
KeyStone Architecture
Multicore Navigator

User's Guide

Literature Number: SPRUGR9H
November 2010–Revised April 2015

2 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Contents

Contents

Preface... 11
1 Introduction ... 13

1.1 Terminology Used in This Document .. 14
1.2 KeyStone I Features ... 14
1.3 KeyStone I Functional Block Diagram ... 15
1.4 KeyStone II Changes to QMSS .. 16
1.5 KeyStone II QMSS Modes of Use ... 16

1.5.1 Shared Mode... 17
1.5.2 Split Mode .. 17

1.6 Overview... 18
1.7 Queue Manager .. 18
1.8 Packet DMA (PKTDMA) ... 18
1.9 Navigator Cloud .. 18
1.10 Virtualization .. 19
1.11 ARM-DSP Shared Use .. 19
1.12 PDSP Firmware .. 19

2 Operational Concepts ... 20
2.1 Packets .. 21
2.2 Queues .. 21

2.2.1 Packet Queuing.. 21
2.2.2 Packet De-queuing.. 21
2.2.3 Queue Proxy ... 21

2.3 Queue Types.. 21
2.3.1 Transmit Queues .. 21
2.3.2 Transmit Completion Queues.. 22
2.3.3 Receive Queues... 22
2.3.4 Free Descriptor Queues (FDQ).. 22

2.3.4.1 Host Packet Free Descriptors ... 22
2.3.4.2 Monolithic Free Descriptors.. 22

2.3.5 Queue Pend Queues ... 22
2.4 Descriptors .. 22

2.4.1 Host Packet .. 22
2.4.2 Host Buffer ... 23
2.4.3 Monolithic Packet.. 23

2.5 Packet DMA... 24
2.5.1 Channels ... 24
2.5.2 RX Flows ... 24

2.6 Packet Transmission Overview... 24
2.7 Packet Reception Overview... 25
2.8 ARM Endianess .. 27

3 Descriptor Layouts ... 28
3.1 Host Packet Descriptor .. 29
3.2 Host Buffer Descriptor ... 33
3.3 Monolithic Descriptor... 35

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com

3SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Contents

4 Registers... 39
4.1 Queue Manager .. 40

4.1.1 Queue Configuration Region .. 40
4.1.1.1 Revision Register (0x00000000) .. 40
4.1.1.2 Queue Diversion Register (0x00000008) .. 41
4.1.1.3 Linking RAM Region 0 Base Address Register (0x0000000C) 42
4.1.1.4 Linking RAM Region 0 Size Register (0x00000010) ... 43
4.1.1.5 Linking RAM Region 1 Base Address Register (0x00000014) 44
4.1.1.6 Free Descriptor/Buffer Starvation Count Register N (0x00000020 + N×4).......................... 45

4.1.2 Queue Status RAM ... 46
4.1.3 Descriptor Memory Setup Region... 47

4.1.3.1 Memory Region R Base Address Register (0x00000000 + 16×R) 47
4.1.3.2 Memory Region R Start Index Register (0x00000004 + 16×R)....................................... 48
4.1.3.3 Memory Region R Descriptor Setup Register (0x00000008 + 16×R)................................ 49

4.1.4 Queue Management/Queue Proxy Regions ... 50
4.1.4.1 Queue N Register A (0x00000000 + 16×N) ... 51
4.1.4.2 Queue N Register B (0x00000004 + 16×N) ... 52
4.1.4.3 Queue N Register C (0x00000008 + 16×N) ... 53
4.1.4.4 Queue N Register D (0x0000000C + 16×N) .. 54

4.1.5 Queue Peek Region .. 55
4.1.5.1 Queue N Status and Configuration Register A (0x00000000 + 16×N) 55
4.1.5.2 Queue N Status and Configuration Register B (0x00000004 + 16×N) 56
4.1.5.3 Queue N Status and Configuration Register C (0x00000008 + 16×N) 57
4.1.5.4 Queue N Status and Configuration Register D (0x0000000C + 16×N).............................. 58

4.2 Packet DMA... 59
4.2.1 Global Control Registers Region .. 59

4.2.1.1 Revision Register (0x00) ... 59
4.2.1.2 Performance Control Register (0x04) .. 60
4.2.1.3 Emulation Control Register (0x08).. 61
4.2.1.4 Priority Control Register (0x0C) ... 62
4.2.1.5 QMn Base Address Register (0x10, 0x14, 0x18, 0x1c).. 63

4.2.2 TX DMA Channel Configuration Region ... 64
4.2.2.1 TX Channel N Global Configuration Register A (0x000 + 32×N)..................................... 65
4.2.2.2 TX Channel N Global Configuration Register B (0x004 + 32×N)..................................... 66

4.2.3 RX DMA Channel Configuration Region ... 67
4.2.3.1 RX Channel N Global Configuration Register A (0x000 + 32×N)..................................... 67

4.2.4 RX DMA Flow Configuration Region.. 68
4.2.4.1 RX Flow N Configuration Register A (0x000 + 32×N) ... 69
4.2.4.2 RX Flow N Configuration Register B (0x004 + 32×N) ... 71
4.2.4.3 RX Flow N Configuration Register C (0x008 + 32×N) ... 72
4.2.4.4 RX Flow N Configuration Register D (0x00C + 32×N) ... 74
4.2.4.5 RX Flow N Configuration Register E (0x010 + 32×N) ... 75
4.2.4.6 RX Flow N Configuration Register F (0x014 + 32×N).. 76
4.2.4.7 RX Flow N Configuration Register G (0x018 + 32×N) ... 77
4.2.4.8 RX Flow N Configuration Register H (0x01C + 32×N) ... 78

4.2.5 TX Scheduler Configuration Region .. 79
4.2.5.1 TX Channel N Scheduler Configuration Register (0x000 + 4×N)..................................... 79

4.3 QMSS PDSPs .. 80
4.3.1 Descriptor Accumulation Firmware ... 81

4.3.1.1 Command Buffer Interface... 81
4.3.1.2 Global Timer Command Interface .. 83
4.3.1.3 Reclamation Queue Command Interface .. 84
4.3.1.4 Queue Diversion Command Interface.. 84

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com

4 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Contents

4.3.2 Quality of Service Firmware ... 84
4.3.2.1 QoS Algorithms ... 85
4.3.2.2 Command Buffer Interface... 88
4.3.2.3 QoS Firmware Commands .. 89
4.3.2.4 QoS Queue Record... 89
4.3.2.5 QoS Cluster Record .. 90
4.3.2.6 RR-Mode QoS Cluster Record .. 91
4.3.2.7 SRIO Queue Monitoring ... 92

4.3.3 Open Event Machine Firmware ... 93
4.3.4 Interrupt Operation .. 93

4.3.4.1 Interrupt Handshaking .. 93
4.3.4.2 Interrupt Processing .. 94
4.3.4.3 Interrupt Generation .. 94
4.3.4.4 Stall Avoidance .. 95

4.3.5 QMSS PDSP Registers .. 96
4.3.5.1 Control Register (0x00000000) ... 97
4.3.5.2 Status Register (0x00000004)... 98
4.3.5.3 Cycle Count Register (0x0000000C) ... 99
4.3.5.4 Stall Count Register (0x00000010) ... 100

4.4 QMSS Interrupt Distributor .. 101
4.4.1 INTD Register Region... 101

4.4.1.1 Revision Register (0x00000000) .. 102
4.4.1.2 End Of Interrupt (EOI) Register (0x00000010) .. 103
4.4.1.3 Status Register 0 (0x00000200)... 104
4.4.1.4 Status Register 1 (0x00000204)... 105
4.4.1.5 Status Register 2 (0x00000208)... 106
4.4.1.6 Status Register 3 (0x0000020c) ... 107
4.4.1.7 Status Register 4 (0x00000210)... 108
4.4.1.8 Status Clear Register 0 (0x00000280) ... 109
4.4.1.9 Status Clear Register 1 (0x00000284) ... 110
4.4.1.10 Status Clear Register 4 (0x00000290) ... 111
4.4.1.11 Interrupt N Count Register (0x00000300 + 4xN) .. 112

5 Mapping Information ... 113
5.1 Queue Maps... 114
5.2 Interrupt Maps ... 116

5.2.1 KeyStone I TCI661x, C6670, C665x devices .. 116
5.2.2 KeyStone I TCI660x, C667x devices.. 117
5.2.3 KeyStone II devices ... 118

5.3 Memory Maps ... 119
5.3.1 QMSS Register Memory Map .. 119
5.3.2 KeyStone I PKTDMA Register Memory Map... 120
5.3.3 KeyStone II PKTDMA Register Memory Map.. 120

5.4 Packet DMA Channel Map .. 121

6 Programming Information .. 122
6.1 Programming Considerations ... 123

6.1.1 System Planning ... 123
6.1.2 Notification of Completed Work .. 124

6.2 Example Code... 124
6.2.1 QMSS Initialization .. 125
6.2.2 PKTDMA Initialization ... 127
6.2.3 Normal Infrastructure DMA with Accumulation .. 128
6.2.4 Bypass Infrastructure notification with Accumulation ... 129
6.2.5 Channel Teardown .. 130

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com

5SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Contents

6.3 Programming Overrides.. 130
6.4 Programming Errors .. 130
6.5 Questions and Answers.. 132

A Example Code Utility Functions.. 136
B Example Code Types .. 146
C Example Code Addresses .. 151

C.1 KeyStone I Addresses:... 151
C.2 KeyStone II Addresses: .. 153

Revision History .. 155
Revision History .. 155

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com

6 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

List of Figures

List of Figures
1-1. Multicore Navigator Block Diagram (KeyStone I) .. 15
1-2. Queue Manager Sub System for KeyStone II .. 16
1-3. Queue Manager Linking RAM — Shared Mode for KeyStone II... 17
1-4. Queue Manager Linking RAM — Split Mode for KeyStone II .. 17
2-1. Packet Queuing Data Structure Diagram ... 23
2-2. Packet Transmit Operation.. 25
2-3. Packet Receive Operation ... 26
4-1. Revision Register (0x00000000) ... 40
4-2. Queue Diversion Register (0x00000008) ... 41
4-3. Linking RAM Region 0 Base Address Register (0x0000000C) .. 42
4-4. Linking RAM Region 0 Size Register (0x00000010) .. 43
4-5. Linking RAM Region 1 Base Address Register (0x00000014)... 44
4-6. Free Descriptor/Buffer Starvation Count Register N (0x00000020 + N×4) ... 45
4-7. Queue Threshold Status Word N (0x00000000 - 0x000003FC) ... 46
4-8. Memory Region R Base Address Register (0x00000000 + 16×R) .. 47
4-9. Memory Region R Start Index Register (0x00000004 + 16×R) .. 48
4-10. Memory Region R Descriptor Setup Register (0x00000008 + 16×R) ... 49
4-11. Queue N Register A (0x00000000 + 16×N) .. 51
4-12. Queue N Register B (0x00000004 + 16×N) .. 52
4-13. Queue N Register C (0x00000008 + 16×N) .. 53
4-14. Queue N Register D (0x0000000C + 16×N).. 54
4-15. Queue N Status and Configuration Register A (0x00000000 + 16×N).. 55
4-16. Queue N Status and Configuration Register B (0x00000004 + 16×N).. 56
4-17. Queue N Status and Configuration Register C (0x00000008 + 16×N).. 57
4-18. Queue N Status and Configuration Register D (0x0000000C + 16×N) ... 58
4-19. Revision Register (0x00) .. 59
4-20. Performance Control Register (0x04).. 60
4-21. Emulation Control Register (0x08) ... 61
4-22. Priority Control Register (0x0C) .. 62
4-23. QMn Base Address Register (0x04) ... 63
4-24. TX Channel N Global Configuration Register A (0x000 + 32×N) .. 65
4-25. TX Channel N Global Configuration Register B (0x004 + 32×N) .. 66
4-26. RX Channel N Global Configuration Register A (0x000 + 32×N).. 67
4-27. RX Flow N Configuration Register A (0x000 + 32×N)... 69
4-28. RX Flow N Configuration Register B (0x004 + 32×N) .. 71
4-29. RX Flow N Configuration Register C (0x008 + 32×N)... 72
4-30. RX Flow N Configuration Register D (0x00C + 32×N) ... 74
4-31. RX Flow N Configuration Register E (0x010 + 32×N) .. 75
4-32. RX Flow N Configuration Register F (0x014 + 32×N) ... 76
4-33. RX Flow N Configuration Register G (0x018 + 32×N) .. 77
4-34. RX Flow N Configuration Register H (0x01C + 32×N) .. 78
4-35. TX Channel N Scheduler Configuration Register (0x000 + 4×N) .. 79
4-36. Handshaking During Processing of Descriptor Lists... 94
4-37. Control Register (0x00000000)... 97
4-38. Status Register (0x00000004) .. 98
4-39. Cycle Count Register (0x0000000c) ... 99
4-40. Stall Count Register (0x00000010)... 100

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com

7SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

List of Figures

4-41. Revision Register (0x00000000).. 102
4-42. EOI Register (0x00000010) ... 103
4-43. Status Register 0 (0x00000200) .. 104
4-44. Status Register 1 (0x00000204) .. 105
4-45. Status Register 2 (0x00000208) .. 106
4-46. Status Register 3 (0x0000020c) .. 107
4-47. Status Register 4 (0x00000210) .. 108
4-48. Status Clear Register 0 (0x00000280)... 109
4-49. Status Clear Register 1 (0x00000284)... 110
4-50. Status Clear Register 4 (0x00000290)... 111
4-51. Int N Count Register (0x00000300 + 4xN) .. 112

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com

8 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

List of Tables

List of Tables
1-1. Terminology .. 14
3-1. Host Packet Descriptor Layout ... 29
3-2. Host Packet Descriptor Packet Information Word 0 (PD Word 0) .. 30
3-3. Host Packet Descriptor Packet Information Word 1 (PD Word 1) .. 30
3-4. Host Packet Descriptor Packet Information Word 2 (PD Word 2) .. 30
3-5. Host Packet Descriptor Buffer 0 Info Word 0 (PD Word 3) .. 31
3-6. Host Packet Descriptor Buffer 0 Info Word 1 (PD Word 4) .. 31
3-7. Host Packet Descriptor Linking Word (PD Word 5) ... 31
3-8. Host Packet Descriptor Original Buffer Info Word 0 (PD Word 6) .. 32
3-9. Host Packet Descriptor Original Buffer Info Word 1 (PD Word 7) .. 32
3-10. Host Packet Descriptor Extended Packet Info Block Word 0 (Optional) ... 32
3-11. Host Packet Descriptor Extended Packet Info Block Word 1 (Optional) ... 32
3-12. Host Packet Descriptor Extended Packet Info Block Word 2 (Optional) ... 32
3-13. Host Packet Descriptor Extended Packet Info Block Word 3 (Optional) ... 33
3-14. Host Packet Descriptor Protocol Specific Word N (Optional) .. 33
3-15. Host Buffer Descriptor Layout .. 33
3-16. Host Buffer Descriptor Reserved Word 0 (BD Word 0) .. 34
3-17. Host Buffer Descriptor Reserved Word 1 (BD Word 1) .. 34
3-18. Host Buffer Descriptor Buffer Reclamation Info (BD Word 2) ... 34
3-19. Host Buffer Descriptor Buffer N Info Word 0 (BD Word 3).. 34
3-20. Host Buffer Descriptor Buffer N Info Word 1 (BD Word 4) ... 34
3-21. Host Buffer Descriptor Linking Word (BD Word 5) .. 34
3-22. Host Buffer Descriptor Original Buffer Info Word 0 (BD Word 6) ... 35
3-23. Host Buffer Descriptor Original Buffer Info Word 1 (BD Word 7) ... 35
3-24. Monolithic Packet Descriptor Layout... 36
3-25. Monolithic Packet Descriptor Word 0 ... 36
3-26. Monolithic Packet Descriptor Word 1 ... 37
3-27. Monolithic Packet Descriptor Word 2 ... 37
3-28. Monolithic Extended Packet NULL Word (Optional) .. 37
3-29. Monolithic Extended Packet Info Word 0 (Optional) .. 38
3-30. Monolithic Extended Packet Info Word 1 (Optional) .. 38
3-31. Monolithic Extended Packet Info Word 2 (Optional) .. 38
3-32. Monolithic Extended Packet Info Word 3 (Optional) .. 38
3-33. Monolithic Packet Descriptor Protocol Specific Word M (Optional) ... 38
3-34. Monolithic Packet Descriptor Payload Data Words 0-N .. 38
4-1. Queue Configuration Region Registers ... 40
4-2. Revision Register Field Descriptions ... 40
4-3. Queue Diversion Register Field Descriptions .. 41
4-4. Linking RAM Region 0 Base Address Register Field Descriptions ... 42
4-5. Linking RAM Region 0 Size Register Field Descriptions ... 43
4-6. Linking RAM Region 1 Base Address Register Field Descriptions ... 44
4-7. Free Descriptor/Buffer Starvation Count Register N Field Descriptions ... 45
4-8. Queue Threshold Status Word N Field Descriptions ... 46
4-9. Descriptor Memory Setup Region Registers.. 47
4-10. Memory Region R Base Address Register Field Descriptions .. 47
4-11. Memory Region R Start Index Register Field Descriptions .. 48
4-12. Memory Region R Descriptor Setup Register Field Descriptions ... 49

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com

9SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

List of Tables

4-13. Queue Management/Proxy Region Registers .. 50
4-14. Queue N Register A Field Descriptions .. 51
4-15. Queue N Register B Field Descriptions .. 52
4-16. Queue N Register C Field Descriptions .. 53
4-17. Queue N Register D Field Descriptions .. 54
4-18. Queue Peek Region Registers ... 55
4-19. Queue N Status and Configuration Register A Field Descriptions .. 55
4-20. Queue N Status and Configuration Register B Field Descriptions .. 56
4-21. Queue N Status and Configuration Register C Field Descriptions .. 57
4-22. Queue N Status and Configuration Register D Field Descriptions .. 58
4-23. PKTDMA Global Control Region Registers ... 59
4-24. Revision Register Field Descriptions ... 59
4-25. Performance Control Register Field Descriptions ... 60
4-26. Emulation Control Register Field Descriptions .. 61
4-27. Priority Control Register Field Descriptions .. 62
4-28. Qmn Base Address Register Field Descriptions .. 63
4-29. TX DMA Channel Config Region Registers .. 64
4-30. TX Channel N Global Configuration Register A Field Descriptions ... 65
4-31. TX Channel N Global Configuration Register B Field Descriptions ... 66
4-32. RX DMA Channel Config Region Registers .. 67
4-33. RX Channel N Global Configuration Register A Field Descriptions .. 67
4-34. RX DMA Flow Config Region Registers... 68
4-35. RX Flow N Configuration Register A Field Descriptions ... 69
4-36. RX Flow N Configuration Register B Field Descriptions ... 71
4-37. RX Flow N Configuration Register C Field Descriptions ... 72
4-38. RX Flow N Configuration Register D Field Descriptions ... 74
4-39. RX Flow N Configuration Register E Field Descriptions ... 75
4-40. RX Flow N Configuration Register F Field Descriptions ... 76
4-41. RX Flow N Configuration Register G Field Descriptions ... 77
4-42. RX Flow N Configuration Register H Field Descriptions ... 78
4-43. TX DMA Scheduler Configuration Region Registers .. 79
4-44. TX Channel N Scheduler Configuration Register Field Descriptions ... 79
4-45. Possible PDSP Firmware Loading ... 80
4-46. Recommended PDSP Firmware Loading ... 80
4-47. Command Buffer Format ... 81
4-48. Command Buffer Field Descriptions .. 82
4-49. Configuration Byte Subfields ... 83
4-50. Global Timer Command Format ... 83
4-51. Reclamation Queue Command Format .. 84
4-52. Queue Diversion Command Format .. 84
4-53. QoS Firmware Memory Organization.. 85
4-54. Destination Congestion and Credit Scaling .. 87
4-55. Command Buffer Interface ... 88
4-56. Command Buffer Field Descriptions .. 88
4-57. QoS Queue Record ... 89
4-58. QoS Queue Field Descriptions .. 89
4-59. QoS Cluster Record ... 90
4-60. QoS Cluster Field Descriptions .. 90
4-61. QoS Cluster Record 7 .. 91

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com

10 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

List of Tables

4-62. QoS SRIO Queue Monitoring Usage .. 92
4-63. QoS SRIO Queue Monitoring Record .. 92
4-64. QoS Queue Field Descriptions .. 93
4-65. PDSP Region Registers ... 96
4-66. Control Register Field Descriptions ... 97
4-67. Status Register Field Descriptions .. 98
4-68. Cycle Count Register Field Descriptions ... 99
4-69. Stall Count Register Field Descriptions ... 100
4-70. INTD Region Registers .. 101
4-71. Revision Register Field Descriptions .. 102
4-72. EOI Register Field Descriptions .. 103
4-73. Status Register 0 Field Descriptions .. 104
4-74. Status Register 1 Field Descriptions .. 105
4-75. Status Register 2 Field Descriptions .. 106
4-76. Status Register 1 Field Descriptions .. 107
4-77. Status Register 4 Field Descriptions .. 108
4-78. Status Clear Register 0 Field Descriptions ... 109
4-79. Status Clear Register 1 Field Descriptions ... 110
4-80. Status Clear Register 4 Field Descriptions ... 111
4-81. Int N Count Register Field Descriptions ... 112
5-1. Queue Map for KeyStone I ... 114
5-2. Queue Map for KeyStone II ... 115
5-3. High Priority Queue Mapping (TCI661x, C6670 C665x) .. 116
5-4. High Priority Queue Mapping (C665x part 2) .. 116
5-5. Low Priority Queue Mapping ... 117
5-6. CPINTC Queue Mapping (TCI661x and C6670) .. 117
5-7. High Priority Queue Mapping (TCI660x and C667x) .. 117
5-8. CPINTC Queue Mapping (TCI660x and C667x) ... 118
5-9. High Priority Queue Mapping (K2K, K2H) .. 118
5-10. High Priority Queue Mapping (K2L, K2E) ... 119
5-11. Low Priority Queue Mapping (K2K, K2H).. 119
5-12. Low Priority Queue Mapping (K2L, K2E) .. 119
5-13. QMSS Register Memory Map .. 120
5-14. PKTDMA Register Memory Map, KeyStone I... 120
5-15. PKTDMA Register Memory Map, K2K and K2H, part 1 ... 120
5-16. PKTDMA Register Memory Map, K2L, part 1... 121
5-17. PKTDMA Register Memory Map, K2K, K2H and K2L, part 2... 121
5-18. PKTDMA Register Memory Map, K2E ... 121
5-19. PKTDMA Channel Map ... 121
6-1. Queues Used in Infrastructure Example... 124

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

11SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Preface

Read This First
SPRUGR9H–November 2010–Revised April 2015

Preface

The Multicore Navigator uses a Queue Manager Subsystem (QMSS) and a Packet DMA (PKTDMA) to
control and implement high-speed data packet movement within the device. This reduces the traditional
internal communications load on the device DSPs significantly, increasing overall system performance.

About This Manual
This document describes the functionality, operational details, and programming information for the
PKTDMA and the components of the QMSS in KeyStone architecture devices.

Trademarks
All trademarks are the property of their respective owners.

Notational Conventions
This document uses the following conventions:
• Commands and keywords are in boldface font.
• Arguments for which you supply values are in italic font.
• Terminal sessions and information the system displays are in screen font.
• Information you must enter is in boldface screen font.
• Elements in square brackets ([]) are optional.

Notes use the following conventions:

NOTE: Means reader take note. Notes contain helpful suggestions or references to material not
covered in the publication.

The information in a caution or a warning is provided for your protection. Please read each caution and
warning carefully.

CAUTION
Indicates the possibility of service interruption if precautions are not taken.

WARNING
Indicates the possibility of damage to equipment if precautions are
not taken.

Related Documentation from Texas Instruments

Antenna Interface 2 (AIF2) for KeyStone Devices User Guide SPRUGV7
Fast Fourier Transform Coprocessor (FFTC) for KeyStone Devices User Guide SPRUGS2
Memory Protection Unit (MPU) for KeyStone Devices User Guide SPRUGW5
Packet Accelerator (PA) for KeyStone Devices User Guide SPRUGS4

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H
http://www.ti.com/lit/pdf/SPRUGV7
http://www.ti.com/lit/pdf/SPRUGS2
http://www.ti.com/lit/pdf/SPRUGW5
http://www.ti.com/lit/pdf/SPRUGS4

About This Manual www.ti.com

12 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Preface

Serial RapidIO (SRIO) for KeyStone Devices User Guide SPRUGW1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H
http://www.ti.com/lit/pdf/SPRUGW1

13SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Introduction

Chapter 1
SPRUGR9H–November 2010–Revised April 2015

Introduction

Topic ... Page

1.1 Terminology Used in This Document .. 14
1.2 KeyStone I Features ... 14
1.3 KeyStone I Functional Block Diagram... 15
1.4 KeyStone II Changes to QMSS ... 16
1.5 KeyStone II QMSS Modes of Use.. 16
1.6 Overview ... 18
1.7 Queue Manager.. 18
1.8 Packet DMA (PKTDMA) ... 18
1.9 Navigator Cloud ... 18
1.10 Virtualization ... 19
1.11 ARM-DSP Shared Use... 19
1.12 PDSP Firmware .. 19

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Terminology Used in This Document www.ti.com

14 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Introduction

1.1 Terminology Used in This Document
Table 1-1 defines the important acronyms used in this document.

Table 1-1. Terminology

Acronym Definition
AIF2 Antenna interface subsystem
BCP Bit coprocessor
CPPI Communications port programming interface (Multicore Navigator)
EOP End of packet
FFTC FFT coprocessor subsystem
FDQ Free descriptor queue
MOP Middle of packet
NETCP Network Coprocessor (new name for Packet Accelerator)
OEM Open event machine
PA, PASS Packet accelerator subsystem
PDSP Packed data structure processor
PKTDMA Packet DMA, consisting of two independent halves: RX DMA and TX DMA (previously was CDMA for

CPPI DMA -- this is obsolete)
PS Protocol specific
QM, QMSS Hardware queue manager; queue manager sub-system
QoS Quality of service (PDSP firmware)
RX DMA RX half of the PKTDMA
SOP Start of packet
SRIO Serial rapid I/O subsystem
TX DMA TX half of the PKTDMA

1.2 KeyStone I Features
Multicore Navigator provides the following features in KeyStone I devices:
• One hardware queue manager, including:

– 8192 queues (some dedicated for specific use)
– 20 descriptor memory regions
– 2 linking RAMs (one internal to QMSS, supporting 16K descriptors)

• Several PKTDMAs, located in the following subsystems:
– QMSS (infrastructure, or core-to-core PKTDMA)
– AIF2
– BCP
– FFTC (A, B, C)
– NETCP (PA)
– SRIO

• Multi-core host notification via interrupt generation (accumulator functionality)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

L2 or DDR

Queue

Manager

Hardware Block

que

pend

PKTDMA

Tx Streaming I /FRx Streaming I /F

Tx Scheduling I /F

(AIF2 only)

Tx Scheduling

Control

Tx Channel

Ctrl / Fifos

Rx Channel

Ctrl / Fifos

Tx CoreRx Core

QMSS

Config RAM

Link RAM

Descriptor RAMs

Register I /F

Config RAM

Register I /F

PKTDMA Control

Buffer Memory

Que Man register I /F

Input

(ingress)

Output

(egress)

VBUS

Host

(App SW)

Rx Coh

Unit

PKTDMA
(internal)

Timer

PKTDMA register I /F

Que Interrupts

APDSP
(Accum)

APDSP
(Monitor)

que pend

Accumulator command I /F

Que Interrupts

Timer

Accumulation Memory

Tx DMA

Scheduler

Link RAM
(internal)

Interrupt Distributor

www.ti.com KeyStone I Functional Block Diagram

15SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Introduction

Multicore Navigator was developed based on the design goals while incorporating ideas from leading-
edge architectures for Ethernet, ATM, HDLC, IEEE1394, 802.11, and USB communications modules.

Some general features of Multicore Navigator:
• Centralized buffer management
• Centralized packet queue management
• Protocol-independent packet-level interface
• Support for multi-channel / multi-priority queuing
• Support for multiple free buffer queues
• Efficient host interaction that minimizes host processing requirements
• Zero copy packet handoff

Multicore Navigator provides the following services to the host:
• Mechanism to queue an unlimited number of packets per channel
• Mechanism to return buffers to host on packet transmit completion
• Mechanism to recover queued buffers after transmit channel shut down
• Mechanism to allocate buffer resources to a given receive port
• Mechanism to pass buffers to host on completion of a packet reception
• Mechanism to gracefully stop reception for receive channel shut down

1.3 KeyStone I Functional Block Diagram
Figure 1-1 shows the major functional components of Multicore Navigator for KeyStone I devices. The
queue manager sub system (QMSS) contains a queue manager, the infrastructure PKTDMA, and two
accumulator PDSPs with timers. The block marked Hardware Block is a Multicore Navigator peripheral
(such as SRIO), and shows a detailed view of the PKTDMA sub-blocks with interfaces.

Figure 1-1. Multicore Navigator Block Diagram (KeyStone I)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Queue Manager Sub System
(Keystone 2)

QM 1

(queues

0..8191)

QM 2

(queues

8192..16383)

Link RAM

(32K

entries)

PDSP

1

PDSP

2

Timer Timer

PDSP

3

PDSP

4

Timer Timer

PDSP

5

PDSP

6

Timer Timer

PDSP

7

PDSP

8

Timer Timer

PktDMA 2

que_pend que_pend

Link ram cfg

Desc mem cfg

Link ram cfg

Desc mem cfg

PktDMA 1

que_pend

INTD 1 INTD 2 INTD 1 INTD 2

Que interrupts

KeyStone II Changes to QMSS www.ti.com

16 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Introduction

1.4 KeyStone II Changes to QMSS
For KeyStone II devices, the following changes were made to the Queue Manager Sub System:
• K2K, K2H only: Two hardware queue managers (QM1, QM2), including:

– 8192 queues per queue manager
– 64 descriptor memory regions per queue manager
– 3 linking RAMs (one internal to QMSS, supporting 32K descriptors)

• K2K, K2H only: Two infrastructure PKTDMAs (PKTDMA1 driven by QM1, PKTDMA2 driven by QM2)
• Eight packed-data structure processors (PDSP1 to PDSP8), each with its own dedicated Timer module
• Two interrupt distributors (INTD1, INTD2), which service two pairs of PDSPs.

These changes are shown in Figure 1-2. K2L and K2E devices do not contain QM2 or PKTDMA2, and
have a 16K entry Linking RAM.

Figure 1-2. Queue Manager Sub System for KeyStone II

1.5 KeyStone II QMSS Modes of Use
As described in the previous section, the KeyStone II QMSS is roughly a doubling of the modules in the
KeyStone I QMSS. One component that was doubled in size, but not in number, is the internal linking
RAM. Both QM1 and QM2 share this component. The programming of each QM’s linking RAM and
descriptor memory region registers determines if the linking RAM is used cooperatively (Shared Mode) or
independently (Split Mode).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

0

QMSS Link RAM

(split mode use)

16K-1(indexes) 016K-1

QM 1 program:

Region0 base addr = 0x00100000

Region0 size = 0x00003FFF

QM 2 program:

Region0 base addr = 0x00120000

Region0 size = 0x00003FFF

0

QMSS Link RAM

(shared mode use)

32K-1(indexes)

QM 1 program:

Region0 base addr = 0x00100000

Region0 size = 0x00007FFF

QM 2 program:

Region0 base addr = 0x00100000

Region0 size = 0x00007FFF

www.ti.com KeyStone II QMSS Modes of Use

17SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Introduction

1.5.1 Shared Mode
In this mode, both QMs share the entire internal linking RAM. Because both QMs will be writing into the
same areas of the linking RAM, both QMs must be programmed with identical descriptor memory regions
so that there will be no colliding indexes written into the linking RAM, which will corrupt it. The linking RAM
registers in both QMs are also programmed identically, as shown in Figure 1-3. Advantage: The two QMs
can be treated as a single double-sized KeyStone I QM.

Figure 1-3. Queue Manager Linking RAM — Shared Mode for KeyStone II

1.5.2 Split Mode
This is like having two independently operating KeyStone I QMs. In this mode, each QM has a non-
overlapping partition of the linking RAM to use (not necessarily equal halves as shown here). This allows
each QM to be programmed with descriptor memory regions that are independent of the other QM. Note
that the descriptor region indexes must begin with 0 for each QM configuration, because the indexes are
relative to the address given as the base of its linking RAM. Figure 1-1 shows the linking RAM
configuration for this mode. Advantage: 128 total memory regions provides much better granularity of
descriptor sizing/counts.

Figure 1-4. Queue Manager Linking RAM — Split Mode for KeyStone II

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Overview www.ti.com

18 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Introduction

1.6 Overview
Multicore Navigator specifies the data structures used by Texas Instruments standard communications
modules to facilitate direct memory access (DMA) and to provide a consistent application programming
interface (API) to the host software in multi-core devices. The data structures and the API used to
manipulate them will be jointly referred to as Multicore Navigator.

Frequent tasks are commonly offloaded from the host processor (DSP core) to peripheral hardware to
increase system performance. Significant performance gains may result from careful design of the host
software and communication module interface. In networking systems, packet transmission and reception
are critical tasks. Texas Instruments has developed the Multicore Navigator standard, which is aimed at
maximizing the efficiency of interaction between the host software and communications modules.

The design goals for Multicore Navigator are as follows:
• Minimize host interaction
• Maximize memory use efficiency
• Maximize bus burst efficiency
• Maximize symmetry between transmit/receive operations
• Maximize scalability for number of connections / buffer sizes / queue sizes / protocols supported
• Minimize protocol specific features
• Minimize complexity

1.7 Queue Manager
The queue manager is a hardware module that is responsible for accelerating management of the packet
queues. Packets are added to a packet queue by writing the 32-bit descriptor address to a particular
memory mapped location in the queue manager module. Packets are de-queued by reading the same
location for that particular queue. Multicore Navigator queue manager modules are capable of queuing
only descriptors that have been allocated from the descriptor regions of the associated queue manager.

1.8 Packet DMA (PKTDMA)
The Packet DMA is a DMA in which data destination is determined by a destination and free descriptor
queue index, not an absolute memory address. In receive mode, the PKTDMA fetches a free descriptor,
traverses the descriptor to find the buffer, PKTDMA transfers the payload into the buffer, and puts the
descriptor into the destination queue. In transmit mode, the PKTDMA pops the descriptor from the TX
queue, traverses the descriptor, reads the payload from the buffer, and DMA transfers the payload to the
transmit port.

1.9 Navigator Cloud
A Navigator Cloud is a set of PKTDMAs and descriptors. Neither PKTDMAs nor descriptors address the
physical Queue Manager(s) directly, but instead use a queue_manager:queue_number (qmgr:qnum)
notation and registers to create a logical mapping into the physical Queue Manager(s). All PKTDMAs with
the same logical mapping are said to be part of the same Navigator Cloud. A descriptor can be sent to
any PKTDMA in the same cloud, but may or may not transfer correctly through PKTDMAs in different
clouds. A non-compatible logical qmgr:qnum mapping will cause descriptors to arrive in unexpected
queues, potentially causing a memory leak.

It is possible to send a descriptor from one cloud to another, but each qmgr:qnum reference must point to
the same physical queue for the PKTDMAs in both clouds. Another way to say this is by example: Let
PKTDMA 1 and 2 have the same base addresses programmed for logical QM0 and QM1 in their
respective QMn Base Address registers, but their QM2 and QM3 base addresses are different (so by
definition they represent different clouds). Any descriptor traveling between them must reference only
QM0 and/or QM1 in every descriptor and RX Flow qmgr:qnum fields. This is especially true if the RX
(output) queue for the first PKTDMA is the same physical queue as the TX (input) queue for the second
PKTDMA.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Virtualization

19SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Introduction

1.10 Virtualization
Physical memory addresses can be virtualized by using the MPAX units inside the MSMC controller and
C66x CorePacs. It is important to understand how Navigator uses virtualized addresses in a system where
both physical and virtual addresses may be used by various components, or when different mappings may
address the same physical memory. Here is the summary:
• The Queue Manager does not understand memory translations. It simply converts QM pushed

addresses to linking RAM indexes based on the programming of QMSS Memory Regions (see
Section 4.1.3). Virtual addresses can be used, but they must be programmed into the QMSS Memory
Regions and used for every push and descriptor reference. Using a physical address when virtual
addresses have been programmed into QMSS will result in erroneous behavior.

• The PKTDMA also does not understand memory translations. It simply makes VBUS transactions
using popped descriptor addresses and the memory references inside descriptors. A virtual address
used by the PKTDMA will be translated by MPAX to a physical address. Because the PKTDMA uses
popped addresses, addresses embedded in descriptors, and Rx Flow configurations (containing
qmgr:qnum mappings), these must all present a unified view of memory or the result of transfers will
be unexpected.

1.11 ARM-DSP Shared Use
Most of the time, an ARM’s memory virtualization will be different than that of the DSPs. Both ARMs and
DSPs should define their own Navigator Cloud(s). This is an easy and efficient way to keep resources
separated. However, most ARM-DSP applications require transferring data between them. There are at
least two ways to do this: 1) either use a PKTDMA to transfer data from one cloud to another, or 2) create
a common shared area to be used by both. The common shared area is the preferred approach, because
PKTDMA loading may be reduced, and because configuring two clouds to communicate can sometimes
be difficult.

In the common shared area approach, one or more Navigator Clouds are defined specifically for ARM-
DSP data transfers. This means that memory virtualization is the same (ARM, DSP and QMSS use the
same address regions whether virtual or physical), they use common descriptor memory regions, and all
descriptor references point to memory and queues containing descriptors from one of the common
descriptor memory regions.

In this approach, either the ARM or DSP writes data to the common shared area and the recipient is
notified. This is done without the PKTDMA because no data transfer is necessary, and notification is
accomplished using the QM by itself. Notification occurs with either a queue pend queue and an interrupt
on the recipient core, or the recipient core polling on the receive queue.

1.12 PDSP Firmware
Within the QMSS are two or eight PDSPs, each capable of running firmware that performs QMSS-related
functions, such as accumulation, QoS, or event management (job load balancing). The accumulator
firmware’s job is to poll a select number of queues looking for descriptors that have been pushed into
them. Descriptors are popped from the queue and placed in a buffer provided by the host. When the list
becomes full or a programmed time period expires, the accumulator triggers an interrupt to the host to
read the buffer for descriptor information.

The accumulation firmware also provides a reclamation feature that automatically recycles descriptors to
queues exactly as if the descriptor had been processed by the TX PKTDMA.

The QoS firmware’s responsibility is to ensure that peripherals and the host CPU are not overwhelmed
with packets. This is also known as traffic shaping, and is managed through the configuration of ingress
and egress queues.

The timer periods for polling queues and for host interrupt triggering are programmable. Specific interrupt
and queue assignments are listed later in this document.

Event management is handled by the Open Event Manager (OEM) software, which is a combination of
PDSP firmware (scheduler) and CorePac software (dispatcher). Complete details are available in the OEM
user’s guide (available in the release zips).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

20 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Operational Concepts

Chapter 2
SPRUGR9H–November 2010–Revised April 2015

Operational Concepts

This chapter introduces the data movement concepts and data structures used by Multicore Navigator.
Thorough understanding of these concepts is necessary for effective programming of the device. Low-
level (bit field) descriptions are provided in later chapters.

