
User's Guide
C29x Servo Drive With Incremental Encoder for PMSM
FOC Evaluation

ABSTRACT

The Servo Drive with Incremental Encoder for PMSM FOC Evaluation, or Servo Drive with QEP for short, is
a framework to develop, and experiment with, field-oriented control (FOC) of permanent magnet synchronous
motors (PMSM). In this framework, the PMSM's position is sensed by an incremental encoder (QEP). The
framework runs on a low-cost F29H85x-based LaunchPad plus a three-phase inverter evaluation module (EVM).
Testing can be performed with a low-voltage PMSM.

Table of Contents
1 Introduction...2

1.1 Hardware Block Diagram... 2
1.2 Software Flowchart.. 3
1.3 MCU Resources Used... 4

2 Running the Servo Drive With QEP on TI Hardware..5
2.1 Supported Hardware.. 5
2.2 Hardware Setup... 5
2.3 Lab Software.. 11
2.4 Testing the Project in Incremental Steps..14

References... 20

List of Figures
Figure 1-1. Hardware Block Diagram.. 2
Figure 1-2. Flowchart: Startup and Background Loop... 3
Figure 1-3. Flowchart: Motor Control Interrupt Service Routine.. 4
Figure 2-1. LAUNCHXL-F29H85X Configuration.. 6
Figure 2-2. DAC128S Module Block Diagram... 6
Figure 2-3. DAC128S EVM Connected to F29H85X LaunchPad..7
Figure 2-4. BOOSTXL-3PHGANINV Hardware Setup.. 8
Figure 2-5. BOOSTXL-LMG2100-MD Hardware Setup...9
Figure 2-6. BP-AMC0106-LMG-MD Hardware Setup..10
Figure 2-7. DAC128S Block Diagram.. 13
Figure 2-8. Step 1: Hardware Setup Validation Block Diagram... 15
Figure 2-9. Step 2: Open Loop Control Block Diagram... 17
Figure 2-10. Step 3: Current Closed Loop Control Block Diagram..19
Figure 2-11. Step 4: Speed and Current Closed Loop Control Block Diagram..20

List of Tables
Table 1-1. Resources Used... 4
Table 2-1. Inverter Evaluation Kits Supported... 5
Table 2-2. Connections for Inverter Boards and Motor.. 10
Table 2-3. Development Setup Steps...11
Table 2-4. Folder Structure...11
Table 2-5. Predefine Definitions...12
Table 2-6. Watch Variable Overview.. 14
Table 2-7. Setup Steps.. 16
Table 2-8. Hardware Verification Procedure.. 16
Table 2-9. Control Test Procedure... 18

www.ti.com Table of Contents

SPRUJH1 – AUGUST 2025
Submit Document Feedback

C29x Servo Drive With Incremental Encoder for PMSM FOC Evaluation 1

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH1&partnum=

Trademarks
Code Composer Studio™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.
1 Introduction
Key features of the Servo Drive with QEP are:

• Leverages the F29H85x device family featuring the C29x CPU
• Demonstrates:

– Sensored field oriented control (FOC) evaluation of permanent magnet synchronous motors (PMSM)
– Position sensing via incremental encoder (QEP)

• Supports multiple three-phase inverter evaluation kits
• Facilitates step-by-step learning through incremental implementation
• Enables low-cost experimentation
• Provides a reference for your own design implementation
• Complete source provided

Note
This F29H85x project is a direct port of the C28x Universal Servo Drive Lab available in the C2000
Motor Control SDK. The C28x Universal Servo Drive Lab was originally based on the C2000 Universal
Motor Control Project, with removal of sensorless algorithms. As such, the C2000 Universal Motor
Control Project and Lab Guide can be a useful reference for motor control theory and additional
details of the incremental build levels.

1.1 Hardware Block Diagram
The required hardware is:

• A low-cost LaunchPad featuring a C29x-based MCU
• A 3-phase inverter BoosterPack
• A low-voltage PMSM motor with incremental encoder
• External DC power supply

An optional digital-to-analog converter (DAC) evaluation module is supported for debug.
LaunchPad

3-phase Inverter BoosterPack

DAC EVM BoosterPack

(optional)

PMSM

Motor

Incremental

Encoder

Oscilloscope

MCU

QEP

ADC or

SDFM

SPI

PWM

DC Power

Supply

SPI

Current

sensing

ADC

DC Bus

Figure 1-1. Hardware Block Diagram

Trademarks www.ti.com

2 C29x Servo Drive With Incremental Encoder for PMSM FOC Evaluation SPRUJH1 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj26
https://www.ti.com/lit/pdf/spruj26
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH1&partnum=

Refer to:
• Section 2.1: list of specific part numbers supported.
• Section 2.2: hardware setup.

1.2 Software Flowchart
The Servo Drive with QEP software consists of:

• Startup routine: configures the device, calculates analog-to-digital converter (ADC) offsets
• Motor control interrupt service routine (ISR): started by the ADC end of conversion (EOC) or by the SDFM

module.
• Background loop: periodically updates the motor control parameters.

