
Application Note
DLT Developer's Guide With Tooling

Ryan Ma

ABSTRACT

The data logger and trace (DLT) peripheral is a key element for non-intrusive data logging with tracing support
in application code. This peripheral can be leveraged for both industrial and automotive applications. C29x
real-time microcontrollers offer a non-intrusive way to data log critical CPU run time content and provide
trace capabilities without additional CPU overhead. This application note focuses on an application use-case
described within the introduction, demonstrating each of the features of the DLT along with how to use the
SysConfig system configuration tool to set-up and program the DLT. There is additional material on how to setup
the DLT visualization tool needed to interpret the data logging and trace contents without the use of external
hardware. SysConfig is a tool that exists integrated in Code Composer Studio or as a stand alone program that
allows users to generate C header and code files using a graphical user interface (GUI). This application note
was done using the F29H859TU8ZEXQL device. However, the content in this application note is applicable to all
devices with the DLT peripheral.

Table of Contents
1 Introduction...2
2 C28x vs C29x vs ARM Logging... 3
3 SysConfig.. 4

3.1 Start or Stop Logging... 4
3.2 Capture Modes...6
3.3 Trigger for transferring Logs...7

4 Interpreting DLT Logs...8
5 Compiler Intrinsic... 8
6 DLT Tool...9

6.1 Visualization... 9
6.2 Walkthrough on Tool...9
6.3 Add Logs to Application... 14
6.4 Export DLT Log.. 14
6.5 CCS Theia..16

7 Summary... 19
8 References.. 19

Trademarks
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SPRADN5 – DECEMBER 2024
Submit Document Feedback

DLT Developer's Guide With Tooling 1

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN5&partnum=

1 Introduction
Why is data logging and trace important in real time control systems?

• Debugging application code during and after development or testing
• Profiling application code
• Creating capture logs of a control system for deep analysis
• Tracing application code flow

There are many applications that require different uses of using data log or trace features on a device. The DLT
provides a way to log critical run time content, and then export out by JTAG, UART, or FSI. If there is no JTAG
connection available, the DLT can still be used if there is a UART or FSI implementation to export the data.
The lines of code controlling what is being logged can be kept in the application code without impact on CPU
performance.

The DLT provides data logging and code flow execution through dedicated instructions provided in the C29x
user guide. When using the DLT for data logging variables or adding code flow markers in the application there
is additional information attached to each log. The additional information is dependent on what mode the DLT is
capturing the logs. The two modes for the additional information added to each log are time stamping or program
counter information. In time stamping mode, the DLT provides information of when variables or code markers are
being logged. In program counter mode, the DLT provides information to know where these logs are happening.

There are dedicated instructions used to log information. The instructions have the following names DLTAG
and DLREG. DLTAGs are used as the code flow markers. DLREGs are the instructions that allow users to
data log variables. With the leverage of multiple instructions running in parallel using the C29x processor these
instructions can run in parallel and provide non-intrusive behavior when data logging or adding code flow
markers to the application code. The co-processor interface (CPI) looks for these dedicated instructions from the
CPU and provides the packet information to the DLT which gets logged to a dedicated memory address region
for each CPU. The CPU or DMA can read out the logs from the DLT internal memory and move the logged
information as needed.

Here is a high level view from going to application code to visualizing the data being logged by the DLT on a PC.

Figure 1-1. DLT Example Code Snippet

This application note explains the steps needed to configure the DLT, data log, and add code markers using the
built in compiler intrinsic. The DLT leverages the compiler and SysConfig to provide the fastest way to get started
with using this peripheral.

The use-case that is discussed throughout this application report is using the DLT to record a temperature
sensor sample and ADC results within ISR.