Topic ... Page

2.1 Packets ... 21
2.2 Queues ... 21
2.3 Queue Types ... 21
2.4 Descriptors.. 22
2.5 Packet DMA ... 24
2.6 Packet Transmission Overview .. 24
2.7 Packet Reception Overview ... 25
2.8 ARM Endianess.. 27

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Packets

21SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Operational Concepts

2.1 Packets
A packet is the logical grouping of a descriptor and the payload data attached to it. The payload data may
be referred to as packet data or a data buffer, and depending on the descriptor type, may be contiguous
with the descriptor fields, or may be somewhere else in memory with a pointer stored in the descriptor.

2.2 Queues
Queues are used to hold pointers to packets while they are being passed between the host and / or any of
the ports in the system. Queues are maintained within the queue manager module.

2.2.1 Packet Queuing
Queuing of packets onto a packet queue is accomplished by writing a pointer to the descriptor (and in
some cases the length of the packet) into a specific set of addresses within the queue manager module.
Packets may be queued either onto the head or the tail of the queue and this is selected based on a bit in
the Queue Register C for the queue. By default, packets will be added to the tail of a queue if the Queue
Register C has not been written. The queue manager provides a unique set of addresses for adding
packets for each queue that it manages. The host accesses the queue management registers via a queue
proxy, which ensures that all pushes are atomic, eliminating the need for locking mechanisms in the
device.

2.2.2 Packet De-queuing
De-queuing of packets from a packet queue is accomplished by reading the head packet pointer from the
corresponding address in the queue manager. After the head pointer has been read, the queue manager
will invalidate the head pointer and will replace it with the next packet pointer in the queue. This
functionality, which is implemented in the queue manager, prevents the ports from needing to traverse
linked lists and allows for certain optimizations to be performed within the queue manager.

2.2.3 Queue Proxy
The Queue Proxy is a module that provides atomic queue pushes across the cores in KeyStone
architecture devices. The purpose of the proxy is to accept a Que N Reg C write followed by a Que N Reg
D write without allowing another core to inject its own push. The method of pushing to the Queue Proxy is
identical to writing to the Que N Reg C and D registers contained in the Queue Management Region,
except at a different address (the same offset within the Queue Proxy Region). Each core is connected to
the proxy and the proxy identifies it using its VBUS master ID. Simultaneous writes by two or more cores
are arbitrated by round-robin. Queue pushes using only Reg D do not need to use the proxy and may
write to the Queue Management Region. All registers in the Queue Proxy Region are write only, and reads
will return 0 (so there is no queue popping from this region). Because Que N Reg A and B are read only,
they are not supported in the Queue Proxy.

Another important consideration is use of the Queue Proxy in a multitasking environment. The proxy
cannot differentiate writes having different sources within the same core (such as multiple threads). If an
application pushes to queues using Reg C and D, and multiple threads may push to the same queue, the
application must protect these pushes using a resource management method such as critical sections,
semaphore, etc.

2.3 Queue Types
This section describes the various types of queues that are used for transmitting and receiving packets
through Multicore Navigator.

2.3.1 Transmit Queues
Each PKTDMA transmit (Tx) channel is attached to a single queue via a dedicated que_pend signal (see
Figure 1-1, and Figure 1-2). These special queues are called transmit queues (the mappings are
described in Section 5.2). This queue stores all the packets waiting to be transmitted on this Tx channel,
allowing transmit queues to provide input (incoming) data to the PKTDMA. When the Tx channel is
enabled, the que_pend signal automatically notifies the PKTDMA that packets are waiting.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Queue Types www.ti.com

22 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Operational Concepts

2.3.2 Transmit Completion Queues
Following packet transmission, the PKTDMA automatically recycles descriptors to a specified queue so
that the application can use the descriptor again for another packet. This queue is known as a transmit
completion queue, or Tx FDQ (free descriptor queue). These queues are chosen by the application, and
are specified in the descriptor header itself. Normally, the application pre-loads this queue with
descriptors, then pops one at a time and pushes to a transmit queue.

2.3.3 Receive Queues
For packets flowing out of the PKTDMA to a memory endpoint, the PKTDMA uses a receive queue as a
destination queue for the packet. This is an application-selected queue that doesn’t necessarily have
special hardware such as a que_pend signal, though for certain use-cases, the selected receive queue
may also be a transmit queue for another PKTDMA, or a queue pend queue that triggers other
functionality such as EDMA. The application selects the receive queue using specific fields in the Rx Flow
(see Section 4.2.4).

2.3.4 Free Descriptor Queues (FDQ)
A free descriptor queue (FDQ) is a queue pre-loaded with descriptors to be used during runtime. For
PKTDMA receive processing, the PKTDMA uses up to four Rx FDQs to provide memory addresses for the
packet destination. In this case, the PKTDMA pops from these Rx FDQs and pushes the completed
packet to the indicated receive queue. It is also common practice to push all descriptors defined by
descriptor memory regions (see Section 4.1.3) to “global” FDQs to be distributed out to other FDQs as
needed.

2.3.4.1 Host Packet Free Descriptors
Host packets queued to a FDQ must have a buffer linked to them, and the buffer size set appropriately.
The RX DMA will pop the host packets as required, filling them up to their indicated buffer size, and, if
needed, will pop additional host packet descriptors and link them as host buffers to the initial host packet.
The RX DMA will not look for host buffers pre-linked to host packets as is done by the TX DMA.

2.3.4.2 Monolithic Free Descriptors
The RX DMA does not read any values from a monolithic FD. It is assumed by the PKTDMA that the size
of the descriptor is large enough to hold all the packet data. Data exceeding the descriptor’s size will
cause an overwrite of the next descriptor, which may cause undefined results. This calls for careful system
initialization.

2.3.5 Queue Pend Queues
A queue pend queue is a queue with a dedicated que_pend signal (see Figure 1-1, and Figure 1-2) that
connects the queue to one or more interrupt controllers. These mappings are described in Section 5.2.
When the number of descriptors pushed to the queue match the threshold set in Queue N Status and
Configuration Register D (see Section 4.1.5.4), the signal becomes active, triggering the input event in the
controllers.

2.4 Descriptors
Descriptors are small memory areas that describe the packet of data to be transferred through the system.

Descriptor types are discussed and shown in bit-level detail in the Chapter 3 chapter, but briefly, the
descriptor types are:

2.4.1 Host Packet
Host packet descriptors have a fixed size information (or description) area that contains a pointer to a data
buffer, and optionally, a pointer to link one or more host buffer descriptors. Host packets are linked in TX
by the host application, and by the RX DMA in RX (host packets should not be prelinked when creating an
RX FDQ during initialization).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Queue Manager
(N = 0 to 8191)

Queue Packet

De-queue Packet

Host
Packet

Descriptor
(SOP)

Queue N
Head

Pointer

Link

Link

Link

Host
Packet

Descriptor
(SOP)

NULL

Pointer

Queue

Link

NULL

Packet 1
MOP Data

Buffer

Packet 1
MOP Data

Buffer

Packet 2
Data
Buffer

Packet 1
SOP Data

Buffer

Packet 3
SOP Data

Buffer

Packet 1
EOP Data

Buffer

NULL

Host
Buffer

Descriptor
(MOP)

Host
Buffer

Descriptor
(MOP)

Host
Buffer

Descriptor
(EOP)

Monolithic
Packet

Descriptor

www.ti.com Descriptors

23SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Operational Concepts

2.4.2 Host Buffer
Host buffer descriptors are interchangeable in descriptor size with host packets, but are never placed as
the first link of a packet (this is referred to as start of packet). They can contain links to other host buffer
descriptors.

2.4.3 Monolithic Packet
Monolithic packet descriptors differ from host packet descriptors in that the descriptor area also contains
the payload data, whereas the host packet contains a pointer to buffer located elsewhere. Monolithic
packets are simpler to deal with, but are not as flexible as host packets.

Figure 2-1 shows how the various types of descriptors are queued. For Host type descriptors, it illustrates
how Host Buffers are linked to a Host Packet, while only the Host Packet is pushed and popped from a
queue. Both Host and Monolithic descriptors may be pushed into the same queue, though in practice they
are usually kept separate.

Figure 2-1. Packet Queuing Data Structure Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Packet DMA www.ti.com

24 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Operational Concepts

2.5 Packet DMA
The Packet DMA (or PKTDMA) used within Multicore Navigator is like most DMAs in that it is primarily
concerned with moving data from point to point. It is unlike some DMAs in that it is unaware of the payload
data’s structure. To the PKTDMA, all payloads are simple one-dimensional byte streams. Programming
the PKTDMA is accomplished through correct initialization of descriptors, PKTDMA RX/TX channels, and
RX flows.

2.5.1 Channels
Each PKTDMA in the system is configured with a number of receive (RX) and transmit (TX) channels (see
Section 5.4 for details). A channel may be thought of a pathway through the PKTDMA. Once the PKTDMA
has started a packet on a channel, that channel cannot be used by any other packet until the current
packet is completed. Because there are multiple channels for RX and TX, multiple packets may be in-flight
simultaneously, and in both directions, because each PKTDMA contains separate DMA engines for RX
and TX.

2.5.2 RX Flows
For transmit, the TX DMA engine uses the information found in the descriptor fields to determine how to
process the TX packet. For receive, the RX DMA uses a flow. A flow is a set of instructions that tells the
RX DMA how to process the RX packet. It is important to note that there is not a correspondence between
RX channel and RX flow, but rather between RX packet and RX flow. For example, one peripheral may
create a single RX flow for all packets across all channels, and another may create several flows for the
packets on each channel.

For loopback PKTDMA modes (i.e. infrastructure cases), the RX flow is specified in the TX descriptor, in
the SOURCE_TAG_LO field. The PKTDMA will pass this value to the streaming I/F as flow index. In non-
loopback cases, the RX flow is specified in the packet info structure of the Streaming I/F. In the event no
RX flow is specified, the RX DMA will use RX flow N for RX channel N.

2.6 Packet Transmission Overview
After a TX DMA channel has been initialized, it can begin to be used to transmit packets. Packet
transmission involves the following steps:
1. The host is made aware of one or more chunks of data in memory that need to be transmitted as a

packet. This may involve directly sourcing data from the host or it may involve data that has been
forwarded from another data source in the system.

2. The host allocates a descriptor, usually from a TX completion queue, and fills in the descriptor fields
and payload data.

3. For host packet descriptors, the host allocates and populates host buffer descriptors as necessary to
point to any remaining chunks of data that belong to this packet.

4. The host writes the pointer to the packet descriptor into a specific memory mapped location inside the
queue manager that corresponds to one of the transmit queues for the desired DMA channel.
Channels may provide more than one TX queue and may provide a particular prioritization policy
between the queues. This behavior is application-specific and is controlled by the DMA controller /
scheduler implementation.

5. The queue manager provides a level sensitive status signal for the queue that indicates if any packets
are currently pending. This level-sensitive status line is sent to the hardware block that is responsible
for scheduling DMA operations.

6. The DMA controller is eventually brought into context for the corresponding channel and begins to
process the packet.

7. The DMA controller reads the packet descriptor pointer and descriptor size hint information from the
queue manager. This is the push value written to the Queue N Reg D registers.

8. The DMA controller reads the packet descriptor from memory.
9. The DMA controller empties the buffer (or for linked host packets, each buffer in sequence specified by

the next descriptor pointer) by transmitting the contents in one or more block data moves. The size of
these blocks is application-specific.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Processor
(may or may not
be running OS)

Queue Manager

Tx
Queue

Tx
Completion
Queue

Tx Port

1-4. Processor
Queues Tx
Packet

5-9. Port Transmits
Packet

10. Port Posts
Packet to
Completion Queue

13. Host Performs
Garbage Collection
(may use list for
performance)

12. Tx Pulsed
Interrupt
to Host

Interrupt Generator
and (optional) List

Accumulator

11. Not Empty
Level Status

www.ti.com Packet Reception Overview

25SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Operational Concepts

10. When all data for the packet has been transmitted as specified in the packet size field, the DMA will
write the pointer to the packet descriptor to the queue specified in the return queue manager / return
queue number fields of the packet descriptor.

11. After the packet descriptor pointer has been written, the queue manager will indicate the status of the
TX completion queues to other ports / processors / prefetcher blocks using out-of-band level sensitive
status lines. These status lines are set anytime a queue is non-empty.

12. While most types of peer entities and embedded processors are able to directly and efficiently use
these level sensitive status lines, cached processors may require a hardware block to convert the level
status into pulsed interrupts and to perform some level of aggregation of the descriptor pointers from
the completion queues into lists.

13. Host responds to status change from queue manager and performs garbage collection as necessary
for packet.

This complete process is shown in Figure 2-2.

Figure 2-2. Packet Transmit Operation

2.7 Packet Reception Overview
After an RX DMA channel has been initialized, it can begin to be used to receive packets. Packet
reception involves the following steps.

When packet reception begins on a given channel, the port will begin by fetching the first descriptor (or for
host packets, descriptor + buffer) from the queue manager using a free descriptor queue that was
programmed into the RX flow being used by the packet. If the SOP buffer offset in the RX flow is nonzero,
then the port will begin writing data after the offset number of bytes in the SOP buffer. The port will then
continue filling that buffer:
1. For host packets, the port will fetch additional descriptors + buffers as needed using the FDQ 1, 2, and

3 indexes for the 2nd, 3rd, and remaining buffers in the packet (as programmed in the RX flow).
2. For monolithic packets, the port will continue writing after the SOP offset until EOP is reached (the host

must ensure that the packet length will fit into the descriptor or it will overwrite the next descriptor).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Host Processor
(running OS)

Queue Manager

Rx Free
Descriptor /

Buffer Queue

Rx
Queue

Rx Port

2. Port Fetches
Free Descriptors +
Buffers During Rx

3. Port Posts
Packet to
Rx Queue

6. Host Performs
Garbage Collection
(may use list for
performance)

5. Tx Pulsed
Interrupt
to Host

Interrupt Generator
and (optional)

List Accumulator

4. Not Empty
Level Status

INIT: Host Allocates Rx
Free Descriptors and
Inits FDB Queue Host
Links OS Buffers to
Local CPPI Descriptors

Packet Reception Overview www.ti.com

26 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Operational Concepts

The PKTDMA performs the following operations when the entire packet has been received:
1. Writes the packet descriptor to memory. Most of the fields of the descriptor will be overwritten by the

RX DMA. See the RX Overwrite column of the descriptor layouts in Chapter 3 for field-specific detail.
For monolithic packets, the DMA does not even read the descriptor until it is time to write to the
descriptor fields at EOP.

2. Writes the packet descriptor pointer to the appropriate RX queue. The absolute queue that each
packet to be forwarded to on completion of reception will either be the queue that was specified in the
RX_DEST_QMGR and RX_DEST_QNUM fields in the RX flow. The port is explicitly allowed to
override this destination queue using application specific methods.

The queue manager is responsible for indicating the status of the receive queues to other ports /
embedded processors using out-of-band level sensitive status lines. These status lines are set anytime a
queue is non-empty.

Figure 2-3 shows a diagram of the overall receive operation.

Figure 2-3. Packet Receive Operation

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com ARM Endianess

27SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Operational Concepts

2.8 ARM Endianess
This section pertains only to KeyStone devices containing an ARM processor.

Memory access between the ARM subsystem and the rest of the device is accomplished with the
OCP2VBUSM bridge. This bridge performs endianess translations when the device is in big endian mode.
The ARM always operates in little endian mode. For Navigator purposes, some data and data structures
require manipulation when accessed by a program running on the ARM:
• Descriptors. The header portion needs to be byte-swapped prior to pushing and following popping.

Navigator uses a notion of descriptor ownership in that when the descriptor is pushed to a queue it is
owned by the hardware, and owned by software when not pushed to a queue. Byte swapping follows
this nicely in that when a descriptor is popped from a queue it should be byte swapped prior to reading
header fields, then byte swapped again just before pushing it back to a queue. For linked Host
descriptors, care must be taken to make sure that the next pointer has been byte swapped correctly for
the ARM.

• Payload data for IP. For TX data going into an IP (such as an FFTC), the data needs to be byte
swapped prior to pushing the corresponding descriptors. Similarly, when consuming an RX descriptor
from an IP, the payload also needs to be swapped.

• Accumulator lists. The list of descriptor addresses provided by the Accumulator firmware needs to be
byte swapped prior to consumption. Care must be taken due to the ping-pong nature of the lists; byte-
swap only one side at a time - the side that is being consumed.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

28 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Descriptor Layouts

Chapter 3
SPRUGR9H–November 2010–Revised April 2015

Descriptor Layouts

Descriptors are memory areas that describe the contents of a packet. This memory may be co-located
with the packet data, or may contain pointers to the data.

Topic ... Page

3.1 Host Packet Descriptor ... 29
3.2 Host Buffer Descriptor .. 33
3.3 Monolithic Descriptor ... 35

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Host Packet Descriptor

29SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Descriptor Layouts

3.1 Host Packet Descriptor
Host packet descriptors are designed to be used when the application requires support for true, unlimited
fragment count scatter / gather-type operations. The host packet descriptor contains the following
information:
• Indicator that identifies the descriptor as a host packet descriptor
• Source and destination tags
• Packet type
• Packet length
• Protocol-specific region size
• Protocol-specific control / status bits
• Pointer to the first valid byte in the SOP data buffer
• Length of the SOP data buffer
• Pointer to the next buffer descriptor in the packet
• Software-specific information

Host packet descriptors always contain 32 bytes of required information and may also contain optional
software-specific information and protocol-specific information. How much optional information (and
therefore the allocated size of the descriptors) is required is application-dependent. The descriptor layout
is shown in Table 3-1.

Table 3-1. Host Packet Descriptor Layout

Packet info (12 bytes)
Buffer info (8 bytes)
Linking info (4 bytes)
Original buffer info

(8 bytes)
Extended packet info block (optional)

Includes timestamp and software data (16 bytes)
Protocol-specific data (optional)

(0 to M bytes where M is a multiple of 4)
Other SW data (optional and user defined)

Packet info
(12 bytes)

Buffer info (8 bytes)
Linking info

(4 bytes)
Original buffer info

(8 bytes)
Extended packet info block (optional)

Includes timestamp and software data (16 bytes)
Protocol-specific data (optional)

(0 to M bytes where M is a multiple of 4)
Other SW data (optional and user defined)

Host packet descriptors may be linked with zero or more additional host buffer descriptors in a singly-
linked-list fashion to form packets. Each host packet consists of a single host packet descriptor followed
by a chain of zero or more host buffer descriptors linked together using the next descriptor pointer fields in
the descriptors. The last descriptor in a host packet has a 0 next descriptor pointer.

The other SW data portion of the descriptor exists after all of the defined words and is reserved for use by
the host software to store completely private data. This region is not used in any way by the DMA or
queue manager modules in a Multicore Navigator system and these modules will not modify any bytes
within this region.

The contents of the host packet descriptor words are detailed in the following tables:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Host Packet Descriptor www.ti.com

30 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Descriptor Layouts

Table 3-2. Host Packet Descriptor Packet Information Word 0 (PD Word 0)

Bits Name Description
RX
Overwrite

31-30 Packet Id Host packet descriptor type identifier. Value is always 0 (0x0) for Host Packet descriptors. Yes
29-25 Packet Type This field indicates the type of this packet and is encoded as follows:

0-31 = To Be Assigned
Yes

24-23 Reserved Unused Yes
22 Protocol Specific

Region Location
This field indicates the location of the protocol-specific words:
• 0 = PS words are located in the descriptor
• 1 = PS words are located in the SOP Buffer immediately prior to the data.

Yes

21-0 Packet Length The length of the packet data in bytes. If the packet length is less than the sum of the
buffer lengths, then the packet data will be truncated. A packet length greater than the sum
of the buffers is an error. The valid range for the packet length is 0 to 4M-1 bytes. If the
packet length is set to 0, the port will not actually transmit any information. Instead, the port
will perform buffer / descriptor reclamation as instructed in the return information in word 2.

Yes

Table 3-3. Host Packet Descriptor Packet Information Word 1 (PD Word 1)

Bits Name Description
RX
Overwrite

31-24 Source Tag - Hi This field is application-specific. During packet reception, the DMA controller in the port will
overwrite this field as specified in the RX_SRC_TAG_HI_SEL field in the flow configuration
table entry.

Configurable

23-16 Source Tag - Lo This field is application-specific. During packet reception, the DMA controller in the port will
overwrite this field as specified in the RX_SRC_TAG_LO_SEL field in the flow configuration
table entry. For TX, this value supplies the RX flow index to the Streaming I/F for infrastructure
use.

Configurable

15-8 Dest Tag – Hi This field is application specific. During packet reception, the DMA controller in the port will
overwrite this field as specified in the RX_DEST_TAG_HI_SEL field in the flow configuration
table entry.

Configurable

7-0 Dest Tag - Lo This field is application specific. During packet reception, the DMA controller in the port will
overwrite this field as specified in the RX_DEST_TAG_LO_SEL field in the flow configuration
table entry.

Configurable

Table 3-4. Host Packet Descriptor Packet Information Word 2 (PD Word 2)

Bits Name Description
RX
Overwrite

31 Extended Packet Info Block
Present

This field indicates the presence of the extended packet info block in the
descriptor.
• 0 = EPIB is not present
• 1 = 16 byte EPIB is present

Yes

30 Reserved Unused Yes
29-24 Protocol Specific Valid Word

Count
This field indicates the valid # of 32-bit words in the protocol-specific region. This is
encoded in increments of 4 bytes as follows:
• 0 = 0 bytes
• 1 = 4 bytes
…
• 16 = 64 bytes
…
32 = 128 bytes
33-63 = Reserved

Yes

23-20 Error Flags This field contains error flags that can be assigned based on the packet type Yes
19-16 Protocol Specific Flags This field contains protocol-specific flags / information that can be assigned based

on the packet type.
Yes

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Host Packet Descriptor

31SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Descriptor Layouts

Table 3-4. Host Packet Descriptor Packet Information Word 2 (PD Word 2) (continued)

Bits Name Description
RX
Overwrite

15 Return Policy • This field indicates the return policy for this packet.
• 0 = Entire packet (still linked together) should be returned to queue specified in

bits 13-0 below.
• 1 = Each buffer should be returned to queue specified in bits 13-0 of Word 2 in

their respective descriptors. The TX DMA will return each buffer in sequence.

No

14 Return Push Policy This field indicates how a transmit DMA should return the descriptor pointers to the
free queues. This field is encoded as follows:
• 0 = Descriptor must be returned to tail of queue
• 1 = Descriptor must be returned to head of queue
This bit is used only when the Return Policy bit is set to 1.

No

13-12 Packet Return Queue Mgr # This field indicates which of the four potential queue managers in the system the
descriptor is to be returned to after transmission is complete. This field is not
altered by the DMA during transmission or reception and should be initialized by
the host.

No

11-0 Packet Return Queue # This field indicates the queue number within the selected queue manager that the
descriptor is to be returned to after transmission is complete. The value 0xFFF is
reserved.

No

Table 3-5. Host Packet Descriptor Buffer 0 Info Word 0 (PD Word 3)

Bits Name Description
RX
Overwrite

31-22 Reserved Unused Yes
21-0 Buffer 0 Length The buffer length field indicates how many valid data bytes are in the buffer. Unused or

protocol-specific bytes at the beginning of the buffer are not counted in the buffer length
field. This value will be overwritten during reception.

Yes

Table 3-6. Host Packet Descriptor Buffer 0 Info Word 1 (PD Word 4)

Bits Name Description
RX
Overwrite

31-0 Buffer 0 Pointer The buffer pointer is the byte-aligned memory address of the buffer associated with the
buffer descriptor. This value will be written during reception. If the protocol-specific words
are placed at the beginning of the SOP buffer, this pointer will point to the PS words. The
offset to the data in that case must be calculated by the consumer using the protocol-
specific valid word count from word 2. Usage note: For TX, it is a good practice to
initialize this field and the Original Ptr field in word 7 with the actual buffer address, but
this is the field that is used. For RX, this field may be left uninitialized, or set to 0.

Yes

Table 3-7. Host Packet Descriptor Linking Word (PD Word 5)

Bits Name Description
RX
Overwrite

31-0 Next Descriptor
Pointer

The 32-bit word-aligned memory address of the next buffer descriptor in the packet. If the
value of this pointer is 0, then the current buffer is the last buffer in the packet. The host
sets the next descriptor pointer.

Yes

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Host Packet Descriptor www.ti.com

32 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Descriptor Layouts

Table 3-8. Host Packet Descriptor Original Buffer Info Word 0 (PD Word 6)

Bits Name Description
RX
Overwrite

31-28 Original Buffer 0 Pool
Index

This field is used to identify which pool the attached buffer was originally allocated from.
This is distinct from the descriptor pool/queue index because a single buffer may be
referenced by more that one descriptor. This is a software-only field that is not touched by
the hardware.

No

27-22 Original Buffer 0
Reference Count

This field is used to indicate how many references have been made to the attached buffer
by different descriptors. Multiple buffer references are commonly used to implement
broadcast and multicast packet forwarding when zero packet data copies are desired.
This is a software-only field that is not touched by the hardware.

No

21-0 Original Buffer 0
Length

The buffer length field indicates the original size of the buffer in bytes. Data bytes are in
the buffer. This value will not be overwritten during reception. This value is read by the RX
DMA to determine the actual buffer size as allocated by the host at initialization. Because
the buffer length in Word 3 is overwritten by the RX port during reception, this field is
necessary to permanently store the buffer size information.
Usage Note: It is good practice to always set this field during initialization.

No

Table 3-9. Host Packet Descriptor Original Buffer Info Word 1 (PD Word 7)

Bits Name Description
RX
Overwrite

31-0 Original Buffer 0
Pointer

The buffer pointer is the byte-aligned memory address of the buffer associated with the
buffer descriptor. This value will not be overwritten during reception. This value is read by
the RX DMA to determine the actual buffer location as allocated by the host at
initialization. Because the buffer pointer in word 4 is overwritten by the RX port during
reception, this field is necessary to permanently store the buffer pointer information.
Usage Note: It is good practice to always set this field during initialization, but is used
only in RX.

No

(1) This word is present only if the extended packet info block present bit is set in word 2.

Table 3-10. Host Packet Descriptor Extended Packet Info Block Word 0 (Optional) (1)

Bits Name Description
RX
Overwrite

31-0 Timestamp Info This field contains an application-specific timestamp that can be used for traffic shaping in
a QoS enabled system.

Configurable

(1) This word is present only if the Extended Packet Info Block present bit is set in Word 2.

Table 3-11. Host Packet Descriptor Extended Packet Info Block Word 1 (Optional) (1)

Bits Name Description
RX
Overwrite

31-0 Software Info 0 This field stores software-centric information that needs to travel with the packet through
the stack. This information will be copied from the source descriptor to the destination
descriptor whenever a prefetch operation is performed or when transferring through an
infrastructure DMA node.

Configurable

(1) This word is present only if the Extended Packet Info Block present bit is set in Word 2.

Table 3-12. Host Packet Descriptor Extended Packet Info Block Word 2 (Optional) (1)

Bits Name Description
RX
Overwrite

31-0 Software Info 1 This field stores software centric information that needs to travel with the packet through
the stack. This information will be copied from the source descriptor to the destination
descriptor whenever a prefetch operation is performed or when transferring through an
infrastructure DMA node.

Configurable

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Host Buffer Descriptor

33SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Descriptor Layouts

(1) This word is present only if the Extended Packet Info Block present bit is set in Word 2.

Table 3-13. Host Packet Descriptor Extended Packet Info Block Word 3 (Optional) (1)

Bits Name Description
RX
Overwrite

31-0 Software Info 2 This field stores software centric information that needs to travel with the packet through
the stack. This information will be copied from the source descriptor to the destination
descriptor whenever a prefetch operation is performed or when transferring through an
infrastructure DMA node.

Configurable

Table 3-14. Host Packet Descriptor Protocol Specific Word N (Optional)

Bits Name Description
RX
Overwrite

31-0 Protocol Specific Data N This field stores information that varies depending on the block and packet type. Configurable

3.2 Host Buffer Descriptor
The host buffer descriptor is identical in size and organization to a host packet descriptor but does not
include valid information in the packet level fields and does not include a populated region for protocol-
specific information. Host buffer descriptors are designed to be linked onto a host packet descriptor or
another host buffer descriptor to provide support for unlimited scatter / gather type operations. Host buffer
descriptors provide information about a single corresponding data buffer. Every host buffer descriptor
stores the following information:
• Pointer to the first valid byte in the data buffer
• Length of the data buffer
• Pointer to the next buffer descriptor in the packet

Host buffer descriptors always contain 32 bytes of required information. Because it is a requirement that it
is possible to convert a host descriptor between a buffer descriptor and a packet descriptor (by filling in
the appropriate fields), in practice, host buffer descriptors will be allocated using the same sizes as host
packet descriptors. The descriptor layout is shown in Table 3-15.

Table 3-15. Host Buffer Descriptor Layout

Reserved
(10 bytes)

Buffer reclamation info
(2 bytes)

Buffer info (8 bytes)
Linking info (4 bytes)
Original buffer info

(8 bytes)

Reserved
(10 bytes)

Buffer reclamation info
(2 bytes)

Buffer info (8 bytes)
Linking info (4 bytes)
Original buffer info

(8 bytes)

A host packet descriptor and zero or more host buffer descriptors may be linked together using the next
descriptor pointer fields to form packets. The last descriptor in a packet has a 0 next descriptor pointer.
Each host buffer descriptor also points to a single data buffer.

The contents of the host buffer descriptor words are detailed in Table 3-16 through Table 3-23. The host
buffer descriptor is designed to be interchangeable with host packet descriptors, with common fields
residing in the same locations.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Host Buffer Descriptor www.ti.com

34 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Descriptor Layouts

Table 3-16. Host Buffer Descriptor Reserved Word 0 (BD Word 0)

Bits Name Description
RX
Overwrite

31-0 Reserved Reserved for host packet fields No

Table 3-17. Host Buffer Descriptor Reserved Word 1 (BD Word 1)

Bits Name Description
RX
Overwrite

31-0 Reserved Reserved for host packet fields No

Table 3-18. Host Buffer Descriptor Buffer Reclamation Info (BD Word 2)

Bits Name Description
RX
Overwrite

31-15 Reserved Reserved for host packet fields No
14 Return Push Policy This field indicates how a transmit DMA should return the descriptor pointers to

the free queues. This field is encoded as follows:
• 0 = Descriptor must be returned to tail of queue
• 1 = Descriptor must be returned to head of queue
This bit is used only when the Return Policy bit is set to 1.

No

13-12 Packet Return Queue Mgr # This field indicates which of the four potential queue managers in the system the
descriptor is to be returned to after transmission is complete. This field is not
altered by the DMA during transmission or reception and should be initialized by
the host.

No

11-0 Packet Return Queue # This field indicates the queue number within the selected queue manager that the
descriptor is to be returned to after transmission is complete.

No

Table 3-19. Host Buffer Descriptor Buffer N Info Word 0 (BD Word 3)

Bits Name Description
RX
Overwrite

31-22 Reserved Reserved for host packet fields Yes
21-0 Buffer N Length The buffer length field indicates how many valid data bytes are in the buffer. Unused or

protocol-specific bytes at the beginning of the buffer are not counted in the buffer length
field. This value will be overwritten during reception.

Yes

Table 3-20. Host Buffer Descriptor Buffer N Info Word 1 (BD Word 4)

Bits Name Description
RX
Overwrite

31-0 Buffer N Pointer The buffer pointer is the byte-aligned memory address of the buffer associated with the
buffer descriptor. This value will not be overwritten during reception.

Yes

Table 3-21. Host Buffer Descriptor Linking Word (BD Word 5)

Bits Name Description
RX
Overwrite

31-0 Next Descriptor Pointer The 32-bit word aligned memory address of the next buffer descriptor in the packet. This is
the mechanism used to reference the next buffer descriptor from the current buffer
descriptor. If the value of this pointer is 0, then the current buffer is the last buffer in the
packet. This value will be overwritten during reception.

Yes

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Monolithic Descriptor

35SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Descriptor Layouts

Table 3-22. Host Buffer Descriptor Original Buffer Info Word 0 (BD Word 6)

Bits Name Description
RX
Overwrite

31-28 Original Buffer 0 Pool
Index

This field is used to identify which pool the attached buffer was originally allocated from.
This is distinct from the descriptor pool/queue index because a single buffer may be
referenced by more that one descriptor. This is a software-only field that is not touched by
the hardware.

No

27-22 Original Buffer 0
Reference Count

This field is used to indicate how many references have been made to the attached buffer
by different descriptors. Multiple buffer references are commonly used to implement
broadcast and multicast packet forwarding when zero packet data copies are desired. This
is a software-only field that is not touched by the hardware.

No

21-0 Original Buffer 0
Length

The buffer length field indicates the original size of the buffer in bytes. Data bytes are in the
buffer. This value will not be overwritten during reception. This value is read by the RX
DMA to determine the actual buffer size as allocated by the host at initialization. Because
the buffer length in word 3 is overwritten by the RX port during reception, this field is
necessary to permanently store the buffer size information.

No

Table 3-23. Host Buffer Descriptor Original Buffer Info Word 1 (BD Word 7)

Bits Name Description
RX
Overwrite

31-0 Original Buffer 0
Pointer

The buffer pointer is the byte-aligned memory address of the buffer associated with the
buffer descriptor. This value will not be overwritten during reception. This value is read by
the RX DMA to determine the actual buffer location as allocated by the host at initialization.
Because the buffer pointer in word 4 is overwritten by the RX port during reception, this
field is necessary to permanently store the buffer pointer information.

No

3.3 Monolithic Descriptor
The monolithic packet descriptor contains the following information:
• Indicator that identifies the descriptor as a monolithic packet descriptor
• Source and destination tags
• Packet type
• Packet length
• Packet error indicator
• Packet return information
• Protocol-specific region size
• Protocol-specific region offset
• Protocol-specific control / status bits
• Packet data

The maximum size of a monolithic packet descriptor is 65535 bytes. Of this, monolithic packet descriptors
always contain 12 bytes of required information and may also contain 16 bytes of software-specific
tagging information and up to 128 bytes (indicated in 4-byte increments) of protocol-specific information.
How much protocol-specific information (and therefore the allocated size of the descriptors) is application
dependent. The descriptor layout is shown in Table 3-24.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Monolithic Descriptor www.ti.com

36 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Descriptor Layouts

Table 3-24. Monolithic Packet Descriptor Layout

Packet info (12 bytes)
Extended packet info block (optional)

Includes PS bits, timestamp, and SW data words
(20 bytes)

Protocol-Specific data (optional)
(0 to M bytes where M is a multiple of 4)

Null region (0 to (511-12) bytes)
Packet data

(0 to 64K – 1)
Other SW data (optional and user defined)

Packet info (12 bytes)
Extended packet info block (optional)

Includes PS bits, timestamp, and SW data words
(20 bytes)

Protocol-Specific data (optional)
(0 to M bytes where M is a multiple of 4)

Null region (0 to (511-12) bytes)
Packet data

(0 to 64K – 1)
Other SW data (optional and user defined)

The other SW data portion of the descriptor exists after all of the defined words and is reserved for use by
the host software to store private data. This region is not used in any way by the DMA or queue manager
modules in a Multicore Navigator system and these modules will not modify any bytes within this region.

A note on the placement of data with respect to the optional EPIB block: If EPIB is present, the 16 bytes of
EPIB data begins at byte offset 16, and PS or packet data may begin at byte offset 32 (from the descriptor
address). If EPIB is not present, PS or packet data may begin at byte offset 12 (from the descriptor
address).

The contents of the monolithic packet descriptor words are detailed in the following tables:

Table 3-25. Monolithic Packet Descriptor Word 0

Bits Name Description
RX
Overwrite

31-30 Packet Id Monolithic packet descriptor type. Value is always 2 (0x02) for monolithic descriptors. Yes
29-25 Packet Type This field indicates the type of this packet and is encoded as follows:

• 0-31 = To Be Assigned
Yes

24-16 Data Offset This field indicates the byte offset from byte 0 of this descriptor to the location where the valid data
begins.
On RX, this value is set equal to the value for the SOP offset given in the RX DMA channel’s
monolithic control register.
When a monolithic packet is processed, this value may be modified in order to add or remove
bytes to or from the beginning of the packet.
The value for this field can range from 0-511 bytes, which means that the maximum NULL region
can be 511-12 bytes, because byte 0 is the start of the 12 byte packet info area.
Note that the value of this field must always be greater than or equal to 4 times the value given in
the Protocol Specific Valid Word Count field.

Yes

15-0 Packet
Length

The length of the packet data in bytes. The valid range is from 0 to 65535 bytes. NOTE: The sum
of the data offset field and the packet length must not exceed 64KB or the defined size of the
descriptor. To do so is an error, and may cause transmission problems through the Streaming
Interface.

Yes

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Monolithic Descriptor

37SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Descriptor Layouts

Table 3-26. Monolithic Packet Descriptor Word 1

Bits Name Description
RX
Overwrite

31-24 Source Tag - Hi This field is application-specific. During packet reception, the DMA controller in the port will
overwrite this field as specified in the RX_SRC_TAG_HI_SEL field in the flow configuration
table entry.

Configurable

23-16 Source Tag - Lo This field is application-specific. During packet reception, the DMA controller in the port will
overwrite this field as specified in the RX_SRC_TAG_LO_SEL field in the flow configuration
table entry. For TX, this value supplies the RX flow index to the streaming I/F for
infrastructure use.

Configurable

15-8 Dest Tag – Hi This field is application-specific. During packet reception, the DMA controller in the port will
overwrite this field as specified in the RX_DEST_TAG_HI_SEL field in the flow configuration
table entry.

Configurable

7-0 Dest Tag - Lo This field is application-specific. During packet reception, the DMA controller in the port will
overwrite this field as specified in the RX_DEST_TAG_LO_SEL field in the flow configuration
table entry.

Configurable

Table 3-27. Monolithic Packet Descriptor Word 2

Bits Name Description
RX
Overwrite

31 Extended Packet
Info Block
Present

This field indicates the presence of the extended packet info block in the descriptor.
• 0 = EPIB is not present
• 1 = 16 byte EPIB is present

Yes

30 Reserved Unused Yes
29-24 Protocol Specific

Valid Word Count
This field indicates the valid number of 32-bit words in the protocol-specific region. This is
encoded in increments of 4 bytes as follows:
• 0 = 0 bytes
• 1 = 4 bytes
• …
• 16 = 64 bytes
• …
• 32 = 128 bytes
• 33-63 = Reserved

Yes

23-20 Error Flags This field contains error flags that can be assigned based on the packet type. Yes
19-16 Protocol Specific

Flags
This field contains protocol-specific flags / information that can be assigned based on the
packet type.

Yes

15 Reserved Unused No
14 Return Push

Policy
This field indicates how a transmit DMA should return the descriptor pointers to the free
queues. This field is encoded as follows:
• 0 = Descriptor must be returned to tail of queue
• 1 = Descriptor must be returned to head of queue

No

13-12 Packet Return
Queue Mgr #

This field indicates which of the four potential queue managers in the system the descriptor is to
be returned to after transmission is complete. This field is not altered by the DMA during
transmission or reception and should be initialized by the host.

No

11-0 Packet Return
Queue #

This field indicates the queue number within the selected queue manager that the descriptor is
to be returned to after transmission is complete.

No

(1) This word is present only if the Extended Packet Info Block present bit is set in word 2.

Table 3-28. Monolithic Extended Packet NULL Word (Optional) (1)

Bits Name Description
RX
Overwrite

31-0 Reserved This field is present only to align the extended packet words to a 128-bit boundary in memory.
This word can be used for host SW scratchpad because it will not be copied or overwritten by the
DMA components.

