details: The auto-increment HPI read utilizes an internal buffer and prefetch mechanism to increase
throughput. The prefetch mechanism may conflict with the internal buffer flush that is caused
by HPIA or HPIC write. This conflict may cause the next auto-increment read access to return
stale data in the first few words.

This conflict may also cause the HPI to lock up (HRDY staying high indefinitely)

Workaround: Terminate every auto-increment HPID read with a fixed-mode HPID read, and terminate every
HPID write with a fixed-mode HPID write. For example, to read 14 words in auto-increment
mode, do not do:

HPIA write
HPID++ read (1st word, autoincrement)
HPID++ read (2nd word, autoincrement)
...
HPID++ read (14th word, autoincrement)
HPIA write (set up HPIA for next access)
HPID++ read
...

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

18

HPI: HPID Read/Write Accesses Must Be Terminated With a Fixed-Mode Access (Continued)

But, do this instead:

HPIA write
HPID++ read (1st word, autoincrement)
HPID++ read (2nd word, autoincrement)
...
HPID++ read (13th word, autoincrement)
HPID read (14th word, FIXED-MODE)
HPIA write (set up HPIA for next access)
HPID++ read
...

This brings the HPI to a clean state after an auto-increment access. The next HPIA / HPIC
write will not conflict with in-flight data from previous HPID++ read/write.

Note that different host mechanisms (software/hardware) are needed to migrate between
systems with revisions 2.0/2.1 and revisions 1.0, 1.2, 1.3 silicons [C6711B and C6711,
respectively] and 1.1 silicon [C6711C], due to advisories 1.1.1, 1.3.2, and 1.3.7.

RESET Pin Has Internal Pullup ResistorAdvisory 1.1.3

Revision(s) Affected: 1.1 [for C6711C]

Details: The RESET pin has an internal pullup resistor with a typical value of 18 kΩ. This pullup
resistor is problematic because it is stronger than the weak pulldown (10 µA near 1 V) typical
of most voltage supervisors.

Workaround: Any new PCB designs should incorporate either a voltage supervisor with an active drive on
RESET or include an external pullup resistor on the RESET pin. The internal pullup resistor
has been removed in silicon revision 2.0.

PLL: Incorrect PLL Controller Peripheral Identification (PID) Register ValueAdvisory 1.1.4

Revision(s) Affected: 1.1 [for C6711C]

Details: The PLL Controller Peripheral Identification (PID) value is incorrect. The PLL PID register
currently reads CLASS = 0x01, TYPE = 0x10. It should read CLASS = 0x08, TYPE = 0x01.

Workaround: None. This will be corrected in a future silicon revision.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

19

EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank
in L2 RAM

Advisory 1.1.10

Revision(s) Affected: 1.0, 1.2, 1.3, 2.0, and 2.1 [for C6711/C6711B] and 1.1 [for C6711C]

Details: If the CPU is storing data to a bank of L2 memory on the same cycle that the EDMA is trying
to access the same bank, the CPU will always be given priority. (For example, the EDMA will
be blocked from accessing that bank until the CPU access is complete.) Access will be
programmable in silicon revision 2.0. (Note that the EDMA and CPU can access different
banks of L2 on the same cycle.) If the CPU stores to the same bank on every cycle for a long
period of time, an EDMA access to that bank can be blocked long enough to miss a hard
deadline.

L2 memory is organized as 4 banks with each bank 64 bits wide (see Figure 6).

0x00000000 0x00000004

0x000000240x00000020

Bank 0

0x0000000C

0x0000002C

0x00000008

0x00000028

Bank 1 Bank 3Bank 2

0x00000030

0x00000010 0x0000001C

0x0000003C0x00000034

0x00000014

0x00000038

0x00000018

0x0000FFE0 0x0000FFE4 0x0000FFE8 0x0000FFEC 0x0000FFF0 0x0000FFF4 0x0000FFF8 0x0000FFFC

NOTE: Each address in Figure 6 is an address for a 32-bit word.

Figure 6. L2 Memory Organization

A conflict occurs when the CPU is trying to access a bank of L2 on the same cycle as the
EDMA is trying to access the same L2 bank. For example, if the CPU were trying to store a
32-bit word to location 0x0000 0000, and on the same cycle the EDMA is trying to transfer a
32-bit word at location 0x0000 0024 to the McBSP to be transmitted, then a conflict would
occur since both are trying to access Bank0. In C6711C silicon revision 1.1, the CPU will
always get priority over the EDMA, so the EDMA has to wait for the store to 0x0000 0000 to
complete before accessing location 0x0000 0024.

Waiting for a single store to complete would only delay the EDMA access by several cycles,
which is not normally a problem. However, a problem can occur when the CPU continually
stores data to the same bank of L2 for a long period of time. The problem occurs when the
EDMA has a hard deadline to meet, e.g., it must transfer a word from L2 to the McBSP
 every 5 µs. If the duration of the sequence of continuous stores is longer than 5µs, then the
EDMA will be blocked from accessing that bank of L2 long enough to miss the deadline and a
transmit underrun error will occur in the McBSP.

