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Preface
SPRUG82A–February 2009

Read This First

About This Manual
This document describes how the cache-based memory system of the TMS320C674x™ digital signal
processor (DSP) can be efficiently used in DSP applications. The internal memory architecture of these
devices is organized in a two-level hierarchy consisting of a dedicated program memory (L1P) and a
dedicated data memory (L1D) on the first level. Accesses by the CPU to the these first level memories
can complete without CPU pipeline stalls. Both L1P and L1D can be configured into SRAM and cache. If
the data requested by the CPU is not contained in cache, it is fetched from the next lower memory level,
L2 or external memory. A detailed technical description of the C674x™ memory architecture is given in
TMS320C674x DSP Megamodule Reference Guide (SPRUFK5).

Notational Conventions
This document uses the following conventions.
• Hexadecimal numbers are shown with the suffix h. For example, the following number is 40

hexadecimal (decimal 64): 40h.
• Registers in this document are shown in figures and described in tables.

– Each register figure shows a rectangle divided into fields that represent the fields of the register.
Each field is labeled with its bit name, its beginning and ending bit numbers above, and its
read/write properties below. A legend explains the notation used for the properties.

– Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation From Texas Instruments
The following documents describe the C6000 devices and related support tools. Copies of these
documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box
provided at www.ti.com.

The current documentation that describes the C6000 devices, related peripherals, and other technical
collateral, is available in the C6000 DSP product folder at: www.ti.com/c6000.

SPRUFE8 — TMS320C674x DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C674x digital signal processors
(DSPs). The C674x DSP is an enhancement of the C64x+ and C67x+ DSPs with added
functionality and an expanded instruction set.

SPRUFK5 — TMS320C674x DSP Megamodule Reference Guide. Describes the TMS320C674x digital
signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access
(IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth
management, and the memory and cache.

Trademarks
TMS320C674x, C674x, Code Composer Studio are trademarks of Texas Instruments.
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Chapter 1
SPRUG82A–February 2009

Introduction

This chapter discusses the basic operation of memory caches and describes the operation of the
TMS320C674x™ digital signal processor (DSP) two-level cache architecture.

Topic .................................................................................................. Page

1.1 Purpose of This User’s Guide..................................................... 10
1.2 Chip Support Library (CSL) ........................................................ 10
1.3 Cache Terms and Definitions...................................................... 10
1.4 Why Use Cache ........................................................................ 14
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1.6 Cache Memory Architecture Overview ......................................... 16
1.7 Cache Basics ........................................................................... 17
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1.1 Purpose of This User’s Guide

1.2 Chip Support Library (CSL)

1.3 Cache Terms and Definitions

Purpose of This User’s Guide www.ti.com

This user’s guide describes how the cache-based memory system of the C674x™ DSP can be efficiently
used in DSP applications. The internal memory architecture of these devices is organized in a two-level
hierarchy consisting of a dedicated program memory (L1P) and a dedicated data memory (L1D) on the
first level. Accesses by the CPU to the these first level memories can complete without CPU pipeline
stalls. Both L1P and L1D can be configured into SRAM and cache. If the data requested by the CPU is
not contained in cache, it is fetched from the next lower memory level, L2 or external memory. A detailed
technical description of the C674x memory architecture is given in TMS320C674x DSP Megamodule
Reference Guide (SPRUFK5). The C674x implements a cache-based memory system that is the same as
the C64x+ cache-based memory system.

The following topics are covered in this user’s guide:
• The necessity of caches in high-performance DSPs (Chapter 1)
• General introduction into cache-based architectures (Chapter 1)
• Configuring and using the cache on C674x devices (Chapter 2)
• Maintaining cache coherence between different requestors (Chapter 2 and Appendix A)
• Linking code and data for increased cache efficiency (Chapter 3)
• Code-optimization techniques for increased cache efficiency (Chapter 3)

This user's guide makes references to the Chip Support Library (CSL). The CSL provides APIs for easy
control of cache, DMA and peripheral functions of a device. The CSL for your device either comes with the
Code Composer Studio™ integrated development environment (IDE) or may be downloaded from
www.ti.com. Note that cache APIs are also available through BIOS (version 5.21 or higher).

Table 1-1 lists the terms used throughout this document that relate to the operation of the C674x DSP
two-level cache.

Table 1-1. Cache Terms and Definitions
Term Definition
Allocation The process of finding a location in the cache to store newly cached data. This process can include

evicting data that is presently in the cache to make room for the new data.
Associativity The number of line frames in each set. This is specified as the number of ways in the cache.
Capacity miss A cache miss that occurs because the cache does not have sufficient room to hold the entire working

set for a program. Compare with compulsory miss and conflict miss.
Clean A cache line that is valid and that has not been written to by upper levels of memory or the CPU. The

opposite state for a clean cache line is dirty.
Coherence Informally, a memory system is coherent if any read of a data item returns the most recently written

value of that data item. This includes accesses by the CPU and the DMA.
Compulsory miss Sometimes referred to as a first-reference miss. A compulsory miss is a cache miss that must occur

because the data has had no prior opportunity to be allocated in the cache. Typically, compulsory
misses for particular pieces of data occur on the first access of that data. However, some cases can be
considered compulsory even if they are not the first reference to the data. Such cases include repeated
write misses on the same location in a cache that does not write allocate, and cache misses to
noncacheable locations. Compare with capacity miss and conflict miss.

Conflict miss A cache miss that occurs due to the limited associativity of a cache, rather than due to capacity
constraints. A fully-associative cache is able to allocate a newly cached line of data anywhere in the
cache. Most caches have much more limited associativity (see set-associative cache), and so are
restricted in where they may place data. This results in additional cache misses that a more flexible
cache would not experience.
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www.ti.com Cache Terms and Definitions

Table 1-1. Cache Terms and Definitions (continued)
Term Definition
Direct-mapped cache A direct-mapped cache maps each address in the lower-level memory to a single location in the cache.

Multiple locations may map to the same location in the cache. This is in contrast to a multi-way
set-associative cache, which selects a place for the data from a set of locations in the cache. A
direct-mapped cache can be considered a single-way set-associative cache.

Dirty In a writeback cache, writes that reach a given level in the memory hierarchy may update that level, but
not the levels below it. Therefore, when a cache line is valid and contains updates that have not been
sent to the next lower level, that line is said to be dirty. The opposite state for a dirty cache line is
clean.

DMA Direct Memory Access. Typically, a DMA operation copies a block of memory from one range of
addresses to another, or transfers data between a peripheral and memory. From a cache coherence
standpoint, DMA accesses can be considered accesses by a parallel processor.

Eviction The process of removing a line from the cache to make room for newly cached data. Eviction can also
occur under user control by requesting a writeback-invalidate for an address or range of addresses
from the cache. The evicted line is referred to as the victim. When a victim line is dirty (that is, it
contains updated data), the data must be written out to the next level memory to maintain coherency.

Execute packet A block of instructions that begin execution in parallel in a single cycle. An execute packet may contain
between 1 and 8 instructions.

Fetch packet A block of 8 instructions that are fetched in a single cycle. One fetch packet may contain multiple
execute packets, and thus may be consumed over multiple cycles.

First-reference miss A cache miss that occurs on the first reference to a piece of data. First-reference misses are a form of
compulsory miss.

Fully-associative cache A cache that allows any memory address to be stored at any location within the cache. Such caches
are very flexible, but usually not practical to build in hardware. They contrast sharply with
direct-mapped caches and set-associative caches, both of which have much more restrictive allocation
policies. Conceptually, fully-associative caches are useful for distinguishing between conflict misses
and capacity misses when analyzing the performance of a direct-mapped or set-associative cache. In
terms of set-associative caches, a fully-associative cache is equivalent to a set-associative cache that
has as many ways as it does line frames, and that has only one set.

Higher-level memory In a hierarchical memory system, higher-level memories are memories that are closer to the CPU. The
highest level in the memory hierarchy is usually the Level 1 caches. The memories at this level exist
directly next to the CPU. Higher-level memories typically act as caches for data from lower-level
memory.

Hit A cache hit occurs when the data for a requested memory location is present in the cache. The
opposite of a hit is a miss. A cache hit minimizes stalling, since the data can be fetched from the cache
much faster than from the source memory. The determination of hit versus miss is made on each level
of the memory hierarchy separately-a miss in one level may hit in a lower level.

Invalidate The process of marking valid cache lines as invalid in a particular cache. Alone, this action discards the
contents of the affected cache lines, and does not write back any updated data. When combined with a
writeback, this effectively updates the next lower level of memory that holds the data, while completely
removing the cached data from the given level of memory. Invalidates combined with writebacks are
referred to as writeback-invalidates, and are commonly used for retaining coherence between caches.

Least Recently Used For set-associative and fully-associative caches, least-recently used allocation refers to the method
(LRU) allocation used to choose among line frames in a set when allocating space in the cache. When all of the line

frames in the set that the address maps to contain valid data, the line frame in the set that was read or
written the least recently (furthest back in time) is selected to hold the newly cached data. The selected
line frame is then evicted to make room for the new data.

Line A cache line is the smallest block of data that the cache operates on. The cache line is typically much
larger than the size of data accesses from the CPU or the next higher level of memory. For instance,
although the CPU may request single bytes from memory, on a read miss the cache reads an entire
line's worth of data to satisfy the request.

Line frame A location in a cache that holds cached data (one line), an associated tag address, and status
information for the line. The status information can include whether the line is valid, dirty, and the
current state of that line's LRU.

Line size The size of a single cache line, in bytes.
Load through When a CPU request misses both the first-level and second-level caches, the data is fetched from the

external memory and stored to both the first-level and second-level cache simultaneously. A cache that
stores data and sends that data to the upper-level cache at the same time is a load-through cache.
Using a load-through cache reduces the stall time compared to a cache that first stores the data in a
lower level and then sends it to the higher-level cache as a second step.
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Cache Terms and Definitions www.ti.com

Table 1-1. Cache Terms and Definitions (continued)
Term Definition
Long-distance access Accesses made by the CPU to a noncacheable memory. Long-distance accesses are used when

accessing external memory that is not marked as cacheable.
Lower-level memory In a hierarchical memory system, lower-level memories are memories that are further from the CPU. In

a C674x DSP system, the lowest level in the hierarchy includes the system memory below L2 and any
memory-mapped peripherals.

LRU Least Recently Used. See least recently used allocation for a description of the LRU replacement
policy. When used alone, LRU usually refers to the status information that the cache maintains for
identifying the least-recently used line in a set. For example, consider the phrase "accessing a cache
line updates the LRU for that line."

Memory ordering Defines what order the effects of memory operations are made visible in memory. (This is sometimes
referred to as consistency.) Strong memory ordering at a given level in the memory hierarchy indicates
it is not possible to observe the effects of memory accesses in that level of memory in an order
different than program order. Relaxed memory ordering allows the memory hierarchy to make the
effects of memory operations visible in a different order. Note that strong ordering does not require that
the memory system execute memory operations in program order, only that it makes their effects
visible to other requestors in an order consistent with program order.

Miss A cache miss occurs when the data for a requested memory location is not in the cache. A miss may
stall the requestor while the line frame is allocated and data is fetched from the next lower level of
memory. In some cases, such as a CPU write miss from L1D, it is not strictly necessary to stall the
CPU. Cache misses are often divided into three categories: compulsory misses, conflict misses, and
capacity misses.

Miss pipelining The process of servicing a single cache miss is pipelined over several cycles. By pipelining the miss, it
is possible to overlap the processing of several misses, should many occur back-to-back. The net
result is that much of the overhead for the subsequent misses is hidden, and the incremental stall
penalty for the additional misses is much smaller than that for a single miss taken in isolation.

Read allocate A read-allocate cache only allocates space in the cache on a read miss. A write miss does not cause
an allocation to occur unless the cache is also a write-allocate cache. For caches that do not write
allocate, the write data would be passed on to the next lower-level cache.

Set A collection of line frames in a cache that a single address can potentially reside. A direct-mapped
cache contains one line frame per set, and an N-way set-associative cache contains N line frames per
set. A fully-associative cache has only one set that contains all of the line frames in the cache.

Set-associative cache A set-associative cache contains multiple line frames that each lower-level memory location can be
held in. When allocating room for a new line of data, the selection is made based on the allocation
policy for the cache. The C674x devices employ a least recently used allocation policy for its
set-associative caches.

Snoop A method by which a lower-level memory queries a higher-level memory to determine if the higher-level
memory contains data for a given address. The primary purpose of snoops is to retain coherency.

Tag A storage element containing the most-significant bits of the address stored in a particular line. Tag
addresses are stored in special tag memories that are not directly visible to the CPU. The cache
queries the tag memories on each access to determine if the access is a hit or a miss.

Thrash An algorithm is said to thrash the cache when its access pattern causes the performance of the cache
to suffer dramatically. Thrashing can occur for multiple reasons. One possible situation is that the
algorithm is accessing too much data or program code in a short time frame with little or no reuse. That
is, its working set is too large, and thus the algorithm is causing a significant number of capacity
misses. Another situation is that the algorithm is repeatedly accessing a small group of different
addresses that all map to the same set in the cache, thus causing an artificially high number of conflict
misses.

Touch A memory operation on a given address is said to touch that address. Touch can also refer to reading
array elements or other ranges of memory addresses for the sole purpose of allocating them in a
particular level of the cache. A CPU-centric loop used for touching a range of memory in order to
allocate it into the cache is often referred to as a touch loop. Touching an array is a form of
software-controlled prefetch for data.

Valid When a cache line holds data that has been fetched from the next level memory, that line frame is
valid. The invalid state occurs when the line frame holds no data, either because nothing has been
cached yet, or because previously cached data has been invalidated for whatever reason (coherence
protocol, program request, etc.). The valid state makes no implications as to whether the data has been
modified since it was fetched from the lower-level memory; rather, this is indicated by the dirty or clean
state of the line.
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Table 1-1. Cache Terms and Definitions (continued)
Term Definition
Victim When space is allocated in a set for a new line, and all of the line frames in the set that the address

maps to contain valid data, the cache controller must select one of the valid lines to evict in order to
make room for the new data. Typically, the least-recently used (LRU) line is selected. The line that is
evicted is known as the victim line. If the victim line is dirty, its contents are written to the next lower
level of memory using a victim writeback.

Victim Buffer A special buffer that holds victims until they are written back. Victim lines are moved to the victim buffer
to make room in the cache for incoming data.

Victim Writeback When a dirty line is evicted (that is, a line with updated data is evicted), the updated data is written to
the lower levels of memory. This process is referred to as a victim writeback.

Way In a set-associative cache, each set in the cache contains multiple line frames. The number of line
frames in each set is referred to as the number of ways in the cache. The collection of corresponding
line frames across all sets in the cache is called a way in the cache. For instance, a 4-way
set-associative cache has 4 ways, and each set in the cache has 4 line frames associated with it, one
associated with each of the 4 ways. As a result, any given cacheable address in the memory map has
4 possible locations it can map to in a 4-way set-associative cache.

Working set The working set for a program or algorithm is the total set of data and program code that is referenced
within a particular period of time. It is often useful to consider the working set on an
algorithm-by-algorithm basis when analyzing upper levels of memory, and on a whole-program basis
when analyzing lower levels of memory.

Write allocate A write-allocate cache allocates space in the cache when a write miss occurs. Space is allocated
according to the cache's allocation policy (LRU, for example), and the data for the line is read into the
cache from the next lower level of memory. Once the data is present in the cache, the write is
processed. For a writeback cache, only the current level of memory is updated-the write data is not
immediately passed to the next level of memory.

Writeback The process of writing updated data from a valid but dirty cache line to a lower-level memory. After the
writeback occurs, the cache line is considered clean. Unless paired with an invalidate (as in
writeback-invalidate), the line remains valid after a writeback.

Writeback cache A writeback cache will only modify its own data on a write hit. It will not immediately send the update to
the next lower-level of memory. The data will be written back at some future point, such as when the
cache line is evicted, or when the lower-level memory snoops the address from the higher-level
memory. It is also possible to directly initiate a writeback for a range of addresses using cache control
registers. A write hit to a writeback cache causes the corresponding line to be marked as dirty-that is,
the line contains updates that have yet to be sent to the lower levels of memory.

Writeback-invalidate A writeback operation followed by an invalidation. See writeback and invalidate. On the C674x devices,
a writeback-invalidate on a group of cache lines only writes out data for dirty cache lines, but
invalidates the contents of all of the affected cache lines.

