
TMS320DM644x DVEVM Windows CE v5.0
Codec Engine Binary

User's Guide

Literature Number: SPRUEV8

March 2007

2 SPRUEV8–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

Contents

Preface ... 5
1 Codec Engine ... 7

1.1 Requirements... 7

1.2 Directory Structure ... 7

1.3 Binary Tree Contents .. 8

2 Updating the XDC Tools ... 10
3 Using the Pre-Built Samples ... 11

3.1 Using the wmvPlayer Sample... 12

3.2 Using the Decode Combo Sample Application ... 12

3.3 Using the Encode Combo Sample Application ... 13

4 Building the Examples ... 13
4.1 Examples Backup .. 13

4.2 Edit XDC User Build Configuration File.. 14

4.3 Audio_copy Sample Build ... 15

4.4 Video_copy Sample Build ... 16

4.5 Vplay Sample Build... 17

4.6 WmvPlayer Sample Build.. 18

4.7 WmaPlayer Sample Build ... 19

4.8 Decode Server Samples... 21

4.9 Encode Server Samples ... 22

4.10 Loopback Server Samples .. 23

5 CMEM Settings Customization .. 24
5.1 Default CMCM Settings.. 24

5.2 CMEM Customization .. 25

SPRUEV8–March 2007 Table of Contents 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

List of Figures

1 Codec Engine Binary Tree ... 7
2 Codec Engine Examples.. 9

List of Tables

1 Terms, Acronyms and Descriptions ... 5

4 List of Figures SPRUEV8–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

Preface
SPRUEV8–March 2007

Read This First

About This Manual

This document accompanies the release of Windows® CE 5.0 BSP for DaVinci-based DVEVM.

Purpose and Scope

The codec engine is a set of libraries, which provide a standard set of APIs for application developers to
run and instantiate audio/video/image/speech algorithms. The interface provided by the codec engine
module is always the same regardless of whether the media algorithms execute locally or remotely.

This document provides information on the build procedure for the codec engine samples on the
Windows® CE 5.0 platform. This release of the codec engine consists of:
• Codec engine core components in binary form
• Codec engine sample applications in source form

Notational Conventions

This document uses the following conventions:

• Backward slashes are used as pathname delimiters for filenames.
• Catalog->Third Party refers to the Catalog Window tree items in the platform builder IDE.
• All the shell commands are in courier new font.
• Menu commands are depicted using the following notation menu name > menu command.

Terms, Acronyms and Descriptions

The following terms and acronyms will be used throughout the document and are described here for
clarification.

Table 1. Terms, Acronyms and Descriptions

Number Term Description

1 API Application Programmer Interface

2 CCS Code Composer Studio™ Software (Version 2.2.1 with OSK board specific set-up
installed)

3 GPP General Purpose Processor (ARM®)

4 MMU Memory Management Unit

5 OAL OEM Adaptation Layer

6 OEM Original Equipment Manufacturer

7 RCV Raw Compressed Video

8 XDM eXpressDSP™ Medium Software

SPRUEV8–March 2007 Preface 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

www.ti.com

Related Documentation from Texas Instruments

Related Documentation from Texas Instruments

The following documents describe the BSP for DaVinci-based DVEVM.

SPRUEV8 — TMS320DM644x DVEVM Windows CE v5.0 Codec Engine Binary Users Guide
Provides information on the build procedure for the codec engine samples on Windows CE 5.0
platform.

SPRUEV9 — TMS320DM644x DVEVM Windows CE v5.0 BSP Users Guide.
Provides information about the release contents of Windows CE 5.0 BSP for DaVinci-based
DVEVM. The document illustrates various components that are part of this release, the procedure
to install this release on to the host system, and the limitations of the release.

SPRUEW1 — TMS320DM644x DVEVM Windows CE v5.0 BSP Bootloader Users Guide.
Provides information about the Windows CE 5.0 bootloader for DaVinci EVM. The document
illustrates various features and the build and flash procedures.

SPRUEW0 — TMS320DM644x DVEVM Windows CE v5.0 BSP DSP/BIOS Link Users Guide.
Describes the usage of the DSP/BIOS Link binaries provided along with the Windows CE 5.00 BSP
for the Davinci EVM platform and the integration procedures in a given Windows CE image.

SPRS283 — TMS320DM6446 Digital Media System-on-Chip Data Manual (SPRS283)
The TMS320DM6446 (also referenced as DM6446) leverages TI’s DaVinci™ technology to meet
the networked media encode and decode application processing needs of next-generation
embedded devices.

Trademarks

Code Composer Studio, eXpressDSP, DSP/BIOS, DaVinci are trademarks of Texas Instruments.

ARM is a registered trademark of ARM Limited.

Linux is a registered trademark of Linux Torvalds in the U.S. and other countries.

Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries.

6 Read This First SPRUEV8–March 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRS283
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

1 Codec Engine

1.1 Requirements

1.2 Directory Structure

User's Guide
SPRUEV8–March 2007

Windows CE 5.0 Port on Davinci EVM

This section explains how to build applications using the sample audio/video copy codec and the VC1 and
WNA decode codecs. Examples currently contain the simple pass-through (copy) codecs implemented in
the XDM algorithm standard.

This document assumes that the sample applications are built using the XDC tools and that the XDC tools
on the host development PC have been updated. If the tools are not updated, the codec engine sample
applications cannot be built for the WinCE targets.

Please refer to Section 2 for the procedure to update the XDC tools.

Figure 1 shows the directory structure of the codec engine binary tree. The following folders are present in
the top level.

• cetools – Contains the cetools components
• examples – Contains the example codecs, servers and the sample applications of the codec engine
• packages – Contains the XDC packages of all the codec engine core components in binary form

Figure 1. Codec Engine Binary Tree

SPRUEV8–March 2007 Windows CE 5.0 Port on Davinci EVM 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

www.ti.com

1.3 Binary Tree Contents

1.3.1 Codecs

1.3.2 Codec Servers

1.3.3 Sample Applications

Codec Engine

This section provides information on the codecs, codec servers and sample applications released in the
binary tree in Figure 1.

The following codecs are supported in this release:

• Audio and video copy codecs
• WMA9 VC1 advanced profile decoder
• WMA9 decoder
• AAC low-complexity decoder
• G711 decoder
• G711 encoder
• MP3 decoder
• H.264 baseline profile decoder
• H.264 baseline profile encoder
• H.264 main profile decoder
• MPEG2 main profile decoder
• MPEG4 simple profile decoder
• MPEG4 simple profile encoder

Note: The codec engine binary tree contains only watermarked versions of the codecs, which limits how
these codecs function.

The following codec servers are supported in this release:

• Audio and video copy codec servers
• VC1 and WMA9 decode combo server
• VC1 decode server
• WMA9 decode server
• Decode combo codec server
• Encode combo codec server
• H.264 loopback encode-decode codec server

Figure 2 shows the expanded view of the codec engine examples folder. The following samples can be
built and executed in this binary release.