No

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Monolithic Descriptor www.ti.com

38 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Descriptor Layouts

(1) This word is present only if the Extended Packet Info Block present bit is set in word 2.

Table 3-29. Monolithic Extended Packet Info Word 0 (Optional) (1)

Bits Name Description
RX
Overwrite

31-0 Timestamp Info This field contains an application-specific timestamp that can be used for traffic shaping in a
QoS-enabled system.

Configurable

(1) This word is present only if the Extended Packet Info Block present bit is set in word 2.

Table 3-30. Monolithic Extended Packet Info Word 1 (Optional) (1)

Bits Name Description
RX
Overwrite

31-0 Software Info 0 This field stores software-centric information that needs to travel with the packet through the
stack. This information will be copied from the source descriptor to the destination descriptor
whenever a prefetch operation is performed or when transferring through an infrastructure
DMA node.

Configurable

(1) This word is present only if the Extended Packet Info Block present bit is set in word 2.

Table 3-31. Monolithic Extended Packet Info Word 2 (Optional) (1)

Bits Name Description
RX
Overwrite

31-0 Software Info 1 This field stores software-centric information that needs to travel with the packet through the
stack. This information will be copied from the source descriptor to the destination descriptor
whenever a prefetch operation is performed or when transferring through an infrastructure
DMA node.

Configurable

(1) This word is present only if the Extended Packet Info Block present bit is set in word 2.

Table 3-32. Monolithic Extended Packet Info Word 3 (Optional) (1)

Bits Name Description
RX
Overwrite

31-0 Software Info 2 This field stores software-centric information that needs to travel with the packet through
the stack. This information will be copied from the source descriptor to the destination
descriptor whenever a prefetch operation is performed or when transferring through an
infrastructure DMA node.

Configurable

(1) These words, if present, immediately follow the software data block information.

Table 3-33. Monolithic Packet Descriptor Protocol Specific Word M (Optional) (1)

Bits Name Description
RX
Overwrite

31-0 Protocol Specific Data N This field stores information that varies depending on the packet type. Configurable

(1) The payload data follows the protocol-specific words at an offset specified in the data offset field of word 0.
(2) This field is endian-specific. In other words, this is the only field in the descriptor that changes based on the endianess of the system.

Table 3-34. Monolithic Packet Descriptor Payload Data Words 0-N (1) (2)

Bits Name Description
RX
Overwrite

31-0 Packet Data N These words store the packet payload data. Yes

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

39SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

Chapter 4
SPRUGR9H–November 2010–Revised April 2015

Registers

The following sections describe the memory mapped registers within each region of the Queue Manager
Sub-system and PKTDMA. All Multicore Navigator registers support 32-bit accesses only.

Topic ... Page

4.1 Queue Manager.. 40
4.2 Packet DMA ... 59
4.3 QMSS PDSPs... 80
4.4 QMSS Interrupt Distributor .. 101

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Queue Manager www.ti.com

40 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.1 Queue Manager
The following sections describe the registers in each of the queue manager register regions, for each
queue manager. The register descriptions provide each register’s offset from the region’ base address.

4.1.1 Queue Configuration Region
Table 4-1 shows registers within each queue manager config region.

Table 4-1. Queue Configuration Region Registers

Offset Name Description
0x00000000 Revision Register The Revision Register contains the major and minor revisions for the module.
0x00000008 Queue Diversion Register The Queue Diversion Register is used to transfer the contents of one queue

onto another queue.
0x0000000C Linking RAM Region 0 Base

Address Register
The Linking RAM Region 0 Base Address Register is used to set the base
address for the first portion of the linking RAM. This address must be 32-bit-
aligned. It is used by the queue manager to calculate the 32-bit linking address
for a given descriptor index.

0x00000010 Linking RAM Region 0 Size
Register

The linking RAM Region 0 Size Register is used to set the size of the array of
linking pointers that are located in region 0 of Linking RAM. The size specified
the number of descriptors for which linking information is stored in this region.

0x00000014 Linking RAM Region 1 Base
Address Register

The linking RAM Region 1 Base Address Register is used to set the base
address for the second portion of the linking RAM. This base address is used by
the queue manager to calculate the 32-bit linking address from the descriptor
index. All descriptors with index higher than that given in linking RAM 0 Size
register have linking information stored in linking RAM region 1.

0x00000020 -
0x0000005C

Free Descriptor/Buffer
Starvation Count Registers N
(0 – 15)

The Free Descriptor/Buffer Queue Starvation Count Registers provide statistics
about how many starvation events are occurring on the RX free descriptor/buffer
queues.

4.1.1.1 Revision Register (0x00000000)
The Revision Register contains the major and minor revisions for the module as shown in Figure 4-1.

Figure 4-1. Revision Register (0x00000000)
31 30 29 28 27 16 15 11 10 8 7 6 5 0
SCHEME Reserved FUNCTION REVRTL REVMAJ REVCUSTOM REVMIN

R-1 R-0 R-0xe53 R-1 R-0 R-0 R-0
Legend: R = Read only; - n = value after reset

Table 4-2. Revision Register Field Descriptions

Bits Field Description
31-30 SCHEME Scheme that this register is compliant with
29-28 Reserved Reads return 0 and writes have no effect
27-16 FUNCTION Function
15-11 REVRTL RTL revision
10-8 REVMAJ Major revision
7-6 REVCUSTOM Custom revision
5-0 REVMIN Minor revision

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Queue Manager

41SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.1.1.2 Queue Diversion Register (0x00000008)
The Queue Diversion Register (Figure 4-2) is used to transfer the contents of one queue onto another
queue. It is not possible to divert queues from one QM to another (in the case of KeyStone II). Also,
queue diversion is atomic, meaning that if two diversion requests arrive nearly simultaneously, the QM will
complete the first one before starting on the next.

Figure 4-2. Queue Diversion Register (0x00000008)
31 30 29 16 15 14 13 0

HEAD_TAIL Reserved DEST_QNUM Reserved SOURCE_QNUM
W-0 R-0 W-0 R-0 W-0

Legend: R = Read only; W = Write only; - n = value after reset

Table 4-3. Queue Diversion Register Field Descriptions

Bit Field Description
31 HEAD_TAIL Indicates whether queue contents should be merged on to head or tail of destination queue. Clear this field

for tail and set for head.
30 Reserved Reads return 0 and writes have no effect
29-16 DEST_QNUM Destination queue number. Must be relative to the QM, so it will be in the range of 0 to 8191 even for QM2.
15-14 Reserved Reads return 0 and writes have no effect
13-0 SOURCE_QNUM Source queue number. Must be relative to the QM, so it will be in the range of 0 to 8191 even for QM2.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Queue Manager www.ti.com

42 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.1.1.3 Linking RAM Region 0 Base Address Register (0x0000000C)
The linking RAM Region 0 Base Address Register (Figure 4-3) is used to set the base address for the first
portion of the linking RAM. This address must be 32-bit aligned.

Figure 4-3. Linking RAM Region 0 Base Address Register (0x0000000C)
31 0

REGION0_BASE
R/W-0

Legend: R/W = Read/Write; - n = value after reset

Table 4-4. Linking RAM Region 0 Base Address Register Field Descriptions

Bit Field Description
31-0 REGION0_BASE This field stores the base address for the first region of the linking RAM. This may be anywhere in 32-bit

address space but would be typically located in on-chip memory. To use the QMSS’ internal Linking RAM,
specify a value of 0x00080000 for KeyStone I, 0x00100000 for KeyStone II’s QM1. Depending on the
Shared/Split mode configuration, the value for QM2 will be 0x00100000 (Shared mode) or 0x00100000 +(8 *
number_of_descriptors_in_QM1_split).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Queue Manager

43SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.1.1.4 Linking RAM Region 0 Size Register (0x00000010)
The Linking RAM Region 0 Size Register (Figure 4-4) is used to set the size of the array of linking
pointers that are located in region 0 of linking RAM. The value specified in this register defines the range
of descriptor indexes in Linking RAM 0. Any descriptor index less than or equal to this value will be
considered in Linking RAM 0. A descriptor index greater than this value will be in Linking RAM 1.

Figure 4-4. Linking RAM Region 0 Size Register (0x00000010)
31 19 18 0

Reserved REGION0_SIZE
R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 4-5. Linking RAM Region 0 Size Register Field Descriptions

Bit Field Description
31-19 Reserved Reads return 0 and writes have no effect
18-0 REGION0_SIZE This field indicates the number of entries that are contained in the linking RAM region 0. A descriptor with

index less than or equal to region0_size value has its linking location in region 0.
KeyStone I: To specify the entire QMSS internal Linking RAM to be used for Linking RAM 0, use the value
0x3FFF. If no Linking RAM 1 is used, or if the total descriptors used is less than 16K, it is still safe to use
0x3FFF, because every descriptor index must be less than 16K (0x4000).
KeyStone II: To specify the entire QMSS internal Linking RAM to be used for Linking RAM 0, use the value
0x7FFF. This creates a Shared mode configuration. For a Split mode configuration, first decide how many
descriptors of the 32K will be used by each QM, then program those values minus 1.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Queue Manager www.ti.com

44 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.1.1.5 Linking RAM Region 1 Base Address Register (0x00000014)
The Linking RAM Region 1 Base Address Register (Figure 4-5) is used to set the base address for the
second portion of the linking RAM. All descriptors with an index greater than that given in Linking RAM 0
Size register have linking information stored in linking RAM region 1.

Figure 4-5. Linking RAM Region 1 Base Address Register (0x00000014)
31 0

REGION1_BASE
R/W-0

Legend: R/W = Read/Write; - n = value after reset

Table 4-6. Linking RAM Region 1 Base Address Register Field Descriptions

Bit Field Description
31-0 REGION1_BASE This field stores the base address for the second region of the linking RAM. This may be anywhere in 32-bit

address space but would be typically located in off-chip memory. For KeyStone II, each QM may specify its
own secondary external linking RAM.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Queue Manager

45SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.1.1.6 Free Descriptor/Buffer Starvation Count Register N (0x00000020 + N×4)
The Free Descriptor/Buffer Queue Starvation Count Registers (Figure 4-6) provide statistics about how
many starvation events are occurring on the RX free descriptor/buffer queues. It does not support byte
accesses. Register 0 reads the first four queues with starvation counters; register 1 reads the next four
queues, etc.

Figure 4-6. Free Descriptor/Buffer Starvation Count Register N (0x00000020 + N×4)
31 24 23 16 15 8 7 0

FDBQ3_STARVE_CNT FDBQ2_STARVE_CNT FDBQ1_STARVE_CNT FDBQ0_STARVE_CNT
COR-0 COR-0 COR-0 COR-0

Legend: COR = Clear On Read; - n = value after reset

Table 4-7. Free Descriptor/Buffer Starvation Count Register N Field Descriptions

Bit Field Description
31-24 FDBQ3_STARVE_CNT This field increments each time the Free Descriptor/Buffer Queue N+3 is read while it is empty. This

field is cleared when read, and saturates at 0xFF.
23-16 FDBQ2_STARVE_CNT This field increments each time the Free Descriptor/Buffer Queue N+2 is read while it is empty. This

field is cleared when read, and saturates at 0xFF.
15-8 FDBQ1_STARVE_CNT This field increments each time the Free Descriptor/Buffer Queue N+1 is read while it is empty. This

field is cleared when read, and saturates at 0xFF.
7-0 FDBQ0_STARVE_CNT This field increments each time the Free Descriptor/Buffer Queue N is read while it is empty. This

field is cleared when read, and saturates at 0xFF.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Queue Manager www.ti.com

46 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.1.2 Queue Status RAM
This is a special read-only memory on a separate slave port where the queue manager maintains status
bits for each queue. This RAM may be read by host software, and is also read by the accumulation
firmware.

Each word of this memory is organized as shown in Figure 4-7 and represents the threshold status for
queues 32N+31 down to 32N. A bit is set (1) if the threshold (as programmed by the Queue N Status and
Configuration Register D register) is met or exceeded.

Figure 4-7. Queue Threshold Status Word N (0x00000000 - 0x000003FC)
31 0

QTHRESHOLDN
R-0

Legend: R = Read only; - n = value after reset

Table 4-8. Queue Threshold Status Word N Field Descriptions

Bit Field Description
31-0 QTHRESHOLDN This field indicates the queue threshold status for queues[32N+1:32N]. Each bit represents one queue.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Queue Manager

47SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.1.3 Descriptor Memory Setup Region
The registers in this region program one of the queue manager’s descriptor memory regions.

NOTE: Software must assure that all three Descriptor Memory Setup Region registers are initialized
prior to pushing and popping descriptors addressed in the region. If modifying a single region
during runtime, it is good practice to write a zero to the Memory Region R Base Address
Register first when disabling the region, and last (with a valid global address) when enabling
the region.

Table 4-9. Descriptor Memory Setup Region Registers

Offset Name Description
0x00000000 +
16 × R

Memory Region R Base
Address Register (0...19, or
0...63 for KeyStone II)

The Memory Region R Base Address Register is written by the host to set
the base address of memory region R. This memory region will store a
number of descriptors of a particular size as determined by the Memory
Region R Control Register.

0x00000004 +
16 × R

Memory Region R Start Index
Register (0...19, or 0...63 for
KeyStone II)

The Memory Region R Start Index Register is written by the host to
configure index of the first descriptor in this memory region.

0x00000008 +
16 × R

Memory Region R Descriptor
Setup Register (0...19, or
0...63 for KeyStone II)

The Memory Region R Descriptor Setup Register is written by the host to
configure various descriptor related parameters of this memory region.

NOTE: Memory regions and packet descriptors must be aligned to 16 byte boundaries. For
performance reasons, it is preferable to align descriptors and data buffers to 64 byte
boundaries if they are larger than 32 bytes. This allows data to flow through the chip with the
fewest bus transactions.

4.1.3.1 Memory Region R Base Address Register (0x00000000 + 16×R)
The Memory Region R Base Address Register (Figure 4-8) is written by the host to set the base address
of memory region R. This memory region will store a number of descriptors of a particular size as
determined by the Memory Region R Control Register. Note: In KeyStone I, memory region base
addresses must be set in ascending order, i.e. region 0 must be at a lower address than region 1, region 1
must be at a lower address than region 2, etc. In KeyStone II, this restriction is removed, and memory
regions need not be programmed in order (i.e. you can program regions 1, 2, 3, 5, and not 4).

Figure 4-8. Memory Region R Base Address Register (0x00000000 + 16×R)
31 0

REGR_BAS
R/W-0

Legend: R/W = Read/Write; - n = value after reset

Table 4-10. Memory Region R Base Address Register Field Descriptions

Bit Field Description
31-0 REGR_BASE This field contains the base address of the memory region R.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Queue Manager www.ti.com

48 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.1.3.2 Memory Region R Start Index Register (0x00000004 + 16×R)
The Memory Region R Start Index Register (Figure 4-9) is written by the host to configure index of the first
descriptor in this memory region. For KeyStone I devices, the start index must be in ascending order from
one region to the next.

Figure 4-9. Memory Region R Start Index Register (0x00000004 + 16×R)
31 19 18 0

Reserved START_INDEX
R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 4-11. Memory Region R Start Index Register Field Descriptions

Bit Field Description
31-19 Reserved Reads return 0 and writes have no effect
18-0 START_INDEX This field indicates where in linking RAM does the descriptor linking information corresponding to memory

region R starts.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Queue Manager

49SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.1.3.3 Memory Region R Descriptor Setup Register (0x00000008 + 16×R)
The Memory Region R Descriptor Setup Register (Figure 4-10) is written by the host to configure various
descriptor-related parameters of this memory region.

Figure 4-10. Memory Region R Descriptor Setup Register (0x00000008 + 16×R)
31 29 28 16 15 4 3 0

Reserved DESC_SIZE Reserved REG_SIZE
R-0 R/W-0 R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 4-12. Memory Region R Descriptor Setup Register Field Descriptions

Bit Field Description
31-29 Reserved Reads return 0 and writes have no effect.
28-16 DESC_SIZE This field indicates the size of each descriptor in this memory region. The value programmed is the multiplier

minus 1 that needs to be applied to 16 to get the actual descriptor size. So, for 16-byte and 64-byte
descriptors, the value programmed will be 0 and 3 respectively.

15-4 Reserved Reads return 0 and writes have no effect.
3-0 REG_SIZE This field indicates the size of the memory region (in terms of number of descriptors). It is an encoded value

that specifies region size as 2(5+reg_size) number of descriptors.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Queue Manager www.ti.com

50 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.1.4 Queue Management/Queue Proxy Regions
The registers in these regions are used to push descriptors into queues, to pop descriptors from queues,
and to retrieve information from queues.

Table 4-13. Queue Management/Proxy Region Registers

Offset Name Description
0x00000000 + 16×N Queue N Register A

(0 – 8191)
The Queue N Register A is an optional register that is implemented only for a queue
if the queue supports entry / byte count feature. The entry count feature provides a
count of the number of entries that are currently valid in the queue.

0x00000004 + 16×N Queue N Register B
(0 – 8191)

The Queue N Register B is an optional register that is implemented only for a queue
if the queue supports a total byte count feature. The total byte count feature provides
a count of the total number of bytes in all of the packets that are currently valid in the
queue. This register must be read prior to reading Queue N Register D during
packet pop operation if the total size information is desired.

0x00000008 + 16×N Queue N Register C
(0 – 8191)

The Queue N Register C is used to provide additional information about the packet
that is being pushed or popped from the queue. This register provides an option for
the packet to be pushed onto either the tail of the queue (default) or the head of the
queue (override). This register must be written prior to writing the Queue N register
D during packet write operations. This register must be read prior to reading Queue
N register D during pop operations if the packet size information is desired.

0x0000000C + 16×N Queue N Register D
(0 – 8191)

The Queue N Register D is written to add a packet to the queue and read to pop a
packet off a queue. The packet is pushed or popped to/from the queue only when
the Queue Register D is written.

NOTE: There are three sets of Registers A, B, C, and D (for all 8191 queues), one set in each of the
following QMSS regions: Queue Management, Queue Proxy and Queue Peek. The
functioning of these registers is different in each region. See Section 4.1.5 for details on the
Queue Peek registers.

The following sections describe each of the four register locations that are present for each queue in these
regions. For reasons of implementation and area efficiency, these registers are not actually implemented
as a huge array of flip flops but are instead implemented as a single set of mailbox registers that use the
LSBs of the provided address as a queue index. Because of this implementation, all accesses to these
registers need to be performed as a single burst write for each packet add or a single burst read for each
packet pop operation. For host (user application) access, this requires writing to the Queue Proxy region
to ensure atomicity. The length of a burst to add or pop a packet will vary depending on the optional
features that the queue supports, which may be 4, 8, 12, or 16 bytes. Queue N Register D must always be
written / read in the burst, but the preceding words are optional depending on the required queue
functionality.

NOTE: If a program reads or writes Registers A, B, or C in the Queue Management region or writes
to the Queue Proxy region without also reading/writing Register D, the hardware assumes an
implied read/write to Register D, and the queue will be popped/pushed. This can cause
unpredictable results, because either the popped descriptor address will be lost, or an
unknown value (or 0) may be pushed. The problem reduces to Registers C and D, because
Registers A and B are read-only and should almost always be read from the Queue Peek
region.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Queue Manager

51SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.1.4.1 Queue N Register A (0x00000000 + 16×N)
The Queue N Register A (Figure 4-11) provides an entry count feature, which is a count of the number of
descriptors currently contained in the queue.

Figure 4-11. Queue N Register A (0x00000000 + 16×N)
31 19 18 0

Reserved QUEUE_ENTRY_COUNT
R-0 R-0

Legend: R = Read only; - n = value after reset

Table 4-14. Queue N Register A Field Descriptions

Bit Field Description
31-19 Reserved Reads return 0 and writes have no effect.
18-0 QUEUE_ENTRY_COUNT This field indicates how many packets (descriptors) are currently queued on the queue. This

count is incremented by 1 whenever a packet is added to the queue. This count is decremented
by 1 whenever a packet is popped from the queue. Do not read this register unless you also
intend on popping the queue with Reg D. To obtain the descriptor count without also popping
the queue, use Queue N Status and Configuration Reg A in the Queue Peek region.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Queue Manager www.ti.com

52 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.1.4.2 Queue N Register B (0x00000004 + 16×N)
The Queue N Register B (Figure 4-12) provides a byte count feature, which is the sum of the Queue N
Register C PACKET_SIZE fields of all packets that are currently contained in the queue. This register
must be read prior to reading Queue N Register D during packet pop operation if the byte count
information is desired. Note, this is a saturating 32-bit counter.

Figure 4-12. Queue N Register B (0x00000004 + 16×N)
31 0

QUEUE_BYTE_COUNT
R-0

Legend: R = Read only; - n = value after reset

Table 4-15. Queue N Register B Field Descriptions

Bit Field Description
31-0 QUEUE_BYTE_COUNT This field indicates the sum of all PACKET_SIZE fields that are currently pushed to this queue. The

sum is increased with a push and decreased with a pop. Pushes MUST include writing to Queue N
Register C or this sum will remain zero. Do not read this register unless you also intend on popping
the queue with Reg D. To obtain the byte count without also popping the queue, use Queue N Status
and Configuration Reg B in the Queue Peek region.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Queue Manager

53SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.1.4.3 Queue N Register C (0x00000008 + 16×N)
The Queue N Register C (Figure 4-13) is used to provide additional information about the packet that is
being pushed or popped from the queue. This register provides an option for the packet to be pushed onto
either the tail of the queue (the default) or the head of the queue. This register must be written prior to
writing the Queue N Register D during packet write (push) operations. This register must be read prior to
reading Queue N Register D during pop operations if the packet size information is desired.

NOTE: Do not read this register in the Queue Management region, and do not read/write this
register without also reading/writing Register D, because in either case, an implied pop/push
will result. Register C must be part of an atomic write to the queue. This can be
accomplished by writing to the Queue Proxy region or the VBUSM (DMA port) address range
shown in Table 4-1. An atomic write to the DMA port requires a 64 bit type to be written to
Reg. C (the 64 bit variable contains both Reg C and Reg D values).

Figure 4-13. Queue N Register C (0x00000008 + 16×N)
31 30 17 16 0

HEAD_TAIL Reserved PACKET_SIZE
W-0 R-0 R/W-0

Legend: R = Read only; W = Write only; R/W = Read/Write; - n = value after reset

Table 4-16. Queue N Register C Field Descriptions

Bit Field Description
31 HEAD_TAIL Head/tail push control. Set to 0 to push packet onto tail of queue and set to 1 to push packet onto head of

queue.
30-17 Reserved Reads return 0 and writes have no effect.
16-0 PACKET_SIZE This field indicates the packet size and is assumed to be zero unless a non-zero value is given. This field

can be the total packet size, just the payload size, or some other value if desired. The QM simply sums
these values for each push, and reports the current sum when Queue N Register B is read.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Queue Manager www.ti.com

54 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.1.4.4 Queue N Register D (0x0000000C + 16×N)
The Queue N Register D (Figure 4-14) is written to add a packet to the queue and read to pop a packet
off a queue. The packet is pushed to or popped from the queue only when the Queue Register D is
written.

NOTE: Remember that all accesses to Registers A, B, C and D are considered by the hardware an
atomic access. If reading/writing Register C with this register, read the atomicity note in the
section for Register C. Reading Registers A and B are best done using the Queue Peek
region. Please see the above register descriptions for more information. Pushing to the
VBUSM address is faster than the VBUSP address due to the deeper write buffer (and no
stalls), but popping is faster via the VBUSP address to due the higher VBUSM SCR latency
for pop operations.

Figure 4-14. Queue N Register D (0x0000000C + 16×N)
31 4 3 0

DESC_PTR DESC_SIZE
R/W-0 R/W-0

Legend: R/W = Read/Write; - n = value after reset

Table 4-17. Queue N Register D Field Descriptions

Bit Field Description
31-4 DESC_PTR Descriptor pointer. It will be read as 0 if the queue is empty. It will indicate a 16-byte-aligned address that

points to a descriptor when the queue is not empty. Writing a 0 will force queue empty, possibly losing
queued descriptors.

3-0 DESC_SIZE Descriptor hint size (PKTDMA pre-fetch size), encoded in 16-byte increments as follows:
• 0 = 16 bytes
• 1 = 32 bytes
• 2 = 48 bytes
• ...
• 15 = 256 bytes.
This field should be set to the smallest value that is greater than or equal to the size of the entire control
portion of the descriptor. This includes all descriptor information (including the protocol specific bytes) with
the exception of the data portion of the monolithic descriptor. If this value is smaller than the control portion
size of the descriptor, the PKTDMA will not fetch the remainder and will hang. For AIF Monolithic Mode, this
value should always be set to 3. If the queue is empty, this field will return a 0x0 when read.
When the Packet DMA pushes descriptors to TX Return queues, this field will be 0. When it pushes to RX
Destination queues, it will be set based on the constructed descriptor.

CAUTION
A race condition may occur whenever a program writes to two differing memory
endpoints, meaning that the memory writes are not guaranteed to land in the
order written. When the write to push to a PKTDMA Tx queue immediately
follows a write to another endpoint (such as a descriptor or payload data), the
PKTDMA could start reading the data before it has actually landed. This can be
mitigated by adding an MFENCE instruction prior to the push.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Queue Manager

55SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.1.5 Queue Peek Region
The registers in this region are used get the descriptor and byte counts of queues, and to set the queue
thresholds for TX queues that drive select TX DMA channels in Multicore Navigator peripherals.

NOTE: This region may be write protected by MPU2 (a Memory Protection Unit) depending on the
version of boot used. For more information, see the Memory Protection Unit (MPU) for
KeyStone Devices User Guide (SPRUGW5).

Table 4-18. Queue Peek Region Registers

Offset Name Description
0x00000000 + 16×N Queue N Status and

Configuration Register A
(0 – 8191)

This is an optional register that is implemented only for a queue if the
queue supports entry/byte count feature. The entry count feature provides
a count of the number of entries that are currently valid in the queue.

0x00000004 + 16×N Queue N Status and
Configuration Register B
(0 – 8191)

This is an optional register that is implemented only for a queue if the
queue supports a total byte count feature. The total byte count feature
provides a count of the total number of bytes in all of the packets that are
currently valid in the queue.

0x00000008 + 16×N Queue N Status and
Configuration Register C
(0 – 8191)

This register specifies the packet size for the head element of a queue.

0x0000000C + 16×N Queue N Status and
Configuration Register D
(0 – 8191)

This register is used to configure the queue threshold feature. When
enabled, the queue threshold pin (for select TX queues) gets asserted
when the number of items in a queue is above or below a threshold value.
This register is available for each queue.

4.1.5.1 Queue N Status and Configuration Register A (0x00000000 + 16×N)
The Queue N Status and Configuration Register A (Figure 4-15) is an optional register that is implemented
only for a queue if the queue supports entry/byte count feature. The entry count feature provides a count
of the number of entries that are currently valid in the queue.

Figure 4-15. Queue N Status and Configuration Register A (0x00000000 + 16×N)
31 19 18 0

Reserved QUEUE_ENTRY_COUNT
R-0 R-0

Legend: R = Read only; - n = value after reset

Table 4-19. Queue N Status and Configuration Register A Field Descriptions

Bit Field Description
31-19 Reserved Reads return 0 and writes have no effect.
18-0 QUEUE_ENTRY_COUNT This field indicates how many packets are currently queued on the queue.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H
http://www.ti.com/lit/pdf/SPRUGW5

Queue Manager www.ti.com

56 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.1.5.2 Queue N Status and Configuration Register B (0x00000004 + 16×N)
The Queue N Status and Configuration Register B (Figure 4-16) is an optional register that is implemented
only for a queue if the queue supports a total byte count feature. The total byte count feature provides a
count of the total number of bytes in all of the packets that are currently valid in the queue.

Figure 4-16. Queue N Status and Configuration Register B (0x00000004 + 16×N)
31 0

QUEUE_BYTE_COUNT
R-0

Legend: R = Read only; - n = value after reset

Table 4-20. Queue N Status and Configuration Register B Field Descriptions

Bit Field Description
31-0 QUEUE_BYTE_COUNT This field indicates how many bytes total are contained in all of the packets that are currently

queued on this queue.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Queue Manager

57SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.1.5.3 Queue N Status and Configuration Register C (0x00000008 + 16×N)
The Queue N Status and Configuration Register C (Figure 4-17) specifies the packet size for the head
element of a queue, if a value was written (via Queue N Register C) when the element was pushed. It is 0
otherwise.

Figure 4-17. Queue N Status and Configuration Register C (0x00000008 + 16×N)
31 17 16 0

Reserved PACKET_SIZE
R-0 R-0

Legend: R = Read only; - n = value after reset

Table 4-21. Queue N Status and Configuration Register C Field Descriptions

Bit Field Description
31-17 Reserved Reads return 0 and writes have no effect.
16-0 PACKET_SIZE This field indicates packet size of the head element of a queue.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Queue Manager www.ti.com

58 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.1.5.4 Queue N Status and Configuration Register D (0x0000000C + 16×N)
The Queue N Status and Configuration Register D (Figure 4-18) is used to configure the queue threshold
feature. When enabled, the Queue Status RAM is updated with each push and pop. This register is
available for all queues. Also, because the accumulation firmware reads the Queue Status RAM, these
registers must be programmed for all queues used by the accumulator, with the value 0x81, which will
cause the status bit to set on non-zero count, and clear on zero.

NOTE: This register is write protected by MPU2 (Memory Protection Unit). See the Memory
Protection Unit (MPU) for KeyStone Devices User Guide (SPRUGW5) for details on how to
grant write access.

Figure 4-18. Queue N Status and Configuration Register D (0x0000000C + 16×N)
31 8 7 6 4 3 0

Reserved THRESHOLD_HILO Reserved THRESHOLD
R-0 R/W-1 R-0 R/W-1

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 4-22. Queue N Status and Configuration Register D Field Descriptions

Bit Field Description
31-8 Reserved Reads return 0 and writes have no effect.
7 THRESHOLD_HILO This field indicates whether the number of items in a queue should be greater than, equal to, or less

than the threshold before the QUEUE_ECNT_STATUS[queue] bit is asserted. If this field is set, then
the status bit is set (1) when the size of the queue is at least as big as the set threshold value. If this
bit is cleared, then the status bit is set (1) when the size of the queue is less than the set threshold
value.

6-4 Reserved Reads return 0 and writes have no effect.
3-0 THRESHOLD This field indicates the threshold at which the queue threshold bit is set. This field is internally

represented as a ten bit number. The threshold is 0 when this field is 0. The threshold is 0x3FF when
it is 10 or higher. It is (2threshold - 1) in the internal representation for other values.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H
http://www.ti.com/lit/pdf/SPRUGW5

www.ti.com Packet DMA

59SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.2 Packet DMA
The following sections describe the registers in each of the Packet DMA’s register regions.

Each PKTDMA supports a unique number of channels and flow configurations appropriate for its use (see
Chapter 5 for details). The counts of channels and flows determine the addressable size of the register
region.

4.2.1 Global Control Registers Region
The PKTDMA Global Control Registers region, which configure items not related to channels or flows. The
address map for this region is shown in Table 4-23:

Table 4-23. PKTDMA Global Control Region Registers

Byte Address Name
0x00 Revision Register
0x04 Performance Control Register
0x08 Emulation Control Register
0x0C Priority Control Register
0x10 QM0 Base Address Register
0x14 QM1 Base Address Register
0x18 QM2 Base Address Register
0x1C QM3 Base Address Register

4.2.1.1 Revision Register (0x00)
The Revision Register (Figure 4-19) contains the major and minor revisions for the module.

Figure 4-19. Revision Register (0x00)
31 30 29 16 15 11 10 8 7 0
Reserved MODID REVRTL REVMAJ REVMIN

R-0 R-0x4E5A R-1 R-0x1 R-0
Legend: R = Read only; - n = value after reset;

Table 4-24. Revision Register Field Descriptions

Bit Field Description
31-30 Reserved Reads return 0 and writes have no effect.
29-16 MODID Module ID field
15-11 REVRTL RTL revision. Will vary depending on release.
10-8 REVMAJ Major revision.
7-0 REVMIN Minor revision.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Packet DMA www.ti.com

60 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.2.1.2 Performance Control Register (0x04)
The Performance Control Register (Figure 4-20) is used to adjust the performance of the PKTDMA in the
system.

Figure 4-20. Performance Control Register (0x04)
31 22 21 16 15 0

Reserved WARB_FIFO_DEPTH TIMEOUT
R-0 R/W-0x20 R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 4-25. Performance Control Register Field Descriptions

Bit Field Description
31-22 Reserved Reads return 0 and writes have no effect.
21-16 WARB_FIFO_DEPTH This field sets the depth of the write arbitration FIFO, which stores write transaction information

between the command arbiter and write data arbiters in the Bus Interface Unit. This value can be
set to a range of 1 to 32. Setting this field to smaller values will prevent the PKTDMA from having
an excess of write transactions outstanding whose data is still waiting to be transferred. System
performance can suffer if write commands are allowed to be issued long before the corresponding
write data will be transferred. This field allows the command count to be optimized based on system
dynamics.

15-0 TIMEOUT This field sets a timeout duration in clock cycles. It controls the minimum amount of time that an RX
channel will be required to wait when it encounters a buffer starvation condition and the RX error
handling bit is set to 1 (packet is to be preserved - no discard). If the RX error handling bit in the
flow table is cleared, this field will have no effect on the RX operation. When this field is set to 0, the
RX engine will not force an RX channel to wait after encountering a starvation event (the feature is
disabled). When this field is set to a value other than 0, the RX engine will force any channel whose
associated flow had the RX error handling bit asserted and which encounters starvation to wait for
at least the specified # of clock cycles before coming into context again to retry the access to the
QM. This is intended to control potentially debilitating effects on the QM performance that can be
caused by the PKTDMA modules continually polling the QM. The exact number of clock cycles
between QM access attempts is not important and will not be exact. The number of cycles waited
will be at least as large as TIMEOUT.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Packet DMA

61SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.2.1.3 Emulation Control Register (0x08)
The Emulation Control Register (Figure 4-21) is used to control the behavior of the DMA when the
emususp input is asserted.

Figure 4-21. Emulation Control Register (0x08)
31 30 2 1 0

LOOPBACK Reserved SOFT FREE
R/W-1 R-0 R/W-0 R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 4-26. Emulation Control Register Field Descriptions

Bit Field Description
31 LOOPBACK Loopback enable. When set (1), causes the TX Streaming I/F to loopback to the RX Streaming I/F. For

normal operation, this bit must be set for the QMSS PKTDMA, and cleared (0) for all others. This field has a
reset value of 1.
Note: Some PKTDMAs are internally configured such that their channels may be used for infrastructure
transfers when the IP itself is not in use. For KeyStone I, the SRIO and FFTC_x PKTDMAs may be used in
this manner. To do this, set this field to 1, and make sure the IP’s configuration registers are not
programmed. Then simply program the PKTDMA channels and flows as if it were the QMSS Infrastructure
PKTDMA, but (of course) limiting the number of channels used to that of the IP’s PKTDMA.

30-2 Reserved Reads return 0 and writes have no effect.
1 SOFT TBD
0 FREE TBD

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Packet DMA www.ti.com

62 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.2.1.4 Priority Control Register (0x0C)
The Priority Control Register (Figure 4-22) is used to control the priority of the transactions that the DMA
generates on its master (VBUSM) interface. They set sideband signals on the bus; they do not affect
anything within the DMA.

Figure 4-22. Priority Control Register (0x0C)
31 19 18 16 15 3 2 0

Reserved RX_PRIORITY Reserved TX_PRIORITY
R-0 R/W-0 R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 4-27. Priority Control Register Field Descriptions

Bit Field Description
31-19 Reserved Reads return 0 and writes have no effect.
18-16 RX_PRIORITY This field contains the 3-bit value that will be output on the mem_cpriority and mem_cepriority outputs during

all RX transactions.
31-19 Reserved Reads return 0 and writes have no effect.
2-0 TX_PRIORITY This field contains the 3-bit value that will be output on the mem_cpriority and mem_cepriority outputs during

all TX transactions.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Packet DMA

63SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.2.1.5 QMn Base Address Register (0x10, 0x14, 0x18, 0x1c)
The QMn Base Address Registers (Figure 4-23) are used to create four logical queue managers that map
into a physical queue manager.

Figure 4-23. QMn Base Address Register (0x04)
31 0

QM_BASE_ADDR
R/W-0

Legend: R/W = Read/Write; - n = value after reset

Table 4-28. Qmn Base Address Register Field Descriptions

Bit Field Description
31-0 QM_BASE_ADDR This field programs the base address for the nth logical queue manager for the PKTDMA. Typically,

these registers point into the Queue Management region of a physical queue manager on the same
device, or a remote queue manager on another device. They must be programmed using the VBUSM
address, which is 0x34020000 for physical queue 0 (KeyStone I). The reset value for QM0 Base
Address Register defaults to this address, but QM1, QM2, and QM3 reset to 0. The most common
programming of these registers is the following:
• QM0: 0x34020000 (point to queue 0 - this is also the reset value)
• QM1: 0x34030000 (point to queue 4096)
• QM2: na
• QM3: na
The PKTDMA will obtain the VBUSM address for TX queues via one of these registers. For all
KeyStone I devices, QM0 is used. For KeyStone II, QM0 is used for all PKTDMAs that get their queue
pend signals from physical Queue Manager 1. QM2 is used for PKTDMAs that get their queue pend
signals from physical Queue Manager 2.
These registers define a “Navigator Cloud” (see Section 1.9). All PKTDMAs in a given cloud must have
these registers set to the same values. The other components of a Navigator Cloud are: 1) Descriptors,
and 2) RX Flows. Their qmgr:qnum fields must be compatible with the base addresses defined here or
descriptors may be erroneously routed.
Keystone II notes:
• These registers have Keystone I reset values and must be programmed with appropriate Keystone II

VBUSM addresses.
• The simplest configuration is to set the first two registers to address physical Queue Manager 1

(0x23a80000, 0x23a90000) and the last two registers to physical Queue Manager 2 (0x23aa0000,
0x23ab0000), then make sure descriptors and RX Flows are likewise configured.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Packet DMA www.ti.com

64 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.2.2 TX DMA Channel Configuration Region
This region is used to configure the TX DMA channels. The memory map for the TX DMA Channel
Configuration Region is shown in Table 4-29:

Table 4-29. TX DMA Channel Config Region Registers

Address Register
0x000 TX Channel 0 Global Configuration Register A
0x004 TX Channel 0 Global Configuration Register B
0x008 – 0x01F Reserved
0x020 TX Channel 1 Global Configuration Register A
0x024 TX Channel 1 Global Configuration Register B
0x028 – 0x03F Reserved
0x000 + N × 32 TX Channel N Global Configuration Register A
0x004 + N × 32 TX Channel N Global Configuration Register B
0x008 + N × 32 Reserved

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Packet DMA

65SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.2.2.1 TX Channel N Global Configuration Register A (0x000 + 32×N)
The TX Channel Configuration Register A (Figure 4-24) contains real-time control and status information
for the TX DMA channel. The fields in this register can safely be changed while the channel is in
operation.

Figure 4-24. TX Channel N Global Configuration Register A (0x000 + 32×N)
31 30 29 28 0

TX_ENABLE TX_TEARDOWN TX_PAUSE Reserved
R/W-0 R/W-0 R/W-0 R-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 4-30. TX Channel N Global Configuration Register A Field Descriptions

Bit Field Description
31 TX_ENABLE This field enables or disables the channel. Disabling a channel halts operation on the channel after the

current block transfer is completed. Disabling a channel in the middle of a packet transfer may result in
underflow conditions in the attached application block and data loss. This field is encoded as follows:
• 0 = channel is disabled
• 1 = channel is enabled
This field will be cleared after a channel teardown is complete.