Introduction www.ti.com

2 DLT Developer's Guide With Tooling SPRADN5 – DECEMBER 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN5&partnum=

2 C28x vs C29x vs ARM Logging

Figure 2-1. C28x vs C29x vs ARM Logging

www.ti.com C28x vs C29x vs ARM Logging

SPRADN5 – DECEMBER 2024
Submit Document Feedback

DLT Developer's Guide With Tooling 3

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN5&partnum=

3 SysConfig
As mentioned in the abstract, this application note utilizes SysConfig to configure the DLT peripheral along with
the other required components such as visualizing the DLT packets. The SysConfig GUI allows users to walk
through the configurations needed to set up the DLT to be ready to start logging in the application code.

3.1 Start or Stop Logging
The first step to configuring the DLT is setting up the start and stop events to log information. There are two main
methods of starting or stopping logged information through the code markers (DLTAGs) or using ERAD events.
The third method is security focused and prevents logged information to occur based on the enabled LINK filters.
The TAG or ERAD filters control when to start or stop data logging. LINK filters are used to filter out sections of
code to data log based on what current LINK has access.

The TAG based filtering has a few options such as the Start Tag Reference, Start Tag Mask, and the end tag
configurations. These can be used to start or stop the DLT from logging. The mask is and’ed with the code
marker that is reached in the application code. If the and’ed output of the current tag value and the tag filter start
mask equals the start tag reference and the tag based filtering is enabled, then the DLT starts logging. The same
is true to stop the DLT from logging using the end tags. The start/end tag reference can be any 16-bit value.

Below is a flow chart diagram that explains what happens if users have both TAG based and ERAD based
conditions to start or stop logging.

TAG latched and

TAG �lter enabled?

ERAD event and

ERAD �lter enabled?

DLTAG/DLREG

instruc�on

TAG start DLT?
ERAD start

event?

TAG/ERAD Filter

enabled?

Event window

enabled?

Link enabled and

DLT enabled?
Enable logging

Disable logging

Event window

enable = 1

TAG stop DLT?

ERAD start

event?
TAG start event?

Event window

enable = 0

ERAD stop

event?

Y Y

Y

N N

YY

NN

N

Y

Y
YN

N

Disable logging

Figure 3-1. Start and Stop Events Decision Chart

Configuring the start or stop end tags can be any 16-bit value. SysConfig offers a helpful GUI to configure these.

SysConfig www.ti.com

4 DLT Developer's Guide With Tooling SPRADN5 – DECEMBER 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN5&partnum=

Figure 3-2. DLT Tag Filter SysConfig

The Enable Tag based Filtering option must be selected. The configurations outlined to configure the start tag
reference value and end tag reference value. The Start Tag Mask and End Tag Mask get AND'ed with the
respective start or end reference values to control when the logs occur. In the above configuration, 0x5 is the
start tag reference value being used and the end tag reference value of 0x20. These values are arbitrary and
can be configured with any value. The code generated in SysConfig's board.c file is shown below.

Figure 3-3. DLT Initialization Snippet

www.ti.com SysConfig

SPRADN5 – DECEMBER 2024
Submit Document Feedback

DLT Developer's Guide With Tooling 5

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN5&partnum=

3.2 Capture Modes
There are two independent modes that can be enabled with the DLT. Each capture mode has a specific format
of how the additional information with each log appears in the DLT internal memory. This internal memory acts
as a FIFO and is used to store the logs of both code markers and variables. Please refer to the “Interpreting DLT
logs” section to understand more about how these logs look between both capture modes.

The first mode is time capture mode where each log contains information of when the log was reached. In this
mode, the source of the timers is from IPC counter and DLT’s internal counter. Code markers (DLTAGs) use
the IPC as the source and data logged variables (DLREGs) use the DLT’s internal counter as the source. For
code markers (DLTAGs), the timer value is called TIMER1 and is going to be sourced from the IPC counter. This
time is the absolute time of when the IPC starts. For data logging variables (DLREGs), the timer value is called
TIMER2 and is going to be sourced from DLT’s internal counter. This timer value is always the time reference
between the previous code marker (DLTAG) that was reached. This can also be thought of relative time between
the previous code marker.