Write merging Write merging combines multiple independent writes into a single, larger write. This improves the
performance of the memory system by reducing the number of individual memory accesses it needs to
process. For instance, on the C674x device, the L1D write buffer can merge multiple writes under some
circumstances if they are to the same double-word address. In this example, the result is a larger
effective write-buffer capacity and a lower bandwidth impact on L2.

Write-through cache A write-through cache passes all writes to the lower-level memory. It never contains updated data that
it has not passed on to the lower-level memory. As a result, cache lines can never be dirty in a
write-through cache. The C674x devices do not utilize write-through caches.
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1.4 Why Use Cache
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Why Use Cache www.ti.com

From a DSP application perspective, a large amount of fast on-chip memory would be ideal. However,
over the past years the performance of processors has improved at a much faster pace than that of
memory. As a result, there is now a performance gap between CPU and memory speed. High-speed
memory is available but consumes much more size and is more expensive compared with slower memory.

Consider the flat memory architecture shown on the left in Figure 1-1. Both CPU and internal memory are
clocked at 300 MHz such that no memory stalls occur. However for accesses to the slower external
memory, there will be CPU stalls. If the CPU clock was now increased to 600 MHz, the internal memory
could only service CPU accesses every two CPU cycles and the CPU would stall for one cycle on every
memory access. The penalty would be particularly large for highly optimized inner loops that may access
memory on every cycle. In this case, the effective CPU processing speed would approach the slower
memory speed. Unfortunately, today’s available memory technology is not able to keep up with increasing
processor speeds, and a same size internal memory running at the same CPU speed would be far too
expensive.

The solution is to use a memory hierarchy, as shown on the right in Figure 1-1. A fast but small memory is
placed close to the CPU that can be accessed without stalls. The next lower memory levels are
increasingly larger but also slower the further away they are from the CPU. Addresses are mapped from a
larger memory to a smaller but faster memory higher in the hierarchy. Typically, the higher–level
memories are cache memories that are automatically managed by a cache controller. Through this type of
architecture, the average memory access time will be closer to the access time of the fastest memory
rather than to the access time of the slowest memory.

Figure 1-1. Flat Versus Hierarchical Memory Architecture
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1.5 Principle of Locality
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Caches reduce the average memory access time by exploiting the locality of memory accesses. The
principle of locality assumes that if a memory location was referenced it is very likely that the same or a
neighboring location will be referenced soon again. Referencing memory locations within some period of
time is referred to as temporal locality. Referencing neighboring memory locations is referred to as spatial
locality. A program typically reuses data from the same or adjacent memory locations within a small period
of time. If the data is fetched from a slow memory into a fast cache memory and is accessed as often as
possible before it is being replaced with another set of data, the benefits become apparent.

The following example illustrates the concept of spatial and temporal locality. Consider the memory
access pattern of a 6-tap FIR filter. The required computations for the first two outputs y[0] and y[1] are:

y[0] = h[0] × x[0] + h[1] × x[1] + ... + h[5] × x[5]
y[1] = h[0] × x[1] + h[1] × x[2] + ... + h[5] × x[6]

Consequently, to compute one output we have to read six data samples from an input data buffer x[ ].
Figure 1-2 shows the memory layout of this buffer and how its elements are accessed. When the first
access is made to memory location 0, the cache controller fetches the data for the address accessed and
also the data for a certain number of the following addresses into cache. This range of addresses is called
a cache line. The motivation for this behavior is that accesses are assumed to be spatially local. This is
true for the FIR filter, since the next five samples are required as well. Then all accesses will go to the fast
cache instead of the slow lower-level memory.

Consider now the calculation of the next output, y[1]. The access pattern again is shown in Figure 1-2.
Five of the samples are being reused from the previous computation and only one sample is new; but all
of them are already held in cache and no CPU stalls occur. This access pattern exhibits high spatial and
temporal locality: the same data that was used in the previous step is being used again for processing.

Cache builds on the fact that data accesses are spatially and temporally local. The number of accesses to
a slower, lower-level memory are greatly reduced, and the majority of accesses can be serviced at CPU
speed from the high-level cache memory.

Figure 1-2. Access Pattern of a 6-Tap FIR Filter
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1.6 Cache Memory Architecture Overview
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The C674x DSP memory architecture consists of a two-level internal cache-based memory architecture
plus external memory. Level 1 memory is split into program (L1P) and data (L1D). Both L1P and L1D can
be configured into SRAM and cache with up to 32K bytes of cache. All caches and data paths shown in
Figure 1-3 are automatically managed by the cache controller. Level 1 memory is accessed by the CPU
without stalls. Level 2 memory is also configurable and can be split into L2 SRAM and cache with up to
256K bytes of cache. External memory can be several Megabytes large. The access time depends on the
interface and the memory technology used.

Figure 1-3. C674x Cache Memory Architecture
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1.7 Cache Basics

1.7.1 Direct-Mapped Caches

www.ti.com Cache Basics

This section explains the different types of cache architectures and how they work. Generally, one can
distinguish between direct-mapped caches and set-associative caches. The types of caches described
use the C674x L1P (direct-mapped) and L1D (set-associative) as examples; however, the concept is
similar for all cache-based computer architectures. This section focuses on the behavior of the cache
system. Any performance considerations, including various stall conditions and associated stall cycles are
discussed in Section 3.1.

The C674x program cache (L1P) shall be used as an example to explain how a direct-mapped cache
functions. Whenever the CPU accesses instructions in L2 SRAM or external memory, the instructions are
brought into L1P cache. The characteristics of the L1P cache are summarized in Table 1-2. The L1P miss
stall characteristics are provided in Table 1-3.

Table 1-2. L1P Cache Characteristics
Characteristic C674x DSP
Organization Direct-mapped
Protocol Read Allocate
CPU access time 1 cycle
Capacity 4K, 8K, 16K, or 32K bytes
Line size 32 bytes
External Memory Cacheability Always cached

Table 1-3. L1P Miss Stall Characteristics
L2 Type

0 Wait-State, 2 × 128-bit Banks 1 Wait-State, 4 × 128-bit Banks
Instructions per Execute Packet L2 SRAM L2 Cache L2 SRAM L2 Cache

1 0.000 0.000 0.000 0.000
2 0.001 0.497 0.167 0.499
3 0.501 1.247 0.751 1.249
4 0.997 1.997 1.329 1.999
5 1.499 2.747 1.915 2.749
6 2.001 3.497 2.501 3.499
7 2.497 4.247 3.079 4.249
8 2.999 4.997 3.665 4.999

Figure 1-4 shows the architecture of the C64+x L1P cache that consists of the cache memory and the
cache control logic. Additionally, addressable memory (L2 SRAM or external memory) is shown. The
cache memory size is 16K bytes in the example and consists of 512 32-byte lines. Each line frame always
maps to the same fixed addresses in memory. For instance, as shown in Figure 1-4, addresses 0000h to
0019h are always cached in line frame 0 and addresses 3FE0h to 3FFFh are always cached in line frame
511. Since the capacity of the cache has been exhausted, addresses 4000h to 4019h map to line frame 0,
and so forth. Note that one line contains exactly one instruction fetch packet.

SPRUG82A–February 2009 Introduction 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG82A


V:1 Tag:18 Data:32 bytes

Tag RAM
Valid

bit 16K bytes
0

Tag:18V:1 Data:32 bytes 1
Tag:18V:1 Data:32 bytes 2

... ... ...
V:1 Tag:18 Data:32 bytes 511

L1P Cache memory

...

Line
frames

& =0=miss
1=hit

31 1413
Offset: 5Line/set: 9

5 4 0
Tag: 18

0000 0000 0000 0000 00 00 0000 001 0 0000

Memory
address

0000 0020h =

Cache control logic

0000h
0020h

0
1

001Fh
003Fh

2
...

511
0
1
2
...

511

3FE0h
4000h

3FFFh
401Fh

16K bytes

Lines
(32 bytes)

Addressable memory
(L2 SRAM)

1.7.1.1 Read Misses

1.7.1.2 Read Hits

Cache Basics www.ti.com

Figure 1-4. C674x L1P Cache Architecture (16K Bytes)

Consider a CPU program fetch access to address location 0020h. Assume that cache is completely
invalidated, meaning that no line frame contains cached data. The valid state of a line frame is indicated
by the valid (V) bit. A valid bit of 0 means that the corresponding cache line frame is invalid, that is, does
not contain cached data. When the CPU makes a request to read address 0020h, the cache controller
splits up the address into three portions as shown in Figure 1-5.

Figure 1-5. Memory Address from Cache Controller (For 16K Byte Cache Size)

31 14 13 5 4 0
Tag Set Offset

The set portion (bits 13-5) indicates to which set the address maps to (in case of direct caches, a set is
equivalent to a line frame). For the address 0020h, the set portion is 1. The controller then checks the tag
(bits 31–14) and the valid bit. Since we assumed that the valid bit is 0, the controller registers a miss, that
is the requested address is not contained in cache.

A miss also means that a line frame will be allocated for the line containing the requested address. Then
the controller fetches the line (0020h-0039h) from memory and stores the data in line frame 1. The tag
portion of the address is stored in the tag RAM and the valid bit is changed to 1 to indicate that the set
now contains valid data. The fetched data is also forwarded to the CPU, and the access is complete. Why
a tag portion of the address has to be stored becomes clear when address 0020h is accessed again. This
is explained next.

The cache controller splits up the address into the three portions, as shown in Figure 1-5. The set portion
determines the set, and the stored tag portion is now compared against the tag portion of the address
requested. This comparison is necessary since multiple lines in memory are mapped to the same set. If
we had accessed address 4020h that also maps to the same set, the tag portions would be different and
the access would have been a miss. If address 0020h is accessed, the tag comparison is true and the
valid bit is 1; thus, the controller registers a hit and forwards the data in the cache line to the CPU. The
access is complete.

Introduction18 SPRUG82A–February 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG82A


1.7.2 Types of Cache Misses

1.7.2.1 Conflict and Capacity Misses

1.7.2.2 Compulsory Misses

1.7.3 Set-Associative Caches

www.ti.com Cache Basics

Before set-associative caches are discussed, it is beneficial to acquire a better understanding of the
properties of different types of cache misses. The ultimate purpose of a cache is to reduce the average
memory access time. For each miss, there is a penalty for fetching a line of data from memory into cache.
Therefore, the more often a cache line is reused the lower the impact of the initial penalty and the shorter
the average memory access time becomes. The key is to reuse this line as much as possible before it is
replaced with another line.

Replacing a line involves eviction of the line from cache and using the same line frame to store another
line. If later the evicted line is accessed again, the access misses and the line has to be fetched again
from slower memory. Therefore, it is important to avoid eviction of a line as long as it is still used.

Evictions are caused by conflicts, that is, a memory location is accessed that maps to the same set as a
memory location that was cached earlier. This type of miss is referred to as a conflict miss, a miss that
occurred because the line was evicted due to a conflict before it was reused. It is further distinguished
whether the conflict occurred because the capacity of the cache was exhausted or not. If the capacity was
exhausted, all line frames in the cache were allocated when the miss occurred, then the miss is referred to
as a capacity miss. Capacity misses occur if a data set that exceeds the cache capacity is reused. When
the capacity is exhausted, new lines accessed start replacing lines from the beginning of the array.

Identifying the cause of a miss may help to choose the appropriate measure for avoiding the miss. Conflict
misses mean that the data accessed fits into cache but lines get evicted due to conflicts. In this case, we
may want to change the memory layout so that the data accessed is located at addresses in memory that
do not conflict (map to the same set) in cache. Alternatively, from a hardware design, we can create sets
that can hold two or more lines. Thus, two lines from memory that map to the same set can both be kept
in cache without evicting one another. This is the idea of set-associative caches, described in
Section 1.7.3.

In case of capacity misses, one may want to reduce the amount of data that is operated on at a time.
Alternatively, from a hardware design, the capacity of the cache can be increased.

A third category of misses are compulsory misses or first reference misses. They occur when the data is
brought in cache for the first time. Unlike the other two misses, they cannot be avoided, hence, they are
compulsory.

Set-associative caches have multiple cache ways to reduce the probability of conflict misses. The C674x
L1D cache is a 2-way set-associative cache with 4K, 8K, 16K, or 32K bytes capacity and 64-byte lines.
The characteristics of the L1D cache are summarized in Table 1-4. The L1D miss stall characteristics are
provided in Table 1-5.

Table 1-4. L1D Cache Characteristics
Characteristic C674x DSP
Organization 2-way set-associative
Protocol Read Allocate, Write–back
CPU access time 1 cycle
Capacity 4K, 8K, 16K, or 32K bytes
Line size 64 bytes
Replacement strategy Least recently used (LRU)
Write Buffer 4 x 128-bit entries
External Memory Cacheability Configurable
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Table 1-5. L1D Miss Stall Characteristics
L2 Type

0 Wait-State, 2 × 128-bit Banks 1 Wait-State, 4 × 128-bit Banks
Parameter L2 SRAM L2 Cache L2 SRAM L2 Cache
Single Read Miss 10.5 12.5 12.5 14.5
2 Parallel Read Misses (pipelined) 10.5 + 4 12.5 + 8 12.5 + 4 14.5 + 8
M Consecutive Read Misses 10.5 + 3 × (M - 1) 12.5 + 7 × (M - 1) 12.5 + 3 × (M - 1) 14.5 + 7 × (M - 1)
(pipelined)
M Consecutive Parallel Read 10.5 + 4 × (M/2 - 1) + 12.5 + 8 × (M/2 - 1) + 12.5 + 4 × (M - 1) 14.5 + 8 × (M/2 - 1) +
Misses (pipelined) 3 × M/2 7 × M/2 7 × M/2
Victim Buffer Flush on Read Miss disrupts miss disrupts miss disrupts miss disrupts miss

pipelining plus pipelining plus pipelining plus pipelining plus
maximum 11 stalls maximum 11 stalls maximum 10 stalls maximum 10 stalls

Write Buffer Drain Rate 2 cycles/entry 6 cycles/entry 2 cycles/entry 6 cycles/entry

Compared to a direct-mapped cache, each set of a 2-way set-associative cache consists of two line
frames, one line frame in way 0 and another line frame in way 1. A line in memory still maps to one set,
but now can be stored in either of the two line frames. In this sense, a direct-mapped cache can also be
viewed as a 1-way cache.

The set-associative cache architecture is explained by examining how misses and hits are handled for the
C674x L1D cache, shown in Figure 1-6. Hits and misses are determined similar as in a direct-mapped
cache, except that two tag comparisons, one for each way, are necessary to determine which way the
requested data is kept.

Figure 1-6. C674x L1D Cache Architecture (16K Bytes)
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1.7.3.1 Read Misses

1.7.3.2 Write Misses

1.7.3.3 Read Hits

1.7.3.4 Write Hits

1.7.4 Level 2 (L2) Cache
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If both ways miss, the data first needs to be fetched from memory. The LRU bit determines in which cache
way the line frame is allocated. An LRU bit exists for each set and can be thought of as a switch. If the
LRU bit is 0, the line frame in way 0 is allocated; if the LRU bit is 1, the line frame in way 1 is allocated.
The state of the LRU bit changes whenever an access is made to the line frame. When a way is
accessed, the LRU bit always switches to the opposite way, as to protect the most-recently-used line
frame from being evicted. Conversely, on a miss, the least-recently-used (LRU) line frame in a set is
allocated to the new line evicting the current line. The reason behind this line replacement scheme is
based on the principle of locality: if a memory location was accessed, then the same or a neighboring
location will be accessed soon again. Note that the LRU bit is only consulted on a miss, but its status is
updated every time a line frame is accessed regardless whether it was a hit or a miss, a read or a write.

L1D is a read–allocate cache, meaning that a line is allocated on a read miss only. On a write miss, the
data is written to the lower-level memory through a write buffer, bypassing L1D cache (see Figure 1-3).
The write buffer consists of 4 entries. On C674x devices, each entry is 128-bits wide.

If there is a read hit in way 0, the data of the line frame in way 0 is accessed; if there is a hit in way 1, the
data of the line frame in way 1 is accessed.