Tools required to run the application:
• Code Composer Studio™

• F29x Motor Control SDK

Refer to: Section 2.3
• Required tool versions
• Instillation instructions
• Application software configuration
• Running the example.

while(flagEnableSystem == true)

main()

initMotor1CtrlParameters()

Initialize motor control parameters

Debug Tool Configuration:

DACs, Datalog, etc.

runMotor1Control()

Update and check motor control

parameters & state machine

Background Loop

runMotor1OffsetsCalculation()

Sensing offset calibration

Device_init()

Initialize device, clocks, & memory

Board_init()

SysConfig generated peripheral

configuration

Interrupt_enableGlobal()

Enable interrupts

Timer Based Background Tasks:

Toggle LEDs, check motor

protections, calculate RMS data, etc. Motor Control ISR

Figure 1-2. Flowchart: Startup and Background Loop

www.ti.com Introduction

SPRUJH1 – AUGUST 2025
Submit Document Feedback

C29x Servo Drive With Incremental Encoder for PMSM FOC Evaluation 3

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH1&partnum=

HAL_ackMtr1Int()

Clear peripheral interrupt flags

motor1CtrlISR()

HAL_readMtr1Data()

Read motor sensing data, calculate

current/voltage

return;

CLARKE_run()

Run Clarke transform on phase currents

TRAJ_run()

Run trajectory control for speed ref

ENC_run() & SPDCALC_run()

Run encoder routine for motor angle

followed by speed calculation

Phasor calc and PARK_run()

Compute Sin/Cos phasor and run Park

Transform

Motor Start-up Handling:

Start-up state machine (Align, Open-

loop, Closed-loop, etc.)

Run Speed Controller PI_run():

Runs every Nth ISR cycle based on

numCtrlTicksPerSpeedTick value.

Run FWC and MTPA:

Runs if enabled, flagEnableFWC

& flagEnableMTPA

Calc Id & Iq References:

Set IdqRef_A.value[]

Run Current Controllers PI_run():

Runs every ISR cycle. Calculate limits

and run Id & Iq PI controllers.

IPARK_run, SVGEN_run, &

HAL_writePWMData:

Run I-Park transform, Space Vector

Gen, and update PWMs

Run Debug Tool Functions:

DAC, Datalog modules, etc.

Figure 1-3. Flowchart: Motor Control Interrupt Service Routine

1.3 MCU Resources Used
Table 1-1. Resources Used

Resource

CPU C29x CPU 1

PWM Channels 6

ADC Channels BOOSTXL-3PHGANINV 4: 3 current, 1 voltage

BOOSTXL-LMG2100-MD 4: 3 current, 1 voltage

BP-AMC0106-LMG-MD 1: voltage

SDFM Channels BOOSTXL-3PHGANINV 0

BOOSTXL-LMG2100-MD 0

BP-AMC0106-LMG-MD 3: current sensing

eQEP Modules 1

Control Methodology Field oriented control (FOC)

ISR Frequency 20kHz

ISR Performance Consumes 2.2 micro seconds with a 200MHz CPU clock and the motor spinning

Memory Consumption RAM: 12.4KB, FLASH: 60KB with compiler optimization level O2

Introduction www.ti.com

4 C29x Servo Drive With Incremental Encoder for PMSM FOC Evaluation SPRUJH1 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH1&partnum=

2 Running the Servo Drive With QEP on TI Hardware
This section is a guide to running the servo example on TI hardware.

2.1 Supported Hardware
Table 2-1 lists the supported inverter evaluation kits. Each inverter board has been tested with:

• C2000 MCU Evaluation Module: LAUNCHXL-F29H85X
• Motor kit: LVSERVOMTR (Encoder Embedded)
• DAC EVM (optional): DAC128S085EVM: 12-bit 8 Channel DAC Evaluation Module

Table 2-1. Inverter Evaluation Kits Supported
Inverter Board

Current Sensing TopologyPart Number Description
BOOSTXL-3PHGANINV 12~60V, 7A RMS, 10A Peak, 3ph GaN

inverter
Three shunt-based inline motor phase current
sensing

BOOSTXL-LMG2100-MD 12~60V, 27A RMS without heat sink, 3ph
GaN inverter

Three shunt-based inline motor phase current
sensing

BP-AMC0106-LMG-MD 12~60V, 27A RMS without heat sink, 3ph
GaN inverter

Three shunt-based inline sensing with Delta-
Sigma Modulator

2.2 Hardware Setup
This section describes how to setup the hardware to run the servo drive:

• Configure the LaunchPad switches
• Optional: connect the DAC EVM to the LaunchPad
• Connect the inverter board to the LaunchPad
• Connect the motor to the LaunchPad + inverter board

2.2.1 LAUNCHXL-F29H85X Setup

The LAUNCHXL-F29H85X is a low-cost development board that supports the connection of two BoosterPack
plug-in modules. For documentation such as user's guide and schematics, see the tool folder.

Configure the LaunchPad as follows:

• BOOT: set to flash (UP, UP)
• ADC reference: set to external reference (UP)
• QEP: connect Q1 to J12 (RIGHT switch UP)
• Encoder connection: J12 connects to the motor harness J4. The J12 ground pin is on the LEFT.
• Connect a USB cable to the on-board USB connector on the C2000 Launchpad. This connection supplies

power to the LaunchPad and enables an isolated JTAG connection to the C2000 device. Leave the cable
disconnected until testing begins.