Figure 3-4. TIMER1(DLTAG) vs TIMER2(DLREG)

The second mode is program counter mode where each log contains information of where the log was reached
instead of a timer value. SysConfig provides a way to configure the DLT in either mode at initialization.

Figure 3-5. DLT SysConfig - Capture Mode

SysConfig www.ti.com

6 DLT Developer's Guide With Tooling SPRADN5 – DECEMBER 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN5&partnum=

3.3 Trigger for transferring Logs
There are a few ways to read data from the DLT buffers and write the logs to another location on the device
using the CPU or DMA interface. Once the data has been moved, the logs can then be transferred out using
any communication peripheral on the device. The DLT has a way to trigger a CPU interrupt or DMA transfer
request based on how many logs are in the buffer. Please refer to the FIFO_CONTROL.WR_CTR_TRIG_LEVEL
to know what the max trigger level that can be set. The below configuration generates a DLT interrupt when the
FIFO reaches 500 logged elements.

Figure 3-6. DLT SysConfig - Trigger FIFO level and DMA

www.ti.com SysConfig

SPRADN5 – DECEMBER 2024
Submit Document Feedback

DLT Developer's Guide With Tooling 7

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN5&partnum=

4 Interpreting DLT Logs
The previous sections have described setting up on how to start and end logs, what different modes there are
and how to trigger a transfer of the logs to another location based on the trigger level of the DLT. How do users
interpret the logs from the internal memory?

There are two terminologies, code markers and variables being data logged. Each of these have a way to
interpret the logs from the nternal memory of the DLT. The code markers or DLTAGs must be interpreted slightly
differently than the variables being data logged or DLREGs.

The internal memory where the logs are being stored are at the base address of the DLT_FIFO_REGS. The
internal memory works like a FIFO. When reading from the FIFO_BUF_H, the next log is pushed up. Thus
the order in reading from the FIFO matters. The way to read from this memory mapped register is to read the
FIFO_BUF_L contents first, then read the FIFO_BUF_H contents next.

Depending on the capture mode, interpreting the log is different. When reading from the FIFO, the first item to
look for is the LSB of the lower 32 bits. This provides information on whether this is a code marker (DLTAG)
or a logged variable (DLREG). The rest of the information can be decoded through the tables described in the
technical reference manual. For this application note, the DLT tool is used to interpret DLT information when the
mode is set to capture the time values.

5 Compiler Intrinsic
The dedicated instructions from the C29x user guide can be abstracted by using the built-in compiler intrinsic
provided in the ti-cgt-c29 compiler. Under the hood of using the built-in compiler intrinsic uses dedicated DLT
instructions.

For code markers use: __builtin_c29_datalog_tag(TAG);

• This intrinsic expects any 16-bit tag value

For data logging variables use: __builtin_c29_datalog_write(VAR);

• This intrinsic expects any 32-bit variable

Note
Every new function scope must have at least one code marker to denote the new function scope then
followed by the variables to be data logged. Only having code markers is acceptable. TI does not
recommended to have no code markers in a function scope followed by variables to be data logged.

Interpreting DLT Logs www.ti.com

8 DLT Developer's Guide With Tooling SPRADN5 – DECEMBER 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN5&partnum=

6 DLT Tool
Reading and interpreting the DLT logs is challenging since there are lots of bits to track and make sure are
correct when reconstructing the final packaged logged information.

The DLT Tool has been created to pass this hurdle.

6.1 Visualization
The DLT tool has two communication peripheral designs to export DLT logs out of the device. This application
note focuses on a UART-based design to export the DLT FIFO out of a device and visualizes the data on a COM
port or through a GUI interface like GUI composer. The other communication peripheral is FSI that can be used
with the tool. This requires a FSI to UART-USB bridge device. This application note uses an example found
within the F29x MCU SDK under the following folder:
C:\ti\c2000\mcu_sdk_f29h85x_x_xx_xx_xx_xxx\examples\driverlib\single_core\transfer\transfer_adc_tempsenso
r_dlt . The following are detailed steps on how to add the DLT tool to any project.