On a write hit, the data is written to the cache, but is not immediately passed on to the lower level
memory. This type of cache is referred to as write–back cache, since data that was modified by a CPU
write access is written back to memory at a later time. To write back modified data, it must be known
which line was written by the CPU. For this purpose, every cache line has a dirty bit (D) associated with it.
Initially, the dirty bit is zero. As soon as the CPU writes to a cached line, the corresponding dirty bit is set.
When the dirty line needs to be evicted due to a conflicting read miss, it will be written back to memory. If
the line was not modified (clean line), its contents are discarded. For instance, assume the line in set 0,
way 0 was written to by the CPU, and the LRU bit indicates that way 0 is to be replaced on the next miss.
If the CPU now makes a read access to a memory location that maps to set 0, the current dirty line is first
written back to memory, then the new data is stored in the line frame. A write–back may also be initiated
by the program, by sending a writeback command to the cache controller. Scenarios where this is required
include boot loading and self-modifying code.

Until now, it was assumed that there is one level of cache memory between the CPU and the addressable
main memory. If there is a larger difference in memory size and access time between the cache and main
memory, a second level of cache is typically introduced to further reduce the number of accesses to
memory. A level 2 (L2) cache basically operates in the same manner as a level 1 cache; however, level 2
cache are typically larger in capacity. Level 1 and level 2 caches interact as follows: an address misses in
L1 and is passed on to L2 for handling; L2 employs the same valid bit and tag comparisons to determine if
the requested address is present in L2 cache or not. L1 hits are directly serviced from the L1 caches and
do not require involvement of L2 caches.

As L1P and L1D, the L2 memory space can also be split into an addressable internal memory (L2 SRAM)
and a cache (L2 Cache) portion. Unlike L1 caches that are read–allocate only, L2 cache is a read and
write allocate cache. L2 cache is used to cache external memory addresses only; whereas, L1P and L1D
are used to cache both L2 SRAM and external memory addresses. L2 cache characteristics are
summarized in Table 1-6.
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1.7.4.1 Read Misses and Hits

1.7.4.2 Write Misses and Hits

1.7.5 Cacheability of External Memory Addresses
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Table 1-6. L2 Cache Characteristics
Characteristic C674x DSP
Organization 4-way set-associative
Protocol Read and write allocate

Writeback
Capacity 32K, 64K, 128K, or 256K bytes
Line size 128 bytes
Replacement strategy Least recently used (LRU)
External Memory Cacheability Configurable

Consider a CPU read request to a cacheable external memory address that misses in L1 cache (may be
L1P or L1D). If the address also misses L2 cache, the corresponding line will be brought into L2 cache.
The LRU bits determine the way in which the line frame is allocated. If the line frame contains dirty data, it
will be first written back to external memory before the new line is fetched. (If data of this line is also
contained in L1D, it will be first written back to L2 before the L2 line is sent to external memory. This is
required to maintain cache coherence, which is further explained in section Section 2.4). The portion of
the newly allocated line forming an L1 line and containing the requested address is then forwarded to L1.
L1 stores the line in its cache memory and finally forwards the requested data to the CPU. Again, if the
new line replaces a dirty line in L1, its contents are first written back to L2.

If the address was an L2 hit, the corresponding line is directly forwarded from L2 to L1 cache.

If a CPU write request to an external memory address misses L1D, it is passed on to L2 through the write
buffer. If L2 detects a miss for this address, the corresponding L2 cache line is fetched from external
memory, modified with the CPU write, and stored in the allocated line frame. The LRU bits determine the
way in which the line frame is allocated. If the line frame contains dirty data, it will be first written back to
external memory before the new line is fetched. Note that the line is not stored in L1D, since it is a
read–allocate cache only.

If the address was an L2 hit, the corresponding L2 cache line frame is directly updated with the CPU write
data.

L2 SRAM address are always cached in L1P and L1D. However, external memory addresses by default
are configured as noncacheable in L1D and L2 caches. Cacheability must first be explicitly enabled by the
user. Note that L1P cache is not affected by this configuration and always caches external memory
addresses. If an address is noncacheable, any memory access (data access or program fetch) is made
without allocating the line in either L1D or L2 cache (see Section 2.1 and Section 2.2 for more
information).
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Chapter 2
SPRUG82A–February 2009

Using Cache

This chapter explains how to enable and configure caches for C674x devices. It also describes the cache
coherence protocol employed by the cache controller and provides examples for common application
scenarios.

Since in a cache-based memory system, multiple copies of the same memory location may exist
simultaneously, a protocol must be followed that ensures that requestors do not access an out-of-date
copy of a memory location. This protocol is referred to as a cache coherence protocol.

Note: In the following cases it is your responsibility to maintain cache coherence. Failing to do so
almost certainly results in incorrect functioning of the application:
• DMA or other external entity writes data or code to external memory that is then read by

the CPU
• CPU writes data to external memory that is then read by DMA or another external entity
• DMA writes code to L2 SRAM that is then executed by the CPU (this case is supported

by the hardware protocol on C621x/C671x and C64x DSPs, but is not supported on
C674x DSPs)

• CPU writes code to L2 SRAM or external memory that is then executed by the CPU
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2.1 Configuring L1 Caches

2.2 Configuring L2 Cache

2.3 Cacheability
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The configuration at boot time depends on the particular C674x device. The device may boot up as cache
only, SRAM only, or a combination of each. See your device-specific data manual.

The L1P and L1D cache sizes can be changed in the program code by issuing the appropriate chip
support library (CSL) commands:
• CACHE_L1pSetSize();
• CACHE_L1dSetSize();

Additionally, in the linker command file the memory to be used as SRAM has to be specified. Since
caches cannot be used for code or data placement by the linker, all sections must be linked into SRAM or
external memory.

At boot time L2 cache is disabled and all of L2 is configured as SRAM (addressable internal memory). If
DSP/BIOS is used, L2 cache is enabled automatically; otherwise, L2 cache can be enabled in the program
code by issuing the appropriate chip support library (CSL) command: CACHE_L2SetSize();

Additionally, in the linker command file the memory to be used as SRAM has to be specified. Since cache
cannot be used for code or data placement by the linker, all sections must be linked into SRAM or external
memory.

For L1D and L2, you can control whether external memory addresses are cacheable or noncacheable.
Each external memory address space of 16M bytes is controlled by a memory attribute register (MAR) bit
(0 = noncacheable, 1 = cacheable). The memory attribute registers are documented in TMS320C674x
DSP Megamodule Reference Guide (SPRUFK5). For instance, to enable caching for the external memory
range from 8000 0000h to 80FF FFFFh, the CSL function CACHE_enableCaching(CACHE_MAR128) can
be used. This sets MAR128 to 1. After the MAR bit is set for an external memory space, new addresses
accessed by the CPU will be cached. If it was left noncacheable, the requested data would simply be
forwarded from external memory to the CPU without being stored in L1D or L2 cache. Note that program
fetches are always cached in L1P regardless of the MAR settings. At boot time, caching for external
memory address space is disabled.

The following description assumes 2048K bytes of L2 memory and that L1P and L1D are all cache. For
C674x devices with different L2 sizes, see the device-specific data manual. The linker command file for a
configuration of 1792K SRAM and 256K-bytes cache is shown in Example 2-1.

The required CSL command sequence to enable caching of external memory locations and to enable L2
cache is shown in Example 2-2. The first command enables caching of the first 16 Mbytes in the external
memory space by setting the appropriate MAR bit. Finally, L2 cache size is set to 256K bytes.

Figure 2-1 shows all possible cache configurations for C674x devices with 2048K bytes of L2 memory.
Slightly different configurations may exist for other C674x devices, see your device-specific data manual.

Note that when the L2 cache size is increased, the memory is taken from the high memory addresses.

Other configurations are set by adjusting the cache size in Example 2-1 and Example 2-2.

Note: Do not define memory that is to be used or boots up as cache under the MEMORY directive.
This memory is not valid for the linker to place code or data in. If L1D SRAM and/or L1P
SRAM is to be used, it must first be made available by reducing the cache size. Data or code
must be linked into L2 SRAM or external memory and then copied to L1 at run-time.
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Example 2-1. C674x Linker Command File

MEMORY
{

L2SRAM: origin = 00800000h length = 001C0000h
CE0: origin = 80000000h length = 01000000h

}

SECTIONS
{

.cinit > L2SRAM

.text > L2SRAM

.stack > L2SRAM

.bss > L2SRAM

.const > L2SRAM

.data > L2SRAM

.far > L2SRAM

.switch > L2SRAM

.sysmem > L2SRAM

.tables > L2SRAM

.cio > L2SRAM

.external > CE0
}

Example 2-2. C674x CSL Command Sequence to Enable Caching

#include <csl.h>
#include <csl_cache.h>
...

CACHE_enableCaching(CACHE_CE00);
CACHE_setL2Size(CACHE_256KCACHE);

Figure 2-1. C674x L2 Memory Configurations
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2.4 Coherence
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Generally, if multiple devices, such as the CPU or peripherals, share the same cacheable memory region,
cache and memory can become incoherent. Consider the system shown in Figure 2-2. Suppose the CPU
accesses a memory location that gets subsequently allocated in cache (1). Later, a peripheral is writes
data to this same location that is meant to be read and processed by the CPU (2). However, since this
memory location is kept in cache, the memory access hits in cache and the CPU reads the old data
instead of the new data (3). A similar problem occurs if the CPU writes to a memory location that is
cached, and the data is to be read by a peripheral. The data only gets updated in cache but not in
memory from where the peripheral reads the data. The cache and the memory are said to be incoherent.

Coherence needs to be addressed if the following is true:
• Multiple requestors (CPU data path, CPU fetch path, peripherals, DMA controllers, other external

entities) share a region of memory for the purpose of data exchange.
• This memory region is cacheable by at least one device.
• A memory location in this region has been cached.
• And this memory location is modified (by any device).

Consequently, if a memory location is shared, cached, and has been modified, there is a cache coherence
problem.

C674x DSPs automatically maintain cache coherence for data accesses by the CPU and EDMA/IDMA
through a hardware cache coherence protocol based on snoop commands. The coherence mechanism is
activated on a DMA read and write access. When a DMA read of a cached L2 SRAM location occurs, the
data is directly forwarded from L1D cache to the DMA without being updated in L2 SRAM. On a DMA
write, the data is forwarded to L1D cache and is updated in L2 SRAM.

Figure 2-2. Cache Coherence Problem
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2.4.1 Snoop Coherence Protocol
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In the following cases, it is your responsibility to maintain cache coherence:
• DMA or other external entity writes data or code to external memory that is then read by the CPU
• CPU writes data to external memory that is then read by DMA or another external entity
• DMA writes code to L2 SRAM that is then executed by the CPU (this case is supported by the

hardware protocol on C621x/C671x and C64x DSPs, but is not supported on C674x DSPs)
• CPU writes code to L2 SRAM or external memory that is then executed by the CPU

For this purpose, the cache controller offers various commands that allow it to manually keep caches
coherent.

This section explains how to maintain coherence by describing the cache coherence protocol and
providing examples for common types of applications.

Before describing programmer-initiated cache coherence operations, it is beneficial to first understand the
snoop-based protocols that are used by the cache controller to maintain coherence between the L1D
cache and L2 SRAM for DMA accesses. Generally, snooping is a cache operation initiated by a
lower-level memory to check if the address requested is cached (valid) in the higher-level memory. If yes,
the appropriate operation is triggered. The C64+ cache controller supports the following snoop commands:
• L1D Snoop–Read
• L1D Snoop–Write
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2.4.2 Cache Coherence Protocol for DMA Accesses to L2 SRAM
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To illustrate snooping, assume a peripheral writes data through the DMA to an input buffer located in L2
SRAM. Then the CPU reads the data, processes it, and writes it to an output buffer. From there, the data
is sent through the DMA to another peripheral.

The procedure for a DMA write is shown in Figure 2-3 and is:
1. The peripheral requests a write access to a line in L2 SRAM that maps to set 0 in L1D.
2. The L2 cache controller checks its local copy of the L1D tag RAM and determines if the line that was

just requested is cached in L1D (by checking the valid bit and the tag). If the line is not cached in L1D,
no further action needs to be taken and the data is written to memory.

3. If the line is cached in L1D, the L2 controller updates the data in L2 SRAM and directly updates L1D
cache by issuing a snoop–write command. Note that the dirty bit is not affected by this operation.

Figure 2-3. DMA Write to L2 SRAM
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The procedure for a DMA read is shown in Figure 2-4 and is:
1. The CPU writes the result to the output buffer. Assume that the output buffer was preallocated in L1D.

Since the buffer is cached, only the cached copy of the data is updated, but not the data in L2 SRAM.
2. When the peripheral issues a DMA read request to the memory location in L2 SRAM, the controller

checks to determine if the line that contains the memory location requested is cached in L1D. In this
example, we already assumed that it is cached. However, if it was not cached, no further action would
be taken and the peripheral would complete the read access.

3. If the line is cached, the L2 controller sends a snoop–read command to L1D. The snoop first checks to
determine if the corresponding line is dirty. If not, the peripheral is allowed to complete the read
access.

4. If the dirty bit is set, the snoop–read causes the data to be forwarded directly to the DMA without
writing it to L2 SRAM. This is the case in this example, since we assumed that the CPU has written to
the output buffer.

Figure 2-4. DMA Read of L2 SRAM
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2.4.2.1 L2 SRAM Double Buffering Example
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Having described how coherence is maintained for a DMA write and read of L2 SRAM, a typical double
buffering example is now presented. Assume data is read in from one peripheral, processed, and written
out to another peripheral, a structure of a typical signal processing application. The data flow is shown in
Figure 2-5. The idea is that while the CPU is processing data from one pair of buffers (for example,
InBuffA and OutBuffA), the peripherals are writing/reading data using the other pair of buffers (InBuffB and
OutBuffB) such that the DMA data transfer may occur in parallel with CPU processing.

Assuming that InBuffA has been filled by the peripheral, the procedure is:
1. InBuffB is being filled while the CPU is processing data in InBuffA. The lines of InBuffA are allocated in

L1D. Data is processed by the CPU and is written through the write buffer to OutBuff A (remember that
L1D is read-allocate only).

2. When the peripheral is filling InBuffA with new data, the second peripheral is reading from OutBuffA
and the CPU is processing InBuffB. For InBuffA, the L2 cache controller automatically takes care of
forwarding the data to L1D through snoop–writes. For OutBuffA, since it is not cached in L1D, no
snoops are necessary.

3. Buffers are then switched again, and so on.

It may be beneficial to make the buffers in L2 SRAM fit into a multiple of L1D cache lines, in order to get
the highest return (in terms of cached data) for every cache miss.

The pseudo-code in Example 2-3 shows how a double buffering scheme could be realized.

Figure 2-5. Double Buffering in L2 SRAM
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Example 2-3. L2 SRAM DMA Double Buffering Code

for (I=0; i<(DATASIZE/BUFSIZE)-2; i+=2)
{
/* ---------------------------------------------------- */
/* InBuffA -> OutBuffA Processing */
/* ---------------------------------------------------- */

<DMA_transfer(peripheral, InBuffB, BUFSIZE)>

<DMA_transfer(OutBuffB, peripheral, BUFSIZE)>

process(InBuffA, OutBuffA, BUFSIZE);

/* ----------------------------------------------------- */
/* InBuffB -> OutBuffB Processing */
/* ----------------------------------------------------- */

<DMA_transfer(peripheral, InBuffA, BUFSIZE)>

<DMA_transfer(OutBuffA, peripheral, BUFSIZE)>

process(InBuffB, OutBuffB, BUFSIZE);

}
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2.4.2.2 Maintaining Coherence Between External Memory and Cache
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Now the same double buffering scenario is considered, but with the buffers located in external memory.
Since the cache controller does not automatically maintain coherence in this case, it is the programmer’s
responsibility to maintain coherence. Again, the CPU reads in data from a peripheral, processes it, and
writes it out to another peripheral via DMA. But now the data is additionally passed through L2 cache.

As shown in Figure 2-6, assume that transfers already have occurred, that both InBuff and OutBuff are
cached in L2 cache, and that InBuff is cached in L1D. Further assume that the CPU has completed
processing InBuffB, filled OutBuffB, and is now about to start processing InBuffA. The transfers that bring
in new data into InBuffB and commit the data in OutBuffB to the peripheral are also about to begin.

To maintain coherence, all the lines in L1D and L2 cache that map to the external memory input buffer
have to be invalidated before the DMA transfer starts. This way the CPU will reallocate these lines from
external memory next time the input buffer is read.

Similarly, before OutBuffB is transferred to the peripheral, the data first has to be written back from L1D
and L2 caches to external memory. This is done by issuing a writeback operation. Again, this is necessary
since the CPU writes data only to the cached copies of the memory locations of OutBuffB that still may
reside in L1D and L2 cache.