Audio_copy\dualcpu Sample application which operates the audio copy codec

avplay Sample Application based on monolithic DLL which operates the
decode combo codec server

decodeApp Sample application based on the XDC build which operates the
decode combo codec server

decodeCombo CE monolithic DLL for the decode combo codec server

encodeApp Sample application based on the XDC build which operates the
encode combo codec server

encodeCombo CE Monolithic DLL for the encode combo codec server

h264encdec CE monolithic DLL for the H.264 loopback codec server

8 Windows CE 5.0 Port on Davinci EVM SPRUEV8–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

www.ti.com

Codec Engine

loopback Sample application based on the monolithic DLL which operates the
H.264 loopback codec server

vc1wmaApp VC1 WMA9 sample application based on the monolithic DLL which
operates the VC1 WMA9 decode combo codec server

vc1wmadecode VC1 WMA9 CE monolithic DLL for the VC1 WMA9 decode combo
codec server

Video_copy\dualcpu Sample application which operates the video copy codec

Vplay VC1 sample application which picks up a pre-determined video
sample input with a .VC1 extension and decodes the data using the
remote VC1 codec server and writes the output onto the hard disk

WmvPlayer Sample application, which picks up a user-specified .VC1 or .RCV file
video input file, decodes the stream and renders it onto the display
device using DirectDraw

wmaPlayer Sample application which picks up a user-specified .RCA file and
generates an equivalent .WAV file for the given input. The application
can be built to render the output to the audio device also

vc1wmadecode Codec engine monolithic DLL build for the VC1 WMA combo decode
server

Note: This release does not include the speech and image samples.

Figure 2. Codec Engine Examples

SPRUEV8–March 2007 Windows CE 5.0 Port on Davinci EVM 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

www.ti.com

2 Updating the XDC Tools

Updating the XDC Tools

This section provides information on the Code Composer Studio software update required to enable the
XDC tools to build for Windows CE platforms.

By default, the XDC tools cannot build components for the GPP side for the Windows CE OS platform;
therefore, it is mandatory that certain changes in the BIOS XDC tools files are made in order to support a
build for the Windows CE OS platform.

The following steps are required to update the XDC tools:

1. Add a BIOS_INSTALL_DIR Windows environment variable. Set it to your SABIOS install location. For
example,
BIOS_INSTALL_DIR = C:/CCStudio_v3.2/bios_5_21_01

Note: Be sure to use the forward slash instead of the backward slash.

2. Add the following line to your system PATH variable:
%BIOS_INSTALL_DIR%\xdctools;

For example, set
path=%path%;%BIOS_INSTALL_DIR%\xdctools;

3. Create a backup copy of BIOS_INSTALL_DIR/xdctools/etc directory.
4. Create a backup copy of BIOS_INSTALL_DIR/xdctools/packages/microsoft/targets directory.
5. Create a backup copy of BIOS_INSTALL_DIR/xdctools/packages/xdc/rts directory.
6. Take the XDCTOOL_PATCH.zip provided with this release and unzip it into your local disk.

For example, unzip XDCTOOL_PATCH.zip into c:\xdctool_patch folder.
7. Copy the updated config.bld file from the xdctool patch package c:\xdctool_patch\etc\config.bld into

your BIOS_INSTALL_DIR/xdctools/etc directory.
8. Copy the updated package.xdc and the new WINCE.xdc from the xdctool patch package

c:\xdctool_patch\packages\microsoft\targets into your
BIOS_INSTALL_DIR/xdctools/packages/microsoft/targets directory.

9. Copy the updated rts directory from the xdctool patch package
c:\xdctool_patch\xdctools\packages\xdc\rts directory into your
BIOS_INSTALL_DIR/xdctools/packages/xdc/rts directory.

10. Copy the new tisb directory from the xdctool patch package c:\xdctool_patch\packages\tisb into the
BIOS_INSTALL_DIR/xdctools/packages directory. It creates a new folder named tisb under the
BIOS_INSTALL_DIR/xdctools/packages directory.

11. Update the BIOS_INSTALL_DIR \xdctools\packages\microsoft\targets\Wince.xdc file. This file
contains the standard set of Windows CE include paths such as WinCE ARM cross-compiler and
assembler paths that are referred by the XDC GMAKE tool.

12. Search for the keyword ITarget.Command cc in the Wince.xdc file. Under this section, update the
opts field. This field contains the path for your Windows CE installation, Windows CE Public OAK,
SDK paths which are referred to during the codec engine build.

13. Update the BIOS_INSTALL_DIR\xdctools\etc\config.bld file to reflect your Windows CE root
installation. This file has a variable named msWinCEToolsDir, which must be pointed to during your
Windows CE root installation.

14. Navigate to BIOS_INSTALL_DIR/xdctools/packages/microsoft/targets and run the following
commands:

a. Clean the targets package
prompt> xdc clean

b. Build the RTSC package
prompt> xdc

The following log shows a sample execution of the above commands.

10 Windows CE 5.0 Port on Davinci EVM SPRUEV8–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

www.ti.com

3 Using the Pre-Built Samples

Using the Pre-Built Samples

C:\CCStudio_v3.2\bios_5_21\xdctools\packages\microsoft\targets>xdc clean

C:\CCStudio_v3.2\bios_5_21\xdctools\packages\microsoft\targets>xdc
making package.mak (because of package.bld) ...
generating interfaces for package microsoft.targets (because
package/package.xdc.xml is older than package.xdc
) ...

translating VC98
translating Win32
translating Net32
translating WinCE
translating ITarget

all files complete.

C:\CCStudio_v3.2\bios_5_21\xdctools\packages\microsoft\targets>

15. Navigate to BIOS_INSTALL_DIR/xdctools/packages/microsoft/targets/rts and run the following
commands:

a. Clean the XDC package
prompt> xdc clean

b. Build the RTS package
prompt> xdc

The following shows a sample log of the above command execution.

C:\CCStudio_v3.2\bios_5_21\xdctools\packages\microsoft\targets\rts>xdc clean

C:\CCStudio_v3.2\bios_5_21\xdctools\packages\microsoft\targets\rts>xdc
making package.mak (because of package.bld) ...
generating interfaces for package microsoft.targets.rts (because
package/package.xdc.xml is older than package
.xdc) ...
all files complete.
C:\CCStudio_v3.2\bios_5_21\xdctools\packages\microsoft\targets\rts>

This section explains how to use the pre-built sample applications that are part of this codec engine binary
release.

This release of the codec engine binary tree provides the following pre-built sample applications:
• Audio/video copy codec samples - Sample application which uses the audio/video copy codecs.
• Decode combo codec server samples - Two sample applications are based on the decode combo

codec server.

– Avplay - sample application reads a user-specified H.264, MPEG2, MPEG4, AAC or MP3 file,
decodes it, and renders the output to either the display or the audio driver.

– decodeApp - sample application reads a user-specified H.264, MPEG2, MPEG4, AAC or MP3 file,
decodes it, and writes the decoded file into the user-specified output file.

• Encode combo codec server samples - This release has one sample application which is based on the
encode combo codec server.

– encodeApp - sample application reads a user-specified Raw YUV or PCM input file, encodes it
using either the H.264, MPEG4 or G711 encoder, and writes the encoded data into the
user-specified output file.