Note
Use of parallel I/O boot can lead to random F29H85x device resets. The BOOT mode switch must
not be set to parallel I/O boot unless a host is present to drive the control lines.

www.ti.com Running the Servo Drive With QEP on TI Hardware

SPRUJH1 – AUGUST 2025
Submit Document Feedback

C29x Servo Drive With Incremental Encoder for PMSM FOC Evaluation 5

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/tool/LAUNCHXL-F29H85X
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/BOOSTXL-LMG2100-MD
https://www.ti.com/tool/BP-AMC0106-LMG-MD
https://www.ti.com/tool/LAUNCHXL-F29H85X
https://www.ti.com/tool/LAUNCHXL-F29H85X
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH1&partnum=

Figure 2-1. LAUNCHXL-F29H85X Configuration

2.2.2 DAC128S085EVM Setup (Optional)

The DAC128S085EVM evaluation module is a useful debug tool. The board converts digital data, received
through the SPI, to analog values that can be examined on an oscilloscope. Typical variables sent to the DAC
are angle, voltage, and current measurements.

MCU

DAC EVM

Scope SPI

DACOUT A 12-bit

Digital Data

Ex: angle, ADC data

such as voltage,

current measurement

SPI
DACOUT B

DACOUT C

DACOUT D

Up to 8 analog

output channels

Figure 2-2. DAC128S Module Block Diagram

Setup the DAC EVM:

1. Connect to LaunchPad connectors J5/J7 and J6/J8 (BoosterPack site2).
2. On the DAC EVM, connect pin JA-2 to pin JB-2 using a jumper wire.

For more information:

• For EVM documentation, schematics, visit the DAC128S085EVM tool page.
• For usage in the Servo Drive with QEP project, see Section 2.3.4.2.

Running the Servo Drive With QEP on TI Hardware www.ti.com

6 C29x Servo Drive With Incremental Encoder for PMSM FOC Evaluation SPRUJH1 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH1&partnum=

A2

4 Output channels

Jumper

Prototype Launchpad

B2

Figure 2-3. DAC128S EVM Connected to F29H85X LaunchPad

www.ti.com Running the Servo Drive With QEP on TI Hardware

SPRUJH1 – AUGUST 2025
Submit Document Feedback

C29x Servo Drive With Incremental Encoder for PMSM FOC Evaluation 7

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH1&partnum=

2.2.3 BOOSTXL-3PHGANINV Setup

Note
If using the optional DAC128S085EVM, add risers to elevate the BOOSTXL-3PHGANINV above the
DAC EVM.

1. Set the LaunchPad jumpers as described in Section 2.2.1.
2. Connect BOOSTXL-3PHGANINV to J1/J3 and J4/J2 of the LaunchPad.
3. Connect the motor and encoder as described in Section 2.2.6. For initial testing of the hardware setup

(Section 2.4.2) leave the motor disconnected from the harness.
4. Connect a DC power supply with a voltage ranging from 12V to 60V to the inverter board's voltage supply

pins. Leave the power supply off for now.

Figure 2-4. BOOSTXL-3PHGANINV Hardware Setup

Running the Servo Drive With QEP on TI Hardware www.ti.com

8 C29x Servo Drive With Incremental Encoder for PMSM FOC Evaluation SPRUJH1 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH1&partnum=

2.2.4 BOOSTXL-LMG2100-MD Setup

Note
For this BoosterPack, connecting to the bottom of the LaunchPad is suggested.

1. Set the LaunchPad jumpers as described in Section 2.2.1.
2. Connect BOOSTXL-LMG2100-MD to J1/J3 and J4/J2 of the LaunchPad. Use the bottom connectors.
3. Connect the motor and encoder as described in Section 2.2.6. For initial testing of the hardware setup

(Section 2.4.2) leave the motor disconnected from the harness.
4. Connect a DC power supply with a voltage ranging from 12V to 60V to the inverter board's voltage supply

pins. Leave the power supply off for now.

Figure 2-5. BOOSTXL-LMG2100-MD Hardware Setup

www.ti.com Running the Servo Drive With QEP on TI Hardware

SPRUJH1 – AUGUST 2025
Submit Document Feedback

C29x Servo Drive With Incremental Encoder for PMSM FOC Evaluation 9

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/tool/BOOSTXL-LMG2100-MD
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH1&partnum=

2.2.5 BP-AMC0106-LMG-MD

1. Set the LaunchPad jumpers as described in Section 2.2.1.
2. Connect BP-AMC0106-LMG-MD to J1/J3 and J4/J2 of the LaunchPad.
3. Connect the motor and encoder as described in Section 2.2.6. For initial testing of the hardware setup

(Section 2.4.2) leave the motor disconnected from the harness.
4. Connect a DC power supply with a voltage ranging from 12V to 60V to the inverter board's voltage supply

pins. Leave the power supply off for now.