Figure 2-6. Double Buffering in External Memory
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The chip support library (CSL) provides a set of routines that allow the required cache coherence
operations to be initiated. The start address of the buffer in external memory and the number of bytes
need to be specified:
• CACHE_invL2(InBuffB, BUFSIZE, CACHE_WAIT);
• CACHE_wbL2(OutBuffB, BUFSIZE, CACHE_WAIT);

If CACHE_WAIT is used, the routine waits until the operation has completed. This is the recommended
mode of operation. If CACHE_NOWAIT is used, the routine initiates the operation and immediately
returns. This allows the CPU to continue execution of the program while the coherence operation is
performed in the background. However, care must be taken that the CPU is not accessing addresses that
the cache controller is operating on since this may cause undesired results. The routine CACHE_wait()
can then be used before the DMA transfer is initiated, to ensure completion of the coherence operation.
More information on these cache coherence operations is in Section 2.4.3.

The pseudo-code in Example 2-4 shows exactly in which order the cache coherence calls and the DMA
transfers should occur.

Example 2-4. External Memory DMA Double Buffering Code

for (i=0; i<(DATASIZE/BUFSIZE)-2; i+=2)
{
/* ----------------------------------------------------- */
/* InBuffA -> OutBuffA Processing */
/* ----------------------------------------------------- */

CACHE_InvL2(InBuffB, BUFSIZE, CACHE_WAIT);
<DMA_transfer(peripheral, InBuffB, BUFSIZE)>

CACHE_wbL2(OutBuffB, BUFSIZE, CACHE_WAIT);
<DMA_transfer(OutBuffB, peripheral, BUFSIZE)>

process(InBuffA, OutBuffA, BUFSIZE);

/* ----------------------------------------------------- */
/* InBuffB -> OutBuffB Processing */
/* ----------------------------------------------------- */

CACHE_InvL2(InBuffA, BUFSIZE, CACHE_WAIT);
<DMA_transfer(peripheral, InBuffA, BUFSIZE)>

CACHE_wbL2(OutBuffA, BUFSIZE, CACHE_WAIT);
<DMA_transfer(OutBuffA, peripheral, BUFSIZE)>

process(InBuffB, OutBuffB, BUFSIZE);

}

In addition to the coherence operations, it is important that all DMA buffers are aligned at an L2 cache
line, and are an integral multiple of cache lines large. Further details on why this is required are given in
Section 2.4.3. These requirements can be achieved as shown:
#pragma DATA_ALIGN(InBuffA, CACHE_L2_LINESIZE)
#pragma DATA_ALIGN(InBuffB, CACHE_L2_LINESIZE)
#pragma DATA_ALIGN(OutBuffA,CACHE_L2_LINESIZE)
#pragma DATA_ALIGN(OutBuffB,CACHE_L2_LINESIZE)

unsigned char InBuffA [N*CACHE_L2_LINESIZE];
unsigned char OutBuffA[N*CACHE_L2_LINESIZE];
unsigned char InBuffB [N*CACHE_L2_LINESIZE];
unsigned char OutBuffB[N*CACHE_L2_LINESIZE];
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2.4.3 Usage Guidelines for L2 Cache Coherence Operations
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Alternatively, the CSL macro CACHE_ROUND_TO_LINESIZE(cache, element count, element size) can
be used that automatically rounds array sizes up to the next multiple of a cache line size. The first
parameter is the cache type, which can be L1D, L1P, or L2.

The array definitions would then look as:
unsigned char InBuffA [CACHE_ROUND_TO_LINESIZE(L2, N, sizeof(unsigned char)];
unsigned char OutBuffA[CACHE_ROUND_TO_LINESIZE(L2, N, sizeof(unsigned char)];
unsigned char InBuffB [CACHE_ROUND_TO_LINESIZE(L2, N, sizeof(unsigned char)];
unsigned char OutBuffB[CACHE_ROUND_TO_LINESIZE(L2, N, sizeof(unsigned char)];

CAUTION
If the guidelines set out in this section are not followed, correct functioning of
the application cannot be assured.

Table 2-1 shows an overview of available L2 cache coherence operations for C674x devices. Note that
these operations always operate on L1P and L1D even if L2 cache is disabled. Table 2-1 has to be
interpreted as follows:
1. First, the cache controller operates on L1P and L1D
2. then, the operation is performed on L2 cache

Note: A line cached in L1P or L1P is not necessarily cached in L2. A line may be evicted from L2
without being evicted from L1P or L1D.

Table 2-1. L2 Cache Coherence Operations
Coherence Operation on Operation on Operation on

Scope Operation CSL Command L2 Cache L1D Cache L1P Cache
Range Invalidate L2 CACHE_invL2 All lines within range All lines within range All lines within range

(start address, byte invalidated (any dirty invalidated (any dirty invalidated.
count, wait) data is discarded). data is discarded).

Writeback L2 CACHE_wbL2 Dirty lines within range Dirty lines within range None
(start address, byte written back. All lines written back. All lines
count, wait) kept valid. kept valid.

Writeback– CACHE_wbInvL2 Dirty lines within range Dirty lines within range All lines within range
Invalidate L2 (start address, byte written back. All lines written back .All lines invalidated.

count, wait) within range invalidated. within range invalidated.
All L2 Writeback CACHE_wbAllL2 All dirty lines in L2 All lines within range None
Cache All L2 (wait) written back. All lines invalidated All dirty lines

kept valid. in L1D written back. All
lines kept validL1D
snoop–invalidate.

Writeback– CACHE_wbInvAllL2 All dirty lines in L2 All dirty lines in L1D All lines in L1P
Invalidate (wait) written back. All lines in written back. All lines in invalidated.
All L2 L2 invalidated. L1D invalidated.
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It is important to note that although a start address and a byte count is specified, the cache controller
operates always on whole lines. Therefore, for the purpose of maintaining coherence, arrays must be:
• a multiple of L2 cache lines large
• aligned at an L2 cache line boundary

An L2 cache line is 128 bytes. The cache controller operates on all lines that are “touched” by the
specified range of addresses. Note that the maximum byte count that can be specified is 4 × 65 535 bytes
(on some C674x devices the maximum is 4 × 65 408 bytes, see your device-specific data manual), that is,
one L2 cache operation can operate on at most 256K bytes. If the external memory buffer to be operated
on is larger, multiple cache operations have to be issued.

The following guidelines should be followed for using cache coherence operations. Again, user-issued L2
cache coherence operations are only required if the CPU and DMA (or other external entity) share a
cacheable region of external memory, that is, if the CPU reads data written by the DMA and conversely.

The safest rule would be to issue a Writeback–Invalidate All prior to any DMA transfer to or from external
memory. However, the disadvantage of this is that possibly more cache lines are operated on than is
required, causing a larger than necessary cycle overhead. A more targeted approach is more efficient.
First, it is only required to operate on those cache lines in memory that actually contain the shared buffer.
Second, it can be distinguished between the three scenarios shown in Table 2-2.

Table 2-2. Scenarios and Required L2 Coherence Operations on External Memory
Scenario Coherence Operation Required
1. DMA/Other reads data written by the CPU Writeback L2 before DMA/Other starts reading
2. DMA/Other writes data (code) that is to be read (executed) by the CPU Invalidate L2 before DMA/Other starts writing
3. DMA/Other modifies data written by the CPU that data is to be read back Writeback–Invalidate L2 before DMA/Other starts
by the CPU writing

In scenario 3, the DMA may modify data that was written by the CPU and that data is then read back by
the CPU. This is the case if the CPU initializes the memory (for example, clears it to zero) before a
peripheral writes to the buffer. Before the DMA starts, the data written by the CPU needs to be committed
to external memory and the buffer has to be invalidated.

For a more in-depth discussion of coherence requirements for the C674x DSP, see Appendix A.
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2.4.4 Usage Guidelines for L1 Cache Coherence Operations
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CAUTION
If the guidelines set out in this section are not followed, correct functioning of
the application cannot be assured.

Table 2-3 and Table 2-4 show an overview of available L1 cache coherence operations for C674x devices.

Table 2-3. L1D Cache Coherence Operations
Scope Coherence Operation CSL Command Operation on L1D Cache
Range Invalidate L1D CACHE_invL1d All lines within range invalidated

(start address, byte count, wait) (any dirty data is discarded).
Writeback L1D CACHE_wbL1d Dirty lines within range written back.

(start address, byte count, wait) All lines kept valid.
Writeback–Invalidate L1D CACHE_wbInvL1d Dirty lines within range written back.

(start address, byte count, wait) All lines within range invalidated.
All L1D Cache Writeback All L1D CACHE_wbAllL1d All dirty lines in L1D written back.

(wait) All lines kept valid.
Writeback–Invalidate All L1D CACHE_wbInvAllL1d All dirty lines in L1D written back.

(wait) All lines invalidated.

Table 2-4. L1P Cache Coherence Operations
Scope Coherence Operation CSL Command Operation on L1P Cache
Range Invalidate L1P CACHE_invL1p All lines within range invalidated.

(start address, byte count, wait)
All L1P Cache Invalidate All L1P CACHE_wbInvAllL1p All lines in L1P invalidated.

(wait)

It is important to note that although a start address and a byte count is specified, the cache controller
operates always on whole lines. Therefore, for the purpose of maintaining coherence, arrays must be:
• a multiple of L1D cache lines large
• aligned at an L1D cache line boundary

An L1D cache line is 64 bytes. The cache controller operates on all lines that are “touched” by the
specified range of addresses. Note that the maximum byte count that can be specified is 4 × 65 535.

Table 2-5 shows scenarios with the cache coherence operations to be followed.

Table 2-5. Scenarios and Required L1 Coherence Operations
Scenario Coherence Operation Required
1. DMA/Other writes code to L2 SRAM that is to be executed by the CPU Invalidate L1P before CPU starts executing
2. CPU modifies code in L2 SRAM or external memory that is to be executed Invalidate L1P and Writeback-Invalidate L1D
by the CPU before CPU starts executing

For a more in-depth discussion of coherence requirements for the C674x DSP, see Appendix A.
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2.5 On-Chip Debug Support

2.6 Self-Modifying Code and L1P Coherence

2.7 Changing Cache Configuration During Run-Time

www.ti.com On-Chip Debug Support

The C674x DSPs provide on-chip debug support for debugging cache coherence issues (on earlier
versions of some C674x devices, full functionality may be only provided on simulator platforms).
Specifically, the C674x memory system allows emulation direct access to individual caches and reports
cache state information (valid, dirty, LRU bits). This capability is exposed through the Memory Window in
Code Composer Studio IDE (version 3.2 or higher).

For example, if you suspect a coherence problem with DMA writing new data to a buffer in external
memory because the CPU appears to read incorrect data, you could follow these steps. First ensure that
you eliminated any unpredictable interaction of the CPU accesses with coherence operations to exclude
other causes than cache incoherence (for example, source code errors such as stray CPU writes or
reads).

Then ensure that the buffer is aligned on L2 cache line boundaries to eliminate false addresses. For this
purpose, the Memory Window provides visual cache line boundary markers that help you to easily identify
misalignments. Next verify the correct use of cache coherence operations:
1. Halt the CPU execution after completion of the invalidate coherence operation but before the first DMA

write access.
2. Verify that no line in the buffer is dirty. To check this, enable the Memory Analysis function (through the

property window). Any dirty lines will then be displayed in a bold font style.
3. Continue CPU execution.
4. Halt the CPU again before the first CPU read.
5. Verify that the buffer is (still) invalidated and contains the expected new data. If there is a problem and

data happens to be cached, you can use the cache bypass check boxes to inspect data contents in
external memory.

The diagrams in Appendix A help you to develop similar procedures for other coherence scenarios.

No coherence is maintained between L1D and L1P. That means if the CPU wants to write or modify
program code, the writes may only update L1D, L2 SRAM, or L2 cache, but not L1P. For the CPU to be
able to execute the modified code, the addresses containing the instructions must not be cached in either
L1D or L1P.

Consider an example where an interrupt vector table is to be modified during run-time, the following
procedure has to be followed:
1. Disable interrupts.
2. Perform CPU writes (STW) to modify code.
3. Perform coherence operations:

i. Perform an L1D Writeback–Invalidate operation.
ii. Perform an L1P Invalidate operation.
iii. Wait for the last operation to complete.

Waiting for completion is done by polling the word count (xxWC) registers. This automatically
ensures that any L1D write misses have drained from the write buffer. This is because polling a
memory-mapped register is treated as a read miss that always causes the write buffer to be
completely drained.

4. Re-enable interrupts.

This section explains how cache configurations may be safely changed during run-time.
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2.7.1 Disabling External Memory Caching

2.7.2 Changing Cache Sizes During Run-Time
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Disabling external memory caching after it was enabled should not be generally necessary. However if it
is, then the following considerations should be taken into account. If the MAR bit is changed from 1 to 0,
external memory addresses already cached stay in the cache and accesses to those addresses still hit.
The MAR bit is only consulted if the external memory address misses in L2. (This includes the case where
L2 is all SRAM. Since there is no L2 cache, this can also be interpreted as an L2 miss).

If all addresses in the respective external memory address space are made noncacheable, the addresses
need to be written back and invalidated first (see Section 2.4.3 and Section 2.4.4 for a description of
user-initiated cache control operations).

Changing the size of caches during run time may be beneficial for some applications. Consider the
following example for a C674x device with 64K bytes of L2. An application has two tasks, A and B. Task A
benefits from 64K bytes of code and data being allocated in L2 SRAM, while task B would benefit from
having 32K bytes of L2 cache. Assume the memory configuration as shown in Figure 2-7. The second
32K byte segment contains the routine, some global variables for task A (that need to be preserved during
task B executes), and some variables for task A that after task switching are no longer needed.

The memory region where this routine and the variables reside can then be freed (assume no other
sections are located in this 32K byte segment) by copying the code and the global variables to another
memory region in external memory using a DMA. Then, the cache mode can be switched. The cache
controller will automatically writeback–invalidate all cache lines before initializing with the new size. Note
that changing of the L2 cache size will not cause any evictions from L1P or L1D cache. The size change
operation can be performed by the function CACHE_setL2Size().

Figure 2-7. Changing L2 Cache Size During Run-Time
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To switch back to task A configuration, L2 cache line frames located in the 32K byte segment that is to be
switched to SRAM have to be written back to external memory and invalidated. Since it is not known
which external memory addresses are cached in these line frames, all of L2 is writeback–invalidated. This
is automatically done by the cache controller when the cache size is switched. Code and global variables
can then be copied back to their original location.

The exact procedures are given in Table 2-6. The same procedure applies to L1P and L1D caches.

Example 2-5 shows a C code example of how to change the L2 cache size. The corresponding linker
command file is shown in Example 2-6.