It should be noted that a series of CPU stores that causes a real-time system problem (an
EDMA transfer to miss a deadline) is most likely to occur in looped code. For example, if a
particular code segment caused the EDMA to be blocked for four cycles, a system problem
caused by the delayed EDMA transfer would likely not occur. If that same code segment were
repeated in a loop of 1000 iterations, then the EDMA transfer would be blocked for a total of
(4 * 1000 =) 4000 cycles. In this latter case, the EDMA transfer is more likely to miss a hard
deadline causing a system problem.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

20

EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank in L2 RAM (Continued)

There are four criteria that must be met in order for a loop to continually block a bank of L2. All
of the conditions must be met for the problem to occur.

1. The total duration of time the EDMA is blocked (or the total duration of a loop, in the case
of looped code) is close to or longer than the hard deadline.

2. In a given sequence of code, the total number of stores must be greater than or equal to
the number of cycles on which no store occurs. In the case of looped code, in one iteration
of a loop, the total number of stores must be greater than or equal to the number of cycles
on which no store occurs, or, in other words, the length of one iteration in cycles is less
than or equal to twice the number of stores.

Figure 7 outlines this scenario. Note that the STW instruction represents a store of any word
size (32-, 16-, or 8-bit).

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

21

EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank in L2 RAM (Continued)

STW

II STW

II ADD

Cycle 1

Bad Sequence

Cycle 2

II SUB

II ADD

ADD

Cycle 3
II MV

II B

ADD

II ADD

Cycle 3

II ADD

II B

Bad Sequence

ADD

Cycle 2

ADD

II MV

II SUB

II ADD

Cycle 1 II STW

II ADD

STW

ADD

II MPY

II SUB

Cycle 4

II SUB

II MPY

II ADD

Cycle 4

Cycle 3

ADD

II B

Good Sequence

ADD

II ADD

II SUB

II MV

Cycle 2

ADD

II ADD

II STWCycle 1

STW

Cycle 5

II ADD

MPY

II ADD

Total Cycles: 3
Total Stores: 2

Total Cycles: 4
Total Stores: 2 Total Stores: 2

Total Cycles: 5

Figure 7. Pseudo Code Example With Parallel Stores (Criteria 2)

In most looped code, more than one instruction would likely be executed on each cycle,
i.e., instructions would be executed in parallel. In this case, as long as a store is one of the
instructions being executed in parallel on a particular cycle, that cycle counts as a cycle on
which a store occurs. Instructions with parallel bars (||) at the beginning of the line of
assembly execute in parallel with instructions on the preceding line.

In the C6000 core, up to 2 stores can occur per cycle. In this case, each store must be
counted individually. That is, even though both stores occur on the same cycle, they still
must be counted as two stores. All other rules apply (see Figure 7).

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

22

EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank in L2 RAM (Continued)

3. All stores in the loop must be to the same bank of L2. If there are any stores to another
bank, this will free the first bank long enough for the EDMA access to get in (see
Figure 8).

A0 = 0x00000000
A2 = 0x00000020
A8 = 0x00000008

STW A1, *A0 Store to
Bank 0

II ADD

II ADD

Cycle 1

Bad sequence

II SUB

ADD

Cycle 2 II STW A1, *A0 Store to
Bank 0

II MV
Cycle 3

STW A1, *A2

II B

Store to
Bank 0

II ADD

STW A1, *A8

Cycle 3

II ADD

II B

II MV

Store to
Bank 1

II STW A1, *A0

II ADD

Cycle 2

ADD

II SUB

Good sequence

STW A1, *A0

Cycle 1 II ADD

Store to
Bank 0

Store to
Bank 0

Total Cycles: 3
Total Stores: 3 Total Stores: 3

Total Cycles: 3

Figure 8. Pseudo Code Example Stores to Specified Banks (Criteria 3)

In the case of two stores occurring on the same cycle, in parallel, the same rules apply. If
both stores are to the same bank (and there are no other stores in the sequence to a
different bank), then a problem may occur. If each of the parallel stores is to a different
bank, then the problem cannot occur.

4. There are no loads that miss in L1 (therefore access L2). It does not matter which bank
the load is accessing (see Figure 9).

A load from L2 provides enough of a gap to allow the EDMA to access L2. The good
sequence would not cause a problem even if the load were executed in parallel with one
of the stores, as long as the load occurred somewhere in the sequence. Notice that
although the good sequence satisfies criteria 2 and 3, it would not cause a problem.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

23

EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank in L2 RAM (Continued)

Total Cycles: 3
Total Loads: 1
Total Stores: 2

A0 = 0x00000000
A2 = 0x00000020
A8 = 0x00000008

STW A1, *A0

II ADD

II ADD

Cycle 1

Bad Sequence

II SUB

ADD

Cycle 2 II ADD

II MV
Cycle 3

STW A1, *A2

II B

II ADD

STW A1, *A2

Cycle 3

II ADD

II B

II MV

II LDW *Ax, A1

II ADD

Cycle 2

ADD

II SUB

Good Sequence

STW A1, *A0

Cycle 1 II ADD

Bank # does
not Matter

Total Cycles: 3
Total Stores: 2
Total Loads: 0

Figure 9. Pseudo Code Example Stores and Loads (Criteria 4)

Workaround: Note: This will be fixed in silicon revision 2.0. The fix in silicon revision 2.0 will require setting a
hardware bit to avoid the problem discussed in this erratum. The workaround discussed in this
erratum is not necessary if using silicon revision 2.0.)