30 TX_TEARDOWN Setting this bit will request the channel to be torn down. This field will remain set after a channel teardown
is complete.

29 TX_PAUSE Setting this bit will cause the channel to pause processing at the next packet boundary. This is a more
graceful method of halting processing than disabling the channel as it will not allow any current packets to
underflow.

28-0 Reserved Reads return 0 and writes have no effect.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Packet DMA www.ti.com

66 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.2.2.2 TX Channel N Global Configuration Register B (0x004 + 32×N)
The TX Channel Configuration Register B (Figure 4-25) is used to initialize special handling modes for the
TX DMA channel. This register should be written only when the channel is disabled (tx_enable is 0).

Figure 4-25. TX Channel N Global Configuration Register B (0x004 + 32×N)
31 30 29 28 25 24 23 0

Reserved TX_FILT
_EINFO

TX_FILT
_PSWORDS Reserved TX_AIF_MONO

_MODE Reserved

R-0 W-0 W-0 R-0 W-0 R-0
Legend: R = Read only; W = Write only; - n = value after reset

Table 4-31. TX Channel N Global Configuration Register B Field Descriptions

Bit Field Description
31 Reserved Reads return 0 and writes have no effect.
30 TX_FILT_EINFO TX Filter Software Info: This field controls whether or not the DMA controller will pass the extended

packet information fields (if present) from the descriptor to the back end application. This field is
encoded as follows:
• 0 = DMA controller will pass extended packet info fields if they are present in the descriptor
• 1 = DMA controller will filter extended packet info fields

29 TX_FILT_PSWORDS TX Filter Protocol Specific Words: This field controls whether or not the DMA controller will pass the
protocol specific words (if present) from the descriptor to the back end application. This field is
encoded as follows:
• 0 = DMA controller will pass PS words if present in descriptor
• 1 = DMA controller will filter PS words

28-25 Reserved Reads return 0 and writes have no effect.
24 TX_AIF_MONO_MODE TX AIF Specific Monolithic Packet Mode: This field, when set, indicates that all monolithic packets

that will be transferred on this channel will be formatted in an optimal configuration as needed by
the antenna interface peripheral. The AIF configuration uses a fixed descriptor format that includes
a 4 word header (3 mandatory descriptor info words, and 1 protocol specific word), and payload
data immediately following (data offset always set to 16).
• 0 = Normal monolithic mode
• 1 = AIF specific monolithic mode
Note: When packets are sent automatically from another IP using this mode, it is mandatory that
the packets are built using the format mentioned above, and pushed with the Descriptor Size field =
3. The FFTC pushes its output packets with a Descriptor Size field = 1, so automatic (CPU free)
transfers from the FFTC are not possible.

23-0 Reserved Reads return 0 and writes have no effect.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Packet DMA

67SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.2.3 RX DMA Channel Configuration Region
This region is used to configure the RX DMA channels. The memory map for the RX DMA Channel
Configuration Region is shown in Table 4-32:

Table 4-32. RX DMA Channel Config Region Registers

Address Register
0x00 RX Channel 0 Global Configuration Register A
0x04 – 0x1F Reserved
0x20 RX Channel 1 Global Configuration Register A
0x24 – 0x3F Reserved
0x00 + N×32 RX Channel N Global Configuration Register A
0x04 + N×32 Reserved

4.2.3.1 RX Channel N Global Configuration Register A (0x000 + 32×N)
The RX Channel Configuration Register A (Figure 4-26) contains real-time control and status information
for the RX DMA channel. The fields in this register can safely be changed while the channel is in
operation.

Figure 4-26. RX Channel N Global Configuration Register A (0x000 + 32×N)
31 30 29 28 0

RX_ENABLE RX_TEARDOWN RX_PAUSE Reserved
R/W-0 R/W-0 R/W-0 R-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 4-33. RX Channel N Global Configuration Register A Field Descriptions

Bit Field Description
31 RX_ENABLE This field enables or disables the channel. Disabling a channel halts operation on the channel after the

current block transfer is completed. Disabling a channel in the middle of a packet transfer may result in
overflow conditions in the attached application and data loss. This field is encoded as follows:
• 0 = channel is disabled
• 1 = channel is enabled
This field will be cleared after a channel teardown is complete. If the host is enabling a channel that is just
being set up, the host must initialize all of the other channel configuration fields before setting this bit.

30 RX_TEARDOWN This field indicates whether or not an RX teardown operation is complete. This field should be cleared when
a channel is initialized. This field will be set after a channel teardown is complete.

29 RX_PAUSE Setting this bit will cause the channel to pause processing at the next packet boundary. This is a more
graceful method of halting processing than disabling the channel as it will not allow any current packets to
overflow.

28-0 Reserved Reads return 0 and writes have no effect.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Packet DMA www.ti.com

68 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.2.4 RX DMA Flow Configuration Region
This region is used to configure RX Flows. The memory map for the RX Flow Configuration Registers
Region is shown in Table 4-34:

Table 4-34. RX DMA Flow Config Region Registers

Address Register
0x000 RX Flow 0 Configuration Register A
0x004 RX Flow 0 Configuration Register B
0x008 RX Flow 0 Configuration Register C
0x00C RX Flow 0 Configuration Register D
0x010 RX Flow 0 Configuration Register E
0x014 RX Flow 0 Configuration Register F
0x018 RX Flow 0 Configuration Register G
0x01C RX Flow 0 Configuration Register H
… …
0x00 + N×32 RX Flow N Configuration Register A
0x04 + N×32 RX Flow N Configuration Register B
0x08 + N×32 RX Flow N Configuration Register C
0x0C + N×32 RX Flow N Configuration Register D
0x10 + N×32 RX Flow N Configuration Register E
0x14 + N×32 RX Flow N Configuration Register F
0x18 + N×32 RX Flow N Configuration Register G
0x1C + N×32 RX Flow N Configuration Register H

NOTE: RX Flows are used with the global QMn Base Address Registers (Section 4.2.1.5) to define
a Navigator Cloud. This means that the qmgr:qnum fields in the RX Flow registers must be
compatible with the QMn Base Address Register values for the PKTDMAs in the given cloud.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Packet DMA

69SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.2.4.1 RX Flow N Configuration Register A (0x000 + 32×N)
The RX Flow N Configuration Register A contains static configuration information for the RX DMA flow.
The fields in this register can be safely changed only when all of the DMA channels that use this flow have
been disabled. The fields in this register are shown in Figure 4-27:

Figure 4-27. RX Flow N Configuration Register A (0x000 + 32×N)
31 30 29 28 27 26 25

Reserved RX_EINFO_PRESENT RX_PSINFO
_PRESENT

RX_ERROR
_HANDLING

RX_DESC
_TYPE

RX_PS
_LOCATION

W-0 W-0 W-0 W-0 W-0 W-0
24 16 15 14 13 12 11 0

RX_SOP_OFFSET Reserved RX_DEST
_QMGR

RX_DEST_QNUM

W-0 W-0 W-0 W-0
Legend: W = Write only; - n = value after reset

Table 4-35. RX Flow N Configuration Register A Field Descriptions

Bit Field Description
31 Reserved Reads return 0 and writes have no effect.
30 RX_EINFO_PRESENT RX Extended Packet Data Block Present: This bit controls whether or not the extended packet info

block (EPIB) will be present in the RX packet descriptor.
• 0 = The port DMA will clear the EPIB Present bit in the PD and will drop any EPIB data words that

are presented from the back end application.
• 1 = The port DMA will set the EPIB Present bit in the PD and will copy any EPIB data words that are

presented across the RX streaming interface into the EPIB words in the descriptor. If no EPIB words
are presented from the back end application, the port DMA will overwrite the fields with 0s.

29 RX_PSINFO_PRESENT RX Protocol Specific Words Present: This bit controls whether or not the protocol specific words will be
present in the RX packet descriptor.
• 0 = The port DMA will set the PS word count to 0 in the PD and will drop any PS words that are

presented from the back end application.
• 1 = The port DMA will set the PS word count to the value given by the back end application and will

copy the PS words from the back end application to the location specified by RX_PS_LOCATION.
28 RX_ERROR_HANDLING RX Error Handling Mode: This bit controls the error handling mode for the flow and is used only when

channel errors (i.e. descriptor or buffer starvation) occurs:
• 0 = Starvation errors result in dropping packet and reclaiming any used descriptor or buffer resources

back to the original queues/pools they were allocated to.
• 1 = Starvation errors result in subsequent re-try of the descriptor allocation operation. In this mode,

the DMA will save its internal operational state back to the internal state RAM without issuing an
advance operation to its internal FIFO buffers. This results in the DMA re-initiating the data transfer at
the time specified in the TIMEOUT field of the Performance Control Register with the intention that
additional free buffers and/or descriptors will be added.

27-26 RX_DESC_TYPE RX Descriptor Type: This field indicates the descriptor type to use:
• 0 = Host
• 1 = Reserved
• 2 = Monolithic
• 3 = Reserved

25 RX_PS_LOCATION RX Protocol Specific Location: This bit controls where the protocol-specific words will be placed in the
host mode data structure.
• 0 = The DMA will clear the protocol specific region location bit in the PD and will place the protocol-

specific words at the end of the packet descriptor.
• 1 = The DMA will set the protocol specific region location bit in the PD and will place the protocol

specific words at the beginning of the data buffer. When this mode is used, it is required that the
resulting target data buffer pointer (which is calculated by adding the host_rx_sop_offset to the
original buffer pointer in the packet descriptor) is aligned to a 32-bit boundary to avoid unwanted
buffer truncation as the DMA will round up to the next 32-bit aligned boundary.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Packet DMA www.ti.com

70 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

Table 4-35. RX Flow N Configuration Register A Field Descriptions (continued)
Bit Field Description
24-16 RX_SOP_OFFSET RX Start of Packet Offset: For Host packets, this field specifies the number of bytes that are to be

skipped in the SOP buffer before beginning to write the payload or Protocol Specific bytes (if PS is
located in the SOP buffer). If PS words are located in the SOP buffer, the first word of payload data will
immediately follow the last word of PS data. Either way, this field can be used to create a hole at the
start of the SOP buffer for software use.
For Monolithic packets, the value of this field must always include the 12 byte descriptor header (offset
starts from the descriptor address). So, it must be initialized to be greater than or equal to the size of
the descriptor header (12 bytes) plus the size of the maximum number of Protocol Specific words that
will be encountered in any of the packets that will be transferred by this flow (if EPIB is present, 20
additional bytes must be added to this offset). This is important as the primary purpose of this field is to
ensure that the Protocol Specific words are not overwritten by payload data. The secondary purpose of
this field is to allow a hole to be created prior to the payload that can be used by software.
Valid values are 0 – 511 bytes.

15-14 Reserved Reads return 0 and writes have no effect.
13-12 RX_DEST_QMGR RX Destination Queue Manager. This field indicates the default receive queue manager that this

channel should use.
11-0 RX_DEST_QNUM RX Destination Queue. This field indicates the default receive queue that packets on this flow should be

placed onto.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Packet DMA

71SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.2.4.2 RX Flow N Configuration Register B (0x004 + 32×N)
The RX Flow N Configuration Register B contains static configuration information for the RX DMA flow.
The fields in this register can be safely changed only when all of the DMA channels that use this flow have
been disabled. The fields in this register are shown in Figure 4-28:

Figure 4-28. RX Flow N Configuration Register B (0x004 + 32×N)
31 24 23 16 15 8 7 0

RX_SRC_TAG_HI RX_SRC_TAG_LO RX_DEST_TAG_HI RX_DEST_TAG_LO
W-0 W-0 W-0 W-0

Legend: W = Write only; - n = value after reset

Table 4-36. RX Flow N Configuration Register B Field Descriptions

Bit Field Description
31-24 RX_SRC_TAG_HI RX Source Tag High Byte Constant Value: This is the value to insert into bits 15-8 of the source tag if the

RX_SRC_TAG_HI_SEL is set to 1.
23-16 RX_SRC_TAG_LO RX Source Tag Low Byte Constant Value: This is the value to insert into bits 7-0 of the source tag if the

RX_SRC_TAG_LO_SEL is set to 1.
15-8 RX_DEST_TAG_HI RX Destination Tag High Byte Constant Value: This is the value to insert into bits 15-8 of the destination

tag if the RX_DEST_TAG_HI_SEL is set to 1.
7-0 RX_DEST_TAG_LO RX Destination Tag Low Byte Constant Value: This is the value to insert into bits 7-0 of the destination tag

if the RX_DEST_TAG_LO_SEL is set to 1.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Packet DMA www.ti.com

72 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.2.4.3 RX Flow N Configuration Register C (0x008 + 32×N)
The RX Flow N Configuration Register C contains static configuration information for the RX DMA flow.
The fields in this register can be safely changed only when all of the DMA channels that use this flow have
been disabled. The fields in this register are shown in Figure 4-29:

Figure 4-29. RX Flow N Configuration Register C (0x008 + 32×N)
31 30 28 27 26 24 23 22 20

Reserved RX_SRC_TAG_HI_SEL Reserved RX_SRC_TAG_LO_SEL Reserved RX_DEST_TAG_HI_SEL
R-0 W-0 R-0 W-0 R-0 W-0
19 18 16 15 3 2 0

Reserved RX_DEST_TAG_LO_SEL Reserved RX_SIZE_THRESH_EN
R-0 W-0 R-0 W-0

Legend: R = Read only; W = Write only; - n = value after reset

Table 4-37. RX Flow N Configuration Register C Field Descriptions

Bit Field Description
31 Reserved Reads return 0 and writes have no effect.
30-28 RX_SRC_TAG_HI_SEL RX source tag high byte selector. This field specifies the source for bits 31-24 of the source tag field

in the output packet descriptor. This field is encoded as follows:
• 0 = Do not overwrite
• 1 = Overwrite with value given in RX_SRC_TAG_HI
• 2 = Overwrite with flow_id from back end application
• 3 = Reserved
• 4 = Overwrite with src_tag from back end application
• 5 = Reserved
• 6-7 = Reserved

27 Reserved Reads return 0 and writes have no effect.
26-24 RX_SRC_TAG_LO_SEL RX source tag low byte selector. This field specifies the source for bits 23-16 of the source tag field

in the output packet descriptor. This field is encoded as follows:
• 0 = Do not overwrite
• 1 = Overwrite with value given in RX_SRC_TAG_LO
• 2 = Overwrite with flow_id from back end application
• 3 = Reserved
• 4 = Overwrite with src_tag from back end application
• 5 = Reserved
• 6-7 = Reserved

23 Reserved Reads return 0 and writes have no effect.
22-20 RX_DEST_TAG_HI_SEL RX destination tag high byte selector. This field specifies the source for bits 15-8 of the source tag

field in the word 1 of the output PD. This field is encoded as follows:
• 0 = Do not overwrite
• 1 = Overwrite with value given in RX_DEST_TAG_HI
• 2 = Overwrite with flow_id from back end application
• 3 = Reserved
• 4 = Overwrite with dest_tag[7-0] from back end application
• 5 = Overwrite with dest_tag[15-8] from back end application
• 6-7 = Reserved

19 Reserved Reads return 0 and writes have no effect.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Packet DMA

73SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

Table 4-37. RX Flow N Configuration Register C Field Descriptions (continued)
Bit Field Description
18-16 RX_DEST_TAG_LO_SEL RX destination tag low byte selector. This field specifies the source for bits 7-0 of the source tag field

in word 1 of the output PD. This field is encoded as follows:
• 0 = Do not overwrite
• 1 = Overwrite with value given in RX_DEST_TAG_LO
• 2 = Overwrite with flow_id from back end application
• 3 = Reserved
• 4 = Overwrite with dest_tag[7-0] from back end application
• 5 = Overwrite with dest_tag[15-8] from back end application
• 6-7 = Reserved

15-3 Reserved Reads return 0 and writes have no effect.
2-0 RX_SIZE_THRESH_EN RX packet sized based free buffer queue enables. These bits control whether or not the flow will

compare the packet size received from the back end application against the RX_SIZE_THRESHN
fields to determine which FDQ to allocate the SOP buffer from. Each bit in this field corresponds to 1
of the 3 potential size thresholds that can be compared against. Bit 0 corresponds to
RX_SIZE_THRESH0 and bit 2 corresponds to RX_SIZE_THRESH2.
The bits in this field are encoded as follows:
• 0 = Do not use the threshold.
• 1 = Use the thresholds to select between the 4 different potential SOP FDQs.
If thresholds are to be used, the thresholds must be used starting at 0 and progressing to 2. If a
single threshold is required, threshold 0 must be used. If 2 thresholds are required, 0 and 1 must be
used. It is illegal to enable a higher threshold without enabling the lower thresholds. The following
values are valid:
• 0 - no thresholds enabled.
• 1 - threshold 0 enabled, implies RX_FDQ0_SZ0,1_QNUM,QMGR are used.
• 3 - thresholds 0, 1 enabled, implies RX_FDQ0_SZ0,1,2_QNUM,QMGR are used.
• 7 - thresholds 0, 1, 2 enabled, implies RX_FDQ0_SZ0,1,2,3_QNUM,QMGR are used.
If none of the thresholds are enabled, the DMA controller in the port will allocate the SOP buffer from
the queue specified by the RX_FDQ0_SZ0_QMGR and RX_FDQ0_SZ0_QNUM fields. Support for
packet size based FDQ selection is optional. If the port does not implement this feature, the bits of
this field will be hardcoded to 0 and will not be writable by the host.
NOTE: This functionality is available only if supported by the particular peripheral. The usual
limitation is that the peripheral doesn’t have packet size information available for the SOP
transaction, which is when FDQ selection must be performed. Examples of this feature not being
available are: AIF2, BCP, and SRIO Type 9 messages.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Packet DMA www.ti.com

74 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.2.4.4 RX Flow N Configuration Register D (0x00C + 32×N)
The RX Flow N Configuration Register D contains static configuration information for the RX DMA flow.
The fields in this register can be safely changed only when all of the DMA channels that use this flow have
been disabled. The fields in this register are shown in Figure 4-30:

Figure 4-30. RX Flow N Configuration Register D (0x00C + 32×N)
31 30 29 28 27 16 15 14 13 12 11 0
Reserved RX_FDQ0_SZ0_QMGR RX_FDQ0_SZ0_QNUM Reserved RX_FDQ1_QMGR RX_FDQ1_QNUM

R-0 W-0 W-0 R-0 W-0 W-0
Legend: R = Read only; W = Write only; - n = value after reset

Table 4-38. RX Flow N Configuration Register D Field Descriptions

Bit Field Description
31-30 Reserved Reads return 0 and writes have no effect.
29-28 RX_FDQ0_SZ0_QMGR RX free descriptor 0 queue manager index – size 0. This field specifies which queue manager should

be used for the first RX buffer in a packet whose size is less than or equal to the rx_size0 value. When
the size thresholds are not enabled, this is the queue manager for the first RX buffer.

27-16 RX_FDQ0_SZ0_QNUM RX free descriptor 0 queue index – size 0. This field specifies which free descriptor queue should be
used for the 1st RX buffer in a packet whose size is less than or equal to the rx_size0 value. When the
size thresholds are not enabled, this is the queue number for the first RX buffer.

15-14 Reserved Reads return 0 and writes have no effect.
13-12 RX_FDQ1_QMGR RX free descriptor 1 queue manager index. This field specifies which queue manager should be used

for the 2nd RX buffer in a host type packet
11-0 RX_FDQ1_QNUM RX free descriptor 1 queue index. This field specifies which free descriptor queue should be used for

the 2nd RX buffer in a host type packet

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Packet DMA

75SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.2.4.5 RX Flow N Configuration Register E (0x010 + 32×N)
The RX Flow N Configuration Register E contains static configuration information for the RX DMA flow.
The fields in this register can be safely changed only when all of the DMA channels that use this flow have
been disabled. The fields in this register are shown in Figure 4-31:

Figure 4-31. RX Flow N Configuration Register E (0x010 + 32×N)
31 30 29 28 27 16 15 14 13 12 11 0
Reserved RX_FDQ2_QMGR RX_FDQ2_QNUM Reserved RX_FDQ3_QMGR RX_FDQ3_QNUM

R-0 W-0 W-0 R-0 W-0 W-0
Legend: R = Read only; W = Write only; - n = value after reset

Table 4-39. RX Flow N Configuration Register E Field Descriptions

Bit Field Description
31-30 Reserved Reads return 0 and writes have no effect.
29-28 RX_FDQ2_QMGR RX free descriptor 2 queue manager index. This field specifies which queue manager should be used for the

3rd RX buffer in a host type packet
27-16 RX_FDQ2_QNUM RX free descriptor 2 queue index. This field specifies which free descriptor queue should be used for the 3rd

RX buffer in a host type packet
15-14 Reserved Reads return 0 and writes have no effect.
13-12 RX_FDQ3_QMGR RX free descriptor 3 queue manager index. This field specifies which queue manager should be used for the

4th or later RX buffers in a host type packet
11-0 RX_FDQ3_QNUM RX free descriptor 3 queue index. This field specifies which free descriptor queue should be used for the 4th

or later RX buffers in a host type packet

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Packet DMA www.ti.com

76 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.2.4.6 RX Flow N Configuration Register F (0x014 + 32×N)
The RX Flow N Configuration Register F contains static configuration information for the RX DMA flow.
The fields in this register can be safely changed only when all of the DMA channels that use this flow have
been disabled. This register is optional. The fields in this register are shown in Figure 4-32:

Figure 4-32. RX Flow N Configuration Register F (0x014 + 32×N)
31 16 15 0

RX_SIZE_THRESH0 RX_SIZE_THRESH1
W-0 W-0

Legend: W = Write only; - n = value after reset

Table 4-40. RX Flow N Configuration Register F Field Descriptions

Bit Field Description
31-16 RX_SIZE_THRESH0 RX packet size threshold 0. This value is left-shifted by 5 bits and compared against the packet size

to determine which free descriptor queue should be used for the SOP buffer in the packet. If the
packet size is less than or equal to the value given in this threshold, the DMA controller in the port will
allocate the SOP buffer from the queue given by the RX_FDQ0_SZ0_QMGR and
RX_FDQ0_SZ0_QNUM fields.
This field is optional.

15-0 RX_SIZE_THRESH1 RX packet size threshold 1. This value is left-shifted by 5 bits and compared against the packet size
to determine which free descriptor queue should be used for the SOP buffer in the packet. If the
packet size is greater than the RX_SIZE_THRESH0 but is less than or equal to the value given in
this threshold, the DMA controller in the port will allocate the SOP buffer from the queue given by the
RX_FDQ0_SZ1_QMGR and RX_FDQ0_SZ1_QNUM fields. If enabled, this value must be greater
than the value given in the RX_SIZE_THRESH0 field.
This field is optional.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Packet DMA

77SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.2.4.7 RX Flow N Configuration Register G (0x018 + 32×N)
The RX Flow N Configuration Register G contains static configuration information for the RX DMA flow.
The fields in this register can be safely changed only when all of the DMA channels that use this flow have
been disabled. This register is optional. The fields in this register are shown in Figure 4-33:

Figure 4-33. RX Flow N Configuration Register G (0x018 + 32×N)
31 16 15 14 13 12 11 0

RX_SIZE_THRESH2 Reserved RX_FDQ0_SZ1_QMGR RX_FDQ0_SZ1_QNUM
W-0 R-0 W-0 W-0

Legend: R = Read only; W = Write only; - n = value after reset

Table 4-41. RX Flow N Configuration Register G Field Descriptions

Bit Field Description
31-16 RX_SIZE_THRESH2 RX packet size threshold 2. This value is left shifted by 5 bits and compared against the packet

size to determine which free descriptor queue should be used for the SOP buffer in the packet. If
the packet size is less than or equal to the value given in this threshold, the DMA controller in the
port will allocate the SOP buffer from the queue given by the RX_FDQ0_SZ2_QMGR and
RX_FDQ0_SZ2_QNUM fields.
If enabled, this value must be greater than the value given in the rx_size_thresh1 field.
This field is optional.

15-14 Reserved Reads return 0 and writes have no effect.
13-12 RX_FDQ0_SZ1_QMGR RX free descriptor 0 queue manager index – size 1: This field specifies which queue manager

should be used for the 1st RX buffer in a packet whose size is less than or equal to the RX_SIZE0
value. This field is optional.

11-0 RX_FDQ0_SZ1_QNUM RX free descriptor 0 queue index – size 1: This field specifies which free descriptor queue should
be used for the 1st RX buffer in a packet whose size is less than or equal to the RX_SIZE0 value.
This field is optional.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Packet DMA www.ti.com

78 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.2.4.8 RX Flow N Configuration Register H (0x01C + 32×N)
The RX Flow N Configuration Register H contains static configuration information for the RX DMA flow.
The fields in this register can be safely changed only when all of the DMA channels that use this flow have
been disabled. This register is optional. The fields in this register are shown in Figure 4-34:

Figure 4-34. RX Flow N Configuration Register H (0x01C + 32×N)
31 30 29 28 27 16 15 14 13 12 11 0
Reserved RX_FDQ0_SZ2_QMGR RX_FDQ0_SZ2_QNUM Reserved RX_FDQ0_SZ3_QMGR RX_FDQ0_SZ3_QNUM

R-0 W-0 W-0 R-0 W-0 W-0
Legend: R = Read only; W = Write only; - n = value after reset

Table 4-42. RX Flow N Configuration Register H Field Descriptions

Bit Field Description
31-30 Reserved Reads return 0 and writes have no effect.
29-28 RX_FDQ0_SZ2_QMGR RX free descriptor 0 queue manager index – size 2. This field specifies which queue manager should be

used for the first RX buffer in a packet whose size is less than or equal to the rx_size2 value. This field
is optional.

27-16 RX_FDQ0_SZ2_QNUM RX Free descriptor 0 queue index – size 2. This field specifies which Free Descriptor Queue should be
used for the first RX buffer in a packet whose size is less than or equal to the rx_size2 value. This field
is optional.

15-14 Reserved Reads return 0 and writes have no effect.
13-12 RX_FDQ0_SZ3_QMGR RX free descriptor 0 queue manager index – size 3. This field specifies which queue manager should be

used for the first RX buffer in a packet whose size was not less than or equal to the rx_size3 value. This
field is optional. This queue manager is selected if the packet length does not match any enabled size
threshold.

11-0 RX_FDQ0_SZ3_QNUM RX free descriptor 0 queue index – size 3. This field specifies which free descriptor queue should be
used for the first RX buffer in a packet whose size is less than or equal to the rx_size3 value. This field
is optional. This queue number is selected if the packet length does not match any enabled size
threshold.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Packet DMA

79SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.2.5 TX Scheduler Configuration Region
This region provides registers to configure the priority of TX channels. The TX DMA selects channels
using a four level round robin approach. The memory map for the TX DMA Scheduler Configuration
registers region is shown in Table 4-43:

Table 4-43. TX DMA Scheduler Configuration Region Registers

Address Register
0x000 TX Channel 0 Scheduler Configuration Register
0x004 TX Channel 1 Scheduler Configuration Register
.
0x0 + N×4 TX Channel N Scheduler Configuration Register

4.2.5.1 TX Channel N Scheduler Configuration Register (0x000 + 4×N)
The TX Channel N Scheduler Configuration Register contains static configuration information that affects
the conditions under which each channel will be given an opportunity to use the TX DMA unit(s). The
fields in this register are shown in Figure 4-35:

Figure 4-35. TX Channel N Scheduler Configuration Register (0x000 + 4×N)
31 2 1 0

Reserved PRIORITY
R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 4-44. TX Channel N Scheduler Configuration Register Field Descriptions

Bit Field Description
31-2 Reserved Reads return 0 and writes have no effect.
1-0 PRIORITY TX scheduling priority. These bits select which scheduling bin the channel will be placed in for bandwidth

allocation of the TX DMA units. This field is encoded as follows:
• 0 = High priority
• 1 = Medium – high priority
• 2 = Medium – low priority
• 3 = Low priority
Arbitration between bins is performed in a strict priority fashion. High priority channels will always be serviced
first. If no high priority channels are requesting then all medium-high priority channels will be serviced next. If no
high priority or medium-high priority channels are requesting then all medium-low priority channels will be
serviced next. When no other channels are requesting, the low priority channels will be serviced.
All channels within a given bin are serviced in a round robin order. Only channels that are enabled and that have
sufficient free space in their per channel FIFO will be included in the round robin arbitration.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

QMSS PDSPs www.ti.com

80 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.3 QMSS PDSPs
The queue manager sub system contains two or eight packed data structure processors (PDSP) and
associated hardware that allow autonomous QMSS-related tasks with interrupt notification. PDSPs are
normally loaded with firmware during configuration, then programmed with firmware-specific commands.
Because the interrupt distributors service pairs of PDSPs, most firmware images can be loaded on even
or odd PDSPs, with restrictions usually due to conflicts with interrupt usage. For example, using Acc48 on
PDSP1 and PDSP5 would cause both instances to drive the same interrupts on INTD1. If Acc48 is loaded
on PDSP1, it can also be loaded on PDSP3 or PDSP7.

The firmware builds provided in the PDK come in several varieties in both big- and little-endian formats.
Three types of firmware are provided:
• Descriptor accumulator firmware that monitors programmed queues, pops descriptors found there and

interrupts the host with a list of descriptor addresses (this firmware comes in 16, 32, and 48 channel
builds)

• Quality of service firmware that monitors all packet flows in the system, and verifies that neither the
peripherals nor the host CPU are overwhelmed with packets

• Open Event Manager firmware that provides dynamic load balancing of CorePacs.

Table 4-45 shows which PDSP may be used for each firmware type, though several combinations will not
work due to conflicts. Table 4-46 lists several configurations that avoid conflicts.

Table 4-45. Possible PDSP Firmware Loading

PDSP 1 PDSP 2 PDSP 3 PDSP 4 PDSP 5 PDSP 6 PDSP 7 PDSP 8
INTD 1 INTD 2 INTD 1 INTD 2

Acc 48 Acc 48 Acc 48 Acc 48
QoS QoS QoS QoS

Acc 32 Acc 32 Acc 32 Acc 32
Acc 16 Acc 16 Acc 16 Acc 16

OEM1 OEM2 OEM1 OEM2 OEM1 OEM2 OEM1 OEM2

Table 4-46. Recommended PDSP Firmware Loading

PDSP 1 PDSP 2 PDSP 3 PDSP 4 PDSP 5 PDSP 6 PDSP 7 PDSP 8
INTD 1 INTD 2 INTD 1 INTD 2

Acc 48 Acc 48 OEM1 QoS OEM1 QoS
Acc 48 QoS Acc 48 OEM1 QoS
Acc 48 QoS Acc 32 Acc 16 OEM1 OEM2 OEM1 OEM2
Acc 48 QoS OEM1 OEM2 OEM1 OEM2 OEM1 OEM2
Acc 32 Acc 16 Acc 32 Acc 16 OEM1 QoS OEM1 QoS
Acc 32 Acc 16 Acc 32 Acc 16 OEM1 QoS
Acc 32 Acc 16 Acc 32 Acc 16 OEM1 OEM2 OEM1 OEM2
Acc 32 Acc 16 OEM1 OEM2 OEM1 OEM2 OEM1 OEM2
OEM1 OEM2 OEM1 OEM2 OEM1 OEM2 OEM1 OEM2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com QMSS PDSPs

81SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.3.1 Descriptor Accumulation Firmware
For accumulation purposes, the firmware will read the queue status RAM to obtain status information on
the programmed queues. So the host software must program the Queue N Status and Configuration
Register D registers with the value 0x81 for every queue that is to be examined by the firmware. This will
cause the status bit in the queue status RAM to be set while the queue is not empty, and clear when
empty.

The 32-channel version provides 32 high channels - i.e. channels 0 to 31 that are serviced once per
iteration through the channels. The 16-channel firmware provides 16 channels (0...15) that are also
scanned as fast as possible (e.g. high), yet these trigger the low priority interrupts. In this way, the 16- and
32-channel accumulators may be used together without interrupt interference. The 48-channel version
provides channels 0 to 31 that are high, and channels 32 to 47 that are low — serviced one at a time
through each iteration through channels 0 to 31. Note that any channel in any version of the firmware may
be configured to monitor 32 contiguous queues, not just the low priority channels.

The accumulator is programmed using a 20-byte shared memory command buffer. The command buffer
consists of a command word, followed by several parameters. The process of writing a command is to
check to see if the command buffer is free, then write the command parameters, and finally write the
command. Optionally, the calling program can wait for command completion.

The command buffer is free when the command field is set to 0x00.

When a command is written, the host CPU must write the word containing the command byte last. The
command byte is written with bit 7 set to signify a command to the PDSP. The command buffer is in
internal RAM and should not be marked as cacheable by the host CPU. If the RAM is cached on the host
CPU, then the host must perform two separate writes and cache flushes; the first for writing the
parameters, and then a second independent write and cache flush for writing the command word. All
writes should be performed as 32 bit quantities.

Once the command is written, the PDSP will clear the command field upon command completion. The
command results can then be read from the return code field. Note that the PDSP must be enabled before
the firmware can be programmed.

4.3.1.1 Command Buffer Interface
The single queue channels are high priority channels that monitor a single queue. The format of the
command is shown in Table 4-47:

Table 4-47. Command Buffer Format

Command Buffer
Offset

Field
Byte 3 Byte 2 Byte 1 Byte 0

0x00 Return code 0 Command Channel (0-47)
0x04 Queue enable mask
0x08 List buffer physical address
0x0C Max page entries Queue number
0x10 0 Configuration Timer load count

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

QMSS PDSPs www.ti.com

82 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

Table 4-48 shows the breakdown of each field:

Table 4-48. Command Buffer Field Descriptions

Field
Byte
Width Notes

Channel Number 1 Accumulator channel affected (0-47)
Command 1 Channel command

• 0x80 = Disable channel
• 0x81 = Enable channel
• 0x82 = Global timer command (see Table 4-50)
• 0x83 = Reclamation queue command channel (see Table 4-51)
• 0x84 = Queue Diversion command (see Table 4-52)

Return Code 1 Command return code from the firmware:
• 0 = Idle (initial) state
• 1 = Success
• 2 = Invalid command
• 3 = Invalid channel
• 4 = Channel is not active
• 5 = Channel already active
• 6 = Invalid queue number

Queue Enable Mask 4 This field specifies which queues are to be included in the queue group. Bit 0 corresponds to
the base queue index, and bit 31 corresponds to the base queue index plus 31. For any bit
set in this mask, the corresponding queue index is included in the monitoring function.
This field is ignored in single-queue mode.

List Address 4 Physical pointer to list ping/pong buffer
NULL when channel disabled

QueueNumber 2 Queue number to monitor. In multi-queue mode this serves as the first of 32 consecutive
queues, and must be a multiple of 32. Queue numbers programmed into the firmware must
always be physical queue numbers, not a PKTDMA’s logical queue mapping.

Max Page Entries 2 Max entries per list buffer page, including the count or NULL entry. For example, if you wish
your list to contain 20 descriptor entries, set this field to 21. The memory required for the list
would then be 21 times 2 (ping/pong) times the List Entry Size (4, 8, or 16 bytes).

Timer Load Count 2 Count of global timer ticks to delay interrupt. This count acts as a countdown, except when
the list is full or this count = 0, which causes an immediate interrupt. The total delay is the
time programmed into the global timer (see Table 4-50) times this count. This field is not used
when the Interrupt Pacing Mode = None.

Configuration 1 Configuration byte (see Table 4-49)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com QMSS PDSPs

83SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

The configuration byte contains several sub-fields as detailed in Table 4-49:

Table 4-49. Configuration Byte Subfields

Bits Field Name Notes
7-6 Reserved Reads return 0 and writes have no effect.
5 Multi-Queue Mode • 0 = Single queue mode — the channel monitors a single queue.

• 1 = Multi-queue mode — the channel monitors up to 32 queues starting at the supplied base queue
index.

4 List Count Mode • 0 = NULL terminate mode — the last list entry is used to store a NULL pointer record (NULL terminator)
to mark the end of list.

• 1 = Entry count mode — the first list entry is used to store the total list entry count (not including the
length entry).

3-2 List Entry Size • 0 = D register only (4 byte entries)
• 1 = C, D registers (8 byte entries)
• 2 = A, B, C, D registers (16 byte entries)
Note: For Lo-Priority, when register C is extracted, the firmware will OR the index of the queue number into
the upper 16 bits. This is so the original queue can be identified. Example: If the base queue number is 32,
a value of 0 (in the upper 16 bits) equals queue 32, 1 = 33, ... 31 = 63.

1-0 Interrupt Pacing Mode • 0 = None — interrupt on entry threshold count only (i.e. list full)
• 1 = Time delay since last interrupt. This produces a periodic interrupt (as long as the list does not fill

early and descriptors continue arriving).
• 2 = Time delay since first new packet. This starts the timer countdown with the first packet received

following a previous interrupt.
• 3 = Time delay since last new packet. This restarts the timer countdown with each new packet.
Note: When using a Lo-Priority channel in the 48 channel Accumulator, the channel (including the Timer
Load Count) are serviced at 1/16 the rate of the High Priority channels, and the Lo-Priority channels in the
16 channel Accumulator. If not accounted for (i.e. reducing the Timer Load Count), the overall delay will be
~16x larger than expected.

4.3.1.2 Global Timer Command Interface
The global timer value used by the PDSP may be programmed using the format shown in Table 4-50. This
timer has a programmable count based on the sub-system clock. When this count expires, a local tick is
registered in the firmware. The tick is used when timing channel interrupts based on the Timer Load Count
value supplied in the channel configuration.

Table 4-50. Global Timer Command Format

Command Buffer
Offset

Field
Byte 3 Byte 2 Byte 1 Byte 0

0x00 Return code 0 0x82 0
0x04 0 Timer Constant

The value of Timer Constant is the number of queue manager sub-system clocks divided by 2 that
comprise a single tick in the accumulator firmware.

For example, if the sub-system clock is 350 MHz (the default), and the desired firmware tick is 20 µs, the
proper timer constant for this command is calculated as follows:

Timer constant = (350,000,000 cycles/sec) × (0.000020 sec) / (2 cycles) = 3,500

The firmware initializes with a default timer constant value of 4375 (25 µs at 350Mhz) For devices with
other sub-system clock rates, the default timer value will not be correct (at 400Mhz, 25 µs = (400,000,000
× 0.000025) / 2 = 5,000).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

QMSS PDSPs www.ti.com

84 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.3.1.3 Reclamation Queue Command Interface
The Accumulator firmware includes an optional reclamation queue that can be used for packet discards.
Any descriptor placed on the reclamation queue will be recycled in the same manner as if it had been
submitted to a TX PKTDMA. The descriptor packet information word is used to determine the return queue
and the return handling, including options to unlink host descriptors and push to either the front or the
back of the return queue.

Table 4-51. Reclamation Queue Command Format

Command Buffer
Offset

Field
Byte 3 Byte 2 Byte 1 Byte 0

0x00 Return code 0 0x83 0
0x04 0 Queue number

NOTE: PDSP firmware and the queue manager do not know how a PKTDMA has mapped logical
queues to the physical queue manager. The physical queue number should always be used
here. When reading descriptors, the firmware will append qmgr:qnum fields together to
determine the physical queue.

Setting the reclamation queue to 0 disables all reclamation queue monitoring. The firmware initializes with
a default reclamation queue of 0 (disabled).

This command always returns 1 for success in the return code.