Table 2-6. Procedure for Changing Cache Sizes for L1P, L1D, and L2
Switch To Perform
More Cache 1. DMA or copy needed code/data out of SRAM addresses to be converted to cache.
(Less SRAM)

2. Wait for completion of step 1.
3. Increase cache size usingCACHE_setL1pSize(), CACHE_setL1dSize(),or CACHE_setL2Size()

Less Cache 1. Decrease Cache size usingCACHE_setL1pSize(),CACHE_setL1dSize(),or CACHE_setL2Size()
(More SRAM)

2. DMA or copy back any code/data needed.
3. Wait for completion of step 2.

Example 2-5. Changing L2 Cache Size Code

/* -------------------------------------------------------------------- */
/* Buffer for Task A code and data in external memory */
/* -------------------------------------------------------------------- */
#pragma DATA_SECTION(buffer_A, ”.external”)
unsigned char buffer_A[1024];

/* -------------------------------------------------------------------- */
/* Main */
/* -------------------------------------------------------------------- */
void main(void)
{

int i;
Uint32 id = DAT_XFRID_WAITNONE;

/* ------------------------------------------------------------- */
/* Set L2 mode and open DAT */
/* ------------------------------------------------------------- */

CACHE_enableCaching(CACHE_CE00);

CACHE_setL2Size(CACHE_0KCACHE);

DAT_open(DAT_CHAANY, DAT_PRI_HIGH, 0);
/* ------------------------------------------------------------- */
/* Initialize state_A */
/* ------------------------------------------------------------- */
for (i=0; i<N_STATE_A; i++)
{

state_A[i] = 1;
}

/* ------------------------------------------------------------- */
/* Task A - 1 */
/* ------------------------------------------------------------- */
process_A(state_A, N_STATE_A);

process_AB(state_A, local_var_A, N_STATE_A);

/* ------------------------------------------------------------- */
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Example 2-5. Changing L2 Cache Size Code (continued)
/* Switch to configuration for Task B with 32K cache: */
/* 1) DMA needed code/data out of L2 SRAM addresses to be */
/* converted to cache. */
/* 2) Wait for completion of 1) */
/* 3) Switch mode */
/* */
/* Take address and word count information from map file */
/* ------------------------------------------------------------- */
id = DAT_copy((void*)0x8000, buffer_A, 0x0120);
DAT_wait(id);
CACHE_setL2Size(CACHE_32KCACHE);
/* ------------------------------------------------------------- */
/* Task B */
/* Cache into L2, destroys code/data in the L2 segment that */
/* previously was SRAM. */
/* ------------------------------------------------------------- */
process_AB(ext_data_B, ext_data_B, N_DATA_B);

/* ------------------------------------------------------------- */
/* Switch back to configuration for Task A with 0K cache */
/* 1) Switch mode */
/* 2) DMA back any code/data needed */
/* 3) Wait for completion of 2) */
/* */
/* Take address and word count information from map file */
/* ------------------------------------------------------------- */
CACHE_setL2Size(CACHE_0KCACHE);
id = DAT_copy(buffer_A, (void*)0x8000, 0x0120);
DAT_wait(id);

/* ------------------------------------------------------------- */
/* Task A - 2 */
/* ------------------------------------------------------------- */
process_A(state_A, N_STATE_A);

process_AB(state_A, local_var_A, N_STATE_A);

/* ------------------------------------------------------------- */
/* Exit */
/* ------------------------------------------------------------- */
DAT_close();

}
void process_A(unsigned char *x, int nx)
{

int i;

for (i=0; i<nx; i++)
x[i] = x[i] * 2;

}

void process_AB(unsigned char *input, unsigned char
*output, int size)
{

int i;

for (i=0; i<size; i++)
output[i] = input[i] + 0x1;

}
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Example 2-6. Linker Command File for Changing L2 Cache Size Code

MEMORY
{
L2_1: o = 00800000h l = 00008000h /*1st 32K segment: always SRAM */
L2_2: o = 00808000h l = 00008000h /*2nd 32K segment:Task A-SRAM,Task B-Cache */
CE0: o = 80000000h l = 01000000h /*external memory */

}

SECTIONS
{

.cinit > L2_1

.text > L2_1

.stack > L2_1

.bss > L2_1

.const > L2_1

.data > L2_1

.far > L2_1

.switch > L2_1

.sysmem > L2_1

.tables > L2_1

.cio > L2_1

.sram_state_A > L2_2

.sram_process_A > L2_2

.sram_local_var_A > L2_2

.external > CE0
}
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Chapter 3
SPRUG82A–February 2009

Optimizing for Cache Performance

This chapter discusses cache optimization techniques from a programmer’s point of view. The ideal
scenario would be to have an application execute in a fast and large flat memory that is clocked at CPU
speed. However, this scenario becomes more and more unrealistic the higher the CPU clock rate
becomes. Introducing a cached-memory architecture inevitably causes some cycle count overhead
compared to the flat memory model. However, since a cached-memory model enables the CPU to be
clocked at a higher rate, the application generally executes faster (execution time = cycle count/clock
rate). Still, the goal is to reduce the cache cycle overhead as much as possible. In some cases
performance can be further improved by implementing algorithms with a cached architecture in mind.
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3.1 Cache Performance Characteristics

3.1.1 Stall Conditions
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The performance of cache mostly relies on the reuse of cache lines. The access to a line in memory that
is not yet in cache will incur CPU stall cycles. As long as the line is kept in cache, subsequent accesses to
that line will not cause any stalls. Thus, the more often the line is reused before it is evicted from cache,
the less impact the stall cycles will have. Therefore, one important goal of optimizing an application for
cache performance is to maximize line reuse. This can be achieved through an appropriate memory layout
of code and data, and altering the memory access order of the CPU. In order to perform these
optimizations, you should be familiar with the cache memory architecture, in particular the characteristics
of the cache memories such as line size, associativity, capacity, replacement scheme, read/write
allocation, miss pipelining, and write buffer. These characteristics were discussed in Chapter 1. You also
have to understand under what conditions CPU stalls occur and the cycle penalty associated with these
stalls.

For this purpose, the next two sections present an overview of the C674x cache architecture detailing all
important cache characteristics, cache stall conditions and associated stall cycles. These sections provide
a useful reference for optimizing code for cache performance.

The most common stall conditions on C674x devices are:
• Cross Path Stall: When an instruction attempts to read a register via a cross path that was updated in

the previous cycle, one stall cycle is introduced. The compiler automatically tries to avoid these stalls
whenever possible.

• L1D Read and Write Hits: CPU accesses that hit in L1D SRAM or cache do not normally cause stalls,
unless there is an access conflict with another requestor. Access priorities are governed by the
bandwidth management settings. See the TMS320C674x DSP Megamodule Reference Guide
(SPRUFK5) for bandwidth management details. L1D requestors include CPU data access, IDMA or
EDMA, snoops and cache coherence operations.

• L1D Cache Write Hits: CPU writes that hit in L1D cache do not normally cause stalls. However, a
stream of write hits that make previously clean cache lines dirty at a high rate can cause stall cycles.
The cause is a tag update buffer that queues clean-to-dirty transitions to L2’s copy of the L1D tag RAM
(this, so called, shadow tag RAM is required for the snoop cache coherence protocol).

• L1D Bank Conflict: L1D memory is organized in 8 × 32-bit banks. Parallel accesses that both hit in L1D
and are to the same bank cause 1 cycle stall. See the TMS320C674x DSP Megamodule Reference
Guide (SPRUFK5) for special case exceptions.

• L1D Read Miss: Stall cycles are incurred for line allocations from L2 SRAM, L2 cache, or external
memory. L1D read miss stalls can be lengthened by:
– L2 Cache Read Miss: The data has to be fetched from external memory first. The number of stall

cycles depends on the particular device and the type of external memory.
– L2 Access/Bank Conflict: L2 can service only one request at a time. Access priorities are governed

by the bandwidth management settings. See the TMS320C674x DSP Megamodule Reference
Guide (SPRUFK5) for bandwidth management details. L2 requestors include L1P (line fills), L1D
(line fills, write buffer, tag update buffer, victim buffer), IDMA or EDMA, and cache coherence
operations.

– L1D Write Buffer Flush: If the write buffer contains data and a read miss occurs, the write buffer is
first fully drained before the L1D read miss is serviced. This is required to maintain proper ordering
of a write followed by a read. Write buffer draining can be lengthened by L2 access/bank conflicts
and L2 cache write misses (the write buffer data misses L2 cache).

– L1D Victim Buffer Writeback: If the victim buffer contains data and a read miss occurs, the contents
are first written back to L2 before the L1D read miss is serviced. This is required to maintain proper
ordering of a write followed by a read. The writeback can be lengthened by L2 access/bank
conflicts.
Consecutive and parallel misses will be overlapped, provided none of the above stall lengthening
condition occurs and the two parallel/consecutive misses are not to the same set.
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• L1D Write Buffer Full: If an L1D write miss occurs and the write buffer is full, stalls occur until one entry
is available. Write buffer draining can be lengthened by:

– L2 Cache Read Miss: The data has to be fetched from external memory first. The number of stall
cycles depends on the particular device and the type of external memory.

– L2 Access/Bank Conflict: L2 can service only one request at a time. Access priorities are governed by
the bandwidth management settings. See the TMS320C674x DSP Megamodule Reference Guide
(SPRUFK5) for bandwidth management details. L2 requestors include L1P (line fills), L1D (line fills,
write buffer, tag update buffer, victim buffer), IDMA or EDMA, and cache coherence operations.

• L1P Read Hits: CPU accesses that hit in L1P SRAM or cache do not normally cause stalls, unless
there is an access conflict with another requestor or the access is to L1P ROM with wait-states.
Access priorities are governed by the bandwidth management settings. See the TMS320C674x DSP
Megamodule Reference Guide (SPRUFK5) for bandwidth management details. L1P requestors include
CPU program access, IDMA or EDMA, and cache coherence operations.

• L1P Read Miss: Stall cycles are incurred for line allocations from L2 SRAM, L2 cache, or external
memory. L1P read miss stalls can be lengthened by:
– L2 Cache Read Miss: The data has to be fetched from external memory first. The number of stall

cycles depends on the particular device and the type of external memory.
– L2 Access/Bank Conflict: L2 can service only one request at a time. Access priorities are governed

by the bandwidth management settings. See the TMS320C674x DSP Megamodule Reference
Guide (SPRUFK5) for bandwidth management details. L2 requestors include L1P (line fills), L1D
(line fills, write buffer, tag update buffer, victim buffer), IDMA or EDMA, and cache coherence
operations.
Consecutive misses will be overlapped, provided none of the above stall lengthening condition
occurs.

Figure 3-1 shows the C674x memory architecture detailing all important characteristics, stall conditions
and associated stall cycles.
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Figure 3-1. C674x Cache Memory Architecture

Table 3-1 and Table 3-2 list the actual stall cycles for two different device configurations. One
configuration is for devices that have an L2 with 0 wait-states and 2 × 128-bit banks. The other
configuration is for devices that have an L2 with 1 wait-state and 4 × 128-bit banks. See your
device-specific data manual to determine the L2 type for a particular device.

Note on the notation of stall cycles: L1D cache stall cycles for C674x devices are sometimes specified as
averages due to a varying L2 clock alignment relative to the memory access. Because L2 is clocked at
CPU/2, a memory access occurring out-of-phase with the L2 clock reduces the number of stall cycles by
1. For instance, a read miss may cost either 10 or 11 stall cycles depending on clock phase alignment.
This is then noted as 10.5 stall cycles.
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Table 3-1. L1P Miss Pipelining Performance (Average Number of Stalls per Execute Packet)
L2 Type

0 Wait-State, 2 × 128-bit Banks 1 Wait-State, 4 × 128-bit Banks
Instructions per Execute Packet L2 SRAM L2 Cache L2 SRAM L2 Cache

1 0.000 0.000 0.000 0.000
2 0.001 0.497 0.167 0.499
3 0.501 1.247 0.751 1.249
4 0.997 1.997 1.329 1.999
5 1.499 2.747 1.915 2.749
6 2.001 3.497 2.501 3.499
7 2.497 4.247 3.079 4.249
8 2.999 4.997 3.665 4.999

Table 3-2. L1D Performance Parameters (Number of Stalls)
L2 Type

0 Wait-State, 2 × 128-bit Banks 1 Wait-State, 4 × 128-bit Banks
Parameter L2 SRAM L2 Cache L2 SRAM L2 Cache
Single Read Miss 10.5 12.5 12.5 14.5
2 Parallel Read Misses (pipelined) 10.5 + 4 12.5 + 8 12.5 + 4 14.5 + 8
M Consecutive Read Misses 10.5 + 3 × (M - 1) 12.5 + 7 × (M - 1) 12.5 + 3 × (M - 1) 14.5 + 7 × (M - 1)
(pipelined)
M Consecutive Parallel Read 10.5 + 4 × (M/2 - 1) + 12.5 + 8 × (M/2 - 1) + 12.5 + 4 × (M - 1) 14.5 + 8 × (M/2 - 1) +
Misses (pipelined) 3 × M/2 7 × M/2 7 × M/2
Victim Buffer Flush on Read Miss disrupts miss disrupts miss disrupts miss disrupts miss

pipelining plus pipelining plus pipelining plus pipelining plus
maximum 11 stalls maximum 11 stalls maximum 10 stalls maximum 10 stalls

Write Buffer Drain Rate 2 cycles/entry 6 cycles/entry 2 cycles/entry 6 cycles/entry
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3.1.2 C674x Pipelining of L1D Read Misses
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The C674x cache architecture pipelines L1D read misses and allows parallel and consecutive read miss
stall cycles to be overlapped. See Table 3-2 for the stall cycle formulas.

This mechanism is further described in the TMS320C674x DSP Megamodule Reference Guide
(SPRUFK5). Miss pipelining will be disrupted, if the L1D stall is lengthened by any of the conditions listed
in Section 3.1.1. Note that when accessing memory sequentially, misses are not overlapped since on a
miss one full cache line is allocated and subsequent accesses will hit. Therefore, to achieve full
overlapping of stalls, you have to access two new cache lines every cycle, that is, step through memory in
strides that are equal to the size of two cache lines. This is realized in the assembly routine “touch”, that
can be used to allocate length bytes of a memory buffer *array into L1D. The routine loads (or touches)
one byte each of two consecutive cache lines in parallel. To avoid bank conflicts, the two parallel loads
are offset by one word. The access pattern is illustrated in Figure 3-2. The assembly routine is shown in
Example 3-1.

If a line does not reside in L1D, the load will miss and the line allocated in L1D. If the line already was
allocated, there is no effect. The data read by the load is not used. The routine takes (0.5 × M + 16) cycles
plus any stall cycles for “Consecutive Parallel Read Misses” to allocate M lines.

Example: Consider a device with an L2 type with 0 wait-states and 2 × 128-bit banking. To allocate a
32K-byte array using the touch loop, it takes (0.5 × M + 16) + (10.5 + 4 × (M/2 - 1) + 3 × M/2). With
M = 32768 bytes/64-byte cache line size = 512, this is 2070.5 cycles. On the other hand, if each line had
been allocated individually, this would have taken 512 × 10.5 = 5376 cycles, or 2.6× the number of cycles.

Figure 3-2. Memory Access Pattern of Touch Loop

Example 3-1. Touch Assembly Routine

* ========================================================================= *
* TEXAS INSTRUMENTS, INC. *
* *
* NAME *
* touch *
* *
* PLATFORM *
* C674x *
* *
* USAGE *
* This routine is C callable, and has the following C prototype: *
* *
* void touch *
* ( *
* const void *array, /* Pointer to array to touch */ *
* int length /* Length array in bytes */ *
* ); *
* *
* This routine returns no value and discards the loaded data. *
* *
* DESCRIPTION *
* The touch() routine brings an array into the cache by reading *
* elements spaced one cache line apart in a tight loop. This *
* causes the array to be read into the cache, despite the fact *
* that the data being read is discarded. If the data is already *
* present in the cache, the code has no visible effect. *
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Example 3-1. Touch Assembly Routine (continued)
* *
* When touching the array, the pointer is first aligned to a cache- *
* line boundary, and the size of the array is rounded up to the *
* next multiple of two cache lines. The array is touched with two *
* parallel accesses that are spaced one cache-line and one bank *
* apart. A multiple of two cache lines is always touched. *
* *
* MEMORY NOTE *
* The code is ENDIAN NEUTRAL. *
* No bank conflicts occur in this code. *
* *
* CODESIZE *
* 84 bytes *
* *
* CYCLES *
* cycles = MIN(22, 16 + ((length + 124) / 128)) *
* For length = 1280, cycles = 27. *
* The cycle count includes 6 cycles of function-call overhead, but *
* does NOT include any cycles due to cache misses. *
* *
* *

.global _touch

.sect ".text:_touch"
_touch

B .S2 loop ; Pipe up the loop
|| MVK .S1 128, A2 ; Step by two cache lines
|| ADDAW .D2 B4, 31, B4 ; Round up # of iters

B .S2 loop ; Pipe up the loop
|| CLR .S1 A4, 0, 6, A4 ; Align to cache line
|| MV .L2X A4, B0 ; Twin the pointer

B .S1 loop ; Pipe up the loop
|| CLR .S2 B0, 0, 6, B0 ; Align to cache line
|| MV .L2X A2, B2 ; Twin the stepping constant

B .S2 loop ; Pipe up the loop
|| SHR .S1X B4, 7, A1 ; Divide by 128 bytes
|| ADDAW .D2 B0, 17, B0 ; Offset by one line + one word

[A1] BDEC .S1 loop, A1 ; Step by 128s through array
|| [A1] LDBU .D1T1 *A4++[A2], A3 ; Load from [128*i + 0]
|| [A1] LDBU .D2T2 *B0++[B2], B4 ; Load from [128*i + 68]
|| SUB .L1 A1, 7, A0

loop:
[A0] BDEC .S1 loop, A0 ; Step by 128s through array

|| [A1] LDBU .D1T1 *A4++[A2], A3 ; Load from [128*i + 0]
|| [A1] LDBU .D2T2 *B0++[B2], B4 ; Load from [128*i + 68]
|| [A1] SUB .L1 A1, 1, A1

BNOP .S2 B3, 5 ; Return

* ========================================================================= *
* End of file: touch.asm *
* ------------------------------------------------------------------------- *
* Copyright 2001 Texas Instruments, Incorporated. *
* All Rights Reserved. *
* ========================================================================= *
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3.1.3 Optimization Techniques Overview
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The focus of this user's guide is on efficient use of the L1 caches. Since L1 characteristics (capacity,
associativity, line size) are more restrictive than those of L2 cache, optimizing for L1 almost certainly
implies that L2 cache is also used efficiently. Typically, there is not much benefit in optimizing only for L2
cache. It is recommended to use L2 cache for the general-purpose parts of the application with largely
unpredictable memory accesses (general control flow, etc.). L1 and L2 SRAM should be used for
time-critical signal processing algorithms. Data can be directly streamed into L1 SRAM using EDMA or
IDMA, or into L2 SRAM using EDMA. Memory accesses can then be optimized for L1 cache.