Step 1

Determine the hard deadlines for the system of interest.

Step 2

Use the compiler switch −edma_warnN to find potential problem loops. The compiler switch
only checks for criteria 1 and 2.

For more detailed information on the compiler switch, see the Using the −edma_warnN
Compiler Switch to Detect a CPU L2 EDMA Lockout Application Report (literature number
SPRA916).

The −edma_warnN option was not available until the release of Code Composer Studio IDE
2.20.23.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

24

EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank in L2 RAM (Continued)

Step 3

After Step 2, a list of potential problem loops now exists. The programmer must now examine
each of these potential problem loops to see if they meet the two additional criteria for being a
problem loop (remember that the compiler switch in step 2 only checked for criteria 1 and 2).
This is done by closely examining the source code and assembly output of that source code.

For more detailed information on how to interpret the source code and the assembly output of
that source code, see the Using the −edma_warnN Compiler Switch to Detect a CPU L2
EDMA Lockout Application Report (literature number SPRA916).

Step 4

The final step is to fix the remaining problem loops. There are a number of fixes that can be
implemented, and which fix to implement is highly system dependent. Each fix attempts to
break one of the criteria of a problem loop. Only one fix is needed for each loop.

A. Reduce the duration of the loop by breaking into smaller loops. If a particular problem loop
has a length of 4 cycles (determined by looking at the software pipeline kernel in the
assembly file), and the loop runs 200 times, then the total loop duration is ~800 cycles. If
the deadline is 586 cycles, then loop could cause a problem (assuming the loop meets all
the other criteria). The workaround is to break the loop into four smaller loops of
50 iterations each. Then any one loop will only run for 200 cycles allowing the EDMA
transfer to complete between the smaller loops.

B. Try to break criteria 2. The quickest way to do this is to turn off optimization for the file
containing the problem loop (this is done in the File Specific Options for the file). Instead
of using the compiler switch −o3, use the compiler switch −o1 for the particular problem
file. This will cause the problem loop to not be software pipelined and less likely to meet
criteria 2. The downside to this fix is that all the loops in the particular file will be
un-optimized, not just the problem loop.

C. Try to break criteria 3. One way of doing this is to rearrange the data structures so that a
loop does not have to stride an array by a factor of 8. The other way of implementing this
is to possibly combine two different loops so that the array stride becomes a different
factor other than 8.

D. Try to break criteria 4. One way of doing this is to place a dummy load in the loop.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

25

4 C6711B Silicon Revision 2.1 Known Design Exceptions to Functional Specifications and
Usage Notes

Some silicon revision 2.1 advisories are shared with silicon revision 1.1. See the advisories for silicon revision 1.1
[C6711C].

4.1 Usage Notes for C6711 Silicon Revision 2.1

Usage Notes highlight and describe particular situations where the device’s behavior may not match presumed or
documented behavior. This may include behaviors that affect device performance or functional correctness. These
notes will be incorporated into future documentation updates for the device (such as the device-specific data
sheet), and the behaviors they describe will not be altered in future silicon revisions.

HPI: Illegal Memory Access Can Result in Unexpected HPI Behavior

This usage note is applicable to silicon revision 2.0 [for C6711D], to silicon revision 1.1 [for C6711C], and to silicon
revisions 2.1 and earlier [for C6711/C6711B]. To avoid extensive duplication, see the HPI: Illegal Memory Access
Can Result in Unexpected HPI Behavior usage note under Usage Notes for C6711D Silicon Revision 2.0.

4.2 C6711B Silicon Revision 2.1 Known Design Exceptions to Functional Specifications

EMIF: Async Read Setup Uses Write Setup ValueAdvisory 2.1.2

Revision(s) Affected: 1.0, 1.2, 1.3, 2.0, and 2.1 [C6711/C6711B]

Details: When the EMIF is performing read from async memory and accessing the SDRAM
continuously, the EMIF sometimes incorrectly uses the async Write Setup (CECTLx[31:28]) as
its Read Setup (CECTLx[19:16]) value.

This advisory only applies when EMIF reads from async memory and performs accesses to
SDRAM. Other modes are not affected.

Workaround: Use the same read setup and write setup value in the appropriate fields of CE Space Control
Register (CECTLx).

