/ Application Report
l ’-{‘IE)S(’?SUMENTS SPRAC12—-March 2015
Debugging Tools and Techniques With IPC3.x

Angela Stegmaier

ABSTRACT

There are several useful tools and techniques that enable you to debug issues encountered when using
software that leverages IPC3.x. With some guidance on the tools and techniques, you can confidently
debug the IPC and the remote core software.

This application report guides the customers on the tools and techniques for debugging with IPC3.x

Contents
1] 100 18 o3 1 o o 1
2 3 7= o1 T TR 0T 2
3 TGS ittt it teeestesanssassssssnsnnnnnsssssssssssnssnnnnsssssssssssssssnssssssssssssssssssnnssssssssssssssnnssnnssnsnnnss 2
4 Remote Core Status INfOrmMation e e e s s e e e s s s aaaa s e s nnneeeeeeesssssaanannnnnnnnnnes 4
5 USING COdE COMPOSET STUTIO «utuuuteiseiueesssssunsssesaee e ssss s s ssss e saanesasssssssansssanssaneasnnssans 6
6 Debugging MMU Faults and EXCEPLIONS ..uuueeereieeerrannnessaannesssannressaannesssanneessssnnessssnneessssnnersnnns 9
7 (01 1T g @0 401 4o T F=7 = 17
8 = (= (=] 101 = 17
List of Tables
1 IPC_DEBUG TraCe LEVEIS .utuiuseiisiiteiistissests st it ssa s s s s s s s s e ss s s raa s ss s e s rsr e e raneaas 2
2 [T 0T0] (=T o] Lo To N F= 1o =TTl (o G I N 3
3 REMOLEPIOC DEDUGFS ENIIES 1uveieeeersieeessssnnessasnnessaanneesaasnnessaanneessannnessaannessssnnnessssnnessssnnees 5
4 IOMMU ENY NAIMES iiiiiiiiiiittteeeee sttt e e e e s st s s s s s s s e e s s sttt ssassnnnnnnnnsesssssnnnn 5
5 L@ 1YY L0 B T=T 0T | o] [5
1 Introduction

During development of software, it is common to encounter issues that must be debugged to provide a
robust software offering. When developing software that uses the IPC3.x product for inter-processor
communication, there are tools and techniques available to aid in the debugging process. These tools and
techniques help to more quickly understand and debug the issue. This document addresses all three
HLOS's supported by IPC3.x: Android™ platform, Linux®, and QNX®. Where applicable, differences
between the OS's are noted.

This document aims to provide tools, techniques, and resources for debugging issues encountered when
using the IPC3.x to communicate with remote core software.

NOTE: This document assumes that the reader is familiar with the IPC3.x product and its interfaces.

For documentation and further details, see the IPC3.x release. Releases can be found at the
IPC 3.x download page. For a link to the download page for IPC 3.x releases, see [1].

Code Composer Studio is a trademark of Texas Instruments.
QNX is a registered trademark of Blackberry Limited.

Android is a trademark of Google Inc.

Linux is a registered trademark of Linus Torvalds.

All other trademarks are the property of their respective owners.

SPRAC12-March 2015 Debugging Tools and Techniques With IPC3.x 1
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC12