There are two important ways to reduce the cache overhead:
1. Reduce the number of cache misses (in L1P, L1D, and L2 cache): This can be achieved by:

a. Maximizing cache line reuse:
i. Access all memory locations within a cached line. Since the data was allocated in cache

causing expensive stall cycles, it should be used.
ii. The same memory locations within a cached line should be reused as often as possible. Either

the same data can be reread or new data written to already cached locations so that
subsequent reads will hit.

b. Avoiding eviction of a line as long as it is being reused:
i. Evictions can be prevented, if data is allocated in memory such that the number of cache ways

is not exceeded when it is accessed. (The number of ways is exceeded if more lines map to the
same set than the number of cache ways available.)

ii. If this is not possible, evictions may be delayed by separating accesses to the lines that cause
the eviction further apart in time.

iii. Also, one may have lines evicted in a controlled manner relying on the LRU replacement
scheme such that only lines that are no longer needed are evicted.

2. Reduce the number of stall cycles per miss: This can be achieved by exploiting miss pipelining.

Methods for reducing the number of cache misses and number of stalls per miss are discussed in this
chapter.

A good strategy for optimizing cache performance is to proceed in a top-down fashion, starting on the
application level, moving to the procedural level, and if necessary considering optimizations on the
algorithmic level. The optimization methods for the application level tend to be straightforward to
implement and typically have a high impact on overall performance improvement. If necessary, fine tuning
can then be performed using lower level optimization methods. Hence, the structure of this chapter
reflects the order that one may want to address the optimizations.

50 Optimizing for Cache Performance SPRUG82A–February 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG82A


3.2 Application-Level Optimizations

3.2.1 Streaming to External Memory or L1/L2 SRAM

3.2.2 Using L1 SRAM

www.ti.com Application-Level Optimizations

On an application and system level, the following considerations are important for good cache
performance.

For streaming data from/to a peripheral or coprocessor using DMA, it is recommended to allocate the
streaming buffers in L1 or L2 SRAM. This has several advantages over allocating the buffers in external
memory:
1. L1 and L2 SRAM are closer to the CPU; therefore, latency is reduced. If the buffers were located in

external memory, data would be first written from the peripheral to external memory by the DMA,
cached by L2, then cached by L1D, before reaching the CPU

2. Cache coherence is automatically maintained by the cache controller for data accesses to L2 SRAM
(and is not applicable at all to L1 SRAM). If the buffers are located in external memory, you have to
take care to maintain coherence by manually issuing L2 cache coherence operations. In some cases,
buffers may have to be allocated in external memory due to memory capacity restrictions. Section 2.4
explains in detail how to manage cache coherence.

3. No additional latency due to coherence operations. The latency can be thought of as adding to the time
required for processing the buffered data. In a typical double buffering scheme, this has to be taken
into account when choosing the size of the buffers.

For rapid-prototyping applications, where implementing DMA double-buffering schemes are considered
too time consuming and would like to be avoided, allocating all code and data in external memory and
using L2 as All Cache may be an appropriate way. Following the simple rules for using L2 cache
coherence operations described in Section 2.4, this is a fast way to get an application up and running
without the need to perform DSP-style optimizations. Once the correct functioning of the application has
been verified, bottlenecks in the memory management and critical algorithms can be identified and
optimized.

C674x devices provide L1D and L1P SRAM that may be used for code and data that is sensitive to cache
penalties, for instance:
• Performance critical code or data
• Code or data that is shared by many algorithms
• Code or data that is accessed frequently
• Functions with large code size or large data structures
• Data structures with irregular accesses that would make cache less efficient
• Streaming buffers (for example, on devices where L2 is small and better configured as cache)

Since the size of L1 SRAM is limited, the decision of what code and data to allocate in L1 SRAM needs to
be made carefully. Allocating large amount of L1 SRAM may require reducing L1 cache size that could
mean lower performance for code and data in L2 and external memory.

L1 SRAM size can be kept smaller if code and data can be copied to L1 SRAM as required, making use of
code and/or data overlays. IDMA can be used to very-fast page in code or data from L2 SRAM. If
code/data is to be paged in from external memory, EDMA must be used. However, very-frequent paging
may add more overhead than caching. So a trade-off must be found between the SRAM and cache size.
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3.2.3 Signal Processing versus General-Purpose Processing Code

3.3 Procedural-Level Optimizations

Procedural-Level Optimizations www.ti.com

It may be beneficial to distinguish between DSP-style processing and general-purpose processing in an
application.

Since control and data flow of DSP processing are usually well understood, the code better lends itself to
a more careful optimization than general-purpose code. General-purpose processing is typically
dominated by straight-line execution, control flow, and conditional branching. This code typically does not
exhibit much parallelism and execution depends on many conditions and tends to be largely
unpredictable. That is, data memory accesses are mostly random, and access to program memory is
linear with many branches. This makes optimization much more difficult. Therefore, in the case when L2
SRAM is insufficient to hold code and data of the entire application, it is recommended to allocate
general-purpose code and associated data in external memory and allow L2 cache to handle memory
accesses. This makes more L2 SRAM memory available for performance-critical signal processing code.
Due to the unpredictable nature of general-purpose code, L2 cache should be made as large as possible.
The cache that can be configured between 32K bytes and 256K bytes.

DSP code and data may benefit from being allocated in L2 SRAM or L1 SRAM. Allocation in L2 SRAM
reduces cache overhead and gives you more control over memory accesses since only level 1 cache is
involved whose behavior is easier to analyze. This allows you to make some modifications to algorithms in
the way the CPU is accessing data, and/or to alter data structures to allow for more cache-friendly
memory access patterns.

Allocation in L1 SRAM eliminates any caching altogether and requires no memory optimization except for
bank conflicts.

Procedural-level optimizations are concerned with changing the way data and functions are allocated in
memory, and the way functions are called. No changes are made to individual algorithms, that is
algorithms (for example, FIR filters, etc.) that were implemented for a flat memory model are used as is.
Only the data structures that are accessed by the algorithm are optimized to make more efficient use of
cache. In most cases these type of optimizations are sufficient, except for some algorithms such as the
FFT whose structure has to be modified in order to take advantage of cache. Such a cache-optimized FFT
is provided in the C674x DSP Library (DSPLIB).

The goal is to reduce the number of cache misses and/or the stall cycles associated with a miss. The first
can be achieved by reducing the amount of memory that is being cached (see Section 3.3.1) and reusing
already cached lines. Reuse can be achieved by avoiding evictions and writing to preallocated lines. Stall
cycles of a miss can be reduced by exploiting miss pipelining.

We can distinguish between three different read miss scenarios:
1. All data/code of the working set fits into cache (no capacity misses by definition), but conflict misses

occur. The conflict misses can be eliminated by allocating the code or data contiguously in memory.
This is discussed in Section 3.3.3 and Section 3.3.4.

2. The data set is larger than cache, contiguously allocated, and not reused. Conflict misses occur, but no
capacity misses (because data is not reused). The conflict misses can be eliminated, for instance by
interleaving cache sets. This is discussed in Section 3.3.5.

3. The data set is larger than cache, capacity misses (because same data is reused) and conflict misses
occur. Conflict and capacity misses can be eliminated by splitting up data sets and processing one set
at a time. This method is referred to as blocking or tiling and is discussed in Section 3.3.6.

Avoiding stalls that are caused directly or indirectly by the write buffer are described in Section 3.3.7.

Processing chains, in which the results of one algorithm form the input of the next algorithm, provide an
opportunity to eliminate all cache misses except for the compulsory misses of the first algorithm in the
chain. This is explained in Section 3.3.2. A more comprehensive example that demonstrates this important
concept is provided in Section 3.3.2.
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3.3.1 Reduce Memory Bandwidth Requirements by Choosing Appropriate Data Type

3.3.2 Processing Chains
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func2 out2
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It should be ensured that memory-efficient data types are chosen. For instance, if the data is maximum
16-bits wide, it should be declared as short rather than integer. This halves the memory requirements for
the array, which also reduces the number of compulsory misses by a factor of 2. This typically only
requires a minor change in the algorithm to accept the new data type. Additionally, the algorithm is likely
to execute much faster, since smaller data containers may allow SIMD optimizations to be performed by
the compiler. Especially in the cases where an application is ported from another platform to a DSP
system, inefficient data types may exist.

Often the results of one algorithm form the input of the next algorithm. If the algorithms operate
out-of-place (that is, the results are placed in an array different from the input), the input array gets
allocated in L1D, but the output is passed through the write buffer to next lower memory level (L2 or
external memory). The next algorithm then again suffers miss penalties when reading the data. On the
other hand, if the output of the first algorithm were written to L1D, then the data could be directly reused
from cache without incurring cache stalls. There are many possible configurations for processing chains.
The concept is shown in Figure 3-3.

Figure 3-3. Processing Chain With 2 Functions

Consider Example 3-2, a 4-channel filter system consisting of a FIR filter followed by a dot product. The
FIR filter in the first iteration allocates in[ ] and h[ ] in L1D and writes out[ ] to L2 SRAM. Subsequently,
out[ ] and w[ ] are allocated in L1D by the dotprod routine. For the next iteration, the FIR routine writes its
results to L1D, rather L2 SRAM, and the function dotprod does not incur any read misses.

In total, four arrays, in[ ], h[ ], out[ ], and w[ ] are allocated in L1D. If it is assumed that the total data
working set required for one iteration fits into L1D, conflict misses can still occur if more than two of the
arrays map to the same sets (since L1D is 2-way set-associative). As discussed in Section 3.3.4, these
arrays should be allocated contiguously in memory to avoid conflict misses. What exact memory allocation
is chosen depends on the size of the arrays and the capacity of L1D.

Example 3-2. Channel FIR/Dot Product Processing Chain Routine

#define NX NR+NH-1
short in [4][NX]; /* input samples */
short out [NR]; /* FIR output */
short w [NR]; /* weights for dot product */
short h [4][NH]; /* FIR filter coefficients */
short out2 ; /* final output */

for (i=0; i<4; i++)
{

fir(in[i], h[i], out, NR, NH);
out2 = dotprod(out, w, NR);

}
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3.3.3 Avoiding L1P Conflict Misses
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The number of input samples, NX, shall be chosen such that the array occupies about one–forth of L1D.
We assume that NH filter taps occupy two cache lines. The number of output samples produced is then
NR = NX – NH + 1. Figure 3-4 shows how the individual arrays map to the L1D cache sets. We can
neglect the coefficient array since it occupies only 4 × NH = 8 cache lines. It can be seen that within one
iteration no more that two arrays map the same sets, that is, no conflict misses will occur. Capacity misses
will also not occur since the total size of the data set accessed within one iteration fits into L1D.

Figure 3-4. Memory Layout for Channel FIR/Dot Product Processing Chain Routine

In this read miss scenario, all code of the working set fits into cache (no capacity misses by definition), but
conflict misses occur. This section first explains how L1P conflict misses are caused and then describes
how the conflict misses can be eliminated by allocating the code contiguously in memory.

The L1P set number is determined by the memory address modulo the capacity divided by the line size.
Memory addresses that map to the same set and are not contained in the same cache line will evict one
another.

Compiler and linker do not give considerations to cache conflicts, and an inappropriate memory layout
may cause conflict misses during execution. This section describes how most of the evictions can be
avoided by altering the order in which functions are linked in memory. Generally, this can be achieved by
allocating code that is accessed within some local time window contiguously in memory.

Consider the code in Example 3-3. Assume that function_1 and function_2 have been placed by the linker
such that they overlap in L1P, as shown in Figure 3-5. When function_1 is called the first time, it is
allocated in L1P causing three misses (1). A following call to function_2 causes its code to be allocated in
L1P, resulting in five misses (2). This also will evict parts of the code of function_1, lines 3 and 4, since
these lines overlap in L1P (3). When function_1 is called again in the next iteration, these lines have to be
brought back into L1P, only to be evicted again by function_2. Hence, for all following iterations, each
function call causes two misses, totaling four L1P misses per iteration.

These type of misses are called conflict misses. They can be completely avoided by allocating the code of
the two functions into nonconflicting sets. The most straightforward way this can be achieved is to place
the code of the two functions contiguously in memory (4).

Note that it also would be possible to move function_2 to any place where none of its sets conflicts with
function_1. This would prevent eviction as well; however, the first method has the advantage that you do
not need to worry about absolute address placement, but can simply change the order in which the
functions are allocated in memory.
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Example 3-3. L1P Conflicts Code

for (i=0; i<N; i++)
{

function_1();
function_2();

}

Figure 3-5. Avoiding L1P Evictions

Note: With code generation tools 5.0 (CCS 3.0) and later, the GROUP directive must be used to
force a specific link order.
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There are two ways for allocating functions contiguously in memory:
• Use the compiler option –mo to place each C and linear assembly function into its own individual

section (assembly functions have to be placed in sections using the .sect directive). Inspect the map
file to determine the section names for the functions chosen by the compiler. In the example, the
sections names are .text:_function_1 and .text:_function_2. Now, the linker command file can be
specified as:

MEMORY
{

L2SRAM: o = 00800000h l = 00010000h
EXT_MEM: o = 80000000h l = 01000000h

}

SECTIONS
{

.cinit > L2SRAM

.GROUP > L2SRAM
{

.text:_function_1 .text:_function_2

.text
}

.stack > L2SRAM

.bss > L2SRAM

.const > L2SRAM

.data > L2SRAM

.far > L2SRAM

.switch > L2SRAM

.sysmem > L2SRAM

.tables > L2SRAM

.cio > L2SRAM

.external > EXT_MEM
}

The linker will link all sections in exactly the order specified within the GROUP statement. In this case,
the code for function_1 is followed by function_2 and then by all other functions located in the section
.text. No changes are required in the source code. However, be aware that using the -mo compiler
option can result in overall code size growth because any section containing code will be aligned at a
32–byte boundary.
Note that the linker can only place entire sections, but not individual functions that reside in the same
section. In case of precompiled libraries or object files that have multiple functions in a section or were
compiled without -mo, there is no way to reassign individual functions to different sections without
recompiling the library.

• To avoid the disadvantage of using –mo, only the functions that require contiguous placement may be
assigned individual sections by using the #pragma CODE_SECTION before the definition of the
functions:

#pragma CODE_SECTION(function_1,".funct1")
#pragma CODE_SECTION(function_2,".funct2")
void function_1(){...}
void function_2(){...}
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The linker command file would then be specified as:
...

SECTIONS
{

.cinit > L2SRAM

.GROUP > L2SRAM
{

.funct1.funct2

.text
}

.stack > L2SRAM
...
}

Those functions should be considered for reordering that are repeatedly called within the same loop, or
within some time frame.

If the capacity of the cache is not sufficient to hold all functions of a loop, the loop may have to be split up
in order to achieve code reuse without evictions. This may increase the memory requirements for
temporary buffers to hold output data. Assume that the combined code size of function_1 and function_2,
as shown in Example 3-4, is larger than the size of L1P. In Example 3-5, the code loop has been split so
that both functions can be executed from L1P repeatedly, considerably reducing misses. However, the
temporary buffer tmp[ ] now has to hold all intermediate results from each call to function_1.