EMIF: One Cycle Asynchronous Write SetupAdvisory 2.1.4

Revision(s) Affected: 1.0, 1.2, 1.3, 2.0, and 2.1 [C6711/C6711B]

Details: The EMIF may give only one EMIF clock cycle of asynchronous write setup, instead of the
value programmed in the EMIF CE Space Control Register. This condition only occurs when
an async write is issued while there is an ongoing async read within the same or different CE
space. This may result in async write data corruption if the setup/strobe time of the async
memory is not met.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

26

EMIF: One Cycle Asynchronous Write Setup (Continued)

Workaround: For robust operation, it must be assumed that in the above condition, the EMIF gives only one
EMIF clock cycle of write setup to async memory, independent of the write setup value
programmed in the CE Space Register. Most asynchronous memory latches write data at the
rising edge of WE, which sometimes can workaround the problem. Therefore, care must be
taken such that write setup (one cycle) + write strobe (programmable) meets the write
setup/strobe requirement of the async memory. Slowing down the EMIF clock may be needed
to ensure that the timings meet.

JTAG: Boundary Scan Shift-DR Register is Latched on the Falling Edge of TCKAdvisory 2.1.5

Revision(s) Affected: 2.0 and 2.1 [C6711B]

Details: The Boundary Scan Shift-DR Register is latched on the falling edge of TCK, instead of the
rising edge of TCK. This causes boundary scan hardware/software to see an extra cell when
the chip is in boundary scan mode.

Workaround: The BSDL files for this part have been modified to reflect this advisory.

EDMA/L2 Controller: Potential EDMA Lockout From L2 SRAMAdvisory 2.1.6

Revision(s) Affected: 1.0, 1.2, 1.3, 2.0, and 2.1 [C6711/C6711B]

Details: Under certain conditions, an EDMA transfer can be denied the use of L2 for a longer period of
time than expected. This can cause the EDMA to miss data transfers that have real-time
service requirements (such as certain serial port transfers). This condition may manifest itself
in the following phenomena:

• McBSP transmits repeated data (transmit underrun)

• McBSP receives data late or misses data

• Audio channels in TDM mode “rotate”

• EDMA transfers triggered by timers or external interrupts do not happen or happen
late

• EDMA transfers take longer than expected

• EDMA events are missed

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

27

EDMA/L2 Controller: Potential EDMA Lockout From L2 SRAM (Continued)

This problem is very sensitive to code/execution alignment. Any minor edit to code can make
the problem seem to disappear. The scenario is only applicable when all of the following five
conditions are true:

1. L2 is allocated as both cache and SRAM.

2. EDMA is transferring into or out of L2 SRAM

3. There is an L1P miss that also misses in L2, and must be fetched from external
memory

4. This “missed” instruction is immediately followed by a section of code that produces
a flood of stores that miss L1D, but hit in L2 cache or L2 SRAM

5. The “flood of stores” happens at a rate of at least 1 every other CPU cycle

In this scenario, the next CPU fetch packet does not reside in either L1P or L2 cache;
therefore, it causes an L1P and L2 miss. An L2 cache line (128 bytes, 4 fetch packets) must
be fetched from external memory. The fetch from external memory is split into two requests
(two halves) of 64 bytes, or two fetch packets each. In this document, the two halves are
labeled A and B, respectively, as shown in Figure 10. The first half (A) to arrive in L2 is the half
in which the missed fetch packet resides. This first half is immediately forwarded to L1P so
that CPU can resume execution before the second half (B) is fetched from external memory.
The second half of the L2 line (B) is to be fetched and written to L2 later.

L2 CACHE

L2 SRAM

Bank 0Bank 1Bank 2Bank 3

1) Flood of L1D
write misses / L2
write hits caused

by code in A

3) EDMA servicing
McBSP or other
peripheral

2) Second half of L2
read fill due to previous
L1P miss (B), requires
use of all banks

L2

Note: The #) Indicates the order of Occurrence/Priority

Figure 10. Problem Scenario

At this time, the CPU executes the newly returned code in A (in the first 2 fetch packets
returned). The cache architecture increases write throughput by not performing write-allocate
in case of L1D miss. All CPU stores that miss in L1D are sent directly to L2. This code in A
contains a series (flooding) of stores that miss L1D, but hit in L2. These stores are generated
at a rate of at least 1 every other cycle.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

28

EDMA/L2 Controller: Potential EDMA Lockout From L2 SRAM (Continued)

The lockout condition occurs only when the second half (B) of the L2 cache line fill starts.
When the B is ready, it attempts to write to L2. It will be unable to do so, however, because the
line fill operation accesses all four banks of L2 whereas one bank is always busy servicing the
higher priority L1D misses from the code in A. Thus, the line fill (B) cannot complete until the
flood of writes from A has stopped. The line fill stays at the head of queue in the EDMA
controller, so any other EDMA transfers that access L2 will also be blocked until the flood of
stores has stopped and the L2 line fill (B) has completed.

The amount of time that an EDMA transfer is locked out of L2 is determined by the code
running on the DSP (A), and ultimately by the amount of time that L1D write misses are
happening in succession. When all of the conditions are met, the second half of the L2 line fill
and the EDMA will be locked out of L2 as long as the flood of stores is sustained.

Certain library functions that satisfy all of the above problem conditions may fall into this
EDMA lockout problem. As an example, the memcpy library routine involves a series of CPU
writes at a rate >= 1 write per every 2 cycles. THE EDMA lockout problem may exist if all other
conditions are satisfied. The workarounds stated below may also be used in this case.