Figure 2-6. BP-AMC0106-LMG-MD Hardware Setup

2.2.6 Motor Setup

Table 2-2. Connections for Inverter Boards and Motor
LVSERVOMTR

Motor Phase Lines U / A BLACK (16AWG)

V / B RED (16AWG)

W / C WHITE (16AWG)

Encoder J12 of LAUNCHXL-F29H85X J4 of the Motor Harness
GND (J12-1 LEFT) BLACK (J4-1)

+5V (J12-2) RED (J4-2)

1A (J12-3 QEP1_A) BROWN (J4-3)

1B (J12-4 QEP1_B) ORANGE (J4-4)

1I (J12-5 QEP1_I RIGHT) BLUE (J4-5)

Running the Servo Drive With QEP on TI Hardware www.ti.com

10 C29x Servo Drive With Incremental Encoder for PMSM FOC Evaluation SPRUJH1 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/tool/BP-AMC0106-LMG-MD
https://www.ti.com/tool/lvservomtr
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH1&partnum=

2.3 Lab Software

Note
As provided, the projects use compiler V2.0.0.0.STS. While this version is a sort-term support
release, V2.0.0.0.STS includes performance improvements, and bug fixes, over V1.0.0.0.LTS. The
intention is to use V2.0.0.0.STS for early evaluation only. Please move to an long-term support
(<version>.LTS) release when available.

Follow the steps in this section to run the Servo with QEP application on hardware.

• Setup the software development environment.
• Configure the application software
• Become familiar with key watch variables
• Build, and test, the project step-by-step with incremental functionality

2.3.1 Software Development Environment

Table 2-3. Development Setup Steps
Step Item Details

1 Code Composer Studio • V20.2 or later
• Download: Code Composer Studio (CCS)

2 Learn about CCS • Code Composer Studio Academy

3 F29 Motor Control SDK • V1.0 or later
• Download: F29X-MOTOR-CONTROL-SDK

4 Install Python and OpenSSL • Getting Started Guide in the F29x SDK includes prerequisites highlighted in the Build, Load
and Run section.

• <install>\c29_sdk\mcu_sdk_f29h85x\docs\html\GETTING_STARTED.html

5 Open CCS and import the
project.

• File → Import Project(s)
• <install>\solutions\servo_drive_qep
• Select the project matching your inverter hardware.

– Example: servo_drive_qep_3phGanInv corresponds to BOOSTXL-3phGanInv

Note
Make sure you have the correct version of Python and OpenSSL installed before proceeding
(step 4).

2.3.2 Project Orginization

Once imported into Code Composer Studio, the Servo Drive with QEP project has the folder structure described
in Table 2-4.

Table 2-4. Folder Structure
Folder Includes
README.html Overview of the project. Links to the SDK documentation.

sys_main.c main() function and background loop

sys_main.h #include of other header files, definition of SYSTEM_Vars_t

sys_settings.h #define DMC_BUILDLEVEL DMC_LEVEL_x. This define determines what control functionality is used:
open loop, closed current loop, closed current + speed loop.

libraries/ Typical FOC modules including Park, Clark, and inverse Park and Clark transforms. Support for
incremental encoder, datalog and the DAC EVM.

src_board/ Device specific drivers to run the servo drive. To migrate the project to another board, changes can be
made primarily to: <board>.syscfg, hal.c, hal.h, and user_mtr1.h.

src_control/ Motor drive control files that call the motor control core algorithm functions within the interrupt service
routines and background tasks. motor1_drive.c includes the motor1CtrlISR().

www.ti.com Running the Servo Drive With QEP on TI Hardware

SPRUJH1 – AUGUST 2025
Submit Document Feedback

C29x Servo Drive With Incremental Encoder for PMSM FOC Evaluation 11

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/tool/CCSTUDIO
https://dev.ti.com/tirex/explore/node?node=A__AEIJm0rwIeU.2P1OBWwlaA__CCSTUDIO-ACADEMY__RdkYJ-M__LATEST
https://www.ti.com/tool/F29-SDK
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH1&partnum=

Table 2-4. Folder Structure (continued)
Folder Includes
src_device/ Device specific startup file, driver library, linker command file.

2.3.3 Configuration of the Software

1. Predefined Symbols:

Compiler predefine macros are provided to configure the software. A list of options is shown in Table 2-5. To
modify, add, or remove macros:

right click on project → Properties → Build → C2000 Compiler → Predefined Symbols

Note
A pre-define symbol with suffix "_N" is disabled. For example, field weakening control (FWC) is
enabled by removing the "_N" on "MOTOR1_FWC_N" to change the predefine to "MOTOR1_FWC".

2. Motor model definition:

Defined in src_board/user_mtr1.h and src_board/user_common.h files.

Locate the definition for USER_MOTOR1. Confirm the definition matches the motor being tested. Only the
Teknic_M2310PLN04K was tested for this release.

#define USER_MOTOR1 Teknic_M2310PLN04K

Table 2-5. Predefine Definitions
Predefine Description Required or Optional Default
MOTOR1_ENC Incremental encoder Required Enabled

ADC_EXT_REF ADC uses the external reference. If this predefine
is disabled, the SysCfg file must be modified to
use the internal reference.

Recommended Enabled

MOTOR1_FWC Field weakening control. Usually enabled along
with MTPA.

Optional Disabled

MOTOR1_MTPA Maximum torque per amphere. Usually enabled
along with FWC.