• H.264 loopback codec server samples - This release has one sample application which is based on
the H.264 loopback codec server

– Loopback - sample application based on the monolithic DLL concept which basically accepts a
user-specified YUV file, encodes it, decodes the encoded output,and writes the decoded YUV file
back into another output YUV file.

• VC1 WMA decode combo samples - Three sample applications are based on the VC1 WMA decode
combo server.

SPRUEV8–March 2007 Windows CE 5.0 Port on Davinci EVM 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

www.ti.com

3.1 Using the wmvPlayer Sample

3.2 Using the Decode Combo Sample Application

Using the Pre-Built Samples

– Vplay - sample application reads a pre-designed .VC1 file and generates the YUV equivalent of the
input file.

– wmvPlayer - sample application reads a user-specified .VC1 or .RCV file and renders the decoded
YUV frame into display.

– wmaPlayer - sample application reads a user-specified .RCA file and renders the decoded PCM
output into the audio driver.

– vc1wmaApp - sample application decodes a predefined video and audio stream and render the
output to the display and audio drivers, respectively.

This section provides information on how to invoke the wmvPlayer application.

1. Build a regular mobile hand-held based configuration image from the platform builder. Select
DirectDraw component in the image. If the video sample files are loaded into secondary storage, then
select the appropriate storage components into the Image.

2. Select Third Party→BSPs→DaVinci→Codec Engine Demo→VC1 Decoder Demo catalog
component.

• This catalog item performs necessary configuration for integration of the VC1 DSP decoder,
sample VC1 file and wmvPlayer executable and also the codec engine DLLs into the underlying
NK.BIN. Selecting this item into the workspace during building of the NK.BIN ensures that the VC1
decoder demo application wmvPlayer.exe is merged into the image.

• If the wmvPlayer application is invoked without specifying any input file, it defaults to
SA10094_720X480.vc1. However, the user can specify custom video files through a command-line
argument. To specify the command-line arguments, invoke the application through the target
control shell or the command shell in the NK.BIN.

3. Once the rendering is complete, press the CC button on the IR remote to quit the application.

This section provides information on selecting and executing the pre-built decode combo sample
application.

1. Build a regular mobile-handheld configuration OS Image with KITL support. Include the Third Party >
BSPs > DAVINCI > Codec Engine Demo > Decode Combo Demo Catalog component in the image.

2. This component ensures that the decode combo server (decodeCombo.x64P), decode combo
monolithic DLL (decodeCombo.dll), and the decode sample application (encodeApp.exe), are copied
and merged into the Windows CE OS Image.

3. This catalog component copies the required DSP/BIOS LINK DLLs into the OS image, and also copies
the required codec engine registry settings into the final OS image registry file.

4. Once the OS image build is complete, boot the Davinci EVM board with the OS image.
5. After the target loads and the initialization is complete, using the Remote Tools, copy the required

H.264 or MPEG2 or MPEG4 or AAC or MP3 files into the secondary storage (hard disk) or on the root
folder of the target device.

6. Execute the sample application by invoking the same in the target control shell using the commands
avplay

This application expects the following command-line parameters:
-d Decoder type to be instantiated. [H264, or MPEG2 or MPEG4 or AAC or MP3]
-i Input file to be decoded with the complete path
-w Width of the frame if the input file contains Video data
-h Height of the frame if the input file contains Video data

7. The application launches and invokes the appropriate decoder based on the input file type specified by
the user. Note that this application requires the extension name to be specified for the input files. The
appropriate decoder is invoked based only on the input file extension.

8. For video input files, the application invokes the appropriate video decoder (H.264, MPEG2 or MPEG4)
and for audio input file, it invokes the appropriate audio decoder (AAC or MP3).

9. The application reads the input file on a frame basis, decodes the same, and renders the output to

12 Windows CE 5.0 Port on Davinci EVM SPRUEV8–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

www.ti.com

3.3 Using the Encode Combo Sample Application

4 Building the Examples

4.1 Examples Backup

Building the Examples

either to the video display or the audio driver.

This section provides information on selecting and executing the pre-built encode combo sample
application.

1. Build a regular mobile-handheld configuration OS image with KITL support. Please include the Third
Party > BSPs > DAVINCI > Codec Engine Demo > Encode Combo Demo Catalog component in the
image.

2. This component ensures that the encode combo server (encodeCombo.x64P), encode combo
monolithic DLL (encodeCombo.dll) and the decode sample app (avplay.exe), are copied and merged
into the Windows CE OS image.

3. Note that this catalog component also copies the required DSP/BIOS LINK DLLs into the OS image. It
also copies the required codec engine registry settings into the final OS image registry file.

4. Once the OS image build is complete, boot the Davinci EVM Board with the OS image.
5. After the target loads and the initialization is complete, use the remote tools and copy the required raw

video or audio file (for raw video, YUV 422 format files are required and for audio raw PCM files are
required) into the secondary storage (hard disk) or on the root folder of the target device.

6. Execute the sample application by invoking it in the target control shell using the command
s encodeApp

This application expects the following command-line parameters:
-i Raw video or audio input file to be encoded
-o Output File into which the encoded output is to be stored with the extension (.264 for H.264, or
.mpeg4 for MPEG4) or (.g711 for G711)
-w Width of the frame if the input file contains video data
-h Height of the frame if the input file contains video data
-n Number of video/audio frames to be encoded

7. The application launches and invokes the appropriate encoder based on the output file type specified
by the user. This application requires the extension name to be specified for the output files. The
appropriate encoder is invoked based only on the output file extension.

8. For video output files, the application invokes the appropriate video encoder (H.264 or MPEG4) and for
audio output files, it invokes the G711 Encoder.

9. The application reads the input file on a frame basis encodes the same and writes the encoded data
into the user-specified output file.

This step is optional, but recommended if you plan to modify the samples in any way. Copy the entire
examples tree out of the binary tree. It will ensure you have a backup copy of the original examples, as
provided by the codec engine product.

Note: The following notation will be used throughout this document.

• <CE_EXAMPLES_INSTALL_DIR> - Absolute path of the examples directory or
the copy you made.

• <CE_INSTALL_DIR> - Root directory of your codec engine installation. The
original examples are in <CE_INSTALL_DIR>/examples.

• <BIOS_INSTALL_DIR> - Root directory of your DSP/BIOS™ software installation.

• <XDC_INSTALL_DIR> - Root directory of your xdctools installation.
• directory/file - Position of the file relative to the examples directory; for examples,

codecs/makefile refers to
<CE_EXAMPLES_INSTALL_DIR>/codecs/makefile.

SPRUEV8–March 2007 Windows CE 5.0 Port on Davinci EVM 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

www.ti.com

4.2 Edit XDC User Build Configuration File

4.2.1 Edit xdcpaths for Defining Build Variables

Building the Examples

The file <CE_EXAMPLES_INSTALL_DIR>/user.bld at the root of the Examples directory informs the XDC
tools (tools which the codec engine uses to build itself, codecs, servers, etc.) where to find compilers and
other tools on the user's system. Open this file in a text editor.

• Build.targets

– The codec engine is configurable and runs in many different environments. The Build.targets array
specifies which targets you want to build for. By default, the WinCE target is enabled.