Exceptions: The lockout problem does not exist if L2 is configured to be all cache or all SRAM:

• If L2 is all cache, then EDMA transfers servicing other peripherals do not access L2.
They access external memory directly, and lockout does not occur. Since the DSP
does not keep external coherency, L1/L2 caches do not know of external memory
being modified. If this section in external memory is cached, frequent cache cleans
may be needed so that the caches are coherent with external memory.

• If L2 is all SRAM, then there will not be second half of L2 fill (B). When there is L1P
miss, L2 controller will only fetch L1P line size in a single request. The cache line is
immediately passed to L1P by the L2 controller.

The flooding of write misses by itself cannot lock out the EDMA from L2 for an extended
period of time. The EDMA and the write misses can access L2 concurrently, provided that the
EDMA and the L1D write misses access different L2 banks.
NOTE: The lockout does not occur for L1D read misses in A that hit or miss in the L2. If an L1D read

miss hits in L2, there is no L2 line fill to trigger the problem. Lockout also cannot happen if an L1D
read miss also misses L2. For coherency reason, in this case L2 prevents the flood of stores from
happening by stalling the CPU until the entire L2 line fill has completed.

Workaround: If the problem exists, perform the following steps:

1. Use the simulator tool described below to detect and pinpoint locations of potential
problems.

2. At the code locations where the simulator points, perform the software workarounds
described below.

3. Apply the compiler tools workaround described below. Use this step only if no other
workaround is feasible.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

29

EDMA/L2 Controller: Potential EDMA Lockout From L2 SRAM (Continued)

Software Workaround

Code Modification:

• Avoid the flood of L1D write misses. Pre-read all data locations prior to writing them.
This will allocate them in L1D, preventing the L1D write misses from occurring. Recall
that L1D read misses do not cause problems.

• Make sure that any algorithm or code segment that naturally produces a long string of
writes inserts gaps in the write sequence such that writes occur at a frequency slower
than 1 write miss every other cycle. The term ”long” is based on the system
requirements. Gaps in the L1D write misses means that the second half of the L2 read
fill is given a chance to access L2.

Code Location:

• Run the algorithm or code segment that contains A from internal SRAM. There will not
be L2 code read fill (A or B) coming into L2. The simulator can be used to detect such
code segment. See simulator section below for details.

• Ensure the problematic segment of algorithm or code is in cache. This can be
accomplished by issuing any CPU read/load instruction from the beginning of the
problematic code segment in external memory, that will cause both L1D and L2 miss.
Assuming the code segment is not yet in L1/L2 cache, Performing CPU load
instruction generates an L1D request, and CPU stalls until the code missed and data
is returned from L2. After the load instruction, code segment will reside in the L2
cache, and an L2 read fill due to L1P miss will not occur.

Tools

C6x1x Simulator

The simulator can be used to detect potential EDMA lock-out problem. This capability is
featured in the simulator as part of Code Composer Studio version 2.1 package.

This version of simulator includes the detection logic to monitor the amount of CPU stores that
miss in L1D but hit in L2 cache or SRAM, which could possibly lock out the EDMA from
accessing L2 because of the conditions described above.

The user can input a window size limit (W) in which the stores are monitored. During
simulation run, if W/2 or more of such stores occur within W cycles, simulator will halt and a
warning message will be printed. A log file is automatically generated and stored as
“L2_write_hits.log” in the CCS “Start in Directory” (default to MYPROJECTS). The user can
run past the warning to find other potential problems, but the log file will have only the last
case detected.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

30

EDMA/L2 Controller: Potential EDMA Lockout From L2 SRAM (Continued)

There are two ways to activate this capability:

• The user can manually set the window size (W) values in the address location
0x60000000. For example, the following code can be used in the command window to
set the window size of L2 store hits to 15:
?*(int *) 0x60000000 = 15;

• The GEL file init6x1x.gel file (see Example GEL File) can be used to automatically add
the EDMA lockout detection capability in the simulator. Upon loading this GEL file, a
new menu item will appear under GEL −> EDMA Lockout Detection Warning −>
Window_Size_In_Cycles. Upon activating the menu item, a dialog window will appear
in which the user can input the window size W (in cycles) to monitor the L1D−L2
writes.

By default, this memory location (0x60000000) has zero value, which means the monitor is
disabled. Writing non-zero values to this location enables the monitor, and writing a zero
disables it.

C6000 Compiler

The C compiler / codegen tools can be used to prevent this EDMA starvation problem from
happening by using the −edma_bug compiler option. Starting from version Code Composer
StudioTM IDE 2.1 (compiler revision 4.2) of the tools, this compiler option is featured:

• −edma_bugN, where N is an optional parameter which specifies the number of CPU
cycles between the EDMA accesses being starved. So if EDMA service is needed
every 10000 cycles, then the user can do −edma_bug10000.

NOTES: 1. Compiling code with this option affects code size and performance. Only use this option if
problem exists and no workarounds are feasible.