Optional Disabled

DATALOG_EN Data export through datalog buffers Optional Disabled

DAC128S_ENABLE Data export through the DAC EVM Optional Disabled

DAC_ON_CHIP_ENABLE Data export through the on-chip DAC Optional Disabled

2.3.4 Debug Interfaces

2.3.4.1 Datalogging

The datalog software module supports logging into software buffers. These buffers can then be displayed using
Code Composer Studio's graphing function.

The datalog library is documented the SDK documentation. <install>/docs/html_guide/index.html under Libraries.

1. Add the symbol DATALOG_EN to the project's predefined symbols.
2. Select the number of buffers, the size of the buffers, and the datatype in libraries/utilities/datalog_input.h.
3. Call the setupDatalog() function in src_board/diagnostics.c:

// Initialize Datalog
datalogHandle = DATALOG_init(&datalog, sizeof(datalog), manual, 0, 1);
DATALOG_Obj *datalogObj = (DATALOG_Obj *)datalogHandle;
datalogObj->flag_enableLogData = false;
datalogObj->flag_enableLogOneShot = false;
....
datalogObj->iptr[0] = (float32_t*) &motorVars_M1.senseData.I_A.value[0];
datalogObj->iptr[1] = (float32_t*) &motorVars_M1.senseData.I_A.value[1];
datalogObj->iptr[2] = (float32_t*) &motorVars_M1.angleFOC_rad;

Running the Servo Drive With QEP on TI Hardware www.ti.com

12 C29x Servo Drive With Incremental Encoder for PMSM FOC Evaluation SPRUJH1 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH1&partnum=

This function can be modified to output different signals. For this project, you can monitor the angle and the
sensed current values as shown here.

4. Start the datalog when appropriate. This can be either one-shot or continuous log.

#if defined(DATALOG_EN)
 // datalog.flag_enableLogOneShot = true;
 datalog.flag_enableLogData = true;
#endif // DATALOG_ENABLE

5. Send data to the datalog:

#if defined(DATALOG_EN)
 DATALOG_update(datalogHandle);
#endif // DATALOG_ENABLE

2.3.4.2 Digital to Analog Converters

The DAC128S software module supports the DAC EVM described in Section 2.2.2. The software module is
capable of converting up to eight software variables to 12-bit integer values and transmitting the data through the
SPI to the DAC EVM.

MCU

DAC EVM

Scope

dac128s.ptrData[0] = &varA

dac128s.ptrData[1] = &varB

dac128s.ptrData[2] = &varC

dac128s.ptrData[3] = &varD

SPI

DACOUT A

DAC API

SPI
DAC128S_WriteData()DACOUT B

DACOUT C

DACOUT D

Figure 2-7. DAC128S Block Diagram

To use the EVM, follow these steps:

1. Connect the hardware as described in Section 2.2.2.
2. Add the symbol DAC128S_ENABLE to the project's predefined symbols.
3. Select the number of channels in libraries/dacs/dac128s085.h.
4. Call the setupDAC1285S() function in src_board/diagnostics.c:

dac128s.ptrData[0] = &motorVars_M1.angleENC_rad; // CH_A
dac128s.ptrData[1] = &motorVars_M1.senseData.I_A.value[0]; // CH_B
dac128s.ptrData[2] = &motorVars_M1.senseData.I_A.value[1]; // CH_C
dac128s.ptrData[3] = &motorVars_M1.senseData.I_A.value[2]; // CH_D

a. This function can be modified to output different signals. For this project, you can monitor the angle and
the sensed current values as shown here.

5. Send the data.

// Write the variables data value to DAC128S085 through the SPI
DAC128S_writeData(dac128sHandle);

a. The code sends the data periodically during the execution of the control interrupt (motor1ctrlISR())
located in src_control/motor1_drive.c.

b. The number of the DAC outputs transmitted is determined by the configuration in dac128s085.h.

The EVM has an eight channel, 12-bit digital-to-analog converter (DAC). As provided, the output number is set to
4 since most oscilloscopes only have four probes. More outputs consume time to convert and transmit the data,
which can negatively effect the time to spend on other tasks. The user can, however, set the output number
between 1 and 8 by changing definitions in libraries/dacs/dac128s085.h file.

www.ti.com Running the Servo Drive With QEP on TI Hardware

SPRUJH1 – AUGUST 2025
Submit Document Feedback

C29x Servo Drive With Incremental Encoder for PMSM FOC Evaluation 13

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH1&partnum=

2.4 Testing the Project in Incremental Steps
The servo drive system can be tested in incremental stages. Each stage is enabled by defining
DMC_BUILDLEVEL in sys_settings.h and rebuilding the project. In the code example shown "Step 4: closed
speed loop and current loop" is enabled by the DMC_BUILDLEVEL.

//===
// Incremental Build options for System check-out
//===
#define DMC_LEVEL_1 1 //Y 50% duty, offset calibration and verify phase shift
#define DMC_LEVEL_2 2 //Y open loop control to check sensing signals
#define DMC_LEVEL_3 3 //Y closed current loop to check the hardware settings
#define DMC_LEVEL_4 4 //Y run with sensored FOC

#define DMC_BUILDLEVEL DMC_LEVEL_4

1. Step 1: Hardware setup validation.

#define DMC_BUILDLEVEL DMC_LEVEL_1

Verify the ADC offset calibration, ePWM 50% duty output, deadband, and phase shift.
2. Step 2: Open loop control.

