
Introduction

This white paper will highlight the diffi culties in developing and maintaining fi rmware 

(bootloaders), middleware (operating system (OS)/application drivers) and hardware IPs for 

interfacing with raw NAND devices, with an emphasis on embedded processor and SoCs. It 

begins with some history and comparison with other memory devices and then moves on 

to a more detailed presentation of issues and challenges particular to NAND memories. We 

provide some recommendations for handling the issues at the various levels and discuss the 

future of NAND memories in embedded systems.

Background on non-volatile memory technologies

In this section we will detail some of the current non-volatile memory technologies in use 

today, culminating with the dominant type – NAND fl ash.

EEPROM

Electrically Erasable Programmable Read-only Memory, or EEPROM, is one of the oldest 

forms of technology still in use for user-modifi able non-volatile memories. In modern usage, 

EEPROM has come to mean any non-volatile memory where individual bytes can be read, 

erased or written independently of all other bytes in the memory device. This capability re-

quires more chip area as each memory cell requires its own read, write and erase transistor. 

As a result, the size of EEPROM devices is small (64 Kbytes or less).

EEPROM devices are typically wrapped in a low-pin-count serial interface, such as I2C or 

SPI. Parallel interfaces are now uncommon due to the required larger pin count and resulting 

larger footprint and layout costs. Like almost all available non-volatile memory types, EEPROMs 

use fl oating-gate technology in a complementary metal-oxide-semiconductor (CMOS) pro-

cess. The fl oating gate is insulated by oxide on all sides so that charge that is deposited on 

the gate does not simply fl ow away. Via different electrical programming techniques, electrons 

can be placed on or removed from the fl oating gate, thus storing a single bit of memory.
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Flash

Flash memory, which was invented at Toshiba in 1980 (though commercialization and production didn’t come 

until several years later), is a modifi ed form of EEPROM memory in which some operations happen on blocks 

of memory instead of on individual bytes. This change allowed higher densities to be achieved, as much of the 

circuitry surrounding each memory cell was removed and then placed around entire blocks of memory cells.

There are two types of fl ash memory arrays in the marketplace – NOR fl ash and NAND fl ash. Though the 

naming is derived from the internal organization and connection of the memory cells, the two types have also 

come to signify a particular external interface as well. Both types of memory use fl oating gates as the storage 

mechanism, though the operations used to erase and write the cells may be different.

NOR fl ash

NOR fl ash was the fi rst version of fl ash memory and, until about 2005, it was the most popular fl ash memory 

type (measured by market revenue)i. In a NOR fl ash, the bytes of memory can be read or written individually, 

but erasures happen over a large block of bytes. Because of the capability to read and write individual bytes, 

NOR fl ash devices are not suitable for using with any kind of block error correction. Therefore, there is an 

implicit requirement that NOR memory be robust to errors. The write/erase cycle endurance of NOR fl ash is 

typically 100,000 to 1 million times.

The capability to read individual bytes also means that it is appropriate to act as a random access memory 

(RAM), and NOR fl ash devices will typically employ an asynchronous parallel memory interface with sepa-

rate address and data buses. This allows NOR fl ash devices to be used for storing code that can be directly 

executed by a processor (such as in the BIOS of a PC or the bootloader of an embedded system). NOR fl ash 

can also be found wrapped in serial interfaces, such as SPI, in which case they act very much the same as 

SPI EEPROM implementations for reading and writing.

NAND fl ash

The organization and interface of the NOR fl ash devices places limitations on how they can scale with pro-

cess shrinks. With a goal of replacing spinning hard disk drives, the inventor of NOR fl ash later created NAND 

fl ash. The goal at the time was to sacrifi ce some of the speed offered by NOR fl ash in order to gain compact-

ness and a lower cost per byteii. This goal has largely been met in recent years, with NAND sizes increasing 

to multiple gigabytes per die, while NOR sizes have stagnated at around 128 MB. But this has come at a 

cost, as will be discussed later.