• Toolchain roots - rootDir

– C64P.rootDir - Specify where your C64 tools are. Edit the string (directory name) assigned to the
C64P.rootDir variable. This is the directory that contains bin/, include/, and lib/ subdirectory (this is
only necessary if C64P is included in your Build.targets array). This is to be updated only if building
the codec server is required.

– WinCE.rootDir – Specify where your Windows CE installation is available. Edit the string (directory
name) assigned to this variable. This is the directory that contains the /PUBLIC and /SDK
subdirectories of the Windows CE installation.

– UCARM9.rootDir – Specify where your uclibc-based Arm9 tools are. Edit the string (directory name)
assigned to the UCArm9.rootDir variable. This is only necessary if UCArm9 is included in your
Build.targets array; it is not by default.

– Linux86.rootDir - Specify where your native, Linux®-x86 tools are. Edit the string (directory name)
assigned to the Linux86.rootDir variable. This is only necessary if Linux86 is included in your
Build.targets array.

The xdcpaths.mak file, located at the root of the examples/ directory, defines where the codec engine is
installed, where BIOS is, where the XDC tools are, and where individual codec engine packages reside.
Open this file in a text editor and then:

1. Specify the location of your codec engine installation:
Uncomment the CE_INSTALL_DIR = line and specify, as the value, the absolute path to your codec
engine installation directory.

2. Specify the location of the BIOS installation:
Uncomment the BIOS_INSTALL_DIR = line and specify the absolute path to your DSP/BIOS
installation directory.

3. Specify where your XDC tools are installed:
Uncomment the XDC_INSTALL_DIR = line and specify the absolute path to your XDC tools installation
directory.
If your CE distribution does not include a cetools directory, you may also have to define the following
variables:

4. Specify where your xDAIS installation directory is (note that this must be xDAIS 5.00 or greater, as the
ti.xdais.dm package is not available in previous xDAIS releases):
Uncomment the XDAIS_INSTALL_DIR = line and specify, as the value, the absolute path to your
xDAIS installation directory.

5. Specify where your DSP Link installation is:
Uncomment the DSPLINK_INSTALL_DIR = line and specify the absolute path to your DSP Link
installation directory.

Note: Please do not set the path completely to DSPLINK. The build tool checks for the dsplink
package starting from cetools/packages/dsplink.

6. Specify where your CMEM installation is:
Uncomment the CMEM_INSTALL_DIR = line and specify the absolute path to your CMEM installation
directory.

7. Specify where your Framework components installation is:
Uncomment the FC_INSTALL_DIR = line and specify the absolute path to your FC installation
directory. Currently, Framework components are not available for ARM or x86, so this is only
necessary when building DSP-side content.

14 Windows CE 5.0 Port on Davinci EVM SPRUEV8–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

www.ti.com

4.3 Audio_copy Sample Build

Building the Examples

8. Each directory contains a GNU makefile which enables you to build the sample in the current directory.
Top-level directories also contain a makefile which steps into subdirectories and builds all the
examples under the parent directory.

9. The xdcpaths.mak file is included by the individual makefiles for all the example codecs, servers, and
applications.

CAUTION

Most build troubles occur when one of the various *_INSTALL_DIR variables
are incorrect. Make sure there are no extra spaces, that every individual path
(segment separated by the semicolon) is correct, character for character, and
the build process is very likely to go smoothly.

The following steps build an Audio_copy sample application.

1. Edit GPP audio_copy client application makefile to specify package paths for the GPP client
application.

• File apps/audio_copy/dualcpu/makefile builds the GPP client application for the DSP server above.
2. Use the GPP (ARM, on DaVinci™) application to read input audio file in.dat, call the DSP audio

encoder codec via the codec engine, call the DSP audio decoder codec on the intermediate data, and
write the resulting output data to a file, out.dat. Since both codecs are really just copy codecs, in.dat
and out.dat should be identical.
This makefile, is an example of a Windows CE console application building through a RTSC makefile,
with several insertions in the makefile that enable inclusions of XDC-generated portions of the
application.
The audio sample application contains the following sources:
app.cfg: RTSC configuration script that determines what codecs will be made known to the codec
engine running on the ARM
app.c: Contains the main() and the encodeDecodeFile() routine which invokes various wrapper calls
present in ceapp.c
ceapp.c: Contains the routines to initialize the codec engine, and invokes various VISA calls

3. Build the GPP audio_copy client application

a. Build a regular mobile hand-held configuration workspace image in the platform builder IDE.
b. Using the Build OS → Open Release Directory command, invoke a command-shell window from

PB.
c. Update the paths environment variable to include the <BIOS_INSTALL_DIR> \xdctools folder in the

standard list of paths.
path=%path%;%BIOS_INSTALL_DIR%\xdctools;

d. Navigate to the directory <CE_EXAMPLES_INSTALL_DIR>/apps/audio_copy/dualcpu (where the
makefile is located) and type:
gmake clean
gmake

The preceding steps build the Audio_Copy sample application app.exe.
4. Copy the audio copy codec server, all.x64P, in.dat, and app.exe into the project’s release folder.

SPRUEV8–March 2007 Windows CE 5.0 Port on Davinci EVM 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

www.ti.com

4.3.1 Running Audio_Copy

4.4 Video_copy Sample Build

Building the Examples

This section assumes that a mobile hand-held configuration image is built and the resulting Image has the
necessary registry settings for codec engine and DSP/BIOS LINK components.

Note: Please ensure that dspbioslink.dll and dsplinkapi.dll are merged into the workspace image
either by updating the platform.bib or the project specific project.bib. Additionally, the
registry settings of codec engine and DSP/BIOS LINK should also be merged into the
resulting reginit.ini file.

Follow these steps to execute the Audio_copy application.

1. Power-up the evaluation module (EVM) board and download the image.
2. Once the image loads and comes up, using the remote tools, copy the audio/video copy codec server

all.x64P and in.dat file into the target’s root folder.
Important: Please ensure that DSP/BIOS LINK dll is loaded at image start-up.

3. Execute the app.exe.

The following steps are necessary to build a Video_copy sample application.

1. Edit GPP video_copy client application makefile to specify package paths for the GPP client
application.

2. File apps/video_copy/dualcpu/makefile builds the GPP client application for the DSP server above.
3. Use the GPP (ARM, on DaVinci) application to read input video file in.dat, call the DSP video encoder

codec via the codec engine, call the DSP video decoder codec on the intermediate data, and write the
resulting output data to a file, out.dat. Since both codecs are really just copy codecs, in.dat and out.dat
should be identical.
The video sample application contains the following sources:
ceapp.cfg: RTSC configuration script that determines what codecs will be made known to the codec
engine running on the ARM.
app.c: Contains the main() and the encodeDecodeFile() routine which invokes various wrapper calls
present in ceapp.c.
ceapp.c: Contains the routines to initialize the codec engine, and invokes various VISA calls.

4. Build the GPP video_copy client application.

a. Build a regular mobile hand-held configuration workspace image in the platform builder IDE.
b. Using the Build OS → Open Release Directory command, invoke a command-shell window from

PB.
c. Update the paths environment variable to include the <BIOS_INSTALL_DIR> \xdctools folder in the

standard list of paths.
path=%path%;%BIOS_INSTALL_DIR%\xdctools;

d. Navigate to the directory <CE_EXAMPLES_INSTALL_DIR>/apps/video_copy/dualcpu (where the
makefile is) and type:
gmake clean
gmake

The preceding steps build the Video_Copy sample application app.exe.
5. Copy the video copy codec server, all.x64P, in.dat and app.exe into the project’s release folder.