Figure 6-1. DLT

6.2 Walkthrough on Tool
The DLT tool can be found under the MCU Mission Control and Transfer Module within SysConfig.

Figure 6-2. MCU Mission Control

The first step to adding DLT tooling support is adding the MCU Mission Control module. Once this module is
added, there are a few files that get generated to create the final GUI that is shown in CCS. All these files create
the front end of the GUI Composer application and the back end required to process incoming data to the GUI.

www.ti.com DLT Tool

SPRADN5 – DECEMBER 2024
Submit Document Feedback

DLT Developer's Guide With Tooling 9

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN5&partnum=

Figure 6-3. MCU Mission Control - Generated Files

This sub module generates all the necessary GUI elements needed for the visualization of the DLT tool. The
next item to add is to enable Custom Export Logger.

Figure 6-4. MCU Mission Control - Enable Custom Export Logger

This module assists with defining a package mode that is used to send out the DLT packet to the GUI and what
communication peripheral to use. Once enabled, the next option to enable is the DLT Logger.

Figure 6-5. MCU Mission Control - Enable DLT Logger

DLT Tool www.ti.com

10 DLT Developer's Guide With Tooling SPRADN5 – DECEMBER 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN5&partnum=

Once Enable Custom Export Logger is enabled, there are a few configurable options that can be selected. The
options can be viewable under the Exporter tab. The tab looks like Figure 6-6.

Figure 6-6. MCU Mission Control - Exporter Module

Change the Package Mode to be START/END. SysConfig generates a software layer to send out data through
simple APIs that can be found under the following generated files.

www.ti.com DLT Tool

SPRADN5 – DECEMBER 2024
Submit Document Feedback

DLT Developer's Guide With Tooling 11

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN5&partnum=

Figure 6-7. MCU Mission Control - Exporter Module Code Generation

The files being generated are used to package the data in a specified format before exporting the data out of the
device. Under export and export_package.c, there are various functions that can be used to export data out of
the device. In this application note, the focus is on the DLT support API being generated out of SysConfig. Below
are the main files used to export a DLT log and visualize through the GUI.

Figure 6-8. MCU Mission Control - DLT Logger Code Generation

Inside of dlt/export_dltpackage.h, there is a high level API that can be used to export a uint32_t array of size 2 to
the GUI.

Under the Exporter module, open the Transmit Frame Definition and add a new key type called DLTlog where
the value type is 32-bit unsigned int. The hash table ID must be 49 for GUI composer to know what packet is
being received on the GUI side.

DLT Tool www.ti.com

12 DLT Developer's Guide With Tooling SPRADN5 – DECEMBER 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN5&partnum=

Figure 6-9. MCU Mission Control - Transmit Frame Definition

For the correct pinmux to use the UART on the controlSOM, select GPIO42 for UART_TX and GPIO43 for
UART_RX.

Once the MCU Mission Control is added and enable customer export logger is selected. Under the Enable DLT
Logger checkbox, the CPU Clock Freq must be added that is being used by the device. The clock frequency is
used to determine the timer values that is associated with each log.

When enabling the Enable DLT Logger checkbox, the dlt/generate_assoc_table_v1.01.00.js javascript file gets
generated and is used to parse source code information through the compiler tool’s Abstract Syntax Tree (AST)
dump. This javascript file is used to find the DLT intrinsics that are being used and to be able to display them on
the GUI.

The header files must be included to add to application project to use the generated SysConfig support.

Figure 6-10. MCU Mission Control - Necessary Includes

www.ti.com DLT Tool

SPRADN5 – DECEMBER 2024
Submit Document Feedback

DLT Developer's Guide With Tooling 13

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN5&partnum=

6.3 Add Logs to Application
There are very specific variables to data log in the example. A couple of the variables to log are sensorSample
and sensorTemp. The variables that can be passed into the intrinsic can also be an element of an array. For
example, if an array of size 30 is being used. The intrinsic can be passed with array[29] to data log the 30th
element. Here is the code snippet to add to the reference design to log the variables. Adhering to the guidelines,
at least one tag is placed in every new function scope. Within the reference design under the psfbpcmc.c file,
add the following instrinsics.