4.3.1.4 Queue Diversion Command Interface
The Accumulator firmware includes an optional queue diversion queue that can be used to remotely cause
a queue diversion. This is used by the PDSP firmware to allow access to queue diversion. When enabled,
any descriptor placed on the diversion queue will be popped, and its Timestamp Info field (word 0 of EPIB
block) will be written to the QM diversion register. The descriptor pointer will then be pushed onto the
diversion completion queue. It is an error to push a descriptor to the diversion queue without a valid EPIB
configuration.

Table 4-52. Queue Diversion Command Format

Command Buffer
Offset

Field
Byte 3 Byte 2 Byte 1 Byte 0

0x00 Return code 0 0x84 0
0x04 Queue number of Diversion Completion Queue Queue number of Diversion Queue

Setting the diversion queue to 0 disables diversion queue monitoring. The firmware initializes with a
default diversion queue of 0 (disabled).

This command always returns 1 for success in the return code.

4.3.2 Quality of Service Firmware

NOTE: The following paragraphs describe the original legacy Quality of Service (QoS) firmware.
Refer to the Keystone media wiki for user guide documentation for the Scheduler and Drop
Scheduler versions of QoS.

The quality of service (QoS) firmware has the job of policing all packet flows in the system, and verifying
that neither the peripherals nor the host CPU are overwhelmed with packets.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H
Bad link
Bad link: processors.wiki.ti.com/index.php/Keystone_Device_Architecture

www.ti.com QMSS PDSPs

85SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

The key to the functionality of the QoS system is the arrangement of packet queues. There are two sets of
packet queues: the QoS ingress queues, and the final destination queues. The final destination queues
are further divided into host queues and peripheral egress queues. Host queues are those that terminate
on the host device and are actually received by the host. Egress queues are those that terminate at a
physical egress peripheral device.

When shaping traffic, only the quality of service (QoS) PDSP writes to either the host queues or the
egress queues. Unshaped traffic is written only to QoS ingress queues. It is the job of the QoS PDSP to
move packets from the QoS ingress queues to their final destination queues while performing the proper
traffic shaping in the process.

There is a designated set of queues in the system that feed into the QoS PDSP. These are called QoS
queues. The QoS queues are simply queues that are controlled by the firmware running on the PDSP.
There are no inherent properties of the queues that fix them to a specific purpose.

Egress queues are those that feed a physical egress peripheral or feed the host CPU. From the QoS
PDSP's perspective, the final destination of any packet on a QoS queue is always an egress queue.
Egress queues are referred to as peripheral egress queues when they feed a peripheral device, and host
egress queues when they feed the host. The term peripheral egress queue is used more often here as
this document typically assumes the QoS shaping is for transmit unless otherwise noted.

The egress queues keep track of the number of packets queued so that the QoS PDSP can get an idea of
the egress devices' congestion level. Although there is no limit to the number of packets that can be
placed on these queues, it is intended that they be kept shallow such that high priority packets can
maintain a small latency period to their destination.

Operationally, the QoS firmware takes advantage of two Navigator features:
• QM byte count/tracking feature. This feature is active when the application performs 64-bit pushes,

writing a packet byte count to “Reg C” at the same time as writing the descriptor address (see
Figure 4-13). The QoS firmware depends on this feature being used for QoS input queues.

• Descriptor Return Qmgr, Return Qnum and Return Policy fields, normally used by the Tx PKTDMA to
recycle descriptors. Only when dropping a packet will the QoS firmware read the descriptor. In this
case it will obtain these values and push accordingly.

Programming the QoS firmware involves writing commands and records to the Command Interface
(Scratch RAM) address of PDSPx. Table 4-53 shows the offsets for each of these items.

Table 4-53. QoS Firmware Memory Organization

Offset Length Field
0x0000 0x0040 Command Buffer
0x0040 0x01C0 QoS Cluster Records (8 records × 56 bytes each).
0x0200 0x0600 QoS Queue Records (64 records × 24 bytes each).
0x0C00 0x0020 SRIO Queue Monitoring Record (1 record x 32 bytes).

4.3.2.1 QoS Algorithms
The firmware assumes 64 QoS queues are allocated to the QoS PDSP. They are physically located at a
fixed base (most likely not 0), but are referred to as QoS Queues 0 through 63 in configuration.

A QoS queue is a rate- and congestion-controlled channel that feeds into a single egress queue. Multiple
QoS queues can merge onto a single egress queue, but each individual QoS queue may have only one
destination.

The QoS firmware is designed around the idea that multiple QoS queues are grouped together to provide
multiple flows and priorities to a single egress device. A group of QoS queues with a common egress
device queue is called a QoS queue cluster (or QoS cluster).

A QoS cluster is created through the host software by first initializing the individual QoS queues used in
the cluster, and then creating a QoS cluster that encompasses the queues in question. Different QoS
algorithms can be executed on individual QoS clusters.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

QMSS PDSPs www.ti.com

86 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.3.2.1.1 Modified Token Bucket Algorithm
Basic Operation
The modified token bucket algorithm allows each queue in a cluster to be assigned a fixed rate in bytes
per time iteration (typically 25 µs, but is configurable). This is called iteration credit. In addition, there is a
maximum number of bytes that can be retained as credit against a future traffic burst. This retained credit
is called total credit. The maximum limit is called maximum credit.

Iteration credit is added to a queue's total credit at the start of each sampling period. While total credit
remains above 0, the packet waiting at the head of the QoS queue is examined for size. If the byte size of
the packet is less than or equal to the queue's total credit, the packet is forwarded and the packet byte
size is deducted from the credit bytes. The queue's unused credit is carried over to the next iteration (held
in its total credit), up to the maximum amount allocated to the queue.

For example, if a flow is rated for 40Mb/s, but can burst up to 20,000 bytes at a time, the queue would be
configured as follows on a system with a 25-µs iteration:
• Iteration Credit = 125 bytes (40 Mb/s is 125 bytes every 25 µs)
• Maximum Credit = 20,000 bytes

The sum total of iteration credit for all queues in the cluster should add up to the total expected data rate
of the egress device. When configuring a cluster, it is important that this rule be followed.

Global Credit and Borrowing
After all packets have been transmitted from a QoS queue, the queue's remaining total credit can not
exceed the maximum credit allocated to that queue. Any credit bytes above the maximum credit limit are
added to a global credit sum, and the total credit is set to the maximum credit.

Any queue may borrow from the global credit pool when doing so allows the queue to transmit an
additional packet or is used to fill its allotted maximum credit level. This is done on a first come, first
served basis. The global credit system allows queues that are allocated less credit than necessary to
saturate a device to make use of the additional bandwidth when it is not being used by the other QoS
queues in the cluster.

Thus in the example above, the queue was set to 40 Mb/s can use the entire bandwidth of the egress
device when the other cluster queues are idle.

There is also a configurable maximum size on global credit. The limit on global credit is checked after
every queue is processed. So for example, if the maximum global credit were set to 0, then the credit
borrowing feature would be disabled.

Congestion and Packet Discard
A queue can become congested if the bandwidth of data arriving exceeds the bandwidth allocated or
available. Each queue has a drop threshold expressed in bytes. Once the backlog in a QoS queue
reaches its drop threshold, any packets that can not be transmitted are discarded until the backlog is
cleared back below the threshold level.

For example, the 40-Mb/s flow with the 20,000-byte burst could be assumed to be congested if more than
one burst’s worth of data has accumulated on the QoS queue. In this case, the drop threshold would be
set to 40,000 bytes.

Congestion and Credit Scaling
The destination queue for a QoS cluster may also be congested. For example, a cluster may configure
100-Mb/s worth of data on an Ethernet device, but find that, for various reasons, the device is capable of
sending only 70 Mb/s. The cluster algorithm will automatically scale the credit assigned to each queue
according to how congested the egress queue becomes.

Each QoS cluster is configured with four egress congestion threshold values. Iteration credit is assigned to
each queue in the cluster depending on the egress congestion, and the value of these four congestion
thresholds. This is implemented as shown in Table 4-54.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com QMSS PDSPs

87SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

Table 4-54. Destination Congestion and Credit Scaling

Egress Queue Congestion (Backlog) Level QoS Queue Credit Assigned
Backlog < Threshold 1 Double credit
Backlog >= Threshold 1 and Backlog < Threshold 2 Normal credit
Backlog >= Threshold 2 and Backlog < Threshold 3 Half credit
Backlog >= Threshold 3 and Backlog < Threshold 4 Quarter credit
Backlog >= Threshold 4 No credit

Note that the use of double credit for near idle situations is used to ensure that each queue's burst
potential be refilled as quickly as possible. It also allows the full bandwidth of a device to be used when
the allocated bandwidth isn't quite enough to fill the device (for example allocating 98 Mb/s from a 100-
Mb/s device).

If the egress queue for a cluster becomes congested due to external influences (like heavy load on the
network), the credit scaling will affect each QoS queue equally. There may be cases in which some flows
require hard real-time scheduling. In this case, the queue can be marked as real time and exempt from
credit scaling.

For example, in a 100-Mb/s system that has two flows, a 40-Mb/s flow and everything else, the first queue
in the cluster would be configured as 40-Mb/s real time, and the second queue can be configured as 60-
Mb/s (without the real time setting). As the available bandwidth on the network drops, the 40-Mb/s flow
would remain unaffected, while the 60-Mb/s flow would be scaled down.

Fixed Priority Configuration
This algorithm can also be used to implement a fixed-priority method, in which each queue is serviced in a
fixed priority with the first queue in the cluster being the highest priority. This is done by assigning all
iteration credit to the first queue in the cluster, and setting the maximum credit of each queue to the
maximum packet size. This ensures that credit is passed only to subsequent queues when there are no
packets waiting on the current queue.

For example, assume there are three queues, A, B, and C. In a simple priority system, queue A would
always transmit packets when packets are available, while queue B transmits only when queue A is idle,
and queue C transmits only when queue B is idle.

On a 100-Mb/s system, the queues could be configured as follows:
• Queue A

– Iteration Credit = 313 (100 Mb/s is 312.5 bytes every 25 µs)
– Max Credit = 1514

• Queue B
– Iteration Credit = 0
– Max Credit = 1514

• Queue C
– Iteration Credit = 0
– Max Credit = 1514

The way the algorithm works, queue A will get 313 bytes of credit at the start of each iteration. Because
queue A can hold up to 1514 bytes as max credit, queue A will never pass credit onto queue B while
queue A has a packet. (If queue A has more than 1514 bytes of credit, it can always forward a packet.)

Queue A must be idle for an entire packet time (1514 bytes of iteration credit) before any credit will start
flowing into queue B. The same relationship holds between queue B and queue C. The only way queue B
sends a packet is after queue A is idle for a packet time, and the only way queue C can send a packet is
after queue B is idle for a packet time.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

QMSS PDSPs www.ti.com

88 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.3.2.2 Command Buffer Interface
The process of writing a command is to check to see if the command buffer is free, then write the
command parameters, and finally write the command. Optionally, the caller can wait for command
completion.

The command buffer is free when the command field of the first work in the command buffer is set to
0x00.

When a command is written, the host CPU must write the word containing the command byte last. The
command buffer is in internal RAM and should not be marked as cacheable by the host CPU. If the RAM
is cached on the host CPU, then the host must perform two separate writes and cache flushes; the first for
writing the parameters, and then a second independent write and cache flush for writing the command
word. All writes should be performed as 32-bit quantities.

Note that the first word of the command buffer appears in a non-contiguous memory region as the
remaining fields in the buffer.

After the command is written, the PDSP will clear the command field upon command completion. The
command results can then be read from the Return Code field.

The command buffer interface for the QoS firmware is shown in Table 4-55.

Table 4-55. Command Buffer Interface

Command Buffer
Offset

Field
Byte 3 Byte 2 Byte 1 Byte 0

0x00 Index Option Command
0x04 Return Code

Table 4-56 shows the breakdown of each field.

Table 4-56. Command Buffer Field Descriptions

Field
Byte
Width Notes

Index 2 Command Index (use varies with each firmware command)
Option 1 Command Option (use varies with each firmware command)
Command 1 QoS command:

• 0x80 = Get queue base
• 0x81 = Set queue base
• 0x82 = Global timer command (same as accumulation firmware; see Table 4-50)
• 0x83 = Cluster enable
• 0x84 = SRIO enable

Return Code 4 Used to return status to the caller:
• QCMD_RETCODE_SUCCESS 0x01
• QCMD_RETCODE_INVALID_COMMAND 0x02
• QCMD_RETCODE_INVALID_INDEX 0x03
• QCMD_RETCODE_INVALID_OPTION 0x04

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com QMSS PDSPs

89SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.3.2.3 QoS Firmware Commands
• Get QoS Queue Base — Reads the queue number of the base of the 64 queue ingress queue region.

– Index - not used as a calling parameter; returns the base queue number.
– Option - not used.

• Set QoS Queue Base - Sets the base queue number for the 64 queue ingress region.
– Index - The base queue number for the 64 queue ingress region.
– Option - not used.

• Set Global Timer - Same as described for the descriptor accumulator firmware.
– Index - Timer constant to be programmed.
– Option - not used.

• QoS Cluster Enable/Disable - Enables or disables a QoS cluster. The cluster must be programmed
prior to enabling.
– Index - Cluster index 0 to 7.
– Option - 1 to enable the cluster, 0 to disable.

• SRIO Enable - Enables or disables SRIO queue monitoring.
– Index - not used.
– Option - 1 to enable, 0 to disable.

4.3.2.4 QoS Queue Record
The basic building block of the QoS system is a QoS queue. Each queue represents a flow priority, flow
rate, drop policy, and egress queue. (Different QoS algorithms may or may not make use of all these
properties.) Queues with the same egress queue are grouped together into a queue cluster called a QoS
cluster. A cluster can contain from one to nine QoS queues. Any of the 64 available QoS queues can be
allocated into any given QoS cluster, although a queue may not belong to more than one cluster.

The QoS Queue Record format is shown in Table 4-57:

Table 4-57. QoS Queue Record

QoS Queue Offset
Field

Byte 3 Byte 2 Byte 1 Byte 0
0x00 Iteration Credit Egress Queue
0x04 Total Credit
0x08 Maximum Credit
0x0C Congestion Threshold
0x10 Packets Forwarded
0x14 Packets Dropped

Table 4-58 shows the breakdown of each field:

Table 4-58. QoS Queue Field Descriptions

Field
Byte
Width Notes

Egress Queue 2 The Queue number of the forwarding queue.
Iteration Credit 2 The amount of forwarding byte credit that the queue receives every 25 µs.
Total Credit 4 The total amount of forwarding byte credit the that queue is currently holding.
Maximum Credit 4 The maximum amount of forwarding byte credit that the queue is allowed to hold at the end of

the timer iteration. Any credit over the maximum limit is added to a global pool.
Congestion Threshold 4 The size in bytes at which point the QoS queue is considered to be congested.
Packets Forwarded 4 The number of packets forwarded to the Egress Queue.
Packets Dropped 4 The number of packets dropped due to congestion.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

QMSS PDSPs www.ti.com

90 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.3.2.5 QoS Cluster Record
The QoS cluster controls the order of how QoS Queues are processed, and tracks properties of all QoS
Queues, like global credit and egress queue congestion. The format of the record is shown in Table 4-59.

Table 4-59. QoS Cluster Record

QoS Cluster Offset
Field

Byte 3 Byte 2 Byte 1 Byte 0
0x00 Global Credit
0x04 Maximum Global Credit
0x08 Qos Queue 2 Qos Queue 1 Qos Queue 0 Qos Queue Count
0x0C Qos Queue 6 Qos Queue 5 Qos Queue 4 Qos Queue 3
0x10 QoS Queue Real Time Flags Qos Queue 8 Qos Queue 7
0x14 Egress Queue 0 Flags Egress Queue Count
0x18 Egress Queue 2 Egress Queue 1
0x1C Egress Queue 4 Egress Queue 3
0x20 Egress Queue 6 Egress Queue 5
0x24 Egress Queue 8 Egress Queue 7
0x28 Egress Congestion Threshold 1
0x2C Egress Congestion Threshold 2
0x30 Egress Congestion Threshold 3
0x34 Egress Congestion Threshold 4

Table 4-60 shows the breakdown of each field.

Table 4-60. QoS Cluster Field Descriptions

Field
Byte
Width Notes

Global Credit 4 The amount of global credit available to the next QoS queue in the cluster.
Maximum Global Credit 4 The maximum amount of global credit allowed to carry over to the next queue. Excess global

credit is discarded.
QoS Queue Real Time
Flags

2 This 9-bit mask contains 1 bit for each QoS queue in the cluster. When this bit is set for its
corresponding QoS queue, iteration credit is treated as real time scheduling and does not
scale when the egress queue become congested.

Qos Queue 0 - 8 1 The queue index (0 to 63) of each QoS queue in the cluster listed in priority order. These
queue indices are relative to the configured QoS queue base index.

Qos Queue Count 1 The number of QoS queues in the cluster (1 to 9).
Flags 1 Flags to control cluster options.

• Bits 7:1 - Reserved (must be 0)
• Bit 0 - Round Robin Cluster Mode. Set to 0 for normal mode; set to 1 for Round Robin

cluster mode.
Egress Queue 0 - 8 2 The Queue manger and Queue index of every egress queue enumerated in Egress Queue

Count. These queue indices are absolute index values.
Egress Queue Count 2 The total number of egress queues sampled to obtain the egress queue congestion

estimation (1 to 9, but typically 1).
Egress Congestion
Threshold 1 - 4

4 Egress Congestion Threshold point 1 - 4.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com QMSS PDSPs

91SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.3.2.6 RR-Mode QoS Cluster Record
The QoS cluster in index 7 is treated differently from other clusters. The fields are the same as in a normal
cluster, but they are treated differently. The purpose of the cluster is to create two sets of four round robin
queues. Each set will select packets in a round robin fashion. The set in queues 0-3 have strict priority
over the set in queues 4-7. The entire cluster has a single egress queue and is timed using iteration credit
specified in the cluster. The following restrictions must also be true:
• There are always four high priority queues and four low priority queues.
• The high priority queues are 56, 57, 58, and 59. The low priority queues are 60, 61, 62, and 63. These

values are relative to the configured QoS queue base.
• The queue thresholds for the queue pending bits for the above 8 queues must be configured to be

cleared when the queue is empty, and set when the queue is not empty.

The field usage for cluster record 7 is shown in Table 4-61.

Table 4-61. QoS Cluster Record 7

Original Name Actual Use Description
Global Credit na The amount of global credit available to the next QOS queue in the cluster
Maximum Global Credit na The maximum amount of global credit allowed to carry over to the next queue.

Excess global credit is discarded.
QoS Queue Real Time
Flags

Packet Size
Adjustment

This field holds the value of a packet size adjustment that can be applied to each
packet. For example, setting this value to 24 can adjust for the preamble, inter-
packet gap, and CRC for packets without CRC being sent over Ethernet. This
adjustment value is applied across all queues.

QoS Queue Count na The number of QOS queues in the cluster. It must be set to 8.
QoS Queue 0 … 3 High Priority Round

Robin Queue Group
The queue index (0 to 63) of each QOS queue in the high priority round robin
group. These queue indices are relative to the configured QOS queue base
index. These fields must be set to 56, 57, 58, and 59 respectively.

QoS Queue 4 … 7 Low Priority Round
Robin Queue Group

The queue index (0 to 63) of each QOS queue in the low priority round robin
group. These queue indices are relative to the configured QOS queue base
index. These fields must be set to 60, 61, 62, and 63 respectively.

QoS Queue 8 na This field is ignored.
Flags na Flags to control cluster options:

• Bits 7:1 - Reserved (must be 0)
• Bit 0 - Round Robin Cluster Mode (must be set to 1)

Egress Queue Count na The total number of egress queues sampled to obtain the egress queue
congestion estimation. It must be set to 1.

Egress Queue 0 na The Queue manger and Queue index of the egress queue used by the two round
robin queue groups.

Egress Queue 1 ... 8 na These fields are ignored.
Egress Congestion
Threshold 1

Iteration Credit This is the per timer tick real-time iteration credit for the cluster. (The iteration
credit specified in each of the round robin queues is ignored.)

Egress Congestion
Threshold 2

Max Egress Backlog This is the max number of bytes allowed to reside in the egress queue(s). Note
that packets will be written until this threshold is crossed, so the actual number of
bytes queued can be larger.

Egress Congestion
Threshold 3

Queue Disable Mask This 8-bit mask contains 1 bit for each QOS queue in the cluster. When this bit is
set for its corresponding QOS queue, the queue is disabled for forwarding.

Egress Congestion
Threshold 4

na This field is ignored.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

QMSS PDSPs www.ti.com

92 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.3.2.7 SRIO Queue Monitoring
The QoS firmware includes a special SRIO queue monitoring mode. The firmware monitors a set of
queues looking for Transmit packets, and moves them from the monitored queue to the actual transmit
queue of the device. For each transmit packet moved, a global counter is incremented. Once the global
counter reaches the programmable threshold for a particular transmit queue, that specific transmit queue
is no longer serviced until the global count drops back below the threshold. The global queue is
decremented when a packet arrives on one of the monitored TX completion queues. The monitored
queues are called shadow queues as they are only a pre-staging to the actual final destination queue.

In addition to the transmit queues and transmit completion queues, five garbage collection queues are
monitored. These queues may contain transmit complete packets for any of the monitored queues (plus
potentially unmonitored queues). Any packet that arrives on one of these queues is checked for its original
intended destination (by looking at the return queue index field the packet descriptor), and if intended for
one of the monitored completion queues, the global count is decremented. Regardless, all packets are
moved from the garbage collection shadow queues to the final garbage collection queues.

The entire queue set is collected into a single group with a single queue base. Hardware transmit queues
are treated differently as they may not be run time configurable. The queue base must be a multiple of 32.
The definition of the SRIO queues is as follows and is not configurable:

Table 4-62. QoS SRIO Queue Monitoring Usage

Offset from
Base Queue Queue Usage
0..4 Shadow Garbage Collection Queue 0..4
5 Reserved
6..10 Shadow Transmit Queue 0..4
11..15 Shadow Transmit Free Descriptor (Completion) Queue 0..4
16..20 Garbage Collection Queue 0..4
21..25 Transmit Free Descriptor (Completion) Queue 0..4

4.3.2.7.1 QoS SRIO Queue Monitoring Record
The QoS SRIO Queue Monitoring Record format is shown in Table 4-63:

Table 4-63. QoS SRIO Queue Monitoring Record

QoS Queue Offset
Field

Byte 3 Byte 2 Byte 1 Byte 0
0x00 Reserved SRIO Queue Count SRIO Queue Base
0x04 Hardware TXQ 0 Reserved Threshold 0
0x08 Hardware TXQ 1 Reserved Threshold 1
0x0C Hardware TXQ 2 Reserved Threshold 2
0x10 Hardware TXQ 3 Reserved Threshold 3
0x14 Hardware TXQ 4 Reserved Threshold 4

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com QMSS PDSPs

93SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

Table 4-64 shows the breakdown of each field:

Table 4-64. QoS Queue Field Descriptions

Field
Byte
Width Notes

SRIO Queue
Base

2 The Queue index of the base queue of the SRIO queue cluster. This value must be a multiple of
32.

SRIO Queue
Count

1 The number of queues to monitor. This controls both the number of valid TXQ entries in this
structure, plus the number of queues considered valid from the SRIO base queue index.

Threshold N 1 This is the high water mark for SRIO Queue Set N at which point additional transmit packets will
not be accepted.

Hardware TXQ N 2 This is the actual hardware queue onto which transmit packets must be eventually placed for
Queue Set N.

4.3.3 Open Event Machine Firmware
The Open Event Machine (OEM) firmware accomplishes static and dynamic load balancing of CorePacs.
It does this by running a job scheduler in one or more PDSPs, and a job dispatcher in each CorePac
where jobs are to be run. Jobs are pushed into QMSS queues, which are monitored by the OEM firmware,
popped based on priority and other scheduler conditions, then recycled by the dispatcher tasks. Due to
the complexity of OEM, a separate user guide is maintained for it. Please see it for programming
information.

4.3.4 Interrupt Operation
When a list buffer page is ready for processing, an interrupt is sent to the host CPU. The mapping
between accumulator channel and host interrupt is fixed, however, each accumulator channel can be
configured to any queue, or can be disabled, so there is a significant amount of flexibility in how queues
can be mapped to host interrupts.

4.3.4.1 Interrupt Handshaking
When a channel is first started, the PDSP owns both the ping and pong pages in host processor
memory. When a page is filled by the PDSP, an interrupt is sent to the host. This tells the host that the
PDSP wants it to take ownership of the page. This interrupt should be acknowledged by the host as
quickly as possible to enable ownership of the page. After the interrupt is acknowledged, the host retains
ownership of the page until a second interrupt firing and acknowledgement occurs.
• PDSP fills ping, and fires INT
• Host CPU acknowledges INT, and takes ownership of ping
• PDSP fills pong, and fires INT
• Host CPU acknowledges INT, releasing ping, and takes ownership of pong
• PDSP fills ping, and fires INT
• Host CPU acknowledges INT, releasing pong, and takes ownership of ping

Figure 4-36 shows the handshaking that occurs between the accumulator firmware, the INTD and the host
software during processing of descriptor lists:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Accumulator
Firmware wants to

trigger interrupt

Accumulator
Firmware reads INTD
Int Count Reg(s) to
determine if clear

Accumulator
Firmware writes a bit
in INTD Status Reg to

generate interrupt

INTD increments
count in INTD Int

Count Reg
(saturates at 3)

INTD generates Host
interrupt if previous

interrupt was cleared

INTD decrements
count in INTD Int

Count Reg

INTD clears interrupt
internally

When done, Host
writes EOI value to

EOI register

Host writes a 1 to
INTD Int Count Reg
after each channel

Optionally, Host writes
a bit to INTD Status

Clear Reg

Host processes
descriptor list(s)

Host receives
interrupt and reads

Status Reg to
determine channels

QMSS PDSPs www.ti.com

94 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

Figure 4-36. Handshaking During Processing of Descriptor Lists

4.3.4.2 Interrupt Processing
When a host interrupt fires, the host processor can read a Status register in the INTD to see which
accumulator channels have list buffer pages ready for processing (see register descriptions in the next
section). However, the host needs only to process the accumulator channels corresponding to the
particular host interrupt that has fired.

As the host completes processing on a list buffer page, it informs the INTD by writing a 1 to the Int Count
register corresponding to the accumulator channel processed. This tells the firmware that the opposite
page is free to be used to store additional list entries.

Once the host has processed all list buffer pages for all the channels associated with the interrupt, it must
then perform an EOI by writing the correct value to the INTD EOI register.

4.3.4.3 Interrupt Generation
Each accumulator channel will always trigger an interrupt when all the entries in the current buffer page
are filled. It is also possible to trigger interrupts more quickly by configuring the interrupt pacing mode. The
interrupt pacing mode allows for interrupts to be generated on a partially filled page, based on
configurable packet activity and a configurable amount of elapsed time. Note that the pacing is per
channel, and not per interrupt. So, if two channels are using the same host interrupt, then the host
interrupt can be triggered as each channel independently requires.

The available interrupt pacing modes are based on one of the following events:
• Programmable delay since last interrupt to the host
• Programmable delay since first packet on new activity
• Programmable delay since last packet on new activity

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com QMSS PDSPs

95SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

The above event setting determines when the interrupt counter will be loaded and begin its countdown. An
interrupt will trigger only when both the timing condition is met and there are packets available to forward
to the host. If the timer expires with no packet activity, then the next incoming packet will trigger an
immediate interrupt.

The time delay from the configured event is programmable, using the global timer value multiplied by. A
timer setting of 0 seconds is useful in cases where the user wishes to trigger interrupts without delay
based on any packet activity. Note that a delay of 0 seconds will always trigger an immediate interrupt on
the first received packet no matter which of the three configurable pacing events are used.

4.3.4.4 Stall Avoidance
The accumulator will hold off triggering a second interrupt to the host until any previous interrupt for that
channel has been serviced. This will help avoid resource starvation.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

QMSS PDSPs www.ti.com

96 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.3.5 QMSS PDSP Registers
The PDSP control / status registers region contains registers for the PDSP. The control / status registers
region is accessed using the Instruction RAM VBUSP slave interface and the PDSP_iram_regs_req input.
The control / status registers region memory map is as follows:

Table 4-65 shows registers within each PDSP Register region.

Table 4-65. PDSP Region Registers

Offset Name Description
0x00000000 Control Register The Control Register allows software to setup and enable the PDSP.
0x00000004 Status Register The Status Register allows software to find (with a one-cycle delay) the PDSP’s

Program Counter address.
0x0000000c Cycle Count Register The Cycle Count Register counts the number of cycles for which the PDSP has

been enabled.
0x00000010 Stall Count Registers The Stall Count register counts the number of cycles for which the PDSP has

been enabled, but unable to fetch a new instruction. It is linked to the Cycle
Count Register such that this register reflects the stall cycles measured over the
same cycles as counted by the cycle count register. Thus the value of this
register is always less than or equal to cycle count.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com QMSS PDSPs

97SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.3.5.1 Control Register (0x00000000)
The Control Register allows setup and control of the PDSP as shown in Figure 4-37.

Figure 4-37. Control Register (0x00000000)
31 16 15 14 13 9 8 7 4 3 2 1 0

PC_RESET STATE BIG Reserved STEP Reserved C_EN SLP P_EN S_RST
R/W-0 R-0 R-0 R-0 R/W-0 R--0 R/W-0 R/W-0 R/W-0 R-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 4-66. Control Register Field Descriptions

Bits Field Description
31-16 PC_RESET Program Counter Reset Value: This field controls the address where the PDSP will start executing code from after

it is taken out of reset.
15 STATE Run State: This bit indicates whether the PDSP is currently executing an instruction or is halted.

• 0 = PDSP is halted and host has access to the instruction RAM and debug registers regions.
• 1 = PDSP is currently running and the host is locked out of the instruction RAM and debug registers regions
This bit is used by an external debug agent to know when the PDSP has actually halted when waiting for a HALT
instruction to execute, a single step to finish, or any other time when the P_EN has been cleared.

14 BIG Big Endian state. Returns the mode that the PDSP is in.
• 0 = Little Endian
• 1 = Big Endian

13-9 Reserved Reads return 0 and writes have no effect
8 STEP Single Step Enable - This bit controls whether or not the PDSP will execute only a single instruction when

enabled.
• 0 = PDSP will free run when enabled
• 1 = PDSP will execute a single instruction and then the pdsp_enable bit will be cleared.
Note that this bit does not actually enable the PDSP, it only sets the policy for how much code will be run after the
PDSP is enabled. The P_EN bit must be explicitly asserted. It is expressly legal to initialize both the STEP and
P_EN bits simultaneously. (Two independent writes are not required to cause the stated functionality.)

7-4 Reserved Reads return 0 and writes have no effect
3 C_EN Cycle counter enable - Enables PDSP cycle counters

• 0 = Counters not enabled
• 1 = Counters enabled

2 SLP Processor sleep indicator - This bit indicates whether or not the PDSP is currently asleep.
• 0 = PDSP is not asleep
• 1 = PDSP is asleep
If this bit is written to a 0, the PDSP will be forced to power up from sleep mode.

1 P_EN Processor Enable - This bit controls whether or not the PDSP is allowed to fetch new instructions
• 0 = PDSP is disabled
• 1 = PDSP is enabled
If this bit is de-asserted while the PDSP is currently running and has completed the initial cycle of a multi-cycle
instruction (LBxO,SBxO,SCAN, etc.), the current instruction will be allowed to complete before the PDSP pauses
execution. Otherwise, the PDSP will halt immediately.
Because of the unpredictability/timing sensitivity of the instruction execution loop, this bit is not a reliable
indication of whether or not the PDSP is currently running. The STATE bit should be consulted for an absolute
indication of the run state of the core.
When the PDSP is halted, it's internal state remains coherent therefore this bit can be reasserted without issuing
a software reset and the PDSP will resume processing exactly where it left off in the instruction stream.

0 S_RST Soft reset — when this bit is cleared, the PDSP will be reset. This bit is set back to 1 on the next cycle after it has
been cleared.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

QMSS PDSPs www.ti.com

98 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.3.5.2 Status Register (0x00000004)
The Status Register (Figure 4-38) allows software to find (with a one-cycle delay) the PDSP’s Program
Counter address.

Figure 4-38. Status Register (0x00000004)
31 16 15 0

Reserved PC_COUNTER
R-0 R-0

Legend: R = Read only; - n = value after reset

Table 4-67. Status Register Field Descriptions

Bit Field Description
30-16 Reserved Reads return 0 and writes have no effect
15-0 PC_COUNTER Program Counter. This field is a registered (one cycle delayed) reflection of the PDSP program counter.

Note that the PC is an instruction address where each instruction is a 32 bit word. This is not a byte address
and to calculate the byte address just multiply the PC by 4 (PC of 2 = byte address of 0x8, or PC of 8 = byte
address of 0x20).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com QMSS PDSPs

99SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.3.5.3 Cycle Count Register (0x0000000C)
The Cycle Count Register (Figure 4-39) counts the number of cycles for which the PDSP has been
enabled.

Figure 4-39. Cycle Count Register (0x0000000c)
31 0

COUNT
R/WC-0

Legend: R/W = Read/Write; - n = value after reset

Table 4-68. Cycle Count Register Field Descriptions

Bit Field Description
31-0 COUNT This value is incremented by 1 for every cycle during which the PDSP is enabled and the counter is enabled (both bits

P_EN and C_EN set in the PDSP control register).
Counting halts while the PDSP is disabled or counter is disabled, and resumes when re-enabled.
Counter clears the counter enable bit in the PDSP control register when the count reaches 0xFFFFFFFF. (Count does
not wrap).
The register can be read at any time.
The register can be cleared when the counter or PDSP is disabled.
Clearing this register also clears the PDSP Stall Count Register.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

QMSS PDSPs www.ti.com

100 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.3.5.4 Stall Count Register (0x00000010)
The Stall Count Register (Figure 4-40) counts cycles for which the PDSP has been enabled, but unable to
fetch a new instruction. It is linked to the Cycle Count Register (0x0C) such that this register reflects the
stall cycles measured over the same cycles as counted by the cycle count register. Thus the value of this
register is always less than or equal to cycle count.

Figure 4-40. Stall Count Register (0x00000010)
31 0

COUNT
R-0

Legend: R = Read only; - n = value after reset

Table 4-69. Stall Count Register Field Descriptions

Bit Field Description
31-0 COUNT This value is incremented by 1 for every cycle during which the PDSP is enabled and the counter is enabled (both bits

P_EN and C_EN set in the PDSP control register), and the PDSP was unable to fetch a new instruction for any reason.
Counting halts while the PDSP is disabled or the counter is disabled, and resumes when re-enabled.
The register can be read at any time.
The register is cleared when PDSP Cycle Count Register is cleared.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com QMSS Interrupt Distributor

101SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.4 QMSS Interrupt Distributor
The queue manager sub system contains an interrupt distributor to route QMSS interrupts to the
CorePacs. The QMSS’ INTD is a subset of the full INTD specification, and only those registers that are
mapped and have functionality in QMSS are described in the following sections.

4.4.1 INTD Register Region
Table 4-70 shows registers within the INTD config region.

Table 4-70. INTD Region Registers

Offset Name Description
0x00000000 Revision Register The Revision Register contains the major and minor revisions for the INTD

module.
0x00000010 End of Interrupt Register The EOI Register allows software to clear specific interrupts within the INTD

module. Unless interrupts have been cleared, they will not trigger again. Each
interrupt within QMSS is cleared by writing a specific 8-bit value to the register.
Writing to this register does not clear corresponding bits in the Status
Registers, nor does it clear interrupts within the CorePac’s interrupt controller.
When the EOI is written, the interrupt will trigger again if the corresponding Int
Count Register is not 0, (this should not happen with firmware generated
interrupts).

0x00000200,
204, 208, 20c,
210

Status Registers 0, 1, 2, 3, 4 An array of five registers that provide status on the interrupts managed by the
INTD. Registers 2 and 3 are not used in the QMSS INTD. Registers 0, 1, and 4
expose one bit per QMSS interrupt (see each individual register layout).
Reading the registers returns a 1 bit for each interrupt that has been triggered.
Writing to the registers causes an interrupt to be triggered for each set (1) bit
just as if the corresponding input interrupt had arrived.

0x00000280,
284, 290

Status Clear Registers 0, 1, 4 An array of five registers that provide status on the interrupts managed by the
INTD. Registers 2 and 3 are not used in the QMSS INTD. Registers 0, 1, and 4
expose one bit per QMSS interrupt (see each individual register layout).
Reading the registers returns a 1 bit for each interrupt that has been triggered.
Writing to the registers causes status bits to be cleared. Clearing status bits
does not affect the count of interrupts in the Int Count Registers, nor does it
clear the interrupt internally (the EOI register still needs to be written). In blocks
where a single event can represent multiple grouped interrupts, these registers
can be used to determine which interrupts have triggered. Because QMSS
does not group interrupts, this is needed only to keep it clear which events
have been processed.

0x00000300 to
3C4

Interrupt N Count Registers An array of fifty registers, one per QMSS interrupt. Each register contains a
count of the interrupts that have triggered and not processed. In QMSS, this
count saturates at 3. Reading the register returns the count. Writing a non-zero
value to the register subtracts that value from the count. Writing a 0 clears the
count.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

QMSS Interrupt Distributor www.ti.com

102 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.4.1.1 Revision Register (0x00000000)
The Revision Register contains the major and minor revisions for the module as shown in Figure 4-41.

Figure 4-41. Revision Register (0x00000000)
31 30 29 28 27 16 15 11 10 8 7 6 5 0
SCHEME Reserved MODULE REVRTL REVMAJ REVCUSTOM REVMIN

R-1 R-0 R-0xe83 R-16 R-1 R-0 R-0
Legend: R = Read only; - n = value after reset

Table 4-71. Revision Register Field Descriptions

Bits Field Description
31-30 SCHEME Scheme that this register is compliant with
29-28 Reserved Reads return 0 and writes have no effect
27-16 MODULE Function
15-11 REVRTL RTL revision
10-8 REVMAJ Major revision
7-6 REVCUSTOM Custom revision
5-0 REVMIN Minor revision

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com QMSS Interrupt Distributor

103SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.4.1.2 End Of Interrupt (EOI) Register (0x00000010)
The EOI Register (Figure 4-42) allows software to clear specific interrupts within the INTD module. Unless
interrupts have been cleared, they will not trigger again. Each interrupt within the QMSS is cleared by
writing a specific 8-bit value to the register. Writing to this register does not clear corresponding bits in the
Status Registers, nor does it clear interrupts within the CorePac’s interrupt controller. When the EOI is
written, the interrupt will trigger again if the corresponding Int Count Register is not 0, (this should not
happen with firmware generated interrupts).

Figure 4-42. EOI Register (0x00000010)
31 8 7 0

Reserved INT_VAL
R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 4-72. EOI Register Field Descriptions

Bit Field Description
30-8 Reserved Reads return 0 and writes have no effect
7-0 INT_VAL Valid values are: (other values are ignored)

• 0, 1 = PKTDMA RX starvation interrupts 0 and 1 (respectively)
• 2 - 33 = High-priority channel interrupts 0 through 31 (respectively)
• 34 - 49 = Low-priority channel interrupts 0 through 15 (respectively)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

QMSS Interrupt Distributor www.ti.com

104 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.4.1.3 Status Register 0 (0x00000200)
Status Register 0 (Figure 4-43) provides status on the High Priority Accumulator Interrupts managed by
INTD. Reading this register returns a 1 bit for each interrupt that has been triggered. Writing to the register
causes an interrupt to be triggered for each set 1 bit just as if the corresponding input interrupt had
arrived.