16 Windows CE 5.0 Port on Davinci EVM SPRUEV8–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

www.ti.com

4.4.1 Running Video_Copy

4.5 Vplay Sample Build

Building the Examples

This section assumes that a mobile hand-held configuration image is built and the resulting image has the
necessary registry settings for codec engine and DSP/BIOS LINK components.

Note: Please ensure that the dspbioslink.dll and dsplinkapi.dll are merged into the workspace
image either by updating the platform.bib or the project specific project.bib. Additionally,
the registry settings of the codec engine and DSP/BIOS LINK should also be merged into
the resulting reginit.ini file

The following steps execute the video_copy application.

1. Power-up the EVM board and download the image.
2. Once the image loads and comes up, using the remote tools, copy the audio/video copy codec server

all.x64P and in.dat file into the target’s release folder.
Important: Please ensure that the DSP/BIOS LINK dll is loaded at image start-up.

3. Execute the app.exe.

The Vplay sample application uses a real codec. It is a sample application based on the VC1 decoder. It
takes as input a .VC1 file which contains compressed raw video data, passes the same to the DSP VC1
codec server, reads the result from the DSP, and then writes the decoded output frames into a file named
output.yuv onto the hard disk of the DaVinci EVM board.

In order to execute the vplay sample application, ensure that the Windows CE OS image is built with the
hard disk component selected, and the storage manager component (FAT FileSystem and partition driver)
are selected.

1. Edit the GPP vplay client application makefile to specify package paths for the GPP client application.
2. File apps/vplay/makefile builds the GPP client application for the DSP server above.
3. Use the GPP (ARM, on DaVinci) application to read input VC1 file SA10094_720X480.vc1, call the

DSP VC1 decoder via the codec engine, and write the resulting output data to a file, output.yuv.
The Vplay sample application contains the following sources:
app.cfg: RTSC configuration script that determines what codecs will be made known to the codec
engine running on the DSP.
app.c: Contains the main() and invokes routines defined in svd.c, bufIo.c
svd.c: Contains the wrapper routines to invoke the video decode algorithm, sends and receives data
from the remote VC1 codec server.
BufIo.c: Contains the file I/O related routines to read the input VC1 file.

4. Build the GPP vplay client application.

a. Build a regular mobile hand-held configuration workspace Image in the platform builder IDE. Ensure
that hard disk support is added into the image.

b. Using the Build OS → Open Release Directory command, invoke a command-shell window from
PB.

c. Update the paths environment variable to include the <BIOS_INSTALL_DIR> \xdctools folder in the
standard list of paths.
path=%path%;%BIOS_INSTALL_DIR%\xdctools;

d. Navigate to the directory <CE_EXAMPLES_INSTALL_DIR>/apps/vplay (where the makefile is) and
type:
gmake clean
gmake

The preceding steps build the Vplay sample application, vplay.exe
5. Copy the VC1 decode codec server vc1wma9decodeCombo.x64P, SA10094_720X480.vc1 and

app.exe into the project’s release folder.

SPRUEV8–March 2007 Windows CE 5.0 Port on Davinci EVM 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

www.ti.com

4.5.1 Running Vplay

4.6 WmvPlayer Sample Build

Building the Examples

This section assumes that a mobile hand-held configuration image is built with hard disk support and the
resulting image has the necessary registry settings for codec engine and DSP/BIOS LINK components.

Note: Please ensure that the dspbioslink.dll and dsplinkapi.dll are merged into the workspace
image either by updating the platform.bib or the project specific project.bib. Additionally,
verify if the hard disk driver is present in the image. The registry settings of the codec
engine and DSP/BIOS LINK should also be merged into the resulting reginit.ini file.

The following steps execute the Vplay application.

1. Power-up the EVM board and download the image.
2. Once the image loads and comes up, using the remote tools, copy the VC1 codec server

vc1decodeCombo.x64P and SA10094_720X480.vc1 file into the target’s release folder.
Important: Please ensure that DSP/BIOS LINK dll is loaded at image start-up.

3. Execute the vplay.exe. It opens the SA10094_720X480.vc1, decodes the same and writes the
generated output into the hard disk in a file named output.yuv.

The wmvPlayer sample application uses a real codec. It is a sample application based on the VC1
decoder. It takes as input a .VC1 file which contains compressed raw video data, passes the same to the
DSP VC1 codec server, reads the result from the DSP and then renders the decoded output frames onto
the display device using DirectDraw. The following steps build the WmvPlayer sample:

1. Edit GPP wmvPlayer client application makefile to specify package paths for the GPP client
application.

2. File apps/wmvPlayer/makefile builds the GPP client application. The GPP (ARM, on DaVinci)
application reads the user specified input VC1 file.
The video sample application contains the following sources:
wmvPlayer.cfg: RTSC configuration script that determines what codecs will be made known to the
codec engine running on the ARM.
bufio.cpp: Contains the file I/O routines to read the input sample VC1 file.
svd.cpp: Contains the wrapper routines to initialize codec engine, and invoke various VISA calls for the
VC1 codec server.
WmvPlayer.cpp: Contains the WinMain() routine for the sample application. Initializes the DirectDraw
infrastructure, calls the routines in bufio.cpp and svd.cpp to decode the frame and render the output
onto display.

3. Build the GPP wmvPlayer client application.

a. Build a regular mobile hand-held configuration workspace image in the platform builder IDE.
Important: Please ensure that DirectDraw component (SYSGEN_DDRAW) is included in the
Windows CE image.

b. Using the Build OS → Open Release Directory command; invoke a command-shell window from
PB.

c. Update the paths environment variable to include the <BIOS_INSTALL_DIR> \xdctools folder in the
standard list of paths.
path=%path%;%BIOS_INSTALL_DIR%\xdctools;

d. Navigate to the directory <CE_EXAMPLES_INSTALL_DIR>/apps/wmvPlayer (where the makefile
is) and type:
gmake clean
gmake

The preceding steps build the VC1 sample application wmvPlayer.exe
4. Copy the VC1 decode codec server vc1wma9decodeCombo.x64P, SA10094_720X480.vc1 and

wmvPlayer.exe into the project’s release folder.

18 Windows CE 5.0 Port on Davinci EVM SPRUEV8–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

www.ti.com

4.6.1 Running WmvPlayer

4.7 WmaPlayer Sample Build

Building the Examples

This section assumes that a mobile hand-held configuration image is built and the resulting image has the
necessary registry settings for codec engine and DSP/BIOS LINK components.

Note: Please ensure that the dspbioslink.dll and dsplinkapi.dll are merged into the workspace
image either by updating the platform.bib or the project specific project.bib. Additionally,
the registry settings of the codec engine and DSP/BIOS LINK should also be merged into
the resulting reginit.ini file.

The following steps execute the WmvPlayer.