2. −mv6211 option needs to be used with the –edma_bugN option.
3. This new option ensures that any software pipelined loop that takes up more than N cycles

are modified such that there is less than 1 store every 2 cycles.
4. Any software pipelined loops that are known to be shorter than N cycles are unaffected.
5. This compiler option only affects software-pipelined code. Any store instructions outside of a

software-pipelined loop are not affected by this option.
6. Hand-coded assembly or already compiled object code will not be automatically corrected

by this option. The simulator can be used on such code to detect potential problems.

Example GEL File
/*

* init6x1x.gel

*

 * This GEL file (init6x1x.gel) is loaded on the command line of Code Composer. It provides example code

 * on how to reset the C6x DSP and initialize the External Memory Interface. You may have to edit

 * settings in emif_init() to your own specifications as the example is applicable to the C6211/6711 DSK.

 *

 * The StartUp() function is called every time you start Code Composer. You can customize this function to

 * initialize wait states in the EMIF or to perform other initialization.

 */

StartUp()

{

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

31

 /* uncomment the following line to initialize the

 EMIF registers on the C6x when Code Composer starts up */

 emif_init();

 dma_lockout_init();

}

/*

 * Menuitem creates a selection available beneath the GEL menu selection in Code Composer Studio.

 */

menuitem ”Resets”;

hotmenu ClearBreakPts_Reset_EMIFset()

{

 GEL_BreakPtReset();

 GEL_Reset();

 emif_init();

}

/***/

emif_init()

{

/*−−−*/

/* EMIF REGISTER VALUES FROM SPRU269B */

/*−−−*/

#define EMIF_GCTL 0x01800000

#define EMIF_CE1 0x01800004

#define EMIF_CE0 0x01800008

#define EMIF_CE2 0x01800010

#define EMIF_CE3 0x01800014

#define EMIF_SDRAMCTL 0x01800018

#define EMIF_SDRAMTIMING 0x0180001C

 #define EMIF_SDRAMEXT 0x01800020

 *(int *)EMIF_GCTL = 0x00003040;/* EMIF global control register */

 *(int *)EMIF_CE1 = 0x40f40323; /* CE1 − 32-bit asynch access after boot*/

 *(int *)EMIF_CE0 = 0xFFFFFF30; /* CE0 − SDRAM */

 *(int *)EMIF_CE2 = 0x40f40323; /* CE2 − 32−bit asynch on daughterboard */

 *(int *)EMIF_CE3 = 0x40f40323; /* CE3 − 32−bit asynch on daughterboard */

 *(int *)EMIF_SDRAMCTL = 0x07117000; /* SDRAM control register (100 MHz)*/

 *(int *)EMIF_SDRAMTIMING = 0x0000061A; /* SDRAM Timing register */

}

/*

 * Menuitem creates a selection available beneath the GEL menu selection in Code Composer Studio.

 */

menuitem ”EDMA Lockout Detection Warning”;

dialog L2_Store_Hits(win_l2 ”Window size in cycles”)

{

 #define L2_STORE_HITS_WINDOW_REG_ADDR 0x60000000

 *(int *)L2_STORE_HITS_WINDOW_REG_ADDR = win_l2;

}

dma_lockout_init()

{

 #define L2_STORE_HITS_WINDOW_REG_ADDR 0x60000000

 *(int *)L2_STORE_HITS_WINDOW_REG_ADDR = 0x0;

}

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

32

5 C6711B Silicon Revision 2.0 Known Design Exceptions to Functional Specifications

L1D Cache: Data Corruption if L1D Powered up to Wrong StateAdvisory 2.0.1

Revision(s) Affected: 1.0 [C6711] and 2.0 [C6711B]

Details: On TMS320C6711 devices, certain test logic associated with the L1D controller may power up
initialized to an incorrect state. In this case, any of the following conditions will cause data
corruption:

• An L1D load hit occurs during a stall

• An L1D load miss occurs during a stall

• An L1D store miss occurs during a stall

The data at the address pointed to by the current load or store operation will be corrupted with
the last value present on the associated store data bus. Although infrequent, stalls can have a
variety of causes, such as: program-cache miss, data-cache miss, and data-cache store buffer
stall. Thus, there is no viable software workaround.

Data corruption is consistent once the L1D is powered up to the incorrect state. A power cycle
may correct the problem if the L1D is initialized to a correct state. For devices and
environments sensitive to this problem, the L1D is typically powered up to the invalid state
approximately 60 percent − 80 percent of the power cycles. The device may be sensitive to
how long it was powered down or powered on, as well as to other factors such as
temperature.

Workaround: Perform one of the following two workarounds:

1. Board Modification

Note that all of the following must be removed on corrected silicons (once available). Perform
all of the following hardware modifications to ensure that L1D is powered up to a correct state
(see Figure 11):

• Disconnect pin B4 (currently a VSS ground pin) from ground. Tie pin B4 to the inverse
of RESET (pin A13). Pin B4 is actually a test pin that controls the internal test logic. It
was documented as a VSS ground pin to prevent users from accidentally enabling the
device test modes. To ensure that the L1D controller is in the correct state, pin B4
must be asserted high to force the device into a test mode during device reset
(RESET asserted low). Upon release from reset (RESET deasserted high), pin B4
needs to be deasserted low to return to the normal functional mode.