Figure 4-43. Status Register 0 (0x00000200)
31 30 ... 1 0

INT31 INT30 – INT1 INT0
R-W-0 R-W-0 R-W-0
Legend: R/W = Read/Write; - n = value after reset

Table 4-73. Status Register 0 Field Descriptions

Bit Field Description
31 INT31 High Priority Accumulator Interrupt 31 status
30
...
1

INT30
...
INT1

High Priority Accumulator Interrupt n status

0 INT0 High Priority Accumulator Interrupt 0 status

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com QMSS Interrupt Distributor

105SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.4.1.4 Status Register 1 (0x00000204)
Status Register 1 (Figure 4-44) provides status on the Low Priority Accumulator Interrupts managed by
INTD. Reading this register returns a 1 bit for each interrupt that has been triggered. Writing to the register
causes an interrupt to be triggered for each set 1 bit just as if the corresponding input interrupt had
arrived.

Figure 4-44. Status Register 1 (0x00000204)
31 16 15 14 ... 1 0

Reserved INT15 INT14 – INT1 INT0
R-0 R/W-0 R/W-0 R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 4-74. Status Register 1 Field Descriptions

Bit Field Description
31-16 Reserved Reads return 0 and writes have no effect
15 INT15 Low Priority Accumulator Interrupt 15 status
14
...
1

INT14 ...
INT1 Low Priority Accumulator Interrupt n status

0 INT0 Low Priority Accumulator Interrupt 0 status

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

QMSS Interrupt Distributor www.ti.com

106 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.4.1.5 Status Register 2 (0x00000208)
Status Register 2 (Figure 4-45) provides read-only status on the High Priority Accumulator Interrupts
managed by INTD. Reading this register returns a 1 bit for each interrupt that has been triggered.

Figure 4-45. Status Register 2 (0x00000208)
31 30 ... 1 0

INT31 INT30 – INT1 INT0
R-0 R-0 R-0

Legend: R = Read only; - n = value after reset

Table 4-75. Status Register 2 Field Descriptions

Bit Field Description
31 INT31 High Priority Accumulator Interrupt 31 status
30
...
1

INT30
...
INT1

High Priority Accumulator Interrupt n status

0 INT0 High Priority Accumulator Interrupt 0 status

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com QMSS Interrupt Distributor

107SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.4.1.6 Status Register 3 (0x0000020c)
Status Register 1 (Figure 4-46) provides read-only status on the Low Priority Accumulator Interrupts
managed by INTD. Reading this register returns a 1 bit for each interrupt that has been triggered.

Figure 4-46. Status Register 3 (0x0000020c)
31 16 15 14 ... 1 0

Reserved INT15 INT14 – INT1 INT0
R-0 R-0 R-0 R-0

Legend: R = Read only; - n = value after reset

Table 4-76. Status Register 1 Field Descriptions

Bit Field Description
31-16 Reserved Reads return 0 and writes have no effect
15 INT15 Low Priority Accumulator Interrupt 15 status
14
...
1

INT14 ...
INT1 Low Priority Accumulator Interrupt n status

0 INT0 Low Priority Accumulator Interrupt 0 status

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

QMSS Interrupt Distributor www.ti.com

108 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.4.1.7 Status Register 4 (0x00000210)
Status Register 4 (Figure 4-47) provides status on the QMSS PKTDMA Starvation Interrupts managed by
the INTD. Reading this register returns a 1 bit for each interrupt that has been triggered. Writing to the
register causes an interrupt to be triggered for each set 1 bit just as if the corresponding input interrupt
had arrived.

Figure 4-47. Status Register 4 (0x00000210)
31 2 1 0

Reserved INT1 INT0
R-0 R/W-0 R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 4-77. Status Register 4 Field Descriptions

Bit Field Description
31-2 Reserved Reads return 0 and writes have no effect
1 INT1 PKTDMA starvation interrupt 1 status. This is the status of RX MOP starvation (available only for host-type

packets).
0 INT0 PKTDMA starvation interrupt 0 status. This is the status of RX SOP starvation.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com QMSS Interrupt Distributor

109SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.4.1.8 Status Clear Register 0 (0x00000280)
Status Register 0 (Figure 4-48) provides status on the high-priority accumulator interrupts managed by the
INTD. Reading this register returns a 1 bit for each interrupt that has been triggered. Writing to the register
causes status bits to be cleared. Clearing status bits does not affect the count of interrupts in the Int Count
Registers, nor does it clear the interrupt internally (the EOI register still needs to be written). In blocks
where a single event can represent multiple grouped interrupts, these registers can be used to determine
which interrupts have triggered. Because the QMSS does not group interrupts, this is needed only to keep
clear which events have been processed (it is optional).

Figure 4-48. Status Clear Register 0 (0x00000280)
31 30 ... 1 0

INT31 INT30 ... INT1 INT0
R/W-0 R/W-0 R/W-0
Legend: R/W = Read/Write; - n = value after reset

Table 4-78. Status Clear Register 0 Field Descriptions

Bit Field Description
31 INT31 High Priority Accumulator Interrupt 31 status
30
...
1

INT30
...
INT1

High Priority Accumulator Interrupt n status

0 INT0 High Priority Accumulator Interrupt 0 status

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

QMSS Interrupt Distributor www.ti.com

110 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.4.1.9 Status Clear Register 1 (0x00000284)
Status Register 1 (Figure 4-49) provides status on the low-priority accumulator interrupts managed by the
INTD. Reading this register returns a 1 bit for each interrupt that has been triggered. Writing to the register
causes status bits to be cleared. Clearing status bits does not affect the count of interrupts in the Int Count
Registers, nor does it clear the interrupt internally (the EOI register still needs to be written). In blocks
where a single event can represent multiple grouped interrupts, these registers can be used to determine
which interrupts have triggered. Because the QMSS does not group interrupts, this is needed only to keep
clear which events have been processed (it is optional).

Figure 4-49. Status Clear Register 1 (0x00000284)
31 16 15 14 ... 1 0

Reserved INT15 INT14 ... INT1 INT0
R-0 R/W-0 R/W-0 R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 4-79. Status Clear Register 1 Field Descriptions

Bit Field Description
31-16 Reserved Reads return 0 and writes have no effect
15 INT15 Low Priority Accumulator Interrupt 15 status
14
...
1

INT14
...
INT1

Low Priority Accumulator Interrupt n status

0 INT0 Low Priority Accumulator Interrupt 0 status

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com QMSS Interrupt Distributor

111SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.4.1.10 Status Clear Register 4 (0x00000290)
Status Register 4 (Figure 4-50) provides status on the QMSS PKTDMA starvation interrupts managed by
the INTD. Reading this register returns a 1 bit for each interrupt that has been triggered. Writing to the
register causes status bits to be cleared. Clearing status bits does not affect the count of interrupts in the
Int Count Registers, nor does it clear the interrupt internally (the EOI register still needs to be written). In
blocks where a single event can represent multiple grouped interrupts, these registers can be used to
determine which interrupts have triggered. Because the QMSS does not group interrupts, this is needed
only to keep clear which events have been processed (it is optional).

Figure 4-50. Status Clear Register 4 (0x00000290)
31 2 1 0

Reserved INT1 INT0
R-0 R/W-0 R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 4-80. Status Clear Register 4 Field Descriptions

Bit Field Description
31-2 Reserved Reads return 0 and writes have no effect
1 INT1 PKTDMA Starvation Interrupt 1 status. This clears the status of RX MOP starvation (available only for host-

type packets).
0 INT0 PKTDMA Starvation Interrupt 0 status. This clears the status of RX SOP starvation.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

QMSS Interrupt Distributor www.ti.com

112 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Registers

4.4.1.11 Interrupt N Count Register (0x00000300 + 4xN)
The Interrupt N Count Registers (Figure 4-51) each contains a count of the interrupts that have triggered
and not been processed. In the QMSS, this count saturates at 3. Reading the register returns the count.
Writing a non-0 value to the register subtracts that value from the count. Writing a 0 clears the count.
Note, clearing the count does not clear the interrupt (the EOI Register still needs to be written). These
registers are mapped in the following order:
• 0x0300 to 0x037C: High Priority Accumulator Interrupts 0 to 31 (respectively)
• 0x0380 to 0x03BC: Low Priority Accumulator Interrupts 0 to 15 (respectively)
• 0x03C0 to 0x03C4: QMSS PKTDMA RX Starvation Interrupts 0 to 1 (respectively)

Figure 4-51. Int N Count Register (0x00000300 + 4xN)
31 2 1 0

Reserved INT_COUNT
R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 4-81. Int N Count Register Field Descriptions

Bit Field Description
30-2 Reserved Reads return 0 and writes have no effect
1-0 INT_COUNT Count of non-acknowledged interrupts.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

113SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Mapping Information

Chapter 5
SPRUGR9H–November 2010–Revised April 2015

Mapping Information

This chapter covers the mapping of Multicore Navigator resources in the device. The resources described
here include the mapping of queues, packet DMA (PKTDMA) channels, accumulator interrupts, and
memory (memory mapped register region offsets).

Topic ... Page

5.1 Queue Maps... 114
5.2 Interrupt Maps.. 116
5.3 Memory Maps... 119
5.4 Packet DMA Channel Map.. 121

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Queue Maps www.ti.com

114 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Mapping Information

5.1 Queue Maps
The queue manager supports a total of 8192 queues (16k for KeyStone II). Most of them are available for
general purpose use, but some are dedicated for special use, and in some cases, have special hardware
functionality associated with them. Queues not listed are general purpose queues.

NOTE: Any queue that is not used by the application for hardware purposes may be used as a
general purpose queue. You must only ensure that the corresponding hardware functionality
is not enabled. For example, if Low Priority accumulation is not used, queues 0 to 511 may
be used as general purpose queues.

Table 5-1. Queue Map for KeyStone I

TCI6616
Queues

TCI660x
/ C667x
Queues

TCI6618
/ C6670
Queues

TCI6614
Queues

C665x
Queues Purpose

0 to 511
(512)

Same Same Same Same Normally used by low priority accumulation. The low priority accumulator
uses up to 512 queues divided into 16 channels, each channel being 32
continuous queues. Each channel triggers one broadcast interrupt. These
queues can also be used as general purpose queues.

512 to
639
(128)

Same Same Same AIF2 TX queues. Each queue has a dedicated queue pending signal that
drives a TX DMA channel.

640 to
648 (9)

Same Same Same NetCP TX queues. Each queue has a dedicated queue pending signal that
drives a TX DMA channel.

650-657
(8)

ARM queue pend queues. These queues have dedicated queue pending
signals wired directly to the ARM.

662 to
671 (10)

652 to
671 (20)

662 to
671 (10)

662 to
671 (10)

INTC0/INTC1 queue pend queues. These queues have dedicated queue
pending signals wired directly into the chip level INTC0 and/or INTC1. Note
that the event mapping can differ for each device.

670-671
(2)

ARM queue pend queues. These queues have dedicated queue pending
signals wired directly to the ARM. Note that these are also routed to INTC0.

672 to
687 (16)

Same Same Same Same SRIO TX queues. Each queue has a dedicated queue pending signal that
drives a TX DMA channel.

688 to
695 (8)

Same Same Same FFTC_A, B TX queues. Each queue has a dedicated queue pending signal
that drives a TX DMA channel.

704 to
735 (32)

Same Same Same Same Normally used by high priority accumulation. The high priority accumulator
uses up to 32 queues, one per channel. Each channel triggers a core-
specific interrupt. These queues can also be used as general purpose
queues.

736 to
799 (64)

Same Same Same Same Queues with starvation counters readable by the host. Starvation counters
increment each time a pop is performed on an empty queue, and reset when
the starvation count is read.

800 to
831 (32)

Same Same Same Same QMSS TX queues. Used for infrastructure (core to core) DMA copies and
notification.

832 to
863 (32)

Same Same Same Same General purpose queues, or may be configured for use by QoS traffic
shaping firmware.

864 to
867 (4)

FFTC_C TX queues. Each queue has a dedicated queue pending signal that
drives a TX DMA channel.

864 to
895 (32)

Same Same Same Same HyperLink queue pend queues. These queues have dedicated queue
pending signals wired directly into HyperLink. On some devices, these
overlap. They cannot be simultaneously used for both IP (i.e. use queue 864
for either FFTC_C or Hyperlink).

868 to
875 (8)

864 to
871 (8)

BCP TX queues. Each queue has a dedicated queue pending signal that
drives a TX DMA channel. Also routed to HyperLink.

896 to
8191

Same Same Same Same General purpose. Due to the mapping of logical to physical queues in the
PKTDMA interfaces, the use of 0xFFF in PKTDMA qnum fields is reserved
to specify non-override conditions.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Queue Maps

115SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Mapping Information

Table 5-2. Queue Map for KeyStone II

K2K
Queues

K2H
Queues

K2L
Queues

K2E
Queues Purpose

0 to 511
(512)

Same Same Same Normally used by low priority accumulation. The low priority accumulator uses
up to 512 queues divided into 16 channels, each channel being 32 continuous
queues. Each channel triggers one broadcast interrupt. These queues can
also be used as general purpose queues.

512 to 639
(128)

Same AIF2 TX queues. Each queue has a dedicated queue pending signal that
drives a TX DMA channel.

560 to 569
(10)

Same EDMA0 queue pend queues.

640 to 648
(9)

Same 896 to
1023 (128)

Same (896
to 1023)

NetCP TX queues. Each queue has a dedicated queue pending signal that
drives a TX DMA channel.

528 to 559
(32), 652 to
671 (20)

Same 570 to 687
(118)

652 to 691
(40)

Broadcast CICx/SOC queue pend queues. These queues have dedicated
queue pending signals wired directly into the chip level interrupt controllers.

672 to 687
(16)

Same SRIO TX queues. Each queue has a dedicated queue pending signal that
drives a TX DMA channel.

688 to
695(8)

Same Same FFTC_A, B TX queues. Each queue has a dedicated queue pending signal
that drives a TX DMA channel.

704 to 735
(32)

Same Same Same Normally used by high priority accumulation. The high priority accumulator
uses up to 32 queues, one per channel. Each channel triggers a core-specific
interrupt. These queues can also be used as general purpose queues.

736 to 799
(64)

Same Same Same Queues with starvation counters readable by the host. Starvation counters
increment each time a pop is performed on an empty queue, and reset when
the starvation count is read.

800 to 831
(32)

Same Same Same QMSS TX queues for PKTDMA1. Used for infrastructure (core to core) DMA
copies and notification.

832 to 863
(32)

Same General purpose queues, or may be configured for use by QoS traffic shaping
firmware.

Same 832 to 879
(48)

IQN2 TX queues.

864 to 871
(8)

Same 696 to 703
(8)

BCP TX queues. Each queue has a dedicated queue pending signal that
drives a TX DMA channel.

872 to 887
(16)

Same FFTC_C, _D, _E, and _F TX queues (four per FFTC). Each queue has a
dedicated queue pending signal that drives a TX DMA channel.

8192 to
8703 (512)

Same Normally used by low priority accumulation for QM2. The low priority
accumulator uses up to 512 queues divided into 16 channels, each channel
being 32 continuous queues. Each channel triggers one broadcast interrupt.
These queues can also be used as general purpose queues.

8704 to
8735 (32)

Same 528 to 559
(32)

Same (528
to 559)

ARM Interrupt controller queue pend queues.

589, 590 570 to 580
(11)

EDMA1 queue pend queues.

591 to 602
(12)

581 to 588
(8)

EDMA2 queue pend queues.

603, 604 589 to 604
(16)

EDMA3 queue pend queues.

8736 to
8743(8)

Same 605-612
(8)

EDMA4 queue pend queues.

8744 to
8751(8)

Same HyperLink broadcast queue pend queues.

8752 to
8759 (8)

Same 692 to 699
(8)

XGE queue pend queues.

8796 to
8811 (16)

Same 613 to 636
(24)

HyperLink 0 queue pend queues.

8812 to
8843 (32)

Same DXB queue pend queues.

8844 to
8863 (20)

Same INTC0/C1/C2 queue pend queues. These queues have dedicated queue
pending signals wired directly into the chip level interrupt controllers.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Interrupt Maps www.ti.com

116 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Mapping Information

Table 5-2. Queue Map for KeyStone II (continued)
K2K
Queues

K2H
Queues

K2L
Queues

K2E
Queues Purpose

8864 to
8879 (16)

Same HyperLink 1 queue pend queues.

8896 to
8927 (32)

Same Normally used by high priority accumulation for QM2. The high priority
accumulator uses up to 32 queues, one per channel. Each channel triggers a
core-specific interrupt. These queues can also be used as general purpose
queues.

8928 to
8991 (64)

Same Queues with starvation counters readable by the host. Starvation counters
increment each time a pop is performed on an empty queue, and reset when
the starvation count is read.

8992 to
9023 (32)

Same QMSS TX queues for PKTDMA2. Used for infrastructure (core to core) DMA
copies and notification.

9024 to
16383

Same General purpose queues.

5.2 Interrupt Maps

5.2.1 KeyStone I TCI661x, C6670, C665x devices
Table 5-3 shows the mapping of queues to high priority accumulation channels to DSP and function for
TCI661x (16, 18, 14), C6670 and C665x devices. Note that each queue and event maps to a specific DSP
core. Also, the queues shown are the suggested mapping. Other queues may be used. The channel to
event mapping is fixed.

Table 5-3. High Priority Queue Mapping (TCI661x, C6670 C665x)

DSP Queue High Priority Channel Interrupt Name DSP Event
core N
(N = 0 to 3)

704 + N N qmss_intr1_0+N 48
708 + N N + 4 qmss_intr1_4+N 49
712 + N N + 8 qmss_intr1_8+N 50
716 + N N + 12 qmss_intr1_12+N 51
720 + N N + 16 qmss_intr1_16+N 52
724 + N N + 20 qmss_intr1_20+N 53
728 + N N + 24 qmss_intr1_24+N 54
732 + N N + 28 qmss_intr1_28+N 55

The C665x devices have 1 or 2 DSPs, so Table 5-3 shows the mapping of queues to high priority
accumulation channels where N=0 or 1, which maps only half of the high priority channels. Table 5-4
shows the mapping of the remaining channels, which, in effect, doubles interrupts to each core.

Table 5-4. High Priority Queue Mapping (C665x part 2)

DSP Queue High Priority Channel Interrupt Name DSP Event
core N
(N = 0 to 1)

706 + N N + 2 qmss_intr1_2+N 102
710 + N N + 6 qmss_intr1_6+N 103
714 + N N + 10 qmss_intr1_10+N 104
718 + N N + 14 qmss_intr1_14+N 105
722 + N N + 18 qmss_intr1_18+N 106
726 + N N + 22 qmss_intr1_22+N 107
730 + N N + 26 qmss_intr1_26+N 108
734 + N N + 30 qmss_intr1_30+N 109

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Interrupt Maps

117SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Mapping Information

Table 5-5 shows the mapping of queues to low priority accumulation channels. All low priority interrupts
map to all DSPs. Also, the queues shown are the suggested mapping. Other queues may be used. The
channel to event mapping is fixed.

Table 5-5. Low Priority Queue Mapping

Queues Low Priority Channel Interrupt Name DSP Event
0 to 31 0 qmss_intr0_0 32
32 to 63 1 qmss_intr0_1 33
64 to 95 2 qmss_intr0_2 34
.
448 to 479 14 qmss_intr0_14 46
480 to 511 15 qmss_intr0_15 47

Table 5-6 shows the mapping of queues with queue pend signals tied to the chip-level CP-INTC0 interrupt
controller. The mapping of queue number to CP-INTC input is fixed and cannot be changed.

Table 5-6. CPINTC Queue Mapping (TCI661x and C6670)

Queue Interrupt Name CPINTC0 Input Event
662 qm_int_pass_txq_pend_22 134
663 qm_int_pass_txq_pend_23 135
664 qm_int_pass_txq_pend_24 136
665 qm_int_pass_txq_pend_25 137
666 qm_int_pass_txq_pend_26 138
667 qm_int_pass_txq_pend_27 139
668 qm_int_pass_txq_pend_28 140
669 qm_int_pass_txq_pend_29 141
670 qm_int_pass_txq_pend_30 142
671 qm_int_pass_txq_pend_31 175

For example, to map queue 665 to trigger TCI6616 DSP event 57:
• Map CP-INTC input 137 to CP-INTC (output) channel 1.
• Enable system interrupt 137.
• Enable DSP event 57.
• (Repeat on each core you desire to handle the event.)

5.2.2 KeyStone I TCI660x, C667x devices
Table 5-7 shows the mapping of queues to high priority accumulation channels to DSP and function for
TCI660x and C667x devices. Note that each queue and interrupt maps to a specific DSP core. Also, the
queues shown are the suggested mapping. Other queues may be used.

Table 5-7. High Priority Queue Mapping (TCI660x and C667x)

DSP Queue High Priority Channel Interrupt Name DSP Event
core N
(N = 0 to 7)

704 + N N qmss_intr1_0+N 48
712 + N N + 8 qmss_intr1_8+N 49
720 + N N + 16 qmss_intr1_16+N 50
728 + N N + 24 qmss_intr1_24+N 51

The mapping of low priority events is the same as shown in Table 5-5.

Table 5-8 shows the mapping of queues with queue pend signals tied to the chip-level CP-INTC0 and CP-
INTC1 interrupt controllers.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Interrupt Maps www.ti.com

118 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Mapping Information

Table 5-8. CPINTC Queue Mapping (TCI660x and C667x)

Queue Interrupt Name CPINTC0 Input Event CPINTC1 Input Event
652 qm_int_pass_txq_pend_12 47
653 qm_int_pass_txq_pend_13 91
654 qm_int_pass_txq_pend_14 93
655 qm_int_pass_txq_pend_15 95
656 qm_int_pass_txq_pend_16 97
657 qm_int_pass_txq_pend_17 151
658 qm_int_pass_txq_pend_18 152 47
659 qm_int_pass_txq_pend_19 153 91
660 qm_int_pass_txq_pend_20 154 93
661 qm_int_pass_txq_pend_21 155 95
662 qm_int_pass_txq_pend_22 156 97
663 qm_int_pass_txq_pend_23 157 151
664 qm_int_pass_txq_pend_24 158 152
665 qm_int_pass_txq_pend_25 159 153
666 qm_int_pass_txq_pend_26 154
667 qm_int_pass_txq_pend_27 155
668 qm_int_pass_txq_pend_28 156
669 qm_int_pass_txq_pend_29 157
670 qm_int_pass_txq_pend_30 158
671 qm_int_pass_txq_pend_31 159

5.2.3 KeyStone II devices
Table 5-9 and Table 5-10 show the mapping of queues to high priority accumulation channels (INTD
interrupts). Note that each queue and interrupt maps to a specific DSP core, but the queues shown are
the suggested mapping. Other queues may be used. These interrupts also map to CPINTCx inputs (not
shown).

Table 5-9. High Priority Queue Mapping (K2K, K2H)

DSP Queue High Priority Channel Interrupt Name DSP Event
core N
(N = 0 to 7)

704 + N N qmss1_intr1_0+N 48
712 + N N + 8 qmss1_intr1_8+N 49
720 + N N + 16 qmss1_intr1_16+N 50
728 + N N + 24 qmss1_intr1_24+N 51
8896 + N N qmss2_intr1_0+N 52
8904 + N N + 8 qmss2_intr1_8+N 53
8912 + N N + 16 qmss2_intr1_16+N 54
8920 + N N + 24 qmss2_intr1_24+N 55

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Memory Maps

119SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Mapping Information

Table 5-10. High Priority Queue Mapping (K2L, K2E)

DSP Queue High Priority Channel Interrupt Name DSP Event
core N
(N = 0 t0 7)

704 + N N qmss_intd1_high_N 48
708 + N N + 8 qmss_intd1_high_8+N 49
712 + N N + 16 qmss_intd1_high_16+N 50
716 + N N + 24 qmss_intd1_high_24+N 51
720 + N N qmss_intd2_high_N 52
724 + N N + 8 qmss_intd2_high_8+N 53
728 + N N + 16 qmss_intd2_high_16+N 54
732 + N N + 24 qmss_intd2_high_24+N 55

The mapping of low priority events (INTD interrupts) is shown in Table 5-11 and Table 5-12. Other queues
may be used. The channel to event mapping is fixed.

Table 5-11. Low Priority Queue Mapping (K2K, K2H)

Queues Low Priority Channel Interrupt Name CPINTC0 CPINTC1
0 to 31 0 qmss1_intr0_0 320 320
32 to 63 1 qmss1_intr0_1 321 321
.
480 to 511 15 qmss1_intr0_15 335 335
8192 to 8223 0 qmss2_intr0_0 336 336
8224 to 8255 1 qmss2_intr0_1 337 337
.
8672 to 8703 15 qmss2_intr0_15 351 351

Table 5-12. Low Priority Queue Mapping (K2L, K2E)

Queues Low Priority Channel Interrupt Name DSP Event
0 to 31 0 qmss_intd1_low_0 320
32 to 63 1 qmss_intd1_low_1 321
.
480 to 511 15 qmss_intd1_low_15 335
0 to 31 0 qmss_intd2_low_0 336
32 to 63 1 qmss_intd2_low_1 337
.
480 to 511 15 qmss_intd2_low_15 351

5.3 Memory Maps
The following maps show the base offsets for all Multicore Navigator register regions.

5.3.1 QMSS Register Memory Map
The queue manager module contains several memory regions where programmable registers are found.
Table 5-13 lists these region offsets. For regions with multiple instances (such as the PDSP regions), the
offset to the next region is given.

NOTE: For KeyStone II, some memory regions are placed in contiguous memory to allow consistent
addressing schemes to access QM1 and QM2 as a single, large Queue Manager. These
regions are marked with * in Table 5-13.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Memory Maps www.ti.com

120 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Mapping Information

Table 5-13. QMSS Register Memory Map

Queue Manager Region Name
KeyStone I KeyStone II

Base Address Offset to Next Base Address Offset to Next
Queue status and config (qpeek) region* 0x02a00000 na 0x02a40000 0x20000
Queue management region* 0x02a20000 na 0x02a80000 0x20000
Queue management region (VBUSM)* 0x34020000 na 0x23a80000 0x20000
Queue manager internal linking RAM 0x02a80000 na 0x02b00000 na
Queue proxy region* 0x02a40000 na 0x02ac0000 0x20000
Queue status RAM* 0x02a62000 na 0x02a06000 0x00400
Queue manager config region 0x02a68000 na 0x02a02000 0x02000
QMSS INTD config region 0x02aa0000 na 0x02a0c000 0x01000
Descriptor memory setup region 0x02a6a000 na 0x02a03000 0x02000
PDSP 1 command interface (scratch ram) 0x02aB8000 0x04000 0x02a20000 0x04000
PDSP 1 control registers 0x02a6E000 0x01000 0x02a0f000 0x00100
PDSP 1 IRAM (firmware download address) 0x02a60000 0x01000 0x02a10000 0x01000

5.3.2 KeyStone I PKTDMA Register Memory Map
The PKTDMA register region offsets vary from peripheral to peripheral. In some cases, the offsets are
determined by the number of channels supported by the particular PKTDMA. The addresses shown
include the peripheral’s base address.

Table 5-14. PKTDMA Register Memory Map, KeyStone I
Infra SRIO NETCP AIF BCP FFTC A FFTC B FFTC C

Global Control 0x02a6c000 0x02901000 0x02004000 0x01f14000 0x35214000 0x021f0200 0x021f4200 0x35040200

TX Channel Config 0x02a6c400 0x02901400 0x02004400 0x01f16000 0x35216000 0x021f0400 0x021f4400 0x35040400

RX Channel Config 0x02a6c800 0x02901800 0x02004800 0x01f18000 0x35218000 0x021f0500 0x021f4500 0x35040500

TX Scheduler
Config

0x02a6cc00 0x02901c00 0x02004c00 n/a 0x3521a000 0x021f0300 0x021f4300 0x35040300

RX Flow Config 0x02a6d000 0x02902000 0x02005000 0x01f1a000 0x3521c000 0x021f0600 0x021f4600 0x35040600

5.3.3 KeyStone II PKTDMA Register Memory Map
The PKTDMA register region offsets vary from peripheral to peripheral. In some cases, the offsets are
determined by the number of channels supported by the particular PKTDMA. The addresses shown in
Table 5-15 and Table 5-17 include the peripheral’s base address.

Table 5-15. PKTDMA Register Memory Map, K2K and K2H, part 1
Infra 1 Infra 2 SRIO NETCP AIF BCP XGE

Global Control 0x02a08000 0x02a0a000 0x02901000 0x02004000 0x01f14000 0x02554000 0x02fa1000

TX Channel Config 0x02a08400 0x02a0a400 0x02901400 0x02004400 0x01f16000 0x02556000 0x02fa1400

RX Channel Config 0x02a08800 0x02a0a800 0x02901800 0x02004800 0x01f18000 0x02558000 0x02fa1800

TX Scheduler Config 0x02a08c00 0x02a0ac00 0x02901c00 0x02004c00 n/a 0x0255a000 0x02fa1c00

RX Flow Config 0x02a09000 0x02a0b000 0x02902000 0x02005000 0x01f1a000 0x0255c000 0x02fa2000

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Packet DMA Channel Map

121SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Mapping Information

Table 5-16. PKTDMA Register Memory Map, K2L, part 1

Infra NETCP NETCP (local) IQN2 BCP
Global Control 0x02a08000 0x26004000 0x26182000 0x27104000 0x02554000

TX Channel Config 0x02a08400 0x26004400 0x26183000 0x27106000 0x02556000
RX Channel Config 0x02a08800 0x26004800 0x26184000 0x27108000 0x02558000

TX Scheduler Config 0x02a08c00 0x26004c00 0x26182100 0x2710a000 0x0255a000
RX Flow Config 0x02a09000 0x26005000 0x26185000 02710c000 0x0255c000

Table 5-17. PKTDMA Register Memory Map, K2K, K2H and K2L, part 2

FFTC 0 FFTC 1 FFTC 2 FFTC 3 FFTC 4 FFTC 5
Global Control 0x021f0200 0x021f4200 0x021f8200 0x021fc200 0x021f0a00 0x021f1200

TX Channel Config 0x021f0400 0x021f4400 0x021f8400 0x021fc400 0x021f0c00 0x021f1400
RX Channel Config 0x021f0500 0x021f4500 0x021f8500 0x021fc500 0x021f0d00 0x021f1500

TX Scheduler Config 0x021f0300 0x021f4300 0x021f8300 0x021fc300 0x021f0b00 0x021f1300
RX Flow Config 0x021f0600 0x021f4600 0x021f8600 0x021fc600 0x021f0e00 0x021f1600

Table 5-18. PKTDMA Register Memory Map, K2E

Infra NETCP NETCP (local) XGE
Global Control 0x02a08000 0x24004000 0x24182000 0x02fa1000

TX Channel Config 0x02a08400 0x24004400 0x24183000 0x02fa1400
RX Channel Config 0x02a08800 0x24004800 0x24184000 0x02fa1800

TX Scheduler Config 0x02a08c00 0x24004c00 0x24182100 0x02fa1c00
RX Flow Config 0x02a09000 0x24005000 0x24185000 0x02fa2000

5.4 Packet DMA Channel Map
Each instance of the PKTDMA contains a different number of channels and flows. Table 5-19 specifies the
number for each PKTDMA.

Table 5-19. PKTDMA Channel Map

QMSS SRIO NETCP1 NETCP 1.5 AIF IQN2 BCP XGE FFTC
RX Channels 32 16 24 91 129 48 8 16 4
TX Channels 32 16 9 21 129 48 8 8 4

RX Flows 64 20 32 64 129 64 64 32 8

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

122 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Programming Information

Chapter 6
SPRUGR9H–November 2010–Revised April 2015

Programming Information

This chapter presents register-level sample code to perform basic Multicore Navigator tasks. It also
discusses system planning considerations that should be performed when designing Multicore Navigator’s
use within an application. Please note that low-level drivers (LLD) are available for Multicore Navigator,
but their use is beyond the scope of this document.

Topic ... Page

6.1 Programming Considerations .. 123
6.2 Example Code .. 124
6.3 Programming Overrides .. 130
6.4 Programming Errors ... 130
6.5 Questions and Answers .. 132

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Programming Considerations

123SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Programming Information

6.1 Programming Considerations

6.1.1 System Planning
Multicore Navigator is a complex peripheral to program due to its many setup options and its connections
to other system peripherals. This requires thorough, coordinated planning on how to allocate Multicore
Navigator resources for whatever uses the system will require of it. For best efficiency, Multicore Navigator
is designed to be initialized at system start with an allocation of resources large enough to support it and
not to be reconfigured at run-time, though there is support for this (such as the teardown of PKTDMA
channels). Resources requiring up-front consideration are:
1. Descriptor memories. First, the decision for using host or monolithic packets must be made

(generally, monolithic are simpler to use, but host provide more flexibility). Next, the sizes of the
descriptor memories must be considered. The QM can be configured with 20 different descriptor
regions, and each region supports only one descriptor size. (Note, for monolithic use this means a
maximum of 20 different descriptor sizes can be specified; for host mode, the linked buffers can still be
any size). Finally, the required number of descriptors must be known. Because descriptors can be
recycled both in TX and RX transactions, extra descriptors are needed to make sure the free descriptor
pools do not run dry (a condition called starvation).

2. Queue allocation. With more than 7,300 general purpose queues, it should not be difficult to organize
a functional layout of queues. Because the QM does not access any part of the descriptor or data
buffers, there is no penalty for using one queue over another (though the placement of descriptor
memory in L2 or DDR will have performance effects). Also, remember that each TX queue will require
a TX completion queue and RX queues require free descriptor queues. It is possible though to have
several TX queues completing to a common TX completion queue, and the same for RX queues.
Another consideration is the powerful use of chaining – the output queue of one peripheral being the
input queue of another, and so on. This requires careful planning of queue use and recycling.

3. System memory. With the allocation of descriptors comes the obvious need to allocate and partition
chunks of memory for descriptor and buffer use, and also the decision of which memories (L2, DDR,
etc.) to use. Another less obvious consideration is the programming of the descriptor region itself: The
descriptor size must be a multiple of 16 bytes, and the number of descriptors in the region is specified
as a power or 2, beginning with 25. These restrict the region’s possible size, especially when large
numbers of descriptors are required.

4. TIP1: You can program a descriptor region that is larger than you allocate memory for, but the region’s
start indexes and the link RAM sizes must be consistent with the programmed values. This will mean
allocating a larger link RAM than will be used, but this is more than offset by not allocating the full size
descriptor region. In other words, programming a larger than actual descriptor region helps to get
around the coarse power of 2 sizing of the region. Caveats to this:
a. You must make absolutely sure that no other memory region resides within the programmed

memory space of another region.
b. You can use these phantom descriptors in the QM only, because the QM does not touch memory.

But you must not try to pass them through the PKTDMA.
5. TIP2: You must program a descriptor region with a fixed size, but you do not have to use every

descriptor. As long as each descriptor is a multiple of the programmed size (which, itself, is a multiple
of 16 bytes), you can use contiguous descriptors to create a single larger descriptor. The host must
manage how it tracks the different sized descriptors.

6. RX flows. RX flows can have a powerful effect on memory usage. Through careful programming, the
RX DMA can be configured to select a particular FDQ based on packet size, or by Host buffer number
within the packet.

7. Recycling and garbage collection. Descriptor fields provide for specifying which queues the
descriptors should be recycled to once the TX DMA has finished with them. It is recommended to use
this feature in TX transfers. For RX, the host is responsible for requiring descriptors to the RX FDQ.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Programming Considerations www.ti.com

124 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Programming Information

6.1.2 Notification of Completed Work
One of the first things the programmer must consider is how to tell when the PKTDMA has completed
some transfers that the host software needs to act upon. In general, there are two ways this can be done:
1. Interrupts – The host software correctly configures an interrupt service routine to be called when one

of the QM’s accumulators has popped descriptors from a queue and placed the descriptor pointers into
a host buffer.

2. Polling – Reading one of the QM’s registers to see that descriptors have arrived. There are several
ways to do this, some of them are:
• Reading the queue’s Que N Reg D register until it returns a non-NULL descriptor pointer.
• Reading the queue’s Que N Reg A register until it returns a non-zero count.
• Reading the queue’s corresponding Queue Pend register looking for a 1 bit in the correct bit of the

register. If polling a large number of queues, making a local copy of the queue pend register with
EDMA prior to polling should dramatically lower the number of processors stalls.

6.2 Example Code
The following example code shows how to program Multicore Navigator’s various components for
initialization and basic operation, at the register level. The functions and types referred to below are
presented in full in the appendices. Also, functioning source code is available for this test.

This infrastructure example will use the queues shown in Table 6-1:

Table 6-1. Queues Used in Infrastructure Example

Queue Purpose Host Descriptor Mono Descriptor
TX Queue 800 801
TX Free Descriptor Queue (FDQ) 5000 5001
RX Queue 712 32
RX Free Descriptor Queue (FDQ) 7000 7001

Queues 5000, 5001, 7000, and 7001 will be pre-loaded at initialization with empty descriptors. During
operation, descriptors are popped from 5000 and 5001, filled and pushed onto 800 and 801 by the host.
This causes the QM to trigger the TX DMA to transfer the data to the RX DMA (via its loopback wiring).
Once transmitted, the TX DMA will recycle the TX descriptors back to queues 5000 and 5001.

The RX flow registers will be programmed to cause the RX DMA to pop descriptors from queues 7000 and
7001 and push the incoming data to queues 712 and 32 respectively. Queue 712 is a high priority
accumulation queue and 32 is a low priority accumulation queue, and the corresponding accumulator
channels will be programmed to poll them. According to the accumulator programming, they will interrupt
the host when descriptors arrive and have been popped from the RX queues and placed into the host’s
memory area. The host then consumes the data and pushes the descriptors back onto queues 7000 and
7001.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Example Code

125SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Programming Information

6.2.1 QMSS Initialization
Multicore Navigator is designed to be initialized at startup with enough resources to keep it running
successfully during normal operation.

First, define memory areas to be used, and align them to 16 byte boundaries (only the QM memories
require alignment, but it is a good idea to align the others as well):

#pragma DATA_ALIGN (host_region, 16)
Uint8 host_region[64 * 64];
#pragma DATA_ALIGN (mono_region, 16)
Uint8 mono_region[32 * 160];
#pragma DATA_ALIGN (buffers, 16)
Uint32 buffers[64 * 256]; //these buffers are for Host Packets
#pragma DATA_ALIGN (hostList, 16)
Uint32 hostList[34]; // ping/pong of (16 + 1 word for list count)
#pragma DATA_ALIGN (monoList, 16)
Uint32 monoList[34]; // ping/pong of (16 + 1 word for list count)

Some declarations for clarity in the following code segments (see appendices for type definitions):

MNAV_HostPacketDescriptor *host_pkt;
MNAV_MonolithicPacketDescriptor *mono_pkt;
Qmss_AccCmd cmd;

Next, setup the QM memory regions to be used. This example will setup two: one for host descriptors and
another for monolithic descriptors. The part that requires the most attention is specifying the size. The last
parameter writes to the Memory Region Setup Register, and defines the size of the descriptor and the
number of descriptors (see this register definition in previous sections).