1. Power-up the EVM board and download the image.
2. After the image initialization is complete and the Windows CE shell comes up, use the Tools →

Remote File Viewer command to view the folders/files on the target.
3. Copy the VC1 codec server vc1decodeCombo.x64P and SA10094_720X480.vc1 file into the target’s

root folder.
Important: Please ensure that DSP/BIOS LINK dll is loaded at image start-up.

4. Copy the wmvPlayer.exe into the target’s root folder.
5. Close the remote file viewer window and invoke the wmvPlayer.exe application from the Windows CE

target shell. The syntax for invoking this application is:
wmvPlayer <source_vc1_filename.vc1>

For example to invoke SA10094_720X480.vc1 placed in root folder, enter:
s wmvPlayer SA10094_720X480.vc1

Note that this sample application supports playing only compressed raw VC1 file stream and does not
support decode of regular WMV9/VC1 files. The output of this video sample contains three football
players.
The SA10094_720X480.vc1 test file is a sample file containing data worth 29 video frames. This demo
app is a Win32 application, which checks for the WM_CLOSE message.

6. Press the CC button on the IR remote to shutdown the wmvPlayer application. The Windows CE shell
appears back after this is done.

The wmaPlayer sample application uses the WMA audio decoder. It is a sample application based on the
WMA9 decoder. It takes as input a WMA file converted in raw compressed audio (RCA) format. The
application reads the raw audio payloads from the user specified RCA file, invokes the audio decoder
VISA routines to decode the same. The decoded output can either be written into a output WAVE file or
the same can be written by invoking the Windows CE Wave API manager routines.

1. Edit the GPP wmaPlayer client application makefile to specify package paths for the GPP client
application.

2. File apps/wmaPlayer/makefile contains the build rules to build the wmaPlayer sample application.
The associated package.bld provides instructions on the various source modules to be built in order to
generate the executable.
The wmaPlayer package.bld contains the following sources:
wmaPlayer.cfg: RTSC configuration script that determines what codecs will be made known to the
codec engine running on the ARM.
audioDecoder.c: Contains the audio decoder related routines. It contains all the routines to read the
input RCA file, initialize the audio decoder algorithm, invoke the decoder process routines.
wmaPlayer.c: Contains the WinMain() routine for the sample application. Initializes the audio decoder
codec engine, invokes the routines defined audioDecoder.c to read the user specified Input file and
perform the audio decoding.

3. Build the GPP wmaPlayer client application.

a. Build a regular mobile hand-held configuration workspace Image in the platform builder IDE.
Important:Ensure that the audio driver and waveform audio [SYSGEN_AUDIO] is included in the
Windows CE image.

SPRUEV8–March 2007 Windows CE 5.0 Port on Davinci EVM 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

www.ti.com

4.7.1 Running the wmaPlayer

4.7.2 Audio Rendering

Building the Examples

b. Using the Build OS → Open Release Directory command, invoke a command-shell window from
PB.

c. Update the paths environment variable to include the <BIOS_INSTALL_DIR> \xdctools folder in the
standard list of paths.
path=%path%;%BIOS_INSTALL_DIR%\xdctools;

d. Navigate to the directory <CE_EXAMPLES_INSTALL_DIR>/apps/wmaPlayer (where the makefile
is) and type:
gmake clean
gmake

The preceding steps build the WMA audio sample application wmaPlayer.exe.

This section provides information on using the audio decoder sample application. This section assumes
that the steps mentioned in Section 2 are completed before performing the procedure mentioned in this
section.

1. Build a mobile-handheld configuration based Windows CE Image derived from the DaVinci BSP
catalog component.

2. Ensure that the audio driver and the waveform audio component are selected in the image.
3. Build the audio decoder sample application using the procedure mentioned in Section 4.7.
4. Boot the DaVinci EVM board with the Windows CE image.
5. Using the Remote tools, copy the

<CE_EXAMPLES_INSTALL_DIR>/servers/vc1wmadecode/vc1wma9decodeCombo.x64P DSP codec
image file onto the device.

6. Copy the <CE_EXAMPLES_INSTALL_DIR>/apps/wmaPlayer/wmaPlayer.exe into the device.
7. Copy a sample RCA file <CE_EXAMPLES_INSTALL_DIR>/apps/wmaPlayer/welcome.rca file onto the

device.
8. Invoke the wmaPlayer executable from the target shell window. The syntax is given below:

s wmaPlayer welcome.rca

By default, the sample application is built to generate an output WAVE file for the given input RCA File.
The wmaPlayer.exe generates an output.wav file in the root folder of the target device.
The application is a Windows application which checks for the input Windows messages.

9. Press CC or the ESC button on the IR remote to close the application.

The wmaPlayer sample application can also be built to render the generated output into the audio device
present in the OS image. For generating this version of the sample application, please follow the steps
given below:

1. Follow the steps mentioned in Section 4.7 to set up a build shell for the sample application. In the
header file examples\apps\wmaPlayer\AudioDecoder.hpp, search for the line containing the following:
#define WAVE_OUTPUT_ENABLE 1

2. Comment out this line and then perform a gmake clean and gmake command. The built executable
can be copied into the target device.

3. Now the application invokes a secondary thread which performs the WaveAPI manager calls to submit
a filled WAVEHDR structures. Invoke the wmaPlayer.exe as specified in Step 1 of Section 4.7.1.

4. Once the event object notification is received, it checks for further data to be decoded from the input
file, performs the decode call, and submits another set of WAVEHDR structures to the WAVE API
manager.

5. Repeat this process until the input file is completely decoded or the audio decoder algorithm returns
ERROR.
The application is a Windows application which checks for the input Windows messages.

6. Press CC or the ESC button on the IR remote to close the application

Windows CE 5.0 Port on Davinci EVM20 SPRUEV8–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

www.ti.com

4.8 Decode Server Samples

4.8.1 DecodeApp Sample

4.8.2 AvPlay Sample

Building the Examples

This release of the codec engine has two sample applications for verifying the working of the decode
combo codec server. This section provides information regarding these sample applications, the build
procedure for them, and the necessary configuration. The sample applications provided with this release
are:

decodeApp – This is a console-based application which basically accepts a user specified file (H.264,
MPEG4, MPEG4AAC, MP3 or G.711). The application instantiates the appropriate decoder and writes the
decoded data into pre-designated output files.

Avaplay – This is a console-based application which accepts a user-specified file (H.264 MPEG4,
MPEG4AAC, MP3 or G.711) as input. The application instantiates the appropriate decoder and renders
the output to the display or the audio device.

The decodeApp sample is an application for testing the decode codec combo. The application reads files
in different compression formats, decodes the clip, and writes the result (video/audio) to the appropriate
video and files. DecodeApp supports the following content:

• Video - H.264,MPEG4, MPEG2
• Audio - AAC,MP3
• Speech- G711

The sample application contains the following source files:

decodeApp.c - Source file which contains the WinMain() routine and invokes the various routines which
internally invokes the appropriate decoders.

decodeApp.h – Header file for the routines defined in decodeApp.c

makefile – Makefile which contains the build rules for building the application

package.bld – Package file which contains the RTSC specific configuration

package.xdc– XDC file for the RTSC-based build

ecodeApp.cfg – Configuration file which declares the names of the decode combo server, the decoders

Please follow the procedure mentioned below for building the decodeApp application.