• Pull down EMU[5:2] (pins B12, C11, B10, and D10) to ground with 4.7-kΩ resistors.

• During power up, RESET (pin A13) must be asserted for a minimum of 1.5 M CPU
cycles. For example, when running parts at 150 MHz (6.67-ns CPU cycles), assert
RESET low for a minimum of 10 ms.

• While RESET is active low, inputs EXT_INT4 and EXT_INT5 should be high to allow
the test mode to run to completion. Both pins include internal pullups, so undriven
inputs will meet this requirement.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

33

L1D Cache: Data Corruption if L1D Powered up to Wrong State (Continued)

EMU5

EMU4

EMU3

EMU2

A13

B4

B12

C11

B10

D10

GND

Resistors

Disconnect pin B4
from ground

EXT_INT4

EXT_INT5

C2

C1

4.7-kΩ

During power up,
assert RESET low for

a minimum of 1.5 M
CPU clock cycles

Do not drive EXT_INT4
and EXT_INT5 low

when RESET is low

RESET

VSS

TMS320C6711

Figure 11. Board Modification

2. Test Code

The following test code (bug.asm) allows continued development and checks for incorrect
power-up state. Keep cycling power and running bug.asm until it passes, indicating a valid
power up.

Test code bug.asm creates an L1D load-miss condition during a stall. If the L1D controller is
powered up to an incorrect state, the load-miss operation corrupts the data in address 0x4010
(pointed to by the load-miss operation). This test code checks for data corruption at that
address.

Create an .out file with the following assembly code (bug.asm) and linker command file
(lnk.cmd). Run to breakpoint “exit”. If A0 = 0xFFFFDEAD, the device is powered up to an
incorrect state. Recycle power and re-run the test code. If A0 = 0x01234, the device is
powered up to a correct state and will remain in this correct state until the next power cycle.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

34

L1D Cache: Data Corruption if L1D Powered up to Wrong State (Continued)

Assembly Code (bug.asm)
.global _main
.sect “vectors”

RESET B _main
NOP 5
.text

_main:
init: MVKL 0x00004010, B5 ; B5 = 0x00004010

STW B5, *B5 ; store data 0x4010 in address 0x4010
MVKL 0x00003000, A3 ; A3 = 0x00003000
MVKL 0xffffdead, B7 ; B7 = 0xffffdead
MVKL 0x00004000, A8 ; A8 = 0x00004000

bug: STW B7, *A3 ; Store Miss to cache line B
STW A8, *A8 ; Store Miss to cache line A (Stall occurs

; here due to
; STW/LDW to same cache line)

 || LDW *B5, B9 ; Load Miss to cache line A. This load
; causes
; corruption to address 0x4010 (B5)
; but loads good data

LDW *B5, B10 ; Load Hit to cache line A
NOP 4

check: CMPEQ B10, B5, B1 ; compare loaded value in B10 to expected
; value (0x4010)

 [B1] MVKL 0x01234, A0 ; passed (B10 = 0x4010). Set A0 = 0x1234.
 [!B1] MVKL 0xffffdead, A0 ; failed (B10 does not equal 0x4010).

; Set A0 = 0xffffdead

exit: IDLE

Linker File (lnk.cmd)
MEMORY
{ vecs: o = 00000000h l = 00000200h
 IRAM: o = 00000200h l = 00001000h
}
SECTIONS
{ .text > IRAM

vectors > vecs
}

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

35

6 C6711 Silicon Revision 1.3 Known Design Exceptions to Functional Specifications

HPI: Read Data Corrupted in Fixed-Address Mode and FETCH Read RequestsAdvisory 1.3.2

Revision(s) Affected: 1.0, 1.2, and 1.3 [C6711]

Details: During an HPI read access in fixed address mode (HCNTL[1:0] = 11b), the internal HPI data
pointers become corrupted, and the wrong data will be returned. Any fixed-mode reads from
that point onward will lag behind by 1 read. Example 1 shows a failing sequence.

Example 1. Failing sequence

HPIA write 0x00000000

HPID++ write 0x00112233 (to address 0x0)

HPID++ write 0x44556677 (to address 0x4)

HPID++ write 0x8899AABB (to address 0x8)

HPID++ write 0xCCDDEEFF (to address 0xC)

HPIA write 0x00000000 (reset address to 0)

HPID read returns 0x00112233 (correct, but internal HPI data pointers become corrupted)

HPIA write 0x00000004

HPID read returns 0x00112233 (incorrect — expected 0x44556677, lags by 1 read)

HPIA write 0x00000008

HPID read returns 0x44556677 (incorrect — expected 0x8899AABB, lags by 1 read)

HPIA write 0x0000000C

HPID read returns 0x8899AABB (incorrect — expected 0xCCDDEEFF, lags by 1 read)

This problem also exists when the FETCH bit in the HPIC register is used to read from HPID.

Autoincrement mode reads (HCNTL[1:0] = 10b), HPIC reads (HCNTL[1:0] = 00b), and HPIA
reads (HCNTL[1:0] = 01b) function properly. In addition, host writes in all modes function
properly.