#define DMC_BUILDLEVEL DMC_LEVEL_2

Spin the motor using open loop control to verify the motor current and voltage sensing signals.
3. Step 3: Close the current loop.

#define DMC_BUILDLEVEL DMC_LEVEL_3

Spin the motor with a closed current loop to validate current sensing and the current control.
4. Setp 4: Close the speed loop and the current loop.

#define DMC_BUILDLEVEL DMC_LEVEL_4

The final step is to run the motor with both the speed loop and the current loop closed.

2.4.1 Watch Variables

The structure motorVars_M1 has references to most variables that are related to controlling the servo drive.
Table 2-6 is a recommended list to populate the CCS watch window.

Note
Code Composer Studio V20.2 does not have a method to export/import the watch window variables.
This feature is expected to be implemented in V20.3.

Table 2-6. Watch Variable Overview
Variable Description
motorVars_M1.ISRCount Increments once each motor ISR execution

systemVars.flagEnableSystem Transitions from 0 to 1 automatically

motorVars_M1.flagEnableRunAndIdentify • Set to 1 to start the motor after the flagEnableSystem variable is automatically
set.

• Set to 0 to disable the PWMs. The MCU can then be halted.

Note: For build 1 this starts the PWMs for inspection.

motorVars_M1.flagRunIdentAndOnLine Changes to 1 if there are no faults

motorVars_M1.motorState Shows the current state of the motor control such as:
• MOTOR_STOP_IDLE
• MOTOR_FAULT_STOP
• MOTOR_ALIGNMENT
• MOTOR_OL_START
• MOTOR_CL_RUNNING
• MOTOR_CTRL_RUN

Running the Servo Drive With QEP on TI Hardware www.ti.com

14 C29x Servo Drive With Incremental Encoder for PMSM FOC Evaluation SPRUJH1 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH1&partnum=

Table 2-6. Watch Variable Overview (continued)
Variable Description
motorVars_M1.estimatorMode ESTIMATOR_MODE_ENC for incremental encoder

motorVars_M1.faultMtrUse.all Value is non-zero if there is an over-current fault

motorVars_M1.faultMtrUse.bit Expand and check for fault flags. Of the faults that can turn off the motor, these are
currently active. (faultMtrMask applied to faultMtrNow)

motorVars_M1.faultMtrNow.bit Of all possible faults, these are currently active.

motorVars_M1.faultMtrMask.bit Of the possible faults, these are the ones that can turn off the motor.

motorVars_M1.senseData.VdcBus_V The near the DC bus voltage

motorVars_M1.senseData.offset_I • Current offset values used for current sensing by the ADC
• For ADC sensing: 2048 (half of a 12-bit ADC scale value)
• For SDFM sensing: these are very small numbers

motorVars_M1.speedRef_Hz • The reference speed of the motor.
• Change this variable to increase or decrease the speed.
• A negative value reverses the direction
• Not used in build level 1

motorVars_M1.speed_Hz Current spee of the motor. Not used in build level 1.

motorVars_M1.overCurrent_A By decreasing the value, the fault protection by the CMPSS modules can be verified.

2.4.2 Step 1 Hardware Setup Validation

Objectives:
• Use SysConfig and the HAL object to initialize the peripherals of the MCU for the servo drive hardware.
• Verify the PWM and ADC driver modules and hardware connections
• Verify the sensing feedback values from the inverter: phase current offset and DC bus voltage

In this step, the PWM runs with a fixed 50% duty cycle and the motor is not connected.

HAL

HAL

Ta

Tb

Tc

Ia

Ib

Ic

Vbus

M

Incremental

Encoder

ADC

Driver

Or

SDFM

Driver

Three

Phase

Inverter

PWM

Driver

ADC

Driver

Figure 2-8. Step 1: Hardware Setup Validation Block Diagram

www.ti.com Running the Servo Drive With QEP on TI Hardware

SPRUJH1 – AUGUST 2025
Submit Document Feedback

C29x Servo Drive With Incremental Encoder for PMSM FOC Evaluation 15

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH1&partnum=

2.4.2.1 Build, Load and Run Project

Follow the steps in Table 2-7 and Table 2-8 to verify the hardware setup. The steps in Table 2-7 also apply to the
open loop, closed current loop and the closed current+speed loop builds.

Table 2-7. Setup Steps
Step Description Notes

1 Hardware setup Refer to Section 2.2

2 Connect PC to LaunchPad via USB Powers the LaunchPad and establishes JTAG connection

3 Power the inverter board External DC supply

4 Import the project In CCS: File → Import Project(s)

5 Set DMC_BUILDLEVEL • sys_settings.h
• #define DMC_BUILDLEVEL DMC_LEVEL_x where x = 1, 2, 3, 4
• Do not connect the motor when running DMC_LEVEL_1

5 • Connect to the LaunchPad
• Build the project
• Program the flash

In CCS: Run → Debug Project (or F5).