Figure 6-11. DLT Code Marker and Data Log Intrinsic - PSFB_updateSensedValues()

As shown in Figure 6-11, the logging starts to the DLT log buffer since the value passed into the code marker
intrinsic is 0x05 and this value matches the start reference value configured in DLT initialization.

6.4 Export DLT Log
After inserting all the compiler intrinsic, exporting out of the device can be easily done by reading from the FIFO
and calling the DLT export package software API. Inside of a background loop the following code snippet can be
used to send out the DLT package.

The below empties out the content from the DLT log buffer and writes to an API to export the data out of the
device. The DLT interrupt content is used to set the empty_dlt_fifo flag when the FIFO reaches 500 elements.

DLT Tool www.ti.com

14 DLT Developer's Guide With Tooling SPRADN5 – DECEMBER 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN5&partnum=

Figure 6-12. DLT Code Marker and Data Log Intrinsic - psfb_main.c

Figure 6-13. DLT Interrupt Content

www.ti.com DLT Tool

SPRADN5 – DECEMBER 2024
Submit Document Feedback

DLT Developer's Guide With Tooling 15

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN5&partnum=

6.5 CCS Theia
The final step in all this is going to be adding the post build step to generate our GUI. To enable the GUI
support, go to Project Properties -> General -> Variables and add two variables called DLT_SUPPORT and
GUI_SUPPORT. Set the values to 1.

Figure 6-14. User Defined Variables

This step is required to generate the GUI, please copy and paste the following post build steps.

if ${DLT_SUPPORT} == 1 ${NODE_TOOL} ${BuildDirectory}\syscfg\dlt\generate_assoc_table_v1.01.00.js
"${CG_TOOL_ROOT}/bin/c29clang.exe -Xclang -ast-dump=json" "-c -I"$
{COM_TI_MCU_SDK_F29H85X_INSTALL_DIR}/source" -I"${COM_TI_MCU_SDK_F29H85X_INSTALL_DIR}/
source/driverlib" -I"${COM_TI_MCU_SDK_F29H85X_INSTALL_DIR}/source/
bitfields" -I"${COM_TI_MCU_SDK_F29H85X_INSTALL_DIR}/examples/device_support/
include" -I"${COM_TI_MCU_SDK_F29H85X_INSTALL_DIR}/source/rtlibs/dcl"
-I"${COM_TI_MCU_SDK_F29H85X_INSTALL_DIR}/source/rtlibs/dsp/fpu/fpu32/fft"
-I"${COM_TI_MCU_SDK_F29H85X_INSTALL_DIR}/source/rtlibs/iqmath" -I"$
{COM_TI_MCU_SDK_F29H85X_INSTALL_DIR}/source/kernel/freertos/Source/include" -I"$
{COM_TI_MCU_SDK_F29H85X_INSTALL_DIR}/source/kernel/freertos/Source/portable/CCS/C2000_C29x" -I"$
{PROJECT_ROOT}/" -I"${CG_TOOL_INCLUDE_PATH}" -I"${PROJECT_ROOT}/CPU1_RAM/syscfg" -I"$
{CG_TOOL_INCLUDE_PATH}" -DDEBUG -g"

if ${GUI_SUPPORT} == 1 ${BuildDirectory}\syscfg\gui_setup.bat

Note
This is for CPU1_RAM configuration, if using for FLASH, update CPU1_RAM to be the CPU1_FLASH
folder in the first post build command.

After adding these post build steps, go ahead and build the project. Once the project finishes building to view
the GUI, go to View -> Reload Window. Once the window finishes reloading, go to View -> Plug-Ins -> gui_app.
The name that appears depends on the name provided in the Gui Project Name, under the MCU Mission Control
module.