/* Setup Memory Region 0 for 40 56 byte Host descriptors. Our
* Host descriptors will be 32 bytes plus up to 6 words of PS data,
* but the next best size is 64 bytes times 64 descriptors. */

set_memory_region(0, (Uint32) host_region, 0, 0x00030001);

/* Setup Memory Region 1 for 8 148B Monolithic descriptors. Our
* Mono descriptors will be 12 bytes plus 16 bytes of EPIB Info, plus
* 128 bytes of payload, but the next best size is 160 bytes times
* 32 descriptors. (dead space is possible) */

set_memory_region(1, (Uint32) mono_region, 64, 0x00090000);

An external Linking RAM needs to be configured with one 64-bit word for each descriptor in the memory
regions that use the external Linking RAM. The internal Linking RAM does not require a buffer to be
allocated for it.

/***
* Configure Linking RAM 0 to use the 16k entry internal link ram.
*/
set_link_ram(0, 0x00080000, 0x3FFF);

Note that Linking RAM 0 may be configured to use internal QMSS memory as shown here. Linking RAM 1
may use L2 or DDR. For efficiency reasons, it is best to use the internal QMSS Link RAM memory
whenever possible.

Once the memory regions and Link RAMs have been configured, two types of queues should be filled with
empty descriptors: TX completion queues (otherwise known as TX FDQs), and RX FDQs.

/* Initialize descriptor regions to zero */
memset(host_region, 0, 64 * 64);

memset(mono_region, 0, 32 * 160);

/* Push Host Descriptors to Tx Completion Queue (FDQ) 5000 */

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Example Code www.ti.com

126 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Programming Information

for (idx = 0; idx < 20; idx ++)
{

host_pkt = (MNAV_HostPacketDescriptor *)(host_region + (idx * 64));
host_pkt->pkt_return_qmgr = 1;
host_pkt->pkt_return_qnum = 0;
host_pkt->orig_buff0_len = 64 * 4;
host_pkt->orig_buff0_ptr = (Uint32)(buffers + (idx * 128));
host_pkt->next_desc_ptr = NULL;

push_queue(5000, 1, 0, (Uint32)(host_pkt));
}

/* Push Monolithic packets to Tx Completion Queue (FDQ) 5001 */
for (idx = 0; idx < 16; idx ++)
{

mono_pkt = (MNAV_MonolithicPacketDescriptor *)(mono_region + (idx * 160));
mono_pkt->pkt_return_qmgr = 1;

mono_pkt->pkt_return_qnum = 1;

push_queue(5001, 1, 0, (Uint32)(mono_pkt));
}

/* Push Host Descriptors to Rx FDQ 7000 */
for (idx = 20; idx < 64; idx ++)
{

host_pkt = (MNAV_HostPacketDescriptor *)(host_region + (idx * 64));

/* Set non-Rx overwrite fields */
host_pkt->orig_buff0_len = 64 * 4;
host_pkt->orig_buff0_ptr = (Uint32)(buffers + (idx * 128));
host_pkt->next_desc_ptr = NULL; //don’t link Host buffers in Rx FDQ

push_queue(7000, 1, 0, (Uint32)(host_pkt));
}

/* Push Monolithic packets to Rx FDQ 7001 */
for (idx = 16; idx < 32; idx ++)
{

mono_pkt = (MNAV_MonolithicPacketDescriptor *)(mono_region + (idx * 160));

push_queue(7001, 1, 0, (Uint32)(mono_pkt));
}

Last, program the accumulator channels that are needed. Both of these channels are programmed to
return only the QM Reg D value per descriptor. The high priority program will use the list count method
and the low priority program will use NULL termination. The second time the interrupt triggers, the
accumulators will write to the pong side of the lists (in both cases starting with word 17). It is up to the host
to process and recycle the descriptors before that ping or pong side is needed again by the accumulator
(which does not check for consumption).

/***
* Program a hi-pri accumulation channel for queue 712.
*/
cmd.command = 0x81; //enable
cmd.channel = 8; //will trigger qmss_intr1_8 to core 0
cmd.queue_mask = 0; //not used in single mode
cmd.list_address = (uint32_t)hostList; //address of ping buffer
cmd.max_entries = 17; //list can hold up to 16 (max-1)
cmd.qm_index = 712; //que to monitor for channel 8
cmd.cfg_multi_q = 0; //0=single queue mode
cmd.cfg_list_mode = 1; //1=list count in first entry
cmd.cfg_list_size = 0; //0="D" Reg

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Example Code

127SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Programming Information

cmd.cfg_int_delay = 1; //1=delay since last interrupt (pacing mode)
cmd.timer_count = 1; //number of timer ticks to delay interrupt

program_accumulator(1, &cmd);

/***
* Program a lo-pri accumulation channel for queue 32.
*/
cmd.command = 0x81; //enable
cmd.channel = 1; //will trigger qmss_intr0_1 to all cores
cmd.queue_mask = 0x00000001; //look only at queue 32 for this example
cmd.list_address = (uint32_t)monoList; //address of ping buffer
cmd.max_entries = 17; //list can hold up to 16 (max-1)
cmd.qm_index = 32; //first que to monitor for this channel
cmd.cfg_multi_q = 1; //1=multi queue mode
cmd.cfg_list_mode = 0; //0=NULL terminated list
cmd.cfg_list_size = 0; //0="D" Reg
cmd.cfg_int_delay = 1; //1=delay since last interrupt (pacing mode)
cmd.timer_count = 1; //number of timer ticks to delay interrupt

program_accumulator(0, &cmd);

/* Clear the Accumulator lists. */
memset(hostList, 0, 34 * 4);
memset(monoList, 0, 34 * 4);

6.2.2 PKTDMA Initialization
In this example, two PKTDMA channels (for both TX and RX) are configured with one RX flow per
channel. The following code shows the necessary initialization.

First, configure the logical queue managers. We will define three in this example: (note this is not the
usual configuration, this is mainly for demonstration).

/* Program the logical queue managers for QMSS PKTDMA: */
qm_map[0] = 0;

qm_map[1] = 5000;
qm_map[2] = 7000;
qm_map[3] = 0xffff; /* unused */

config_pktdma_qm(QMSS_pktdma_GBL_CFG_REGION, qm_map);

Next, configure the TX channels. TX channels should not be configured while they are enabled.

/* Configure Tx channel 0 */
config_tx_sched(QMSS_PKTDMA_TX_SCHD_REGION, 0, 0); //high priority

/* Configure Tx channel 1 */
config_tx_sched(QMSS_PKTDMA_TX_SCHD_REGION, 1, 0); //high priority

Next, configure the RX flows. Note that RX flows cannot be changed while any channel that uses them is
enabled. This is not trivial for simple example code to check, so config_rx_flow simply assumes that no
RX channels are enabled. It is well worth the investment in time to study the programmability of the RX
flow. For example, FDQ selection may be fixed, based on packet size, or in the case of Host packets,
Host buffer number. In the case of size based FDQ selection, RX Flow registers C through H must be
programmed to configure the thresholds, enables and desired queues.

This example sets up the basic case – select from one FDQ and send to one RX queue:

/* Configure Rx flow 0 for channel 0 (Host Descriptors to Hi Pri Acc.) */
config_rx_flow(QMSS_PKTDMA_RX_FLOW_REGION, 0,

0x040002c8, 0, 0, 0x20002000, 0x20002000, 0, 0, 0);

/* Configure Rx flow 1 for channel 1 (Mono Descriptors to Lo Pri Acc.) */
config_rx_flow(QMSS_PKTDMA_RX_FLOW_REGION, 1,

0x080c0020, 0, 0, 0x20012001, 0, 0, 0, 0);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Example Code www.ti.com

128 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Programming Information

Last, enable the RX and TX channels that have been configured.

/* Enable the Tx and Rx channels */
enable_tx_chan(QMSS_PKTDMA_TX_CHAN_REGION, 0, 0x80000000);
enable_tx_chan(QMSS_PKTDMA_TX_CHAN_REGION, 1, 0x80000000);
enable_rx_chan(QMSS_PKTDMA_RX_CHAN_REGION, 0, 0x80000000);
enable_rx_chan(QMSS_PKTDMA_RX_CHAN_REGION, 1, 0x80000000);

6.2.3 Normal Infrastructure DMA with Accumulation
At this point, everything has been initialized for the example test case. All that remains to be done is:
1. Pop descriptors from the TX completion (FDQ) queues.
2. Fill the descriptor fields and buffers with some data.
3. Push the filled descriptors onto the TX queues.
4. Wait for the accumulators to complete popping the RX queues and building the descriptor lists.

The following code will push 8 descriptors into the TX queues then wait for the results:

for (idx = 0; idx < 8; idx ++)
{

Uint32 tmp = pop_queue(5000);
host_pkt = (MNAV_HostPacketDescriptor *)(tmp);
host_pkt->type_id = MNAV_DESC_ID_HOST;
host_pkt->ps_reg_loc = 0;
host_pkt->packet_length = 64;
host_pkt->psv_word_count = 0;
host_pkt->pkt_return_qnum = 0x1000;
host_pkt->buffer_len = 64;

host_pkt->next_desc_ptr = NULL;
host_pkt->src_tag_lo = 0; //copied to .flo_idx of streaming i/f
/* Add code here to fill the descriptor's buffer */

push_queue(800, 1, 0, tmp);

tmp = pop_queue(5001);
mono_pkt = (MNAV_MonolithicPacketDescriptor *)(tmp);
mono_pkt->type_id = MNAV_DESC_ID_MONO;
mono_pkt->data_offset = 12;
mono_pkt->packet_length = 16;
mono_pkt->epib = 0;
mono_pkt->pkt_return_qnum = 0x1001;
mono_pkt->src_tag_lo = 1; //copied to .flo_idx of streaming i/f
/* Add code here to fill the descriptor's buffer */

push_queue(801, 1, 0, tmp);
}

/* Burn some time for the accumulators to run. */
testpass = 0;
for (idx = 0; idx < 20000; idx ++)
{

testpass = idx;
}

Because no data was loaded into buffers, there is no need to check for that here. But, check to see that
the correct descriptors arrived in the resulting host descriptor and monolithic descriptor lists. Note that the
descriptors in these lists no longer belong to any queue. It is the host’s responsibility to requeue them.

testpass = 1;
/* Check the Host Packet accumulator list. */
for (idx = 0; idx < 8; idx ++)
{

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Example Code

129SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Programming Information

addr = (Uint32)(host_region + ((idx + 16) * 64));
if (hostList[idx+1] != addr)

testpass = 0;
}

if (hostList[0] != 8) //check the list count in element 0
testpass = 0;

if (testpass == 1)
printf("Host Descriptor Test: PASS\n");

else
printf("Host Descriptor Test: FAIL\n");

testpass = 1;
/* Check the Monolithic Packet accumulator list. */
for (idx = 0; idx < 8; idx ++)
{

addr = (Uint32)(mono_region + ((idx + 16) * 160));
if (monoList[idx] != addr)

testpass = 0;
}

if (monoList[8] != 0) //check for the NULL terminator in this list
testpass = 0;

if (testpass == 1)
printf("Monolithic Descriptor Test: PASS\n");

else
printf("Monolithic Descriptor Test: FAIL\n");

6.2.4 Bypass Infrastructure notification with Accumulation
In this mode, the PKTDMA is bypassed because there is no data to transmit (or the data has been placed
in a shared memory buffer available to both the source and destination cores). Descriptors will be popped
off the RX FDQs, and pushed directly onto the RX queues, causing the accumulators to act on them.

Using the same QM Initialization as shown in Section 6.2.1, and no required PKTDMA initialization, it is
possible to pop directly from the RX FDQ, and push to the accumulation queues and achieve the same
results. The descriptors can be uninitialized if desired (because the QM does not look at them), but they
can be used to pass information from source to destination.

for (idx = 0; idx < 8; idx ++)
{

Uint32 tmp = pop_queue(7000);
host_pkt = (MNAV_HostPacketDescriptor *)(tmp);
host_pkt->type_id = MNAV_DESC_ID_HOST;
host_pkt->buffer_ptr = (Uint32)buffers; //this can point to a shared buffer
host_pkt->next_desc_ptr = NULL;

push_queue(712, 1, 0, tmp);

tmp = pop_queue(7001);
mono_pkt = (MNAV_MonolithicPacketDescriptor *)(tmp);
mono_pkt->type_id = MNAV_DESC_ID_MONO;
push_queue(32, 1, 0, tmp);

}

/* Burn some time for the accumulators to run. */
testpass = 0;
for (idx = 0; idx < 20000; idx ++)
{

testpass = idx;
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Example Code www.ti.com

130 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Programming Information

6.2.5 Channel Teardown
To perform a channel teardown, the host must do the following:
1. When the host desires to tear down a channel (either RX or TX), it writes a 1 to the teardown field of

the corresponding RX or TX Channel Global Configuration Register for that channel. The host should
not disable the channel by writing a 0 to the enable field of this register. The PKTDMA will do this
when finished with the teardown.

When the PKTDMA detects the teardown bit is set, it will:

TX Teardown RX Teardown

• Allow the current packet to complete normally.
• Clear the channel enable bit in the TX Channel Global

Configuration Register. The teardown bit will remain set
as an indication that a teardown was performed.

• Signals the attached peripheral (rx_teardown_req) that a
teardown was requested by the Host.

• Waits for the peripheral to acknowledge
(rx_teardown_ack).

• Notes:
– During this time, processing continues normally.
– In some peripherals, rx_teardown_req and

rx_teardown_ack are tied together in loopback.
• Following ack, the current packet is allowed to complete

normally.
• Clear the channel enable in the RX Channel Global

Configuration Register. The teardown bit will remain set
as an indication that a teardown was performed.

The host detects the teardown is complete by examining the RX/TX Channel Global Configuration
Register to check the enable status.

6.3 Programming Overrides
The following is a list of ways to override the default programming methods. The programmer should pay
attention to these, because if done incorrectly, the PKTDMA may not function as expected and may be
difficult to debug.
1. Streaming I/F Overrides:

a. flow_index. A value of 0xFFFF (or a value >= the number of RX Flows) will cause the RX DMA to
use the channel (thread) number for flow_index. So, an RX Flow is always used, even if not
directly specified.

b. dest_qnum. A value of 0x1FFF is the normal, non-override value. When set to this, the RX DMA
will use the RX_DEST_QNUM/QMGR fields in the defined RX Flow. Any other value will override
the RX Flow value.

2. Loopback Override: To loop TX descriptor payloads to the RX DMA (such as in Infrastructure
transfers), set the SOURCE TAG – LO field in the descriptor to the RX flow number that should be
used by the RX DMA. It will be passed through the Streaming I/F in the flow index parameter.

6.4 Programming Errors
Programming Multicore Navigator’s various components can be tedious, and if done incorrectly, may
cause dataflow to stop with no alert given. Here are a few things to watch for:
1. Queue manager:

a. Pushing the same descriptor into the same queue more than once. This corrupts the linking RAM,
making it inconsistent with the rest of the queue manager’s internal data for the queue.

b. Pushing the same descriptor into more than one queue at the same time. This also will corrupt the
linking RAM, causing a loss of data.

c. Pushing any descriptor address to a queue where the address is not contained within a descriptor
memory region that has been programmed into the queue manager.

d. Pushing a descriptor address that is not on an N-word boundary within a programmed memory
region, where N-word is the programmed descriptor size.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Programming Errors

131SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Programming Information

e. Linking host descriptors in an RX FDQ. This should never be done, because the RX DMA will pop
descriptors and link them together automatically. The RX DMA does not differentiate between host
packet and host buffer type descriptors (it will fill in the fields to create what it needs).

f. Incorrect host descriptor linking for TX. The host should create and push a host packet descriptor
for each packet. If additional host buffer descriptors are needed because the packet length is too
large for the host packet's buffer, then host buffer descriptors should be linked to the Host Packet
as needed.

g. Programming overlapping descriptor memory regions.
h. Not using a consistent physical/virtual memory scheme.

2. PKTDMA:
a. An RX flow must be programmed for every RX transaction. If the application is directly (or

indirectly) driving the PKTDMA’s RX Streaming I/F (infrastructure tests is an example) and a valid
RX flow ID is not specified, the RX DMA will substitute the channel number and use it for the RX
flow ID. To specify the RX flow from the TX descriptor, fill the SOURCE TAG LO field with the
desired RX flow number.

b. Trying to reconfigure a TX channel while it is still enabled, or reprogramming an RX flow while any
channel that uses it is still enabled. This is a difficult-to-find error.

c. There are several error situations that can cause the PKTDMA to suddenly stop processing
packets:
i. Not pushing a valid DESC_SIZE value when pushing to a PKTDMA Tx queue.
ii. Pushing a Host descriptor who's packet length field is greater than the sum of all of the linked

Host buffers, or if there is a NULL next link encountered prior to the PKTDMA reading the
entire packet length number of bytes.

iii. Pushing a Host descriptor where one of the next links points to itself. If the descriptor is
marked to return descriptors individually, this will corrupt the QM as well.

iv. Giving the PKTDMA any pointer that is illegal (NULL, a pointer to unbacked memory, or a
pointer to a memory region for which the PKTDMA does not have access).

v. Pushing misaligned descriptors, or linked host descriptors. Misaligned in this context means an
address that is not on a descriptor boundary, as programmed into the QMSS Descriptor
Region registers. It is mandatory that all descriptors be aligned on a 16 byte boundary so that
the 4 least significant bits are always 0.

vi. Pushing a descriptor with a PS word count larger than that specific PKTDMA is configured for.
This is not a software configuration, but one set at SoC design time.

vii. Receive side starvation. Both Tx and Rx sides of the PKTDMA contain internal FIFOs for
storing small amounts of data. If the Rx FDQs become empty and the incoming Tx queue
continues to have descriptors, the internal FIFOs quickly fill and Tx processing stops.

viii. Race conditions that cause conditions 2 through 6 above. This can happen when an
application writes valid data to the descriptor, pushes it, and the PKTDMA starts reading it
before the application's write has actually landed.

3. Accumulator:
a. Mismatching the list count mode or list entry size in the accumulator program with how the host

code reads the list.
b. Not sizing the list correctly. If 100 entries in the list are desired, and a 2-word entry size (regs C

and D) is programmed, then the list must be sized appropriately: (100 + 1) × 2 × 2 = 404 words.
The pong side begins at word 202.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Questions and Answers www.ti.com

132 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Programming Information

6.5 Questions and Answers
This section contains frequently asked questions and responses to them.

Question:
How does descriptor accumulator polling work?
All high-priority accumulator channels are continuously polled. For the 48 channel accumulator, after each
loop through all of the high-priority channels, one of the low-priority channels is polled. For the 16 and 32
channel versions, there is no high and low mix of channels, so they all scan at full speed. The timers are
used only for the interrupt pacing modes.

Question:
How should RX flows and channels be used?
The first step is to recognize that the RX DMA is driven from the RX streaming I/F. Each transaction for a
packet is received from the streaming I/F, and contains a channel number. This number will not change for
the entire packet’s reception (and once a packet starts on a channel, that channel is dedicated to that
packet until it completes). The channel number is determined by the programming of the peripheral
(because it is the peripheral that drives the RX streaming I/F). For the infrastructure PKTDMA, it is always
the same as the TX channel number because the streaming I/F is connected in loopback.

Next, the initial transmission of the packet to the RX DMA contains some sideband data. One of these
parms is the flow_id. Because the flow_id comes as parametric data with the packet, it can change packet
by packet, and is not related to channel number in any way. This is the reason why there are more flows
than channels — in case there is a need to use more than one flow for a stream of packets.

How the flow_id is determined also varies by peripheral. The peripherals provide a mechanism to set the
flow_id; it may be a register, or a value in protocol-specific data. For the infrastructure PKTDMA, it is
passed from the TX side using the SRC_TAG_LO field in the TX descriptor. But it is a value that you
choose.

An example from the LTE Demo project: At one point in the processing, an output of the FFTC block is in
this form: A B C B A, where A is a range of bytes that are not needed, B contains data to be processed on
core 1, and C contains data to be processed on core 2. The setup for this is done so that all data lands in
the LL2 of the core that needs to process it:

First, FDQs are constructed (at initialization) with host descriptors and buffers in each core’s LL2.

Next, (at runtime, prior to the FFTC running) another highly specialized FDQ is built such that it is loaded
with exactly five descriptors:
• The first and fifth point to a single garbage buffer – for part A
• The second and fourth point to buffers in core 1’s LL2 – for part B
• The third points to a buffer in core 2’s LL2 – for part C

Descriptors 2, 3, and 4 are popped from the LL2 FDQs from cores 1, 2, and 1, respectively. Each buffer
size is set to the exact number of bytes for the A, B, and C fields so that as the RX DMA processes the
data, each descriptor in this specialized FDQ is popped at the right time, loaded with the correct data, and
linked to the previous buffer to create a single host descriptor.

The RX flow setting is simple: One RX FDQ, and the RX destination queue will be an accumulation
channel so that core 1 will be notified when the FFTC results are ready.

The choice of RX channel number and RX flow number for the FFTC is arbitrary — any of the four
channels and eight flows is as good as any of the others. It depends on how the FFTC is programmed.
When using the Multicore Navigator LLDs, they can determine which channel and flow to use (it will select
one and pass back a handle to it).

That is a creative example of how to take the output of a peripheral and use Multicore Navigator resources
to get the data to its destination(s) efficiently. The power of the Multicore Navigator is that this problem
can be solved in many different ways.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Questions and Answers

133SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Programming Information

Question:
How does a peripheral choose which RX channel to use?
Each Multicore Navigator peripheral has its own method:
• QMSS and FFTC — the RX channel used is the same as the TX channel that drives it.
• SRIO — The SRIO picks an RX channel from those that are enabled. See the Serial RapidIO (SRIO)

for KeyStone Devices User Guide (SPRUGW1) for more details.
• AIF2 — For DIO (WCDMA), RX channel must be channel number 128. For channels 0 through 127,

the RX channel and RX flow numbers are always the same as the DB channel number.
• PA — Packet classification information is associated with a destination queue and flow number. For

example, the PA is instructed to match dest mac = x, dest IP = y, dest TCP port = z, and then it sends
the packet to queue A using flow B. But the channels are hard mapped to streaming endpoints within
submodules. These submodules are either PDSPs or else they are encryption/authentication blocks.

So, it is not a matter of the peripheral finding an enabled channel, but rather the peripheral using a specific
channel whether or not it is enabled (and if not enabled, no data will pass through).

Question:
I’m interested in the case where the infrastructure PKTDMA is moving data from one core’s L2 to a
second core’s L2. I don’t understand how the TX queue is tied to a TX channel for that case and
how does that connect with the RX channel and queue?
With all the TX PKTDMAs, there is a one-to-one HW mapping between a queue number and a TX
channel. In the QMSS case, queue 800 maps to TX channel 0, 801 to 1, etc. And, the QMSS loopback
connection causes TX channel X to send data to RX channel X. So, to use channel 0, open (LLD
terminology) queue 800, open TX channel 0, RX channel 0, an RX Flow, and whatever RX Q, RX FDQ,
and TX FDQ queues that should be used. Note that the TX descriptor defines the TX FDQ (and RX Flow)
to be used, and the RX Flow defines the RX Q and RX FDQ.

Once everything is properly initialized, all that must be done is pop a descriptor from the TX FDQ, fill it
with data and push it to queue 800. It will flow through the TX DMA, the Streaming I/F, the RX DMA and
be pushed to the RX Q. To make this transfer data from core A’s L2 to core B’s L2, the TX FDQ’s
descriptors (or host buffers) must be in a QMSS memory region located in core A’s L2, and the RX FDQ’s
descriptors (or host buffers) must be in a QMSS memory region located in core B’s L2.

Question:
Can I push multiple descriptor types to the same queue?
From the Queue Manager’s perspective, yes. The QM does not care what is stored at the descriptor
addresses (it does not have to be a descriptor - but it is an error to push anything other than a valid
descriptor through a PKTDMA). From the PKTDMA’s perspective, it depends. The TX DMA handles each
packet separately, so there is no problem pushing host and monolithic descriptors into the same TX
queue. On the RX side, each RX FDQ should be populated with one type of descriptor, because the RX
DMA handles host and monolithic descriptors differently.

Question:
What happens when no configured RX packet queue has a packet that is large enough to hold the
data?
It depends. For monolithic packet mode, the RX DMA assumes the descriptor is big enough, and will
overwrite adjacent memory if it isn't. For Host packet mode, the RX DMA will keep popping descriptors
and linking them together until it has buffered all the data or run out of descriptors (RX starvation).

Question:
What happens when the RX queue of the receiving flow is out of buffers?
This condition is called buffer starvation. The action of the RX DMA is configurable, depending on the
setting of the rx_error_handling field of the RX Flow that is currently in use. If the field is clear, the packet
will be dropped. If set, the RX DMA will re-try at the rate specified by the Performance Config Register.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H
http://www.ti.com/lit/pdf/SPRUGW1

Questions and Answers www.ti.com

134 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Programming Information

Question:
What happens when a packet is received and the specified flow configuration is not set up? Is
there any indication that the transmission did not succeed?
If the channel has been enabled, the RX DMA will use reset values for the RX flow if it has not been
programmed. There is no error status; but a core can detect the problem in a couple of ways:
1. Set a timeout and read the RX/RX FDQ descriptor counts,
2. Use pacing mode last interrupt with the Accumulator and examine cases where the list is empty,
3. Read the QMSS' INTD Status Register #4 to see if a starvation interrupt occurred (if the flow is using

reset values, it will use queue 0 as the FDQ),
4. Program a threshold for the RX queue(s) and read the Queue Status RAM.

Question:
Is there any situation that can cause packet transfer over infrastructure queues to cause packets
to be delivered out-of-order or not at all (but following packets will be transferred)?
Out-of-order reception is not possible for the infrastructure PKTDMA, due to the loopback connection of
the Streaming I/F. Dropped packets are possible due to errors on the RX side. Dropped packets can be
detected by using the tag fields to send a sequence number through to the RX descriptor. Also, it is a
function of the QoS firmware to drop packets in various situations.

Question:
Are peripherals limited by the 4 level TX DMA round robin scheduling?
No. It is true that the TX DMA by itself will starve lower priority levels if flooded by higher priority packets.
However, it is possible for the IP to disable the higher priority channels at the Streaming I/F level, thereby
allowing lower priority channels to run. The FFTC is a case of one IP that does this.

Question:
If I'm not going to use a Multicore Navigator feature, can I use its resources for other purposes?
In several cases, yes. For example, if you do not plan to use Low Priority Accumulation, you can use
queues 0 to 511 as general purpose queues, and you can also use the QMSS INTD to generate events
normally associated with the Low Priority Accumulator to the DSPs for sync barrier purposes. You only
need to make sure that the feature (Low Priority Accumulation in this example) is not enabled or is
programmed to use other queues.

Question:
Can I assign priorities to queues?
Not with the Queue Manager alone. The queue management of each queue is independent, and one
queue does not affect another. The TX DMA allows a 4 level priority scheme to be imposed, and there are
other methods for creating priority, such as external schedulers.

Question:
Should memory regions be specified in ascending order?
For KeyStone I, yes. Memory region base addresses must be set in ascending address order, i.e. region 0
must be at a lower address than region 1, region 1 must be at a lower address than region 2, etc. This
requires extra planning when configuring regions in LL2, MSMC and DDR. This restriction does not apply
to KeyStone II devices.

Question:
Is the mapping of accumulator channel, queue and interrupt event fixed or can it be modified?
The mapping of channels to events is fixed. The mapping of queue number to channel number is fixed
only for any queue that drives a queue_pend signal. This means that accumulator queue numbers may be
changed (the queues shown are the suggested mapping).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Questions and Answers

135SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Programming Information

Question:
What is the point of the PKTDMA’s logical queue managers, and how can they be used?
The logical queue managers allow the PKTDMA to access queues (and thus descriptors) on other
memory mapped devices, such as a second KeyStone device mapped via Hyperlink. The QMn Base
Address Registers provide a VBUSM address that the PKTDMA uses as queue zero for that logical QM.
The “Qmgr” field in descriptors and Rx Flow registers then specify which of the four logical queue
managers is to be used (which really means which base address the PKTDMA uses for pushing and
popping). Logical PKTDMAs can be used for creating logical groups of queues within the local physical
QM, or a Hyperlink memory mapped QM, or in the case of K2K and K2H, to address the “other” physical
QM in the QMSS subsystem (i.e. to allow Infra PKTDMA 1 to use QM2 and vice versa).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

136 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Example Code Utility Functions

Appendix A
SPRUGR9H–November 2010–Revised April 2015

Example Code Utility Functions

The following functions are simple, low-level utility functions that directly program the necessary Multicore
Navigator hardware registers. The addresses and other types are listed in the following appendices.

/* This function programs a QM memory region. */
void set_memory_region(Uint16 regn, Uint32 addr, Uint32 indx, Uint32 setup)
{

Uint32 *reg;

reg = (Uint32 *)(QM_DESC_REGION + QM_REG_MEM_REGION_BASE + (regn * 16));
*reg = addr;

reg = (Uint32 *)(QM_DESC_REGION + QM_REG_MEM_REGION_INDEX + (regn * 16));
*reg = indx;

/* See register description for programming values. */
reg = (Uint32 *)(QM_DESC_REGION + QM_REG_MEM_REGION_SETUP + (regn * 16));

*reg = setup;
}

/* This function programs a QM Link RAM. */
void set_link_ram(Uint16 ram, Uint32 addr, Uint32 count)
{

Uint32 *reg;

reg = (Uint32 *)(QM_CTRL_REGION + QM_REG_LINKRAM_0_BASE + (ram * 8));
*reg = addr;

if (ram == 0)
{

reg = (Uint32 *)(QM_CTRL_REGION + QM_REG_LINKRAM_0_SIZE);
*reg = count;

}
}

/* This function pushes descriptor info to a queue.
* mode parameter: 1 = write reg D only.
* 2 = write regs C and D.

*
* It turns out the VBUSM is more efficient to push to than VBUSP,
* and also allows for atomic c+d pushes.
*/
void push_queue(Uint16 qn, Uint8 mode, Uint32 c_val, Uint32 d_val)
{
#ifdef USE_VBUSM

if (mode == 2)
{

uint64_t *reg;

reg = (uint64_t *)(QM_QMAN_VBUSM_REGION + QM_REG_QUE_REG_C + (qn * 16));

#ifdef _BIG_ENDIAN
*reg = ((uint64_t)c_val << 32) | d_val;

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Appendix A

137SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Example Code Utility Functions

#else
*reg = ((uint64_t)d_val << 32) | c_val;

#endif
}
else
{

Uint32 *reg;
reg = (Uint32 *)(QM_QMAN_VBUSM_REGION + QM_REG_QUE_REG_D + (qn * 16));

*reg = d_val;
}

#else
Uint32 *reg;

if (mode == 2)
{

reg = (Uint32 *)(QM_QMAN_REGION + QM_REG_QUE_REG_C + (qn * 16));
*reg = c_val;

}

reg = (Uint32 *)(QM_QMAN_REGION + QM_REG_QUE_REG_D + (qn * 16));
*reg = d_val;

#endif
}

/* This function pops a descriptor address from a queue. */
Uint32 pop_queue(Uint16 qn)
{

Uint32 *reg;
Uint32 value;

reg = (Uint32 *)(QM_QMAN_REGION + QM_REG_QUE_REG_D + (qn * 16));
value = *reg;

return(value);
}

/* This function moves a source queue to a destination queue. If
* headtail = 0, the source queue is appended to the tail of the
* dest queue. If 1, it is appended at the head. */

void divert_queue(Uint16 src_qn, Uint16 dest_qn, Uint8 headtail)
{

Uint32 *reg;
Uint32 value;

reg = (Uint32 *)(QM_CTRL_REGION + QM_REG_QUE_DIVERSION);

value = (headtail << 31) + (dest_qn << 16) + src_qn;
*reg = value;

return;
}

/* This function pops a queue until it is empty. If *list is not NULL,
* it will return the list of descriptor addresses and the count. */

void empty_queue(Uint16 qn, Uint32 *list, Uint32 *listCount)
{

Uint32 *reg;
Uint32 value;
Uint16 idx;
Uint32 count;

reg = (Uint32 *)(QM_PEEK_REGION + QM_REG_QUE_REG_A + (qn * 16));
count = *reg; //read the descriptor count

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Appendix A www.ti.com

138 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Example Code Utility Functions

*listCount = count;

reg = (Uint32 *)(QM_QMAN_REGION + QM_REG_QUE_REG_D + (qn * 16));

for (idx = 0; idx < count; idx ++)
{

value = *reg;
if (list != NULL)
{

list[idx] = value;
}

}
}

/* This function returns the byte count of a queue. */
Uint32 get_byte_count(Uint16 qn)
{

Uint32 *reg;
Uint32 count;

reg = (Uint32 *)(QM_PEEK_REGION + QM_REG_QUE_REG_B + (qn * 16));
count = *reg;

return(count);
}

/* This function returns the descriptor count of a queue. */
Uint32 get_descriptor_count(Uint16 qn)
{

Uint32 *reg;
Uint32 count;

reg = (Uint32 *)(QM_PEEK_REGION + QM_REG_QUE_REG_A + (qn * 16));
count = *reg;

return(count);
}

/* This function sets a queue threshold for queue monitoring purposes. */
void set_queue_threshold(Uint16 qn, Uint32 value)
{

Uint32 *reg;

reg = (Uint32 *)(QM_PEEK_REGION + QM_REG_QUE_STATUS_REG_D + (qn * 16));
*reg = value;

}

/* This function programs a Hi or Lo Accumulator channel. */
void program_accumulator(Uint16 pdsp, Qmss_AccCmd *cmd)
{

Uint16 idx;
Uint32 *tmplist;
Uint32 *reg;

if (pdsp == 1)
reg = (Uint32 *)(PDSP1_CMD_REGION + 4*4); //point to last word

else
reg = (Uint32 *)(PDSP2_CMD_REGION + 4*4); //point to last word

tmplist = ((uint32_t *) cmd) + 4; //write first word last

for (idx = 0; idx < 5; idx ++)
{

*reg-- = *tmplist--;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Appendix A

139SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Example Code Utility Functions

}

/* wait for the command byte to clear. */
reg++;

do
{

result = (*reg & 0x0000ff00) >> 8;
} while (result != 0);

}

/* This function disables a Hi or Lo Accumulator program. */
void disable_accumulator(Uint16 pdsp, Uint16 channel)
{

Uint16 idx;
Uint32 *tmplist;
Uint32 *reg;
Qmss_AccCmd cmd;

memset(&cmd, 0, sizeof(Qmss_AccCmd));
cmd.channel = channel;
cmd.command = QMSS_ACC_CMD_DISABLE;

if (pdsp == 1)
reg = (Uint32 *)(PDSP1_CMD_REGION + 4*4); //point to last word

else
reg = (Uint32 *)(PDSP2_CMD_REGION + 4*4); //point to last word

tmplist = ((uint32_t *) &cmd) + 4; //write first word last

for (idx = 0; idx < 5; idx ++)
{

*reg-- = *tmplist--;
}

}

/* This function writes a new value to a PDSP's firmware
* Time is specified in usec, then converted to the hardware
* expect value assuming a 350Mhz QMSS sub-system clock. */

void set_firmware_timer(Uint16 pdsp, Uint16 time)
{

Uint16 idx;
Uint32 *tmplist;
Uint32 *reg;
Qmss_AccCmd cmd;

memset(&cmd, 0, sizeof(Qmss_AccCmd));
cmd.queue_mask = (time * 175); //convert usec to hw val
cmd.command = QMSS_ACC_CMD_TIMER;

if (pdsp == 1)
reg = (Uint32 *)(PDSP1_CMD_REGION + 4); //point to 2nd word

else
reg = (Uint32 *)(PDSP2_CMD_REGION + 4); //point to 2nd word

tmplist = ((uint32_t *) &cmd) + 1; //write 2nd word last

*reg-- = *tmplist--;
*reg = *tmplist;

}

/* This function programs base addresses for the four logical
* queue managers that a PKTDMA may setup. Use a value of 0xffff
* if you don't want to set value into QM base addr reg. N. */

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Appendix A www.ti.com

140 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Example Code Utility Functions

void config_pktdma_qm(Uint32 base, Uint16 *physical_qnum)
{

Uint16 idx;
Uint32 qm_base;
Uint32 *reg;

for (idx = 0; idx < 4; idx ++)
{

if (physical_qnum[idx] != 0xffff)
{

qm_base = QM_QMAN_VBUSM_REGION + (physical_qnum[idx] * 16);

reg = (Uint32 *)(base + PKTDMA_REG_QM0_BASE_ADDR + (idx * 4));
*reg = qm_base;

}
}

}

/* This function enables/disables internal loopback mode for a pktDMA.
* By default, it should be enabled for QMSS, disabled for all others. */

void config_pktdma_loopback(Uint32 base, Uint8 enable)
{

Uint32 *reg;

reg = (Uint32 *)(base + PKTDMA_REG_EMULATION_CTRL);

if (enable)
*reg = 0x80000000;

else
*reg = 0x0;

}

/* This function sets the packet retry timeout.
* A value of 0 disables the retry feature. */

void config_pktdma_retry_timeout(Uint32 base, Uint16 timeout)
{

Uint32 *reg;

Uint32 val;

reg = (Uint32 *)(base + PKTDMA_REG_PERFORMANCE_CTRL);

val = *reg & 0xFFFF0000;

*reg = val | timeout;
}
/* This function disables a TX DMA channel, then configures it. */
void config_tx_chan(Uint32 base, Uint16 chan, Uint32 return_q)
{

Uint32 *reg;

reg = (Uint32 *)(base + PKTDMA_REG_TX_CHAN_CFG_A + (chan * 32));
*reg = 0; //disable the channel

reg = (Uint32 *)(base + PKTDMA_REG_TX_CHAN_CFG_B + (chan * 32));
*reg = return_q;

}

/* This function configures priority of a TX DMA channel */
void config_tx_sched(Uint32 base, Uint16 chan, Uint32 priority)
{

Uint32 *reg;

reg = (Uint32 *)(base + PKTDMA_REG_TX_SCHED_CHAN_CFG + (chan * 4));
*reg = priority;

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Appendix A

141SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Example Code Utility Functions

/* This function configures an RX DMA channel flow. */
void config_rx_flow(Uint32 base, Uint16 flow,

Uint32 a, Uint32 b, Uint32 c, Uint32 d,
Uint32 e, Uint32 f, Uint32 g, Uint32 h)

{
Uint32 *reg;

reg = (Uint32 *)(base + PKTDMA_REG_RX_FLOW_CFG_A + (flow * 32));
*reg = a;

reg = (Uint32 *)(base + PKTDMA_REG_RX_FLOW_CFG_B + (flow * 32));
*reg = b;

reg = (Uint32 *)(base + PKTDMA_REG_RX_FLOW_CFG_C + (flow * 32));
*reg = c;

reg = (Uint32 *)(base + PKTDMA_REG_RX_FLOW_CFG_D + (flow * 32));
*reg = d;

reg = (Uint32 *)(base + PKTDMA_REG_RX_FLOW_CFG_E + (flow * 32));
*reg = e;

reg = (Uint32 *)(base + PKTDMA_REG_RX_FLOW_CFG_F + (flow * 32));
*reg = f;

reg = (Uint32 *)(base + PKTDMA_REG_RX_FLOW_CFG_G + (flow * 32));
*reg = g;

reg = (Uint32 *)(base + PKTDMA_REG_RX_FLOW_CFG_H + (flow * 32));
*reg = h;

}

/* This function writes an RX DMA channel's enable register. */
void enable_rx_chan(Uint32 base, Uint16 chan, Uint32 value)
{

Uint32 *reg;

reg = (Uint32 *)(base + PKTDMA_REG_RX_CHAN_CFG_A + (chan * 32));
*reg = value;

}

/* This function writes a TX DMA channel's enable register. */
void enable_tx_chan(Uint32 base, Uint16 chan, Uint32 value)
{