Example 3-4. Combined Code Size is Larger than L1P

for (i=0; i<N; i++)
{

function_1(in[i], tmp);
function_2(tmp, out[i]);

}

Example 3-5. Code Split to Execute from L1P

for (i=0; i<N; i++)
{

function_1(in[i], tmp[i]);
}
for (i=0; i<N; i++)
{

function_2(tmp[i], out[i]);
}
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3.3.3.1 Freezing L1P Cache

3.3.4 Avoiding L1D Conflict Misses
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The C674x cache controllers allow you to put caches into freeze mode that prevents allocation of new
lines. After freezing, the contents of cache will not be evicted by conflicts (note that all other cache actions
behave as normal, for example, dirty bit updates, LRU updates, snooping, cache coherence operations).

The freeze mode of L1P cache can be controlled through the CSL functions:
• CACHE_freezeL1p();
• CACHE_unfreezeL1p();

This allows code to be forcefully retained in cache. Generally this is useful if code that is reused would be
evicted in between by other code that is executed only once, such as interrupt service routines. Not
caching code that is not reused has no impact on its performance, and at the same time eliminates misses
on cached code that is reused.

An exception may be code that contains non-SPLOOP loops, since every iteration would miss. On the
other hand, SPLOOP loops do not suffer from this problem since they are executed from the CPU internal
loop buffer. For more information on SPLOOP, refer to the TMS320C674x DSP CPU and Instruction Set
Reference Guide (SPRUFE8).

In this read miss scenario, all data of the working set fits into cache (no capacity misses by definition), but
conflict misses occur. This section first explains how L1D conflict misses are caused and then describes
how the conflict misses can be eliminated by allocating data contiguously in memory.

The L1D set number is determined by the memory address modulo the capacity of one cache way divided
by the line size. In a direct-mapped cache such as L1P, these addresses would evict one another if those
addresses are not contained in the same cache line. However, in the 2-way set-associative L1D, two
conflicting lines can be kept in cache without causing evictions. Only if another third memory location is
allocated that maps to that same set, one of the previously allocated lines in this set will have to be
evicted (which one will be evicted is determined by the least-recently-used rule).

Compiler and linker do not give considerations to cache conflicts, and an inappropriate memory layout
may cause conflict misses during execution. This section describes how most of the evictions can be
avoided by altering the memory layout of arrays. Generally, this can be achieved by allocating data that is
accessed within the same local time window contiguously in memory.

Optimization methods similar to the ones described for L1P in Section 3.3.3 can be applied to data arrays.
However, the difference between code and data is that L1D is a 2-way set-associative cache and L1P is
direct-mapped. This means that in L1D, two data arrays can map to the same sets and still reside in L1D
at the same time. The following example illustrates the associativity of L1D.

Consider the dotprod routine shown in Example 3-6 that computes the dot product of two input vectors.

Example 3-6. Dot Product Function Code

int dotprod
(

const short *restrict x,
const short *restrict h,
int nx

)
{

int i, r = 0;

for (i=0; i<nx; i++)
{

r += x[i] * h[i];
}

return r;
}
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Assume we have two input vectors in1 and in2, and two coefficient vectors w1 and w2. We would like to
multiply each of the input vectors with each of the coefficient vectors, in1 ,nbsp;w1צ in2 ,nbsp;w2צ
in1 ,nbsp;w2צ and in2 .nbsp;w1צ We could use the following call sequence of dotprod to achieve this:
r1 = dotprod(in1, w1, N);
r2 = dotprod(in2, w2, N);
r3 = dotprod(in1, w2, N);
r4 = dotprod(in2, w1, N);

Further assume that each array is one-fourth the total L1D capacity, such that all four arrays fit into L1D.
However, assume that we have given no consideration to memory layout and declared the arrays as:
short in1 [N];
short other1 [N];
short in2 [N];
short other2 [N];
short w1 [N];
short other3 [N];
short w2 [N];

The arrays other1, other2, and other3 are used by other routines in the same application. It is assumed
that the arrays are allocated contiguously in the section .data in the order they are declared. The assigned
addresses can be verified in the map file (generated with the option –m). Since each way in L1D is half
the size of the total capacity, all memory locations that are the size of one way apart map to the same set.
In this case, in1, in2, w1, and w2 all map to the same sets in L1D. A layout for L1D is shown on the left in
Figure 3-6. Note that this is only one possible configuration of many. The exact configuration depends on
the start address of the first array, in1, and the state of the LRU bit (which decides the way the line is
allocated). However, all configurations are equivalent in terms of cache performance.

Figure 3-6. Mapping of Arrays to L1D Sets for Dot Product Example

The first call to dotprod allocates in1 and w1 into L1D, as shown in Figure 3-6. This causes S compulsory
misses, where S is the total number of sets. The second call causes in1 and w1 to be evicted and
replaced with in2 and w2, which causes another S misses. The third call reuses w2, but replaces in2 with
in1 resulting in S/2 misses. Finally, the last call again causes S misses, because in1 and w2 are replaced
with in2 and w1.
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3.3.5 Avoiding L1D Thrashing
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To reduce the read misses, we can allocate the arrays contiguously in memory as follows:
short in1 [N];
short in2 [N];
short w1 [N];
short w2 [N];
short other1 [N];
short other2 [N];
short other3 [N];

We grouped together the definitions of the arrays that are used by the routine. Now all arrays, in1, in2, w1,
and w2 can fit into L1D as shown on the right in Figure 3-6. Note that due to the memory allocation rules
of the linker, it cannot always be assured that consecutive definitions of arrays are allocated contiguously
in the same section (for example, const arrays will be placed in the .const section and not in .data).
Therefore, the arrays must be assigned to a user-defined section, for instance:
#pragma DATA_SECTION(in1, ".mydata")
#pragma DATA_SECTION(in2, ".mydata")
#pragma DATA_SECTION(w1, ".mydata")
#pragma DATA_SECTION(w2, ".mydata')
#pragma DATA_ALIGN(in1, 32)
short in1 [N];
short in2 [N];
short w1 [N];
short w2 [N];

Additionally, the arrays are aligned at a cache line boundary to save some extra misses.

Note that it may be necessary to align the arrays at different memory banks to avoid bank conflicts, for
example:
#pragma DATA_MEM_BANK(in1, 0)
#pragma DATA_MEM_BANK(in2, 0)
#pragma DATA_MEM_BANK(w1, 2)
#pragma DATA_MEM_BANK(w2, 2)

Exploiting miss pipelining can further reduce the cache miss stalls. The touch loop discussed in
Section 3.1.2 is used to preallocate all arrays, in1, in2, w1, and w2, in L1D. Since all arrays are allocated
contiguously in memory, one call of the touch routine is sufficient:
touch(in1, 4*N*sizeof(short));
r1 = dotprod(in1, w1, N);
r2 = dotprod(in2, w2, N);
r3 = dotprod(in1, w2, N);
r4 = dotprod(in2, w1, N);

In this read miss scenario, the data set is larger than cache, contiguously allocated, but data is not reused.
Conflict misses occur, but no capacity misses (since data is not reused). This section describes how the
conflict misses can be eliminated, for instance, by interleaving cache sets.

Thrashing is caused if more than two read misses occur to the same set evicting a line before all of its
data was accessed. Provided all data is allocated contiguously in memory, this condition can only occur if
the total data set accessed is larger than the L1D capacity. These conflict misses can be completely
eliminated by allocating the data set contiguously in memory and pad arrays as to force an interleaved
mapping to cache sets.
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Consider the weighted dot product routine shown in Example 3-7.

Example 3-7. Weighted Dot Product

int w_dotprod(const short *restrict w, const short
*restrict x, const short *restrict h, int N)
{

int i, sum = 0;

_nassert((int)w % 8 == 0);
_nassert((int)x % 8 == 0);
_nassert((int)h % 8 == 0);

#pragma MUST_ITERATE(16,,4)
for (i=0; i<N; i++)

sum += w[i] * x[i] * h[i];

return sum;
}

If the three arrays w[ ], x[ ], and h[ ] are allocated in memory such that they are all aligned to the same set,
L1D thrashing occurs. The contents of the L1D set, at the time when an access is made, is listed in
Table 3-3. It can be seen that whenever an array element is attempted to be read, it is not contained in
L1D. Consider the first iteration of the loop, all three arrays are accessed and cause three read misses to
the same set. The third read miss evicts a line just allocated by one of the two previous read misses.
Assume that first w[0] and then x[0] is accessed, causing one full line of w[ ] and x[ ] to be allocated in
L1D. If there was no further allocation to the same set, accesses to w[1] and x[1] in the next iteration
would be cache hits. However, the access to h[0] causes the line of w[ ] allocated by the previous access
to w[0] to be evicted (because it was least-recently-used) and a line of h[ ] to be allocated in its place. In
the next iteration, w[1] causes a read miss, evicting the line of x[ ]. Next, x[1] is accessed that was just
evicted, causing another read miss and eviction of the line of h[ ]. This pattern repeats for every iteration
of the loop. Since each array is evicted just before its line is reused, every single read access in the
routine causes a read miss.

Table 3-3. Contents of an L1D Set at the Time When an Array is Accessed
(Weighted Dot Product Example)

Read Access To Way 0 Way 1 LRU
w[0] – – 0
x[0] w – 1
h[0] w x 0
w[1] h x 1
x[1] h w 0
h[1] x w 1

These conflict misses can be completely eliminated by allocating the data set contiguously in memory and
pad arrays as to force an interleaved mapping to cache sets. For instance:
#pragma DATA_SECTION(w, ".mydata")
#pragma DATA_SECTION(x, ".mydata")
#pragma DATA_SECTION(pad, ".mydata")
#pragma DATA_SECTION(h, ".mydata")
#pragma DATA_ALIGN (w, CACHE_L1D_LINESIZE)
short w [N];
short x [N];
char pad [CACHE_L1D_LINESIZE];
short h [N];
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The linker command file would then be specified as:
...

SECTIONS
{

GROUP > L2SRAM
{

.mydata:w

.mydata:x

.mydata:pad

.mydata:h
}

...
}

This causes allocation of the array h[ ] in the next set, thus avoiding eviction of w[ ]. Now all three arrays
can be kept in L1D. This memory configuration is shown in Figure 3-7. The line of array h[ ] will be only
evicted when the data of one line has been consumed and w[ ] and x[ ] are allocated in the next set.
Eviction of h[ ] is irrelevant since all data in the line has been used and will not be accessed again.

Figure 3-7. Memory Layout and Contents of L1D After the First Two Iterations

In this read miss scenario, data is reused, but the data set is larger than cache causing capacity and
conflict misses. These misses can be eliminated by splitting up data sets and processing one subset at a
time. This method is referred to as blocking or tiling.

Consider the dot product routine that is called four times with one reference vector and four different input
vectors:
short in1[N];
short in2[N];
short in3[N];
short in4[N];
short w [N];

r1 = dotprod(in1, w, N);
r2 = dotprod(in2, w, N);
r3 = dotprod(in3, w, N);
r4 = dotprod(in4, w, N);
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Assume that each array is twice the L1D capacity. We expect compulsory misses for in1[ ] and w[ ] for the
first call. For the remaining calls, we expect compulsory misses for in2[ ], in3[ ], and in4[ ], but would like to
reuse w[ ] from cache. However, after each call, the beginning of w[ ] has already been replaced with the
end of w[ ], since the capacity is insufficient. The following call then suffers again misses for w[ ].

The goal is to avoid eviction of a cache line before it is reused. We would like to reuse the array w[ ]. This
memory configuration is shown in Figure 3-8. The first line of w[ ] will be the first one to be evicted when
the cache capacity is exhausted. In this example, the cache capacity is exhausted after N/4 outputs have
been computed, since this required N/4 2נ arrays = N/2 array elements to be allocated in L1D. If we stop
processing in1[ ] at this point and start processing in2[ ], we can reuse the elements of w[ ] that we just
allocated in cache. Again, after having computed another N/4 outputs, we skip to processing in3[ ] and
finally to in4[ ]. After that, we start computing the second N/4 outputs for in1[ ], and so on.

The restructured code for the example would look like this:
for (i=0; i<4; i++)
{

o = i * N/4;
dotprod(in1+o, w+o, N/4);
dotprod(in2+o, w+o, N/4);
dotprod(in3+o, w+o, N/4);
dotprod(in4+o, w+o, N/4);

}

Figure 3-8. Memory Layout for Dotprod Example
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3.3.7 Avoiding Write Buffer Related Stalls
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We can further reduce the number of read miss stalls by exploiting miss pipelining. The touch loop is used
to allocate w[ ] once at the start of the iteration; then before each call of dotprod, the required input array
is allocated:
for (i=0; i<4; i++)
{

o = i * N/4;
touch(w+o, N/4 * sizeof(short));
touch(in1+o, N/4 * sizeof(short));
dotprod(in1+o, w+o, N/4);

touch(w+o, N/4 * sizeof(short));
touch(in2+o, N/4 * sizeof(short));
dotprod(in2+o, w+o, N/4);

touch(w+o, N/4 * sizeof(short));
touch(in3+o, N/4 * sizeof(short));
dotprod(in3+o, w+o, N/4);

touch(w+o, N/4 * sizeof(short));
touch(in4+o, N/4 * sizeof(short));
dotprod(in4+o, w+o, N/4);

}

It is important to note that the LRU scheme automatically retains the line that hits (w[ ] in this case), as
long as two lines in the same set are always accessed in the same order. (Assume that way 0 in set X is
accessed before way 1 in set X. The next time set X is accessed, it should be in the same order: way 0,
then way 1). This LRU behavior cannot be assured if the access order changes. Example: If after dotprod
array w[ ] is LRU and array in[ ] is MRU, w[ ] was accessed before in[ ]. If the next dotprod accesses w[ ]
first again, the access will hit and the line of w[ ] turns MRU and is protected from eviction. However, if
now the touch loop is used, in[ ] is accessed before w[ ]. Accesses to in[ ] will miss and evict w[ ] since it is
LRU. Therefore, it has to be ensured that after each dotprod w[ ] is MRU. This is achieved by retouching
w[ ] before allocating the next in[ ] with touch. This forces w[ ] to become MRU and is protected form
eviction. The extra touch loop will not cost many cycles since no cache misses occur, that is,
(number of lines)/2 + 16 cycles.

In this example, arrays w[ ] and in[ ] should be aligned to different memory banks to avoid bank conflicts.
#pragma DATA_SECTION(in1, ".mydata")
#pragma DATA_SECTION(in2, ".mydata")
#pragma DATA_SECTION(in3, ".mydata")
#pragma DATA_SECTION(in4, ".mydata")
#pragma DATA_SECTION(w, ".mydata")

/* this implies #pragma DATA_MEM_BANK(w, 0) */
#pragma DATA_ALIGN(w, CACHE_L1D_LINESIZE)
short w [N];
/* avoid bank conflicts */
#pragma DATA_MEM_BANK(in1, 2)
short in1[N];
short in2[N];
short in3[N];
short in4[N];

The L1D write buffer can be the cause for additional stalls. Generally, write misses do not cause stalls
since they pass through the write buffer to the lower level memory (L2 or external memory). However, the
depth of the write buffer is limited to four entries. To make more efficient use of each 128-bit wide entry,
the write buffer merges consecutive write misses to sequential addresses into the same entry. If the write
buffer is full and a another write miss occurs, the CPU stalls until an entry in the buffer becomes available.
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Also, a read miss causes the write buffer to be completely drained before the miss is serviced. This is
necessary to ensure proper read-after-write ordering (the read that caused the miss may access data that
is still in the write buffer). The number of cycles it takes to drain the write buffer adds to the normal read
miss stall cycles. For additional information, see the TMS320C674x DSP Megamodule Reference Guide
(SPRUFK5).

Write buffer related stalls can be easily avoided by allocating the output buffer in L1D cache. Writes will
then hit in L1D rather than being passed on to the write buffer. Consider the constant-vector add routine in
Example 3-8.

Example 3-8. Add Constant to Vector Function

void vecaddc(const short *restrict x, short c, short *restrict r, int nx)
{

int i;

for (i = 0 ; i < nx; i++)
r[i] = x[i] + c;

}

Assume the scenario shown in Example 3-9. A constant c is added to four input vectors in[4][N] and the
results are then used to compute the dot product with the reference vector ref[ ].

In the first iteration, vecaddc may suffer read miss stalls for allocating in[0], and write buffer stalls while
writing results to out[ ]. Also, dotprod will see read miss stalls for out[ ] and ref[ ]. If arrays out[ ] and ref[ ]
can be retained in L1D for the remaining iterations, only compulsory misses for in[ ] will be incurred. Since
out[ ] is now allocated in L1D, writes will hit instead of passing through the write buffer.