Table 2-8. Hardware Verification Procedure
Step Description

1 Start execution in CCS: Run → Continue (or F5)

2 Confirm: variable increments motorVars_M1.ISRCount

3 Confirm: variable changes to 1 systemVars.flagEnableSystem

4 Set: to 1 to start the ePWMs motorVars_M1.flagEnableRunAndIdentify

5 Confirm: variable changes to 1 motorVars_M1.flagRunIdentAndOnLine

6 Confirm: approximately half the ADC scale motorVars_M1.senseData.offset_I.value[]

7 Confirm: matches hardware DC bus voltage motorVars_M1.senseData.VdcBus_V

8 Confirm: PWM duty and switching frequency with an oscilloscope

9 Clear: (set to 0) to disable the ePWM motorVars_M1.flagEnableRunAndIdentify

10 The CPU can now be halted and CCS disconnected.

11 Turn off power to the inverter board

12 Disconnect the LaunchPad from the PC

If any of the steps result in unexpected results, check the following:

1. PWM
a. The PWM frequency is configured in the .syscfg file
b. The #define USER_M1_PWM_FREQ_kHz in usr_mtr1.h needs to match the .syscfg configuration.

2. The motor driver board is properly setup and powered
3. The project imported matches the motor driver board. The board is reflected in the name.
4. Check the switches on the LaunchPad.

2.4.3 Step 2 Open Loop Control

Objectives:

• Run the system with open-loop control
• Validate the current and voltage sensing circuits
• Validate that the incremental encoder is correctly configured and connected

Running the Servo Drive With QEP on TI Hardware www.ti.com

16 C29x Servo Drive With Incremental Encoder for PMSM FOC Evaluation SPRUJH1 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH1&partnum=

Note
In open-loop control:
• The current values sensed by the ADC (or SDFM) are only used for verification and validation. The

values are not actually used to control the motor.
• Incremental encoder data is used to estimate the speed for validation. This speed is not used to

control the motor.

Note

The number of slots per rotation for the encoder must be provided. This is required to correctly convert
the encoder signal into an angle. Check the definition of USER_MOTOR1_NUM_ENC_SLOTS in
user_mtr1.h.

An incorrect value results in the motor spinning faster, or slower. Note that this value is the number of
slots on the encoder, not the resulting number of counts after figuring the quadrature accuracy.

HAL

HAL

Encoder

User Vq

User Vd

V�_out

V�_out

Ta

Tb

Tc

Ia

Ib

Ic

Vbus

Speed

M

MPolePairs
 TCtrlPeriod

ENC#Slots

Speed

Calculation
Angle

eQEP

Driver

A

B

I

�
�

�
�

�
�

�
�

Incremental

Encoder

Vbus

ADC

Driver

Or

SDFM

Driver

Three

Phase

Inverter

INV

PARK PWM

Driver

SVM

ADC

Driver

Ramp

Gen
Traj

Ramp

�ref
Speed

Reference

Figure 2-9. Step 2: Open Loop Control Block Diagram

www.ti.com Running the Servo Drive With QEP on TI Hardware

SPRUJH1 – AUGUST 2025
Submit Document Feedback

C29x Servo Drive With Incremental Encoder for PMSM FOC Evaluation 17

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH1&partnum=

2.4.3.1 Build, Load and Run Project

Follow the setup in Table 2-7 with:
• The motor connected to the harness.
• #define DMC_BUILDLEVEL DMC_LEVEL_2.

Control Test Procedure has the control test procedure. This test procedure is re-used for the closed-current loop
test, and for the closed speed+current loop test.

Table 2-9. Control Test Procedure
Step Description

1 Start execution in CCS: Run → Continue (or F5)

2 Confirm: variable increments motorVars_M1.ISRCount

3 Confirm: variable changes to 1 systemVars.flagEnableSystem

4 Set: to 1 to start the ePWMs motorVars_M1.flagEnableRunAndIdentify

5 Confirm:
• Variable changes to 1 (no faults)
• The motor begins to spin

motorVars_M1.flagRunIdentAndOnLine

6 Confirm: motor peed ramps up to the reference speed • motorVars_M1.speed_Hz
• motorVars_M1.speedRef_Hz7 Modify:

• Reference speed and observe current speed change
• Negative reference speed changes the direction

9 Monitor: Phase currents and angle
• Use datalog buffers, the on-chip DAC or the DAC EVM.
• Compare currents with actual phase currents measured with a current probe

10 Clear: (set to 0) to disable the ePWM motorVars_M1.flagEnableRunAndIdentify

10 The CPU can now be halted and CCS disconnected.

11 Turn off power to the inverter board

12 Disconnect the LaunchPad from the PC

Running the Servo Drive With QEP on TI Hardware www.ti.com

18 C29x Servo Drive With Incremental Encoder for PMSM FOC Evaluation SPRUJH1 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH1&partnum=

2.4.4 Step 3 Close the Current Loop

Objectives for this build level:

• Evaluate the closed current loop operation of the motor.
• Verify the current sensing parameter settings

In this build level, the motor is controlled by using i/f control. The rotor angle is generated from ramp generator
module.