Raw NAND memory is organized into blocks, where each block is further divided into pages. For example, 

MT29F2G08AACWP has a block size of 128 KBytes (excluding spare area) and 64 pages per block.iii

In NAND memories, read and write operations happen on a per page basis, but erase operations happen 

per block. The fact that read and write operations are done block-wise means that it is suitable to employ 

block error correction algorithms on the data. As result, NAND manufacturers have built in spare bytes of 



Software and hardware design challenges due to the dynamic raw NAND market April 2011

3Texas Instruments

memory for each page to be used for holding this and other metadata. NOR fl ash, on the other hand, does 

not have such spare bytes.

Also in contrast to NOR fl ash, the NAND fl ash interface is not directly addressable and code cannot be ex-

ecuted from it. The NAND fl ash has a single bus for sending command and address information as well as for 

sending and receiving memory contents. Therefore, reading a NAND device requires a software device driver 

of some kind. For example, booting an embedded processor from a NAND fl ash would require a specialized 

boot ROM, internal to the processor, to correctly interface to and copy data from a NAND fl ash at startup.

NAND fl ash is the underlying memory type for USB memory sticks, memory cards (e.g., SD cards and 

compact fl ash cards) and solid state hard drives. In all cases, the raw NAND fl ash devices are coupled with 

a controller that translates between the defi ned interface (e.g., USB, SD and SATA) and the NAND’s own 

interface. In addition, these controllers are responsible for handling a number of important tasks for maintain-

ing the reliability of the NAND memory array.

Throughout the remainder of this paper, we will focus solely on NAND technologies and the challenges pre-

sented by trying to incorporate raw NAND devices into an embedded system. In this section we will look at 

some of the issues that arise when interacting with raw NAND devices. In the context of embedded systems, 

we are discussing situations where one or more NAND devices are connected directly to an embedded 

processor or system-on-chip (SoC) with its own external memory interface or NAND controller.

Errors and error correction

As stated previously, despite being based on the same underlying fl oating-gate technology, NAND fl ash has 

scaled in size quickly since overtaking NOR fl ash. But this has come at a cost of introducing errors into the 

memory array.

Figure 1. MT29F2G08AACWP NAND memory organization (courtesy Micron Inc.)

Raw NAND issues 

and requirements
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To increase density, NAND producers have resorted to two main techniques. One is the standard process 

node and lithography shrinks, making each memory cell and the associated circuitry smaller. The other 

has been to start storing more than one bit per cell. Early NAND devices could store one of two states in a 

memory cell, depending on the amount of charge stored on the fl oating gate. Now, raw NAND comes in three 

fl avors: single-level cell (SLC), multi-level cell (MLC) and, more recently, tri-level cell (TLC). These NANDs dif-

fer in the number of charge levels possibly used in each cell, which corresponds to the number of bits stored 

in each cell. SLC is the original two levels per cell and therefore stores 1 bit of information per cell. MLC uses 

four levels and stores 2 bits, and TLC uses eight levels and stores 3 bits.

While reducing silicon feature sizes and storing more bits per cell reduces the cost of the NAND fl ash and 

allows for higher density, it increases the bit error rate (BER). To overcome the increasing noisiness of this 

storage medium requires larger and larger error correcting codes (ECCs). An error correcting code (ECC) is 

redundant data added to the original data. In the event of errors, the combined data allows the recovery of 

the original data. The number of errors that can be recovered depends on the algorithm used.

For example, the latest SLC NANDs in the market requires 4 or 8 bits ECC per 512 bytes, while MLC NAND 

requires more than 16 bits ECC per 512 bytes. But four years ago, SLC NANDs only required 1 bit of ECC and 

the fi rst MLC NANDs only required 4 bits of ECC.

What are the various algorithms and the differences used to implement ECC?

Ideally any ECC algorithm can be used as long as the encoder and decoder matched. The popular algorithms 

used for NAND ECC are:

a. Hamming Code: For 1-bit correctioniv

b. Reed Solomon: For up to 4 bits of correction. This is less commonv

c. BCH: For 4 or more bits of correctionvi

Figure 2: Device issues versus process node shrinks (courtesy Micron)
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Where is ECC stored in the NANDs?