Uint32 *reg; reg = (Uint32 *)(base + PKTDMA_REG_TX_CHAN_CFG_A + (chan * 32));
*reg = value;

}

/* This function reads a QMSS INTD Status Register.
* group parameter: 0 = high priority interrupts.
* 1 = low priority interrupts.
* 4 = PKTDMA starvation interrupts.
*
* If the chan parameter = 0xffffffff, the entire register contents
* are returned. Otherwise, chan is expected to be a channel number,
* and the return value will be a 0 or 1 for that channel's status.
*/

Uint32 read_status(Uint16 group, Uint32 chan)
{

Uint32 *reg;
Uint32 value;
Uint32 mask;

reg = (Uint32 *)(QM_INTD_REGION + QM_REG_INTD_STATUS + (group * 4));
value = *reg;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Appendix A www.ti.com

142 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Example Code Utility Functions

if (chan != 0xffffffff)
{

mask = 1 << (chan & 0x001f);
if ((value & mask) == 0)

value = 0;
else

value = 1;
}

return(value);
}

/* This function writes a QMSS INTD Status Register.
* group parameter: 0 = high priority interrupts.
* 1 = low priority interrupts.
* 4 = PKTDMA starvation interrupts.
*/

void set_status(Uint16 group, Uint32 chan)
{

Uint32 *reg;
Uint32 value;
Uint32 mask;

reg = (Uint32 *)(QM_INTD_REGION + QM_REG_INTD_STATUS + (group * 4));
value = *reg;

mask = 1 << (chan & 0x001f);
value |= mask;

*reg = value;
}

/* This function writes a QMSS INTD Status Clear Register.
* group parameter: 0 = high priority interrupts.
* 1 = low priority interrupts.
* 4 = PKTDMA starvation interrupts.
*/

void clear_status(Uint16 group, Uint32 chan)
{

Uint32 *reg;
Uint32 value;
Uint32 mask;

reg = (Uint32 *)(QM_INTD_REGION + QM_REG_INTD_STATUS_CLEAR + (group * 4));
value = *reg;

mask = 1 << (chan & 0x001f);
value |= mask;

*reg = value;
}

/* This function reads a QMSS INTD Int Count Register.
* Reading has no effect on the register.
* "intnum" is: 0..31 for High Pri interrupts
* 32..47 for Low Pri interrupts
* 48..49 for PKTDMA Starvation interrupts
*/

Uint32 read_intcount(Uint16 intnum)
{

Uint32 *reg;
Uint32 value;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Appendix A

143SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Example Code Utility Functions

reg = (Uint32 *)(QM_INTD_REGION + QM_REG_INTD_INT_COUNT + (intnum * 4));
value = *reg;

return(value);
}

/* This function reads a QMSS INTD Int Count Register.
* Writing will cause the written value to be subtracted from the register.
* "intnum" is: 0..31 for High Pri interrupts
* 32..47 for Low Pri interrupts
* 48..49 for PKTDMA Starvation interrupts
*/

void write_intcount(Uint16 intnum, Uint32 val)
{

Uint32 *reg;

reg = (Uint32 *)(QM_INTD_REGION + QM_REG_INTD_INT_COUNT + (intnum * 4));
*reg = val;

}

/* This function writes a QMSS INTD EOI Register. Values to write are:
0 or 1: PKTDMA starvation interrupts,
2 to 33: High Pri interrupts,

34 to 49: Low Pri interrupts.
* Writing one of these values will clear the corresponding interrupt.
*/

void write_eoi(Uint32 val)
{

Uint32 *reg;

reg = (Uint32 *)(QM_INTD_REGION + QM_REG_INTD_EOI);
*reg = val;

}

/* This function writes a QMSS PDSP Control Register. */
void pdsp_control(Uint16 pdsp, Uint32 val)
{

Uint32 *reg;

if (pdsp == 1)
reg = (Uint32 *)(PDSP1_REG_REGION + QM_REG_PDSP_CONTROL);

else
reg = (Uint32 *)(PDSP2_REG_REGION + QM_REG_PDSP_CONTROL);

*reg = val;
}

/* This function enables QMSS PDSP n. */
void pdsp_enable(Uint16 pdsp)
{

Uint32 *reg;
Uint32 tmp;

if (pdsp == 1)
reg = (Uint32 *)(PDSP1_REG_REGION + QM_REG_PDSP_CONTROL);

else
reg = (Uint32 *)(PDSP2_REG_REGION + QM_REG_PDSP_CONTROL);

tmp = *reg;
tmp |= 0x02;

*reg = tmp;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Appendix A www.ti.com

144 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Example Code Utility Functions

}

/* This function disables QMSS PDSP n. */
void pdsp_disable(Uint16 pdsp)
{

Uint32 *reg;
Uint32 tmp;

if (pdsp == 1)
reg = (Uint32 *)(PDSP1_REG_REGION + QM_REG_PDSP_CONTROL);

else
reg = (Uint32 *)(PDSP2_REG_REGION + QM_REG_PDSP_CONTROL);

tmp = *reg;
tmp &= 0xfffffffd;

*reg = tmp;
}

/* This function returns true if QMSS PDSP n is running. */
Uint8 pdsp_running(Uint16 pdsp)
{

Uint32 *reg;

if (pdsp == 1)
reg = (Uint32 *)(PDSP1_REG_REGION + QM_REG_PDSP_CONTROL);

else
reg = (Uint32 *)(PDSP2_REG_REGION + QM_REG_PDSP_CONTROL);

return(*reg & 0x00008000);
}

/* This function controls the PDSP to load firmware to it. */
void pdsp_download_firmware(Uint16 pdsp, Uint8 *code, Uint32 size)
{

Uint16 idx;
Uint32 value;
Uint32 *reg;

/* Reset PDSP 1 */
pdsp_disable(pdsp);

/* Confirm PDSP has halted */
do
{

value = pdsp_running(pdsp);
} while (value == 1);

/* Download the firmware */
if (pdsp == 1)

memcpy ((void *)PDSP1_IRAM_REGION, code, size);
else

memcpy ((void *)PDSP2_IRAM_REGION, code, size);

/* Use the command register to sync the PDSP */
if (pdsp == 1)

reg = (Uint32 *)(PDSP1_CMD_REGION);
else

reg = (Uint32 *)(PDSP2_CMD_REGION);
*reg = 0xffffffff;

/* Wait to the memory write to land */
for (idx = 0; idx < 20000; idx++)
{

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Appendix A

145SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Example Code Utility Functions

value = *reg;
if (value == 0xffffffff) break;

}

/* Reset program counter to zero, and clear Soft Reset bit. */
if (pdsp == 1)

reg = (Uint32 *)(PDSP1_REG_REGION + QM_REG_PDSP_CONTROL);
else

reg = (Uint32 *)(PDSP2_REG_REGION + QM_REG_PDSP_CONTROL);

value = *reg;
*reg = value & 0x0000fffe; //PC reset is in upper 16 bits, soft reset in bit 0

/* Enable the PDSP */
pdsp_enable(pdsp);

/* Wait for the command register to clear */
if (pdsp == 1)

reg = (Uint32 *)(PDSP1_CMD_REGION);
else

reg = (Uint32 *)(PDSP2_CMD_REGION);
do
{

value = *reg;
} while (value != 0);

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

146 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Example Code Types

Appendix B
SPRUGR9H–November 2010–Revised April 2015

Example Code Types

The following type definitions are referenced by the programming examples above. For Big Endian
applications, they should be compiled with _BIG_ENDIAN defined.

//Define the Accumulator Command Interface Structure
#ifdef _BIG_ENDIAN
typedef struct
{

uint32_t retrn_code:8; //0=idle, 1=success, 2-6=error
uint32_t un1:8;
uint32_t command:8; //0x80=disable, 0x81=enable, 0=firmware response
uint32_t channel:8; //0 to 47 or 0 to 15

uint32_t queue_mask; //(multi-mode only) bit 0=qm_index queue

uint32_t list_address; //address of Host ping-pong buffer

uint32_t max_entries:16;//max entries per list
uint32_t qm_index:16; //qnum to monitor (multiple of 32 for multimode)

uint32_t un2:8;
uint32_t cfg_un:2;
uint32_t cfg_multi_q:1; //0=single queue mode, 1=multi queue mode
uint32_t cfg_list_mode:1;//0=NULL terminate, 1=entry count mode
uint32_t cfg_list_size:2;//0="D" Reg, 1="C+D" regs, 2="A+B+C+D"
uint32_t cfg_int_delay:2;//0=none, 1=last int, 2=1st new, 3=last new
uint32_t timer_count:16;//number of 25us timer ticks to delay int

} Qmss_AccCmd;
#else
typedef struct
{

uint32_t channel:8; //0 to 47 or 0 to 15
uint32_t command:8; //0x80=disable, 0x81=enable, 0=firmware response
uint32_t un1:8;
uint32_t retrn_code:8; //0=idle, 1=success, 2-6=error

uint32_t queue_mask; //(multi-mode only) bit 0=qm_index queue

uint32_t list_address; //address of Host ping-pong buffer

uint32_t qm_index:16; //qnum to monitor (multiple of 32 for multimode)
uint32_t max_entries:16;//max entries per list

uint32_t timer_count:16;//number of 25us timer ticks to delay int
uint32_t cfg_int_delay:2;//0=none, 1=last int, 2=1st new, 3=last new
uint32_t cfg_list_size:2;//0="D" Reg, 1="C+D" regs, 2="A+B+C+D"
uint32_t cfg_list_mode:1;//0=NULL terminate, 1=entry count mode
uint32_t cfg_multi_q:1; //0=single queue mode, 1=multi queue mode
uint32_t cfg_un:2;
uint32_t un2:8;

} Qmss_AccCmd;
#endif

/***/

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Appendix B

147SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Example Code Types

/* Define the bit and word layouts for the Host Packet Descriptor. */
/* For a Host Packet, this is used for the first descriptor only. */
/***/
#ifdef _BIG_ENDIAN
typedef struct
{

/* word 0 */
uint32_t type_id : 2; //always 0x0 (Host Packet ID)
uint32_t packet_type : 5;
uint32_t reserved_w0 : 2;
uint32_t ps_reg_loc : 1; //0=PS words in desc, 1=PS words in SOP buff
uint32_t packet_length : 22; //in bytes (4M - 1 max)

/* word 1 */
uint32_t src_tag_hi : 8;
uint32_t src_tag_lo : 8;
uint32_t dest_tag_hi : 8;
uint32_t dest_tag_lo : 8;

/* word 2 */
uint32_t epib : 1; //1=extended packet info block is present
uint32_t reserved_w2 : 1;
uint32_t psv_word_count : 6; //number of 32-bit PS data words
uint32_t err_flags : 4;
uint32_t ps_flags : 4;
uint32_t return_policy : 1; //0=linked packet goes to pkt_return_qnum,

//1=each descriptor goes to pkt_return_qnum
uint32_t ret_push_policy : 1; //0=return to queue tail, 1=queue head
uint32_t pkt_return_qmgr : 2;
uint32_t pkt_return_qnum : 12;

/* word 3 */
uint32_t reserved_w3 : 10;
uint32_t buffer_len : 22;

/* word 4 */
uint32_t buffer_ptr;

/* word 5 */
uint32_t next_desc_ptr;

/* word 6 */
uint32_t orig_buff0_pool : 4;
uint32_t orig_buff0_refc : 6;
uint32_t orig_buff0_len : 22;

/* word 7 */
uint32_t orig_buff0_ptr;

} MNAV_HostPacketDescriptor;
#else
typedef struct
{

/* word 0 */
uint32_t packet_length : 22; //in bytes (4M - 1 max)
uint32_t ps_reg_loc : 1; //0=PS words in desc, 1=PS words in SOP buff
uint32_t reserved_w0 : 2;
uint32_t packet_type : 5;
uint32_t type_id : 2; //always 0x0 (Host Packet ID)

/* word 1 */
uint32_t dest_tag_lo : 8;
uint32_t dest_tag_hi : 8;
uint32_t src_tag_lo : 8;
uint32_t src_tag_hi : 8;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Appendix B www.ti.com

148 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Example Code Types

/* word 2 */
uint32_t pkt_return_qnum : 12;
uint32_t pkt_return_qmgr : 2;
uint32_t ret_push_policy : 1; //0=return to queue tail, 1=queue head
uint32_t return_policy : 1; //0=linked packet goes to pkt_return_qnum,

//1=each descriptor goes to pkt_return_qnum
uint32_t ps_flags : 4;
uint32_t err_flags : 4;
uint32_t psv_word_count : 6; //number of 32-bit PS data words
uint32_t reserved_w2 : 1;
uint32_t epib : 1; //1=extended packet info block is present

/* word 3 */
uint32_t buffer_len : 22;
uint32_t reserved_w3 : 10;

/* word 4 */
uint32_t buffer_ptr;

/* word 5 */
uint32_t next_desc_ptr;

/* word 6 */
uint32_t orig_buff0_len : 22;
uint32_t orig_buff0_refc : 6;
uint32_t orig_buff0_pool : 4;

/* word 7 */
uint32_t orig_buff0_ptr;

} MNAV_HostPacketDescriptor;
#endif

#define MNAV_HOST_PACKET_SIZE sizeof(MNAV_HostPacketDescriptor)

/***/
/* Define the bit and word layouts for the Host Buffer Descriptor. */
/* For a Host Packet, this will used for secondary descriptors. */
/***/
#ifdef _BIG_ENDIAN
typedef struct
{

/* word 0 */
uint32_t reserved_w0;
/* word 1 */
uint32_t reserved_w1;

/* word 2 */
uint32_t reserved_w2 : 17;
uint32_t ret_push_policy : 1; //0=return to queue tail, 1=queue head
uint32_t pkt_return_qmgr : 2;
uint32_t pkt_return_qnum : 12;

/* word 3 */
uint32_t reserved_w3 : 10;
uint32_t buffer_len : 22;

/* word 4 */
uint32_t buffer_ptr;

/* word 5 */
uint32_t next_desc_ptr;

/* word 6 */

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Appendix B

149SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Example Code Types

uint32_t orig_buff0_pool : 4;
uint32_t orig_buff0_refc : 6;
uint32_t orig_buff0_len : 22;

/* word 7 */
uint32_t orig_buff0_ptr;

} MNAV_HostBufferDescriptor;
#else
typedef struct
{

/* word 0 */
uint32_t reserved_w0;
/* word 1 */
uint32_t reserved_w1;

/* word 2 */
uint32_t pkt_return_qnum : 12;
uint32_t pkt_return_qmgr : 2;
uint32_t ret_push_policy : 1; //0=return to queue tail, 1=queue head
uint32_t reserved_w2 : 17;

/* word 3 */
uint32_t buffer_len : 22;
uint32_t reserved_w3 : 10;

/* word 4 */
uint32_t buffer_ptr;

/* word 5 */
uint32_t next_desc_ptr;

/* word 6 */
uint32_t orig_buff0_len : 22;
uint32_t orig_buff0_refc : 6;
uint32_t orig_buff0_pool : 4;

/* word 7 */
uint32_t orig_buff0_ptr;

} MNAV_HostBufferDescriptor;
#endif

// Host Buffer packet size is always the same as Host Packet size

/***/
/* Define the bit and word layouts for the Monolithic Pkt Descriptor.*/
/***/
#ifdef _BIG_ENDIAN
typedef struct
{

/* word 0 */
uint32_t type_id : 2; //always 0x2 (Monolithic Packet ID)
uint32_t packet_type : 5;
uint32_t data_offset : 9;
uint32_t packet_length : 16; //in bytes (65535 max)

/* word 1 */
uint32_t src_tag_hi : 8;
uint32_t src_tag_lo : 8;
uint32_t dest_tag_hi : 8;
uint32_t dest_tag_lo : 8;

/* word 2 */
uint32_t epib : 1; //1=extended packet info block is present

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

Appendix B www.ti.com

150 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Example Code Types

uint32_t reserved_w2 : 1;
uint32_t psv_word_count : 6; //number of 32-bit PS data words
uint32_t err_flags : 4;
uint32_t ps_flags : 4;
uint32_t reserved_w2b : 1;
uint32_t ret_push_policy : 1; //0=return to queue tail, 1=queue head
uint32_t pkt_return_qmgr : 2;
uint32_t pkt_return_qnum : 12;

} MNAV_MonolithicPacketDescriptor;
#else
typedef struct
{

/* word 0 */
uint32_t packet_length : 16; //in bytes (65535 max)
uint32_t data_offset : 9;
uint32_t packet_type : 5;
uint32_t type_id : 2; //always 0x2 (Monolithic Packet ID)

/* word 1 */
uint32_t dest_tag_lo : 8;
uint32_t dest_tag_hi : 8;
uint32_t src_tag_lo : 8;
uint32_t src_tag_hi : 8;

/* word 2 */
uint32_t pkt_return_qnum : 12;
uint32_t pkt_return_qmgr : 2;
uint32_t ret_push_policy : 1; //0=return to queue tail, 1=queue head
uint32_t reserved_w2b : 1;
uint32_t ps_flags : 4;
uint32_t err_flags : 4;
uint32_t psv_word_count : 6; //number of 32-bit PS data words
uint32_t reserved_w2 : 1;
uint32_t epib : 1; //1=extended packet info block is present

} MNAV_MonolithicPacketDescriptor;
#endif

#define MNAV_MONO_PACKET_SIZE sizeof(MNAV_MonolithicPacketDescriptor)

/***/
/* Define the word layout of the Extended Packet Info Block. It */
/* is optional and may follow Host Packet and Monolithic descriptors.*/
/***/
typedef struct
{

/* word 0 */
uint32_t timestamp;

/* word 1 */
uint32_t sw_info0;

/* word 2 */
uint32_t sw_info1;

/* word 3 */
uint32_t sw_info2;

} MNAV_ExtendedPacketInfoBlock;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

151SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Example Code Addresses

Appendix C
SPRUGR9H–November 2010–Revised April 2015

Example Code Addresses

These #defines are the values referenced by the programming examples in this document. A register’s
address is the combination of base_address + region_offset + register_offset + (instance_offset), where
instance_offset is the copy of the desired register times the offset from one instance to the next (see
Appendix A for example of this).

C.1 KeyStone I Addresses:

#define QMSS_CFG_BASE (0x02a00000u)
#define QMSS_VBUSM_BASE (0x34000000u)
#define SRIO_CFG_BASE (0x02900000u)
#define PASS_CFG_BASE (0x02000000u)
#define FFTCA_CFG_BASE (0x021f0000u)
#define FFTCB_CFG_BASE (0x021f4000u)
#define AIF_CFG_BASE (0x01f00000u)

/* Define QMSS Register block regions. */
#define QM_CTRL_REGION (QMSS_CFG_BASE + 0x00068000u)
#define QM_DESC_REGION (QMSS_CFG_BASE + 0x0006a000u)
#define QM_QMAN_REGION (QMSS_CFG_BASE + 0x00020000u)
#define QM_QMAN_VBUSM_REGION (QMSS_VBUSM_BASE + 0x00020000u)
#define QM_PEEK_REGION (QMSS_CFG_BASE + 0x00000000u)
#define QM_LRAM_REGION (+ 0x00080000u)
#define QM_INTD_REGION (QMSS_CFG_BASE + 0x000a0000u)
#define QM_PROXY_REGION (QMSS_CFG_BASE + 0x00040000u)
#define PDSP1_CMD_REGION (QMSS_CFG_BASE + 0x000b8000u)
#define PDSP2_CMD_REGION (QMSS_CFG_BASE + 0x000bc000u)
#define PDSP1_REG_REGION (QMSS_CFG_BASE + 0x0006E000u)
#define PDSP2_REG_REGION (QMSS_CFG_BASE + 0x0006F000u)
#define PDSP1_IRAM_REGION (QMSS_CFG_BASE + 0x00060000u)
#define PDSP2_IRAM_REGION (QMSS_CFG_BASE + 0x00061000u)

/* Define QMSS PKTDMA Register block regions. */
#define QMSS_PKTDMA_GBL_CFG_REGION (QMSS_CFG_BASE + 0x0006c000u)
#define QMSS_PKTDMA_TX_CHAN_REGION (QMSS_CFG_BASE + 0x0006c400u)
#define QMSS_PKTDMA_RX_CHAN_REGION (QMSS_CFG_BASE + 0x0006c800u)
#define QMSS_PKTDMA_TX_SCHD_REGION (QMSS_CFG_BASE + 0x0006cc00u)
#define QMSS_PKTDMA_RX_FLOW_REGION (QMSS_CFG_BASE + 0x0006d000u)

/* Define PASS PKTDMA Register block regions. */
#define PASS_PKTDMA_GBL_CFG_REGION (PASS_CFG_BASE + 0x00004000u)
#define PASS_PKTDMA_TX_CHAN_REGION (PASS_CFG_BASE + 0x00004400u)
#define PASS_PKTDMA_RX_CHAN_REGION (PASS_CFG_BASE + 0x00004800u)
#define PASS_PKTDMA_TX_SCHD_REGION (PASS_CFG_BASE + 0x00004c00u)
#define PASS_PKTDMA_RX_FLOW_REGION (PASS_CFG_BASE + 0x00005000u)

/* Define SRIO PKTDMA Register block regions. */
#define SRIO_PKTDMA_GBL_CFG_REGION (SRIO_CFG_BASE + 0x00001000u)
#define SRIO_PKTDMA_TX_CHAN_REGION (SRIO_CFG_BASE + 0x00001400u)
#define SRIO_PKTDMA_RX_CHAN_REGION (SRIO_CFG_BASE + 0x00001800u)
#define SRIO_PKTDMA_TX_SCHD_REGION (SRIO_CFG_BASE + 0x00001c00u)
#define SRIO_PKTDMA_RX_FLOW_REGION (SRIO_CFG_BASE + 0x00002000u)

/* Define FFTC A PKTDMA Register block regions. */
#define FFTCA_PKTDMA_GBL_CFG_REGION (FFTCA_CFG_BASE + 0x00000200u)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

KeyStone I Addresses: www.ti.com

152 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Example Code Addresses

#define FFTCA_PKTDMA_TX_CHAN_REGION (FFTCA_CFG_BASE + 0x00000400u)
#define FFTCA_PKTDMA_RX_CHAN_REGION (FFTCA_CFG_BASE + 0x00000500u)
#define FFTCA_PKTDMA_TX_SCHD_REGION (FFTCA_CFG_BASE + 0x00000300u)
#define FFTCA_PKTDMA_RX_FLOW_REGION (FFTCA_CFG_BASE + 0x00000600u)

/* Define FFTC B PKTDMA Register block regions. */
#define FFTCB_PKTDMA_GBL_CFG_REGION (FFTCB_CFG_BASE + 0x00000200u)
#define FFTCB_PKTDMA_TX_CHAN_REGION (FFTCB_CFG_BASE + 0x00000400u)
#define FFTCB_PKTDMA_RX_CHAN_REGION (FFTCB_CFG_BASE + 0x00000500u)
#define FFTCB_PKTDMA_TX_SCHD_REGION (FFTCB_CFG_BASE + 0x00000300u)
#define FFTCB_PKTDMA_RX_FLOW_REGION (FFTCB_CFG_BASE + 0x00000600u)

/* Define AIF PKTDMA Register block regions. */
#define AIF_PKTDMA_GBL_CFG_REGION (AIF_CFG_BASE + 0x00014000u)
#define AIF_PKTDMA_TX_CHAN_REGION (AIF_CFG_BASE + 0x00016000u)
#define AIF_PKTDMA_RX_CHAN_REGION (AIF_CFG_BASE + 0x00018000u)
//#define AIF_PKTDMA_TX_SCHD_REGION (AIF_CFG_BASE + 0x00000000u)
#define AIF_PKTDMA_RX_FLOW_REGION (AIF_CFG_BASE + 0x0001a000u)

/**
* Define offsets to individual QM registers within an address region.
*/

/* Queue Manager Region */
#define QM_REG_QUE_REVISION 0x000
#define QM_REG_QUE_DIVERSION 0x008
#define QM_REG_STARVATION_CNT 0x020
#define QM_REG_LINKRAM_0_BASE 0x00c
#define QM_REG_LINKRAM_0_SIZE 0x010
#define QM_REG_LINKRAM_1_BASE 0x014

/* Descriptor Memory Region */
#define QM_REG_MEM_REGION_BASE 0x000
#define QM_REG_MEM_REGION_INDEX 0x004
#define QM_REG_MEM_REGION_SETUP 0x008

/* Queue Management Region */
#define QM_REG_QUE_REG_A 0x000
#define QM_REG_QUE_REG_B 0x004
#define QM_REG_QUE_REG_C 0x008
#define QM_REG_QUE_REG_D 0x00c

/* Queue Status Region */
#define QM_REG_QUE_STATUS_REG_A 0x000
#define QM_REG_QUE_STATUS_REG_B 0x004
#define QM_REG_QUE_STATUS_REG_C 0x008
#define QM_REG_QUE_STATUS_REG_D 0x00c

/* Interrupt Distributor (INTD) Region */
#define QM_REG_INTD_REVISION 0x000
#define QM_REG_INTD_EOI 0x010
#define QM_REG_INTD_STATUS 0x200
#define QM_REG_INTD_STATUS_CLEAR 0x280
#define QM_REG_INTD_INT_COUNT 0x300

/* PDSP(n) Reg Region */
#define QM_REG_PDSP_CONTROL 0x000
#define QM_REG_PDSP_STATUS 0x004
#define QM_REG_PDSP_CYCLE_COUNT 0x00c
#define QM_REG_PDSP_STALL_COUNT 0x010

/**
* Define offsets to individual PKTDMA registers within an address region.
*/

/* Global Cfg Register Block */
#define PKTDMA_REG_REVISION 0x000
#define PKTDMA_REG_PERFORMANCE_CTRL 0x004

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com KeyStone II Addresses:

153SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Example Code Addresses

#define PKTDMA_REG_EMULATION_CTRL 0x008
#define PKTDMA_REG_PRIORITY_CTRL 0x00c
#define PKTDMA_REG_QM0_BASE_ADDR 0x010
#define PKTDMA_REG_QM1_BASE_ADDR 0x014
#define PKTDMA_REG_QM2_BASE_ADDR 0x018
#define PKTDMA_REG_QM3_BASE_ADDR 0x01c

/* Tx Chan Cfg Register Block */
#define PKTDMA_REG_TX_CHAN_CFG_A 0x000
#define PKTDMA_REG_TX_CHAN_CFG_B 0x004

/* Rx Chan Cfg Register Block */
#define PKTDMA_REG_RX_CHAN_CFG_A 0x000

/* Rx Flow Cfg Register Block */
#define PKTDMA_REG_RX_FLOW_CFG_A 0x000
#define PKTDMA_REG_RX_FLOW_CFG_B 0x004
#define PKTDMA_REG_RX_FLOW_CFG_C 0x008
#define PKTDMA_REG_RX_FLOW_CFG_D 0x00c
#define PKTDMA_REG_RX_FLOW_CFG_E 0x010
#define PKTDMA_REG_RX_FLOW_CFG_F 0x014
#define PKTDMA_REG_RX_FLOW_CFG_G 0x018
#define PKTDMA_REG_RX_FLOW_CFG_H 0x01c

/* Tx Sched Cfg Register Block */
#define PKTDMA_REG_TX_SCHED_CHAN_CFG 0x000

C.2 KeyStone II Addresses:
Only the offsets that have changed are listed here. Register offsets within a region have not changed.

#define QMSS_CFG_BASE (0x02a00000u)
#define QMSS_VBUSM_BASE (0x23400000u)
#define SRIO_CFG_BASE (0x02900000u)
#define PASS_CFG_BASE (0x02000000u)
#define FFTCA_CFG_BASE (0x021f0000u)
#define FFTCB_CFG_BASE (0x021f4000u)
#define FFTCC_CFG_BASE (0x021f8000u)
#define FFTCD_CFG_BASE (0x021fc000u)
#define FFTCE_CFG_BASE (0x021f0800u)
#define FFTCF_CFG_BASE (0x021f1000u)
#define AIF_CFG_BASE (0x01f00000u)
#define BCP_CFG_BASE (0x02540000u)

/* Define QMSS Register block regions. */
#define QM1_CTRL_REGION (QMSS_CFG_BASE + 0x00002000u)
#define QM1_DESC_REGION (QMSS_CFG_BASE + 0x00003000u)
#define QM2_CTRL_REGION (QMSS_CFG_BASE + 0x00004000u)
#define QM2_DESC_REGION (QMSS_CFG_BASE + 0x00005000u)
#define QM_QMAN_REGION (QMSS_CFG_BASE + 0x00080000u)
#define QM_QMAN_VBUSM_REGION (QMSS_VBUSM_BASE + 0x00080000u)
#define QM_PEEK_REGION (QMSS_CFG_BASE + 0x00040000u)
#define QM_LRAM_REGION (+ 0x00100000u)
#define QM_PROXY_REGION (QMSS_CFG_BASE + 0x000c0000u)
#define PDSP1_CMD_REGION (QMSS_CFG_BASE + 0x000b8000u)
#define PDSP_CMD_REGION_OFFSET (0x00004000u)
#define PDSP1_REG_REGION (QMSS_CFG_BASE + 0x0006E000u)
#define PDSP_REG_REGION_OFFSET (0x00000100u)
#define PDSP1_IRAM_REGION (Qmss_cfg_base + 0x00060000u)
#define PDSP_IRAM_REGION_OFFSET (0x00001000u)
#define INTD1_REGION (QMSS_CFG_BASE + 0x000a0000u)
#define INTD_REGION_OFFSET (0x00001000u)

/* Define QMSS PKTDMA1 Register block regions. */
#define QMSS_PKTDMA1_GBL_CFG_REGION (QMSS_CFG_BASE + 0x00008000u)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

KeyStone II Addresses: www.ti.com

154 SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Example Code Addresses

#define QMSS_PKTDMA1_TX_CHAN_REGION (QMSS_CFG_BASE + 0x00008400u)
#define QMSS_PKTDMA1_RX_CHAN_REGION (QMSS_CFG_BASE + 0x00008800u)
#define QMSS_PKTDMA1_TX_SCHD_REGION (QMSS_CFG_BASE + 0x00008c00u)
#define QMSS_PKTDMA1_RX_FLOW_REGION (QMSS_CFG_BASE + 0x00009000u)

/* Define QMSS PKTDMA2 Register block regions. */
#define QMSS_PKTDMA2_GBL_CFG_REGION (QMSS_CFG_BASE + 0x0000a000u)
#define QMSS_PKTDMA2_TX_CHAN_REGION (QMSS_CFG_BASE + 0x0000a400u)
#define QMSS_PKTDMA2_RX_CHAN_REGION (QMSS_CFG_BASE + 0x0000a800u)
#define QMSS_PKTDMA2_TX_SCHD_REGION (QMSS_CFG_BASE + 0x0000ac00u)
#define QMSS_PKTDMA2_RX_FLOW_REGION (QMSS_CFG_BASE + 0x0000b000u)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

www.ti.com Revision History

155SPRUGR9H–November 2010–Revised April 2015
Submit Documentation Feedback

Copyright © 2010–2015, Texas Instruments Incorporated

Revision History

Revision History

Changes from October 1, 2014 to April 30, 2015 .. Page

• Added Note to Descriptor Memory Setup Region section. ... 47
• Added Note to Quality of Service Firmware section... 84

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from F Revision (November 2010) to G Revision ... Page

• Updated Queue Types section. .. 21
• Added Queue Pend Queues section. ... 22
• Updated Queue Diversion Register description.. 41
• Updated Caution. .. 54

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGR9H

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Table of Contents
	Preface
	1 Introduction
	1.1 Terminology Used in This Document
	1.2 KeyStone I Features
	1.3 KeyStone I Functional Block Diagram
	1.4 KeyStone II Changes to QMSS
	1.5 KeyStone II QMSS Modes of Use
	1.5.1 Shared Mode
	1.5.2 Split Mode

	1.6 Overview
	1.7 Queue Manager
	1.8 Packet DMA (PKTDMA)
	1.9 Navigator Cloud
	1.10 Virtualization
	1.11 ARM-DSP Shared Use
	1.12 PDSP Firmware

	2 Operational Concepts
	2.1 Packets
	2.2 Queues
	2.2.1 Packet Queuing
	2.2.2 Packet De-queuing
	2.2.3 Queue Proxy

	2.3 Queue Types
	2.3.1 Transmit Queues
	2.3.2 Transmit Completion Queues
	2.3.3 Receive Queues
	2.3.4 Free Descriptor Queues (FDQ)
	2.3.4.1 Host Packet Free Descriptors
	2.3.4.2 Monolithic Free Descriptors

	2.3.5 Queue Pend Queues

	2.4 Descriptors
	2.4.1 Host Packet
	2.4.2 Host Buffer
	2.4.3 Monolithic Packet

	2.5 Packet DMA
	2.5.1 Channels
	2.5.2 RX Flows

	2.6 Packet Transmission Overview
	2.7 Packet Reception Overview
	2.8 ARM Endianess

	3 Descriptor Layouts
	3.1 Host Packet Descriptor
	3.2 Host Buffer Descriptor
	3.3 Monolithic Descriptor

	4 Registers
	4.1 Queue Manager
	4.1.1 Queue Configuration Region
	4.1.1.1 Revision Register (0x00000000)
	4.1.1.2 Queue Diversion Register (0x00000008)
	4.1.1.3 Linking RAM Region 0 Base Address Register (0x0000000C)
	4.1.1.4 Linking RAM Region 0 Size Register (0x00000010)
	4.1.1.5 Linking RAM Region 1 Base Address Register (0x00000014)
	4.1.1.6 Free Descriptor/Buffer Starvation Count Register N (0x00000020 + N×4)

	4.1.2 Queue Status RAM
	4.1.3 Descriptor Memory Setup Region
	4.1.3.1 Memory Region R Base Address Register (0x00000000 + 16×R)
	4.1.3.2 Memory Region R Start Index Register (0x00000004 + 16×R)
	4.1.3.3 Memory Region R Descriptor Setup Register (0x00000008 + 16×R)

	4.1.4 Queue Management/Queue Proxy Regions
	4.1.4.1 Queue N Register A (0x00000000 + 16×N)
	4.1.4.2 Queue N Register B (0x00000004 + 16×N)
	4.1.4.3 Queue N Register C (0x00000008 + 16×N)
	4.1.4.4 Queue N Register D (0x0000000C + 16×N)

	4.1.5 Queue Peek Region
	4.1.5.1 Queue N Status and Configuration Register A (0x00000000 + 16×N)
	4.1.5.2 Queue N Status and Configuration Register B (0x00000004 + 16×N)
	4.1.5.3 Queue N Status and Configuration Register C (0x00000008 + 16×N)
	4.1.5.4 Queue N Status and Configuration Register D (0x0000000C + 16×N)

	4.2 Packet DMA
	4.2.1 Global Control Registers Region
	4.2.1.1 Revision Register (0x00)
	4.2.1.2 Performance Control Register (0x04)
	4.2.1.3 Emulation Control Register (0x08)
	4.2.1.4 Priority Control Register (0x0C)
	4.2.1.5 QMn Base Address Register (0x10, 0x14, 0x18, 0x1c)

	4.2.2 TX DMA Channel Configuration Region
	4.2.2.1 TX Channel N Global Configuration Register A (0x000 + 32×N)
	4.2.2.2 TX Channel N Global Configuration Register B (0x004 + 32×N)

	4.2.3 RX DMA Channel Configuration Region
	4.2.3.1 RX Channel N Global Configuration Register A (0x000 + 32×N)

	4.2.4 RX DMA Flow Configuration Region
	4.2.4.1 RX Flow N Configuration Register A (0x000 + 32×N)
	4.2.4.2 RX Flow N Configuration Register B (0x004 + 32×N)
	4.2.4.3 RX Flow N Configuration Register C (0x008 + 32×N)
	4.2.4.4 RX Flow N Configuration Register D (0x00C + 32×N)
	4.2.4.5 RX Flow N Configuration Register E (0x010 + 32×N)
	4.2.4.6 RX Flow N Configuration Register F (0x014 + 32×N)
	4.2.4.7 RX Flow N Configuration Register G (0x018 + 32×N)
	4.2.4.8 RX Flow N Configuration Register H (0x01C + 32×N)

	4.2.5 TX Scheduler Configuration Region
	4.2.5.1 TX Channel N Scheduler Configuration Register (0x000 + 4×N)

	4.3 QMSS PDSPs
	4.3.1 Descriptor Accumulation Firmware
	4.3.1.1 Command Buffer Interface
	4.3.1.2 Global Timer Command Interface
	4.3.1.3 Reclamation Queue Command Interface
	4.3.1.4 Queue Diversion Command Interface

	4.3.2 Quality of Service Firmware
	4.3.2.1 QoS Algorithms
	4.3.2.1.1 Modified Token Bucket Algorithm

	4.3.2.2 Command Buffer Interface
	4.3.2.3 QoS Firmware Commands
	4.3.2.4 QoS Queue Record
	4.3.2.5 QoS Cluster Record
	4.3.2.6 RR-Mode QoS Cluster Record
	4.3.2.7 SRIO Queue Monitoring
	4.3.2.7.1 QoS SRIO Queue Monitoring Record

	4.3.3 Open Event Machine Firmware
	4.3.4 Interrupt Operation
	4.3.4.1 Interrupt Handshaking
	4.3.4.2 Interrupt Processing
	4.3.4.3 Interrupt Generation
	4.3.4.4 Stall Avoidance

	4.3.5 QMSS PDSP Registers
	4.3.5.1 Control Register (0x00000000)
	4.3.5.2 Status Register (0x00000004)
	4.3.5.3 Cycle Count Register (0x0000000C)
	4.3.5.4 Stall Count Register (0x00000010)

	4.4 QMSS Interrupt Distributor
	4.4.1 INTD Register Region
	4.4.1.1 Revision Register (0x00000000)
	4.4.1.2 End Of Interrupt (EOI) Register (0x00000010)
	4.4.1.3 Status Register 0 (0x00000200)
	4.4.1.4 Status Register 1 (0x00000204)
	4.4.1.5 Status Register 2 (0x00000208)
	4.4.1.6 Status Register 3 (0x0000020c)
	4.4.1.7 Status Register 4 (0x00000210)
	4.4.1.8 Status Clear Register 0 (0x00000280)
	4.4.1.9 Status Clear Register 1 (0x00000284)
	4.4.1.10 Status Clear Register 4 (0x00000290)
	4.4.1.11 Interrupt N Count Register (0x00000300 + 4xN)

	5 Mapping Information
	5.1 Queue Maps
	5.2 Interrupt Maps
	5.2.1 KeyStone I TCI661x, C6670, C665x devices
	5.2.2 KeyStone I TCI660x, C667x devices
	5.2.3 KeyStone II devices

	5.3 Memory Maps
	5.3.1 QMSS Register Memory Map
	5.3.2 KeyStone I PKTDMA Register Memory Map
	5.3.3 KeyStone II PKTDMA Register Memory Map

	5.4 Packet DMA Channel Map

	6 Programming Information
	6.1 Programming Considerations
	6.1.1 System Planning
	6.1.2 Notification of Completed Work

	6.2 Example Code
	6.2.1 QMSS Initialization
	6.2.2 PKTDMA Initialization
	6.2.3 Normal Infrastructure DMA with Accumulation
	6.2.4 Bypass Infrastructure notification with Accumulation
	6.2.5 Channel Teardown

	6.3 Programming Overrides
	6.4 Programming Errors
	6.5 Questions and Answers

	A Example Code Utility Functions
	B Example Code Types
	C Example Code Addresses
	C.1 KeyStone I Addresses
	C.2 KeyStone II Addresses

	Revision History
	Revision History
	Important Notice