1. Build a regular mobile hand-held configuration Workspace Image in the Platform Builder IDE
2. Using the Build OS →Open Release Directory command, invoke a command-shell window from PB
3. Update the paths environment variable to include the <BIOS_INSTALL_DIR> \xdctools folder in the

standard list of paths
path=%path%;%BIOS_INSTALL_DIR%\xdctools;

4. Update the XDC_PATH variable to include the imports folder in the standard list of paths
set XDCPATH=$(XDC_PATH);C:\wince500\platform\davinci\src\ce-d16\imports

5. Navigate to the directory <CE_EXAMPLES_INSTALL_DIR>/apps/decodeApp (where the makefile is)
and type
gmake clean
gmake

These steps build the decodeApp.exe in the apps/decodeApp folder.

The avplay sample is an application for testing the decode codec combo. The application reads files in
different compression formats; decodes the clip and renders the result (video/audio) to the appropriate
video/audio files.

The Avplay supports the following content:
• video - H.264,MPEG4, MPEG2
• Audio - AAC,MP3

SPRUEV8–March 2007 Windows CE 5.0 Port on Davinci EVM 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

www.ti.com

4.9 Encode Server Samples

4.9.1 EncodeApp Sample

Building the Examples

• Speech- G711
This application is based on the decode combo monolithic DLL and uses the Windows PB tools for
compilation. The sample application contains the following source files:

• audioDecoder.cpp – Source file which contains the audio and speech-related routines
• audioDecoder.hpp - Header file for the routines defined in audioDecoder.cpp
• avplay.cpp – Main source file which contains the WinMain() routine and the corresponding helper

routines
• bufio.cpp – Contains the file I/O related routines
• bufio.h – The header file for the routines defined in bufio.cpp
• svd.cpp – Contains the video decoder wrapper routines. These wrapper routines are invoked by the

routines defined in avplay.cpp
• svd.h – Header file for the routines defined in svd.cpp
• makefile – PB build makefile
• sources – PB build file which contains the list of all the source files to be built and the include, library

paths

Please follow the procedure mentioned below for building the Avplay application.

• Build a regular mobile hand-held configuration Workspace Image in the Platform Builder IDE.
• Using the Build OS →Open Release Directory command, invoke a command-shell window from PB
• Update the path's environment variable to include the <BIOS_INSTALL_DIR> \xdctools folder in the

standard list of paths.
path=%path%;%BIOS_INSTALL_DIR%\xdctools;

• Update the XDC_PATH variable to include the imports folder in the standard list of paths.
set XDCPATH=$(XDC_PATH);C:\wince500\platform\davinci\src\ce-d16\imports

• Navigate to the directory <CE_EXAMPLES_INSTALL_DIR>/apps/avplay (where the sources is) and
type
Build -c

These steps build the avplay.exe under the obj/ARMV4I/ [retail | debug] depending on the build
configuration selected.

This release of the codec engine has one application for verifying the working of the encode combo codec
server. This section provides information regarding these sample applications, the build procedure for
them, and the necessary configuration.

The sample application provided with this release is:

encodeApp - This is a console-based application which basically accepts a user-specified file (YUV or
PCM) and encodes it into the format as specified by the user. The application instantiates the appropriate
encoder and writes the encoded data into a user-specified output file.

The encodeApp sample is an application for testing the encode codec combo. The application expects the
user to specify an input file (YUV or PCM) file and encodes the same and writes the encoded data into the
user specified output file.

This application supports the following content:

• Video - H.264 and MPEG4 Encoding
• Speech- G711 Encoding

The sample application contains the following source files:

• encodeApp.c – Source file which contains the WinMain() routine, invokes the various routines which
internally invokes the appropriate encoder routines.

• encodeApp.h – Header file for the routines defined in encodeApp.c
• makefile – Makefile which contains the build rules for building the application

22 Windows CE 5.0 Port on Davinci EVM SPRUEV8–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

www.ti.com

4.10 Loopback Server Samples

4.10.1 Loopback Sample

Building the Examples

• package.bld – Package file which contains the RTSC-specific configuration
• package.xdc – XDC file for the RTSC-based build
• encodeApp.cfg – Configuration file which declares the names of the encode combo server, the

decoders

Follow the procedure mentioned below for building the encodeApp application.

1. Build a regular mobile hand-held configuration Workspace Image in the Platform Builder IDE.
2. Using the Build OS>Open Release Directory command; invoke a command-shell window from PB.
3. Update the paths environment variable to include the <BIOS_INSTALL_DIR> \xdctools folder in the

standard list of paths.
path=%path%;%BIOS_INSTALL_DIR%\xdctools;

4. Update the XDC_PATH variable to include the imports folder in the standard list of paths.
set XDCPATH=$(XDC_PATH);C:\wince500\platform\davinci\src\ce-d16\imports

5. Navigate to the directory <CE_EXAMPLES_INSTALL_DIR>/apps/encodeApp (where the makefile is)
and type
gmake clean
gmake

These steps build the encodeApp.exe in the apps/encodeApp folder.

This release of the codec engine has sample application for verifying the working of the H.264 loopback
combo codec server. This section provides information regarding this sample application, the build
procedure for it, and the necessary configuration.

The sample application provided with this release is:

loopback - This is a console based application which basically accepts a user-specified file [YUV] and
performs an encode-decode cycle on the input file for a specified number of frames. The application also
allows the user to specify the output YUV file into which the decoded data is stored back. Users can verify
if the encode-decode cycle was valid by manually comparing the input YUV and the output YUV File.

The loopback sample is an application used for testing the H.264 loopback codec combo. The application
accepts a user-specified YUV file; it also expects the user to specify the dimensions of each frame in the
input YUV file and also the number of frames for which the encode-decode cycle is to be repeated.

The application then reads individual frames from the input YUV file, encodes each frame and decodes
the encoded data back, and writes the output of the H.264 decoder into another output YUV file.

This application is based on the decode combo Monolithic DLL and uses the Windows PB tools for
compilation.

The sample appliction contains the following source files:

• app.c - Source file which contains the WinMain() routine. It also contains wrapper routines to invoke
the H.264 encoder and decoder VISA routines.

• App.h - Header file for the routines defined in app.c
• makefile - PB build makefile
• sources - PB build file which contains the list of all the source files to be built and the include, library

paths

Follow the procedure below for building the Avplay application:

• Build a regular mobile hand-held configuration workspace image in the Platform Builder IDE
• Using the Build OS>Open Release Directory command; invoke a command-shell window from PB.
• Update the paths environment variable to include the <BIOS_INSTALL_DIR> \xdctools folder in the

standard list of paths.
path=%path%;%BIOS_INSTALL_DIR%\xdctools;

• Update the XDC_PATH variable to include the imports folder in the standard list of paths.

SPRUEV8–March 2007 Windows CE 5.0 Port on Davinci EVM 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

www.ti.com

4.10.2 Loopback Sample Integration

5 CMEM Settings Customization

5.1 Default CMCM Settings

CMEM Settings Customization

set XDCPATH=$(XDC_PATH);C:\wince500\platform\davinci\src\ce-d16\imports

• Navigate to the directory <CE_EXAMPLES_INSTALL_DIR>/apps/loopback (where the sources is) and
type
build -c

These steps build the loopbackApp.exe under the obj/ARMV4I/ [retail | debug] depending on the build
configuration selected.