Extra memory (called the “spare memory area” or “spare bytes region”) is provided at the end of each page in 

NAND. This area is similar to the main page and is susceptible to the same errors. For the present explana-

tion, assume that the page size is 2048 bytes and the ECC requirements are 4 bits per 512 bytes. Let’s 

assume that the ECC algorithm generates 16 bytes of redundant data per 512 bytes. For 2048 bytes page, 

64 bytes of redundant data will be generated. For example, in current TI embedded processors, the ECC data 

is generated for every 512 bytes. In this case, the spare bytes area will be fi lled with the ECC redundant data. 

As ECC requirements have gone up, the size of the spare regions provided by the NAND manufacturers have 

increased as well.

What will happen if insuffi cient ECC is used with a NAND device requiring more?

The manufacturers of the NAND devices specify the data retention and the write/erase endurance cycles 

under the assumption of the specifi ed ECC requirements being met. When insuffi cient ECC is used, the 

device’s usable lifetime is likely to be severely reduced. In this scenario, if more errors are detected than can 

be corrected, data will be unrecoverable.

Geometry detection

Before raw NAND operations can begin, the fi rst step for the fi rmware/middleware is to determine the NAND 

geometry and parameters. The following list is the minimum set of NAND parameters needed by a bootloader 

or other software layer to determine NAND geometry:

• 8-bit or 16-bit data width

• Page size

• Number of pages per block (block size)

• Number of address cycles (usually fi ve in the current NANDs)

Methods used by NAND manufacturers

Raw NAND provides various ways to determine its geometry at run time. This section discusses various 

methods used by NAND manufacturers to provide this information.

•  4th byte ID: All raw NANDs have a READ ID (0x90 at address 0x00) operation which returns 5 bytes 

of identifi er code. In these 5 bytes, the fi rst and second byte (if the starting byte number is 1 aka “one 

based”) are the manufacturer and device IDs, respectively. The fourth byte (one based) has informa-

tion on the NAND parameters (discussed above), which can be used by the RBL. Figure 17 from the 

 MT29F2G08AACWP datasheet (page no. 24) shows the READ ID operation. For this particular NAND, the 

four ID bytes are (from the datasheet, page no. 25): 



Software and hardware design challenges due to the dynamic raw NAND market April 2011

Byte number returned from READ ID command Value

1 0x2C

2 0xDA

3 Don’t care

4 0x15

This 4th byte information can be used to determine raw NAND geometry. However, the interpretation of 

the 4th byte ID changes from raw NAND manufacturer to manufacturer and between generations of raw 

NANDs. Two interpretations are listed below:

1.  A format used by Toshiba, Fujitsu, Renesas, Numonyx, STMicroelectronics, National and Hynix, with 

certain bits used to represent the page size, data bus size, and  spare bytes size and number of pages 

per block.

2.  Samsung format: A format particular to the latest Samsung NANDs (e.g., K9LBG08UXD), holding similar 

information to the fi rst representation, but represented by different bit combinations representing different 

possible values.

Since the 4th ID byte format is not standardized in any way, its use for parameter detection is not reliable.

•  ONFI: To overcome some of the issues discussed in the previous section, many NAND manufacturers 

(e.g., Hynix, Micron, STMicroelectronics, Spansion and Intel) have joined hands to simplify NAND fl ash 

integration and offer Open NAND Flash Interface (ONFI)-compliant NANDs. ONFI also offers a standard 

approach to read NAND parameters.

Other concerns

Another concern that must be addressed is that of the physical connection between the embedded processor 

and the raw NAND device. For instance, NAND devices can be acquired that operate at either 3.3V or 1.8V. 

One should be sure to purchase NANDs with compatible voltage levels. It should be pointed out that 1.8V 

NAND devices are often specifi ed with worse performance than 3.3V equivalent parts.

Another aspect that needs to be considered is whether asynchronous or synchronous NANDs will be 

used. The synchronous interface was something introduced with the ONFI 2.0 specifi cation. Historically, 

NAND interfaces were asynchronous. However, to reach higher performance levels for data movement, clock 

synchronized data movement with DDR signaling was provided as an interface option. This type of interfacing 

may be common in SSD drives but is not common in the typical embedded processor or SoC.