Internal reference number DSPvd01120

Workaround: For HPI reads, avoid using the fixed mode (HCNTL[1:0] = 11b) or the FETCH bit in the HPIC.
Use only the autoincrement mode (HCNTL[1:0] = 10b).

Note that different host mechanisms (software/hardware) are needed to migrate between
systems with revisions 2.0/2.1 and revisions 1.0, 1.2, 1.3 silicons [C6711B and C6711,
respectively] and 1.1 silicon [C6711C], due to advisories 1.1.1, 1.3.2, and 1.3.7.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

36

JTAG: Boundary Scan Does Not FunctionAdvisory 1.3.4

Revision(s) Affected: 1.0, 1.2, and 1.3 [C6711]

Details: Boundary-scan mode does not function.

Internal reference numbers DSPvd00725, DSPvd01207, DSPvd02060, DSPvd02061,
DSPvd02062, DSPvd02063, DSPvd02064, and DSPvd02280.

Workaround: Do not use the boundary scan function.

HPI: Write Request During HPI Time-Out Causes HPI Lock-UpAdvisory 1.3.7

Revision(s) Affected: 1.0, 1.2, and 1.3 [C6711]

Details: An internal HPI circuit times out after 128 CPU cycles since the last HPID access
(i.e., 128 cycles every 2 halfword access). When HPI times out, the read/write request cycle is
assumed completed and the read and write FIFOs of the HPI are flushed. The HRDY signal
goes high during the time-out/flushing process.

If an incoming write request to HPI occurs at the same time as the time-out, then this
boundary condition may lead to incorrect write being issued to the HPI, and may cause the
HPI to be stuck in a NOT READY state, indicated by the HRDY signal staying high indefinitely.

Workaround: Perform any one of the following workarounds:

• Do writes quickly enough so that the HPI never times out. Keep them separated under
100 CPU cycles, if possible.

• If the above method is not possible, writes to HPID should be separated over
150 CPU cycles to avoid the 128-cycle mark plus the time it takes to time out and
flush. After time-out, wait for HRDY to become READY (low) again before performing
additional transfers.

• For a write access around the 128-cycle time-out, perform an HPIA write to flush the
FIFO before any subsequent data writes. The HPIA write must be done only when
HRDY indicates READY.

Note that different host mechanisms (software/hardware) are needed to migrate between
systems with revisions 2.0/2.1 and revisions 1.0, 1.2, 1.3 silicons [C6711B and C6711,
respectively] and revision 1.1 silicon [C6711C], due to advisories 1.1.1, 1.3.2, and 1.3.7.

SPRZ173PTMS320C6711/TMS320C6711B/TMS320C6711C/TMS320C6711D Silicon Errata

37

HPI: HRDY BehaviorAdvisory 1.3.13

Revision(s) Affected: 1.0, 1.2, and 1.3 [C6711]

Details: The HRDY signal goes inactive (not ready) after each word access in autoincrement mode,
even if the internal buffer is ready. In autoincrement mode, HRDY should be inactive (not
ready) after a word access only when the internal buffer is:

• Empty in HPI read operation

• Full in HPI write operation

Workaround: Be sure to observe the HRDY signal when accessing the HPI. The HRDY signal must be
active (ready) when performing HPI reads/writes.

7 C6711 Silicon Revision 1.2 Known Design Exceptions to Functional Specifications

Revision 1.2 is functionally the same as Revision 1.3. See Revision 1.3 Silicon Advisories.

8 C6711 Silicon Revision 1.0 Known Design Exceptions to Functional Specifications

Revision 1.0 advisories are shared with other revisions. See advisories of other revisions.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2005, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	Title Page - SPRZ173P
	REVISION HISTORY
	Contents
	1 Introduction
	1.1 Quality and Reliability Conditions
	1.2 Revision Identification [C6711/C6711B/C6711C/C6711D]

	2 C6711D Silicon Revision 2.0 Known Design Exceptions to Functional Specifications and Usage Notes
	2.1 Usage Notes for C6711D Silicon Revision 2.0
	2.2 C6711D Silicon Revision 2.0 Known Design Exceptions to Functional Specifications

	3 C6711C Silicon Revision 1.1 Known Design Exceptions to Functional Specifications and Usage Notes
	3.1 Usage Notes for C6711C Silicon Revision 1.1
	3.2 C6711C Silicon Revision 1.1 Known Design Exceptions to Functional Specifications

	4 C6711B Silicon Revision 2.1 Known Design Exceptions to Functional Specifications and Usage Notes
	4.1 Usage Notes for C6711 Silicon Revision 2.1
	4.2 C6711B Silicon Revision 2.1 Known Design Exceptions to Functional Specifications

	5 C6711B Silicon Revision 2.0 Known Design Exceptions to Functional Specifications
	6 C6711 Silicon Revision 1.3 Known Design Exceptions to Functional Specifications
	7 C6711 Silicon Revision 1.2 Known Design Exceptions to Functional Specifications
	8 C6711 Silicon Revision 1.0 Known Design Exceptions to Functional Specifications
	IMPORTANT NOTICE