Figure 6-15. CCS Theia Plugins

The GUI a tab called DLT, where all DLT content goes to. The table and graph shows case all tag markers and
variables that were applied to the source code. If more intrinsics are added in the source code, the project needs
to be rebuilt and the GUI needs to be reopened.

DLT Tool www.ti.com

16 DLT Developer's Guide With Tooling SPRADN5 – DECEMBER 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN5&partnum=

Figure 6-16. Base GUI in CCS Theia

Select the correct COM Port by going to Options → Serial Port Settings....

Figure 6-17. Serial Port Configuration

The correct COM port must be selected for the GUI to function properly.

Connect to the device and load the program to the device and the graph fills with data.

www.ti.com DLT Tool

SPRADN5 – DECEMBER 2024
Submit Document Feedback

DLT Developer's Guide With Tooling 17

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN5&partnum=

Figure 6-18. Final Output GUI Composer

The columns that are shown are the translated DLT package logs. Absolute time is the IPC timer value
converted to milliseconds. Relative time is always relative to a previous code marker or DLTAG. The TAG
column is the value that was passed into the __builtin_c29_datalog_tag compiler intrinsic. This serves as a way
to trace the application code. The function column informs what function the variable being data log is sourced
from. The datatype column refers to the data type of the variable from the source code. The variable column
refers to the variable being data logged. The Reg column is the value of the variable at the time the log was
reached in the application code. There are additional columns that are minimized as the columns are related to
overflow and whether the log was a code marker or variable log.

Table 6-1. DLT GUI
Absolute

Time
Relative

Time
TAG Function Datatype Variable Reg Timer 1

OVF
Timer 2
OVF

Code
marker or
variable
log?

Absolute
time of IPC

timer

Relative
time

between
code

markers or
DLTAGs

TAG value
used in

__builtin_c2
9_datalog_t

ag

Source file
information
and function
name used
in source

code where
DLT is used

Data type of
variable (i.e.
float, int, uint
etc)

Variable
name used
in
application
code passed
into
__builtin_c2
9_datalog_w
rite

Register
value of the
variable
being
logged

If OVF is 1,
then an
overflow
occurred

If OVF is 1,
then an
overflow
occurred

0 - Variable
Log 1- Code
Marker

DLT Tool www.ti.com

18 DLT Developer's Guide With Tooling SPRADN5 – DECEMBER 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN5&partnum=

7 Summary
This application note highlights all of the major features of the DLT and how the DLT can be utilized in an
application. All of the required configurations for both the DLT and visualizing the DLT log contents were shown.
For more specific guidance on registers on the DLT module, see the device-specific technical reference manual.

8 References
• Texas Instruments, F29H85x and F29P58x Real-Time Microcontrollers, technical reference manual
• Texas Instruments, C29 DLT Peripheral Overview Video, webpage
• Texas Instruments, C29x Academy, webpage
• Texas Instruments, C29x SDK, tool page

www.ti.com Summary

SPRADN5 – DECEMBER 2024
Submit Document Feedback

DLT Developer's Guide With Tooling 19

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRUJ79
https://www.ti.com/video/6365475335112
https://dev.ti.com/tirex/explore/node?node=A__AEIJm0rwIeU.2P1OBWwlaA__C29X-ACADEMY__KgQzuuf__LATEST
https://www.ti.com/tool/F29-SDK
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN5&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 C28x vs C29x vs ARM Logging
	3 SysConfig
	3.1 Start or Stop Logging
	3.2 Capture Modes
	3.3 Trigger for transferring Logs

	4 Interpreting DLT Logs
	5 Compiler Intrinsic
	6 DLT Tool
	6.1 Visualization
	6.2 Walkthrough on Tool
	6.3 Add Logs to Application
	6.4 Export DLT Log
	6.5 CCS Theia

	7 Summary
	8 References