Hardware design challenges (memory interfaces)

Advanced ECC operations, like Reed Solomon or BCH, are computationally very expensive. Many solution of-

fers hardware (HW) support for ECC. However, these fi xed solutions lag behind the growing ECC  requirement. 

6 Texas Instruments

Challenges to address
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For example, MLC NANDs may now require more than 16 bits ECC per 512 bytes. If the hardware (HW) 

support was designed a few years ago, it might not support 16 bit. In that case, the HW ECC support would 

become useless, and either the NAND could not be used or the ECC computation would need to be done 

in the software (SW) (which results in taking CPU cycles from other important tasks and assigning it to ECC 

calculation).

Firmware and ROM bootloaders

The dynamic raw NAND market (raw NANDs have relatively short life cycles of about two years) and the 

initial lack of standardization has resulted in heterogeneous interfaces from different NAND manufacturers. 

Not only do these approaches vary between manufacturers, but, at times, they also differ between different 

generations of NANDs from within the same manufacturer! This offers signifi cant challenges for fi rmware and 

middleware that might not be updated very often (if at all).

The main concern when designing ROM bootloaders for raw NAND booting is whether or not future NAND 

devices will work. The ONFI standard helps alleviate this somewhat, since it provides a way to guarantee 

device identifi cation commands that should not have to change in the future. The use of the 4th ID byte is 

not a reliable mechanism. Another major concern related to the hardware design issue is what level of ECC 

is suffi cient. Since the NAND parts that will be connected to the system cannot be known a priori, the safest 

solution is to leverage the maximum ECC possible with your memory interface or controller. Using more ECC 

than required for booting simply improves robustness, with the possible downsides being increased boot time 

(though this may be implementation dependent) and more complex factory programming procedures.

Since NAND manufacturers do not guarantee that all blocks of the memory are good (nor will all blocks 

remain good over the device’s lifetime), another issue that must be addressed is how bad blocks can be 

handled if encountered during booting. To clarify, a bad block is one that contains any unrecoverable errors 

(that is, any errors not corrected by ECC). Some strategies include placing multiple copies of the boot image 

and letting the boot loader locate and load the fi rst good one or having the boot loader respect a bad block 

table stored somewhere else in the NAND. Another useful strategy might be to have the system run-time 

software periodically check and correct any issues with the boot block (perhaps every 100 boot cycles). 

Regardless of what approaches are taken, a ROM bootloader needs to be able to deal with recovery from bad 

blocks and fi rmware upgrades gone bad (fl ash corrupted), so the above issues need to be considered care-

fully in designed procedures for booting and fl ashing.

Middleware/OS software issues

The middleware, or run-time software, suffers from similar issues to those faced by the ROM boot loader. 

One well-known middleware example is the memory technology device (MTD) layer of the Linux® OS kernel. 

Although it might be easier to adapt the middleware to handle newer devices, newer detection schemes and 

newer command sets offered by more recent device, it does present an overhead every time a change has 
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to be propagated through different support structure from middleware teams to customers. For example, the 

MTD layer of Linux had issues when device sizes reached 4GB and above since the size had originally been 

defi ned as a 32-bit value. In another case, there was no support for NAND device with page sizes larger than 

2KB. Modern NAND devices have 4KB or 8KB page sizes. Fixing these issues is not necessarily trivial.

In addition, the run-time middleware, which will likely support some kind of read/write fi lesystem on top of 

the NAND fl ash, must deal with activities such as wear leveling and bad block management. Wear level-

ing is software mechanism to spread the write/erase cycles around the chip so that all blocks wear evenly. 

Failure to do so will result in oft-used blocks failing very early. This is more important now than ever before, 

as the cells of the MLC devices have much reduced endurance rating (3,000–5,000 compared to 10,000 to 

100,000 for SLC NANDs). The middleware must also track which blocks are bad, either from the factory or 

having failed over time, and make sure they are not used for any further reads and writes. The more stringent 

requirements of recent and future NAND devices may require even more complicated schemes to be enacted 

for the above two activities.