This section provides This section provides information on integrating the loopback sample application into
the Windows CE OS Image. Please ensure that the loopback application is built as per the instructions
specified in Section 4.10.1.

Follow this procedure to integrate the h.264 loopback application into the Windows CE OS image.

1. Build a regular mobile hand-held configuration Workspace Image in the Platform Builder IDE.
2. Copy the <CE_EXAMPLES_INSTALL_DIR>/apps/h264encdec/cedll/dll/h264encdec.dll into the

project’s release folder.
3. Update the project.bib file of the Project with the settings below. The settings must be included in the

FILES section of the project.bib below
H264encdec.dll $(_FLATRELEASEDIR)\ H264encdec.dll NK SHM

This ensures that the h264encdec.dll monolithic DLL is integrated into the Windows CE OS image.
4. Perform a MAKEIMG command from the Platform builder IDE.
5. Download the Windows CE OS Image onto the target device.
6. Using the Remote tools, copy the

<CE_EXAMPLES_INSTALL_DIR>/servers/loopback/loopbackCombo.x64P into the root folder of the
target device.

7. Copy the loopbackApp.exe from apps/loopback/obj/ARMV4I/retail folder into the root folder of the
target device.

8. Copy a Raw YUV File into the root folder of the target device.
9. Invoke the loopbackApp.exe using the syntax below:

s loopbackApp i <Input Raw YUV File > -w <Width of each frame in pixels>-h
<height of each frame in pixels> -n <number of frames to encode-decode>

10. The sample application generates an equivalent output YUV file named “out.yuv”. Please check for
this file once the program completes the execution.
The out.yuv file should be identical to the input raw YUV file specified by the user.

This section provides information on customizing the settings of the contiguous cemory (CMEM) allocator
used by the codec engine.

CMEM settings may be modified in the following scenarios:
• The user wants to extend the existing codec engine sample applications with a different set of memory

configuration.
• The user has his/her own set of sample applications utilizing the codec engine.

This section provides information regarding the default CMEM settings as given in the codec engine
binary tree. The default settings are given below:

Windows CE 5.0 Port on Davinci EVM24 SPRUEV8–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

www.ti.com

5.2 CMEM Customization

CMEM Settings Customization

SI. No Memory Range Remarks

1 0x87800000 – 0x88400000 Memory Size of 0xC00000 which is 12MB of which only 10 MB
is currently mapped into Buffer Pools

2 Buffer Pool 0 8 x 810KB = 6635520 bytes which is 6.328 MB
Eight 810KB Buffers The number 810 KB is arrived by taking the maximum frame

size for a PAL D1 Resolution frame buffer which is (720 x 576 x
2) bytes
This block is used by most of the video encode/decode sample
apps

3 Buffer Pool 1 1 x 50.78 = 50.78KB
One 50.7KB Buffer

4 Buffer Pool 2 4 x 1 MB = 4MB
Four 1MB Buffers

The <CE_INSTALL_DIR>/packages/ti/sdo/ce/winceutils/cmem/ce_dll.reg registry file contains the CMEM
settings. Whenever any of the codec engine demo applications are selected into the OS image, the above
default settings will be utilized by executing the sample/client applications.

This section provides information on updating the ce_dll.reg for a different set of memory configuration. As
mentioned in the previous section, the ce_dll.reg registry file contains the CMEM memory settings. The
following shows a sample ce_dll.reg file contents:

[HKEY_LOCAL_MACHINE\Software\TexasInstruments\CodecEngine]
"Dll"="ce_dll.dll"
"PhysMemStart"=dword:87800000
"PhysMemEnd"=dword:88400000
"CE_TRACE"=""
"CE_TRACEFILE"="gt_log.txt"
"CE_TRACEFILEFLAGS"="a"
"NumPools"=dword:3

; First Pool table
; Creation of Twenty 4KB Buffers

[HKEY_LOCAL_MACHINE\Software\TexasInstruments\CodecEngine\Pool0]
"BufferSize"=dword:CA800
"BufferCount"=dword:8

; Second Pool table
; Creation of Ten 128KB Buffers
[HKEY_LOCAL_MACHINE\Software\TexasInstruments\CodecEngine\Pool1]

"BufferSize"=dword:CB20
"BufferCount"=dword:1

; Third Pool table
; Creation of Two 1024KB Buffers
[HKEY_LOCAL_MACHINE\Software\TexasInstruments\CodecEngine\Pool2]

"BufferSize"=dword:100000
"BufferCount"=dword:4

Update the value under the PhysMemEnd registry key if the memory range needs to be extended beyond
the current value.

Note: There are certain sections of the DDR memory reserved for the DSP dynamic heap
allocations. This memory section starts from 0x8B800000 DDR address for the DVEVM
board. Please ensure that the PhysMemEnd does not overlap with this section.

SPRUEV8–March 2007 Windows CE 5.0 Port on Davinci EVM 25
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

www.ti.com

CMEM Settings Customization

For modifying the buffer sizes of any pool, update the BufferSize and the BufferCount registry keys in the
ce_dll.reg file.

Once the changes are performed in the ce_dll.reg file, regenerate the Windows CE OS image which
contains the codec engine components. The resulting Windows CE OS image will contain the updated
CMEM settings.

26 Windows CE 5.0 Port on Davinci EVM SPRUEV8–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV8

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power www.ti.com/lpw Telephony www.ti.com/telephony
Wireless

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti.com/lpw
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	Table of Contents
	Preface
	1 Codec Engine
	1.1 Requirements
	1.2 Directory Structure
	1.3 Binary Tree Contents
	1.3.1 Codecs
	1.3.2 Codec Servers
	1.3.3 Sample Applications

	2 Updating the XDC Tools
	3 Using the Pre-Built Samples
	3.1 Using the wmvPlayer Sample
	3.2 Using the Decode Combo Sample Application
	3.3 Using the Encode Combo Sample Application

	4 Building the Examples
	4.1 Examples Backup
	4.2 Edit XDC User Build Configuration File
	4.2.1 Edit xdcpaths for Defining Build Variables

	4.3 Audio_copy Sample Build
	4.3.1 Running Audio_Copy

	4.4 Video_copy Sample Build
	4.4.1 Running Video_Copy

	4.5 Vplay Sample Build
	4.5.1 Running Vplay

	4.6 WmvPlayer Sample Build
	4.6.1 Running WmvPlayer

	4.7 WmaPlayer Sample Build
	4.7.1 Running the wmaPlayer
	4.7.2 Audio Rendering

	4.8 Decode Server Samples
	4.8.1 DecodeApp Sample
	4.8.2 AvPlay Sample

	4.9 Encode Server Samples
	4.9.1 EncodeApp Sample

	4.10 Loopback Server Samples
	4.10.1 Loopback Sample
	4.10.2 Loopback Sample Integration

	5 CMEM Settings Customization
	5.1 Default CMCM Settings
	5.2 CMEM Customization