Example 3-9. Vecaddc/Dotprod Code

short in[4][N];
short out [N];
short ref [N];
short c, r;

for (i=0; i<4; i++)
{

vecaddc(in[i], c, out, N);
r = dotprod(out, ref, N);

}

The size of each array shall be 2048 elements such that one array occupies one-eighth of L1D, as shown
in Figure 3-9. An optimized C version of the vecaddc routine was used that computes eight results every 2
cycles in the inner loop, that is, it takes N/4 cycles to execute plus some cycles for set-up code. Thus, we
expect to see 512 execute cycles for vecaddc. The routine accesses 2048 elements, 4096 bytes spanning
64 cache lines. Assuming an L2 type with 1 wait state and 4 × 128-bit banks, we expect to see 64
misses × 12.5 stalls = 800 stall cycles. Additionally, there will be write buffer related stalls. Two STDW
instructions are issued every 2 cycles in the kernel. When the output array is not in L1D (for the first
iteration in Example 3-9), the write buffer fills at an average rate of one entry every 2 cycles because the
two double words are merged into one entry. Since the write buffer drains at the same rate, there will not
be any write buffer full conditions. However, every time a read miss occurs, the write buffer will be drained
completely to maintain proper program ordering. Due to support for write merging, the write buffer does
not generally suffer write buffer full stalls, except when there is a stream of write misses occurring out of
order.
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Figure 3-9. Memory Layout for Vecaddc/Dotprod Example

The interaction of write buffer related stalls and read misses is listed in Table 3-4. Consider the loop
prolog and kernel shown in Example 3-10. Every other cycle, 16 bytes are read from the input array.
Therefore, after 8 execute cycles, 16 bytes × 8/2 cycles = 64 bytes are consumed which equals one cache
line. The write buffer entries shall be denoted A, B, C, ..., etc. In the first execution cycle of the prolog, one
read miss and one read hit occurs that costs 12.5 stall cycles. The subsequent 3 LDDW||LDDW’s hit in
L1D. The write buffer starts filling up in execute cycle 8 (the predicate for STW on cycle 6 is false). On
execute cycle 9, the next read miss occurs. The write buffer still contains A that needs to be drained
taking one cycle. Then the write buffer starts filling again. The pattern from execute cycle 9 to 16 now
repeats. In summary, we expect to see the following number of L1D stall cycles:
12.5 + ((12.5 + 1) × 63) = 863.

The dotprod routine sees 128 read misses since it accesses 4096 elements. We expect to see
128 misses × 12.5 cycles = 1600 stall cycles.

For iterations 2 to 4, vecaddc will only suffer read miss stalls for the in[ ] array. Any write buffer related
stalls will no longer occur since the output array was allocated in L1D by the dotprod routine in the
previous iteration. Also, the dotprod routine will not incur any stalls since both out[ ] and ref[ ] arrays are
held in L1D.
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Table 3-4. Interaction of Read Miss and Write Buffer Activity for the First Call of Vecaddc
(n = 0 to 62)

Execute Cycle Read Activity Write Buffer Contents
1 read miss –
2 – –
3 hit –
4 – –
5 hit –
6 – –
7 hit –
8 – A

9 + 8 × n read miss, 1 write buffer drain stall A
10 + 8 × n – B
11 + 8 × n hit B
12 + 8 × n – C
13 + 8 × n hit C
14 + 8 × n – D
15 + 8 × n hit D
16 + 8 × n – E

Example 3-10. C674x Assembly Code for Prolog and Kernel of Routine vecaddc

;*-----------------------------------------------------------------------------*
L1: ; PIPED LOOP PROLOG

LDDW .D2T2 *++B9(16),B7:B6 ; (P) |10|
|| [ A0] BDEC .S1 L2,A0 ; (P)
|| LDDW .D1T1 *A8++(16),A5:A4 ; (P) |10|

ZERO .D1 A1

PACK2 .L1 A3,A3,A3
|| LDDW .D2T2 *++B9(16),B7:B6 ; (P) @|10|
|| [ A0] BDEC .S1 L2,A0 ; (P) @
|| LDDW .D1T1 *A8++(16),A5:A4 ; (P) @|10|

SUB .D2X A6,8,B8
|| MV .D1 A6,A9
|| MVKH .S1 0x10000,A1 ; init prolog collapse predicate

;**---------------------------------------------------------------------------*
L2: ; PIPED LOOP KERNEL

ADD2 .S2X B7,A3,B5 ; |10|
|| [ A0] BDEC .S1 L2,A0 ; @@
|| LDDW .D1T1 *A8++(16),A5:A4 ; @@@|10|
|| LDDW .D2T2 *++B9(16),B7:B6 ; @@@|10|

[ A1] MPYSU .M1 2,A1,A1 ;
|| [!A1] STDW .D1T1 A7:A6,*A9++(16) ; |10|
|| [!A1] STDW .D2T2 B5:B4,*++B8(16) ; |10|
|| ADD2 .S2X B6,A3,B4 ; @|10|
|| ADD2 .S1 A5,A3,A7 ; @|10|
|| ADD2 .L1 A4,A3,A6 ; @|10|

;**----------------------------------------------------------------------------*
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3.4 On-Chip Debug Support
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The C674x devices support a feature that allows read-out of the cache tag RAM (on earlier version of
some C674x devices, this feature is only supported on simulator platforms). This feature is exposed in
Code Composer Studio IDE (version 3.2 or higher) through the Cache Tag RAM Viewer. The viewer
displays for each cache line the cache type, set number, way number, valid/dirty/LRU bits and the line
address (with symbols). This allows you to analyze cache behavior by single-stepping through the
algorithm and observing the changes in the cache. This helps with choosing the appropriate optimization
method and verifying the results of the optimization.
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C674x DSP Cache Coherence

In the cases where no hardware coherence protocol exists, it is the programmer’s responsibility to
maintain cache coherence. For this purpose, C674x DSP memory controllers support cache coherence
operations that can be initiated by the program. The coherence operations include:
• Invalidate (INV): Evicts cache lines and discards data.
• Writeback (WB): Writes back data, lines stay in cache and are marked as clean.
• Writeback–Invalidate (WBINV): Writes back data and evicts cache lines.

They are available for L1P, L1D, and L2 cache. Note that L2 coherence operations always operate first on
L1P and L1D.

Table A-1 and Table A-2 show the coherence matrices for the C674x DSP memory system. If a copy of a
physical address (L2 SRAM or external memory) exists in cache at the time of a write access by a source
entity, the coherence matrices indicate how the data written is made visible to the read access by the
destination entity. This is achieved by different methods:
1. Forward the new data to a cache or memory visible to the destination entity: snoop–write, L1D

WB/WBINV, L2 WB/WBINV.
2. Forward the new data directly to the destination entity: snoop–read.
3. Remove the copy from cache to make the memory containing the new data visible to the destination

entity: L1P INV, L1D INV/WBINV, L2 INV/WBINV.

Part of making data visible to the destination is also ensuring that the data is not corrupted by any eviction
of dirty lines. Evictions could overwrite data written by another entity, if the addresses written are for some
reason still dirty in cache. Evictions are part of general CPU memory activity and are not generally
predictable. How this is achieved is noted in the coherence matrices.

Note that in order to practically meet some of the conditions set out in the coherence matrices, a cache
line must not contain any false addresses, that is, only contains addresses that are meant to be operated
on by the coherence operation. This is achieved by aligning the start and end address of buffers at cache
line boundaries. See the following section for further details.

Note: Practically, some conditions can only be assured if there are no false addresses or stray
CPU accesses. See text box in Table A-1 and Table A-2 for details.

Table A-1. Coherence Matrix for L2 SRAM Addresses
Location of Line at the Time of the Write AccessSource Destination

(Write Access) (Read Access) L1P Cache L1D Cache
DMA DMA No action required since inherently coherent L1D WB, INV, or WBINV to avoid potential

(L1P cache does not affect visibility). corruption of newly written data: Line must
not be dirty at the time of the DMA write
access.

CPU Data Path No action required since inherently coherent Snoop-write: Data written to L2 SRAM and
(L1P cache does not affect visibility). directly forwarded to L1D cache.

CPU Fetch Path L1P INV for visibility: Line must be invalid at L1D WB, INV, or WBINV to avoid potential
the time of the first CPU fetch access after corruption of newly written code: Line must
the write. not be dirty at the time of the DMA write

access.
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Table A-1. Coherence Matrix for L2 SRAM Addresses (continued)
Location of Line at the Time of the Write AccessSource Destination

(Write Access) (Read Access) L1P Cache L1D Cache
CPU Data Path DMA No action required since inherently coherent Snoop-read: Data directly forwarded to DMA

(L1P cache does not affect visibility). without updating L2 SRAM.
CPU Data Path No action required since inherently coherent No action required since inherently coherent.

(L1P cache does not affect visibility).
CPU Fetch Path L1P INV for visibility: Line must be invalid at L1D WB or WBINV for visibility: Dirty line

the time of the first CPU fetch access after with new code must have been written back
the write. by the time the fetch access is made.

Table A-2. Coherence Matrix for an External Memory Address
Address Location at the Time of the Write AccessSource Destination

(Write Access) (Read Access) L1P Cache L1D Cache L2 Cache
DMA/Other DMA/Other No action required since L1D WB, INV, or WBINV to L2 WB, INV, or WBINV to

inherently coherent (L1P avoid potential corruption of avoid potential corruption of
cache does not affect newly written data: Line must newly written data: Line must
visibility). not be dirty at the time of the not be dirty at the time of the

DMA/other write access. DMA/other write access.
CPU Data Path No action required since L1D WB, INV, or WBINV to L2 WB, INV, or WBINV to

inherently coherent (L1P avoid potential corruption of avoid potential corruption of
cache does not affect newly written data: Line must newly written data: Line must
visibility). not be dirty at the time of the not be dirty at the time of the

DMA/other write access. DMA/other write access.
L1D INV or WBINV for L2 INV or WBINV for
visibility: Line must be invalid visibility: Line must be invalid
at the time of the first CPU at the time of the first CPU
read access after the write. read access after the write.

CPU Fetch Path L1P INV for visibility: Line L1D WB, INV, or WBINV to L2 WB, INV or WBINV to
must be invalid at the time of avoid corruption of newly avoid potential corruption of
the first CPU fetch access written code: Line must not newly written code: Line
after the write. be dirty at the time of the must not be dirty at the time

DMA/other write access. of the DMA/other write
access.
L2 INV or WBINV for
visibility: Line must be invalid
at the time of the first CPU
fetch access after the write.

CPU Data Path DMA/Other No action required since L1D WB or WBINV for L2 WB or WBINV for
inherently coherent (L1P visibility: Dirty line with new visibility: Dirty line with new
cache does not affect data must have been written data must have been written
visibility). back by the time the back by the time the

DMA/other read access is DMA/other read access is
made. made.

CPU Data Path No action required since No action required since No action required since
inherently coherent (L1P inherently coherent. inherently coherent.
cache does not affect
visibility).

CPU Fetch Path L1P INV for visibility: Line L1D WB or WBINV for No action required since
must be invalid at the time of visibility: Dirty line with new inherently coherent.
the first CPU fetch access code must have been written
after the write. back by the time the CPU

fetch access is made. No
action required since
inherently coherent.
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The most common scenario is DMA-to-data and data-to-DMA. Examples for the DMA-to-fetch case are
code overlays and for the data-to-fetch case code overlays, copying boot code (memcpy), and
self-modifying code. DMA-to-DMA is an atypical use case. Consider for instance, data written by a DMA to
an address in external memory that is destined for the CPU data path. If at the time of writing a copy of
the address is held in L2 cache, first, any potential corruption of the new data through dirty line evictions
must be avoided and, second, the new data must be made visible (readable) to the CPU data path since it
is written “underneath” L2 cache. Data corruption can be avoided by making the line clean (through
writeback) or removing it from cache altogether (through invalidate). Visibility is achieved by invalidating
the address, so that a CPU read access picks up the new data from external memory rather than the old
data in L2 cache. Practically, you would not operate on individual lines as the coherence matrices might
suggest. Coherence operations rather are initiated on blocks of addresses by specifying the start address
and the length.

Note that stray CPU accesses can reverse the effects of coherence operations. It is assumed here that
they do not exist or have been eliminated. If not, then a stray access could potentially reallocate and/or
redirty a line just before or even during a DMA/other access. The results of this are unpredictable.

In order to assure the requirements set out in the coherence matrices, there are some important practical
implications:
• Any requirements for visibility can be assured if the block coherence operation is initiated any time

after the last write and completes before the first read access to that block.
• The requirement for visibility “Line must be invalid at the time of the first read/fetch access after the

write” can also be assured if the block coherence operation is completed before the first write and
there are no false addresses. See the following section for further details on false addresses.

• The requirement for avoiding data corruption, that is, “Line must not be dirty at the time of the
DMA/other write access” can be assured if the block coherence operation completes before the first
write access by the DMA/other, but only if there are no false addresses. See the following section for
further details on false addresses.

• To avoid data corruption through the use of the invalidate operation (without writeback), false
addresses must be eliminated. See the following section for further details on false addresses.

Some considerations that simplify the use of coherence operations:
• It must be assumed that an address is held in all caches, since it is generally not known where an

individual address is held. Thus, all coherence operations should be performed for a given
source–destination scenario. Practically however, initiating an L2 coherence operation is sufficient in
the case of external memory addresses, since any L2 cache coherence operation implicitly operates
first on L1D and L1P. The exception is the data-to-fetch path scenario for which separate L1D and L1P
coherence operations need to be performed (note that this applies to L2 SRAM as well as external
memory addresses).

• If it is certain that DMA/other never writes to lines dirty in cache, writing back or invalidating the line
before the DMA/other access is not required.

• The two coherence operations required for visibility and avoidance of data corruption can be collapsed
into one by completing an INV or WBINV before the first write access by the DMA/other. Again, this
only works if there are no false addresses.

The following figures show the correct timing for the use of user-initiated cache coherence operations in
each scenario.
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Figure A-1. External Memory: DMA Write, CPU Read (Data)

Figure A-2. External Memory: DMA Write, CPU Read (Code)

Figure A-3. External Memory: CPU Write, DMA Read (Data)
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Figure A-4. L2 SRAM/External Memory: CPU Write (Data), CPU Read (Code)

Figure A-5. L2 SRAM: DMA Write, CPU Read (Code)
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A.1 Eliminating False Addresses
Eliminating False Addresses www.ti.com

In the coherence matrices, it is assumed that each line only contains addresses that are meant to be
operated on. Addresses that were not meant to be operated on are referred to as false addresses. If they
existed then:
• The effect of coherence operations that were meant to make data visible to the CPU could be undone,

but only if they were performed before the write access. The condition stated in the coherence matrix is
that the “line must be invalid at the time of the first read/fetch access after the write”. However, if the
CPU accessed false addresses after lines were already invalidated the line might be allocated again
before the write instead of after as required.

• The effect of coherence operations that were meant to eliminate potential data corruption of newly
written data by the DMA/other could be undone. The condition stated in the coherence matrix is that
the “line must not be dirty at the time of the DMA/other write access”. However, if the CPU wrote to
false addresses in cache after the line was already made clean or invalidated (through WB, INV, or
WBINV), it might be made dirty again.

• The use of L1D INV or L2 INV would cause loss of data if these false addresses were recently written
by the CPU but not yet written back to physical memory. The use of WBINV instead of INV would
avoid this type of data corruption.

Since it is difficult to control CPU accesses to false addresses, it is strongly recommended that false
addresses are eliminated. This is done by aligning the start address of a buffer in external memory at an
L2 cache line size boundary and making its length a multiple of the L2 cache line size (128 bytes). For L2
SRAM addresses, the L1D cache line size (64 bytes) may be used instead, and for the CPU data path
versus fetch path coherence case, the L1P cache line size (32 bytes) may be used (regardless of L2
SRAM or external memory addresses).
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Appendix B
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Revision History

Table B-1 lists the changes made since the previous version of this document.

Table B-1. Document Revision History
Reference Additions/Modifications/Deletions
Table 1-1 Changed Definition of Clean.

Changed Definition of Dirty.
Table 2-3 Changed Operation on L1D Cache for Writeback–Invalidate L1D.

Changed Operation on L1D Cache for Writeback–Invalidate All L1D.
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