Supporting different custom ECC hardware is another challenge as one ports the middleware from one 

generation of processor to the next, and changes and improvements to the ECC capabilities must be handled 

in new drivers. Additionally, there is no good solution if the ECC HW cannot meet the ECC requirement of the 

NAND, as software ECC has proven to be too slow and cumbersome for most embedded processors.

In this author’s opinion, the main issue with using raw NAND devices in the embedded processor space is 

the skyrocketing ECC requirements. In fi ve years, ECC requirements have gone from 1 bit/4 bit to pushing 

past 24 bits. Memory interface hardware designed six years ago is very likely incompatible with any new 

chips available on the market today. Though the issue of device identifi cation and parameterization has been 

a problem, it is not considered as critical as the fundamental incompatible resulting from insuffi cient ECC 

hardware in the memory controller/interface of embedded processors. Given the lifetime of products based 

on such devices (10–15 years), the lack of NAND supply that fi ts the original design requirements could force 

major rework in both hardware and software part of the way through the product life cycle.

Fortunately, the memory manufacturers have realized the issues with rapidly increasing ECC requirements 

and have taken steps to address it. The solution in two words is Managed NAND.

Managed NANDs are devices that perform some or all of the three NAND management tasks (e.g., ECC, 

wear leveling and bad block management) on the memory device instead of in a host controller. Perhaps 

the most compelling of these is the eMMC product. eMMC is a Joint Electron Devices Engineering Council 

(JEDEC) standard that combines electrical and physical chip specifi cations with the interface commands and 

protocols of the MMC 4.3  into a single entityvii. The eMMC architecture is shown below. In such a design, the 

details of ECC, wear leveling and bad-block management are encapsulated into the controller core and are 

no longer a concern for the system developer. In this case, the chip-to-chip interface becomes a standard 

MMC interface.

8 Texas Instruments
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There are also what could be termed partially-managed NAND devices that maintain the NAND interface 

but move the most worrying aspect of dealing with raw NANDs – the ECC – into the memory device. The 

solution, which Micron has branded as ClearNAND™, may be attractive to those looking to replace the 

NANDs in current designs with minimal changes to the system SW or HWviii. Toshiba, another major NAND 

manufacturer, has recently released a nearly identical solution, dubbed SmartNAND™. It seems certain that 

other NAND vendors will soon follow the same path.ix

There are additional costs to the managed NAND solutions, so a design may pay for this convenience. 

But having seen the problems of a rapidly maturing NAND market as both a silicon producer and a silicon 

consumer, it is clear that the some form of managed NAND is the only sensible choice for future design and 

development. Embedded processor vendors, such as Texas Instruments, will continue to support the exist-

ing ECC hardware in their memory interfaces, but there is little reason for them to spend design time and 

resources trying to keep pace with the skyrocketing ECC requirements. Jim Cooke of Micron recently wrote, 

9Texas Instruments

Figure 3. eMMC block diagram (courtesy Samsung)

Figure 4. Standard raw NAND versus ClearNAND (courtesy Micron)



“In the near future, interfacing to raw NAND Flash will be an option for only a minority of the market, the very 

large customers who are almost as familiar with NAND fl ash as the manufacturers are.” This author agrees 

completely with his assessment. At this point in the evolution of NAND, it is best to leave the implementation 

of advanced ECC solutions to the memory vendors, as they push their devices to the physical limits of CMOS 

technology.

i http://www.eetimes.com/electronics-news/4123962/NAND-fl ash-to-overtake-NOR-in-2005-says-analyst

ii http://www.forbes.com/global/2002/0624/030.html

iii http://download.micron.com/pdf/datasheets/fl ash/nand/2_4_8gb_nand_m49a.pdf

iv http://download.micron.com/pdf/technotes/nand/tn2908.pdf

v http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction

vi http://en.wikipedia.org/wiki/BCH_code

vii http://www.jedec.org/standards-documents/focus/fl ash/e-mmc

viii http://www.micron.com/products/nand_fl ash/clearnand.html

ix http://www.toshiba.com/taec/news/press_releases/2011/memy_11_608.jsp

x  http://www.eetimes.com/design/memory-design/4213098/NAND-201--the-continued-evolution-of-NAND-

Flash
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