HAL

HAL

Encoder

Vq

Vd

V�_out

V�_out

Ta

Tb

Tc

Ia

Ib

Ic

Vbus

User Iq_ref

Iq

User Id_ref

Id

Id

Iq

I�_in

I�_in

Speed

M

MPolePairs
 TCtrlPeriod

ENC#Slots

Speed

Calculation

Vbus

Angle

Vbus

eQEP

Driver

A

B

I

�
�

�
�

�
�

�
�

Incremental

Encoder

Vbus

ADC

Driver

Or

SDFM

Driver

Three

Phase

Inverter

INV

PARK

CLARKE

Iq

PI

Id

PI

PARK

PWM

Driver

SVM

ADC

Driver

Ramp

Gen
Traj

Ramp
�
��ref

Speed

Reference

Figure 2-10. Step 3: Current Closed Loop Control Block Diagram

2.4.4.1 Build, Load and Run Project

To verify the motor with current closed-loop control:
• Follow the setup in Table 2-7. This time:

– Connect the motor to the harness
– Specify #define DMC_BUILDLEVEL DMC_LEVEL_3 in sys_settings.h

• Follow the test procedure in Table 2-9

www.ti.com Running the Servo Drive With QEP on TI Hardware

SPRUJH1 – AUGUST 2025
Submit Document Feedback

C29x Servo Drive With Incremental Encoder for PMSM FOC Evaluation 19

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH1&partnum=

2.4.5 Step 4 Close the Speed and Current Loop

Objectives learned in this build level:

• Evaluate the complete motor drive with incremental encoder-based field-oriented control (FOC).

In this build level, the outer speed loop is closed with the inner current loop. The rotor angle is measured from an
incremental encoder connected to the QEP.

HAL

HAL

Speed

PI

Encoder

+

+

Vq

Vd

V�_out

V�_out

Ta

Tb

Tc

Ia

Ib

Ic

Vbus

Iq_ref

Iq

Id_ref

Id

Id

Iq

I�_in

I�_in

Speed

Irated

~

Speed

Reference

M

MPolePairs
 TCtrlPeriod

ENC#Slots

Speed

Calculation

Vbus

Angle

Vbus

eQEP

Driver

A

B

I

�
�

�
�

�
�

�
�

�
�

�ref

�
�

Incremental

Encoder

Vbus

ADC

Driver

Or

SDFM

Driver

Three

Phase

Inverter

INV

PARK

Traj

Ramp

Start-up

Sequence

Control

Fault

Protection

Handling

CLARKE

Iq

PI

Id

PI

PARK

PWM

Driver

SVM

ADC

Driver

User Id_ref

Iq_ref

Figure 2-11. Step 4: Speed and Current Closed Loop Control Block Diagram

2.4.5.1 Build and Load Project

To verify the motor with current closed-loop control:
• Follow the same setup (Table 2-7). This time:

– Connect the motor to the harness
– Specify #define DMC_BUILDLEVEL DMC_LEVEL_4 in sys_settings.h

• Follow the same test procedure in Table 2-9

References
1. C29 Academy
2. Code Composer Studio Academy
3. Foundational Software Development Kits for F29 real-time MCUs
4. TI C29x Clang Compiler Tools user’s guide
5. Texas Instruments: The C29 CPU - Unrivaled Real-Time Performance with Optimized Architecture on C2000

MCUs

Running the Servo Drive With QEP on TI Hardware www.ti.com

20 C29x Servo Drive With Incremental Encoder for PMSM FOC Evaluation SPRUJH1 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__AEIJm0rwIeU.2P1OBWwlaA__C29X-ACADEMY__KgQzuuf__LATEST
https://dev.ti.com/tirex/explore/node?node=A__AEIJm0rwIeU.2P1OBWwlaA__CCSTUDIO-ACADEMY__RdkYJ-M__LATEST
https://www.ti.com/tool/F29-SDK
https://software-dl.ti.com/codegen/docs/c29clang/compiler_tools_user_guide/index.html
https://www.ti.com/lit/pdf/spradd8
https://www.ti.com/lit/pdf/spradd8
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH1&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	1.1 Hardware Block Diagram
	1.2 Software Flowchart
	1.3 MCU Resources Used

	2 Running the Servo Drive With QEP on TI Hardware
	2.1 Supported Hardware
	2.2 Hardware Setup
	2.2.1 LAUNCHXL-F29H85X Setup
	2.2.2 DAC128S085EVM Setup (Optional)
	2.2.3 BOOSTXL-3PHGANINV Setup
	2.2.4 BOOSTXL-LMG2100-MD Setup
	2.2.5 BP-AMC0106-LMG-MD
	2.2.6 Motor Setup

	2.3 Lab Software
	2.3.1 Software Development Environment
	2.3.2 Project Orginization
	2.3.3 Configuration of the Software
	2.3.4 Debug Interfaces
	2.3.4.1 Datalogging
	2.3.4.2 Digital to Analog Converters

	2.4 Testing the Project in Incremental Steps
	2.4.1 Watch Variables
	2.4.2 Step 1 Hardware Setup Validation
	2.4.2.1 Build, Load and Run Project

	2.4.3 Step 2 Open Loop Control
	2.4.3.1 Build, Load and Run Project

	2.4.4 Step 3 Close the Current Loop
	2.4.4.1 Build, Load and Run Project

	2.4.5 Step 4 Close the Speed and Current Loop
	2.4.5.1 Build and Load Project

	References