13 TEXAS

INSTRUMENTS
Debug Tools www.ti.com
2 Debug Tools
There are several tools that can be leveraged for debugging the IPC, from simple tracing to using Code
Composer Studio™ (CSS) (see [2]) to attach to the remote cores. Each provides different advantages in
the debugging process.
2.1 Tracing
When an issue occurs, checking the traces is often the first thing done. The traces can give quick insight
into what may be happening. In normal, non-error cases, you might see little to no traces from the IPC.
But when there is an error, there often is an error trace that can be used to shed light on the issue. An
error trace often gives an error code and a module or function name that can be used to identify where the
error was thrown.
2.2 Linux and Android - Debugfs
Another useful place to look for debug info is in the debugfs. Information for each remote processor can
be found there, as well as remote core traces, state information, and more.
2.3 Code Composer Studio
Connecting over JTAG using Code Composer Studio provides the ability to see exactly what is happening
on the remote core, providing access to a wealth of information including viewing memory, registers, and
stepping through the code.
3 Traces
The first place to check when an issue occurs is the traces. Often an error code or a trace regarding an
error gives some clue. Both the remote core traces and the HLOS-side traces can be checked.
3.1 Linux and Android - Enabling IPC Traces
By default, the IPC only prints error traces. To enable additional tracing, use the IPC_DEBUG
environment variable at runtime. This feature is only supported on Linux and is available starting in IPC
3.22.00.05. Table 1 lists the two levels of tracing supported.
Table 1. IPC_DEBUG Trace Levels
Trace Level Description
1 Enables all warnings and errors to be printed
2 Turns on all tracing (including socket and LAD client tracing). Warning: this can be very
"chatty."
Refer to [3].
3.2 QNX - Enabling IPC Traces
When using QNX, additional traces are enabled by setting environment variables. There are separate
environment variables for enabling traces in the resource manager and the user libraries.
3.21 Resource Manager Traces
Enable additional traces in the slog by setting the environment variable IPC_DEBUG_SLOG_LEVEL at
runtime. By default, only errors and warnings are printed. The IPC_DEBUG_SLOG_LEVEL can be set
before launching IPC to enable more traces. Setting the level to 7 enables all IPC traces. The default level
is 2.
export IPC_DEBUG_SLOG_LEVEL=7
2 Debugging Tools and Techniques With IPC3.x SPRAC12-March 2015

Submit Documentation Feedback
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC12

I

TEXAS

INSTRUMENTS

www.ti.com Traces

These traces are printed to the slog, and can be viewed by using the sloginfo command. All IPC traces
use 42 as identification in the slog, and you can filter the slog to view only these traces:

sloginfo —m42

3.2.2 User Library Traces
User library traces can be enabled by using the variable IPC_DEBUG when launching the application.
Valid levels are 1 to 3, with 3 being the most verbose. For example:
1PC_DEBUG=<level> app_host
3.3 Linux and Android - Remote Core Traces
The remote core traces can be checked by using debugfs. Run the following command, replacing the “X”
with the core-id for the remote core to be checked.
cat /d/remoteproc/remoteprocX/trace0
Check the following when checking the traces after an error recovery has occurred:
cat /d/remoteproc/remoteprocX/trace0_last
This provides the last traces that happened before error recovery was triggered. For more information
about debugging remote core faults and exceptions, see Debugging MMU Faults and Exceptions.
The core-id, “X”, starts at 0 and increments to include all of the remote cores supported by the remoteproc
module in the dts file. Because the number of remoteprocs supported can vary depending on the dts
configuration, it is not ensured that a certain remote core will always have a certain core-id if the
remoteprocs supported in the dts file changes.
The core associated with a particular core-id can be found by checking the name of the remoteproc (see
Linux and Android - Remoteproc). Table 2 associates the remoteproc name with the common name of the
remote processor.
cat /d/remoteproc/remoteprocX/name
Table 2. Remoteproc Names for DRA7XX
Debugfs Name Remote Core Name
58820000.ipu IPU1
55020000.ipu IPU2
40800000.dsp DSP1
41000000.dsp DSP2
SPRAC12-March 2015 Debugging Tools and Techniques With IPC3.x 3

Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC12

Traces

13 TEXAS
INSTRUMENTS

www.ti.com

3.4

QNX - Remote Core Traces

The remote core traces can be checked by using sysfs. Run the following command, replacing <core
name> with the core name for the remote core to check. Valid core names for DRA7XX are IPU1, IPU2,
DSP1, and DSP2.

cat /dev/ipc-trace/<core name>

When checking the traces after error recovery has happened, check the logfile specified at IPC startup, if
one was specified. When starting IPC, specify a logfile using the “-c” option. When an error recovery
happens, the last traces are dumped to this log file. For more information about debugging remote core
faults and exceptions, see Debugging MMU Faults and Exceptions.

3.5 Adding Traces
In some cases, you may want to add traces to get more information about the issue. If the issue is reliably
reproducible, one technique is to add additional traces to get more information. If the issue is timing-
related, this technique may not be helpful, as it may mask the issue.

3.5.1 SYS-BIOS
You can add traces in the SYS-BIOS IPC code that come to the trace buffer by using the System_printf()
API. After adding traces to the SYS-BIOS IPC and rebuilding the IPC, you must rebuild the remote core
image. The traces come to the remote core trace buffer and can be viewed by following the instructions in
Linux and Android - Remote Core Traces.

3.5.2 Linux
Additionally, traces can be added in the Linux code. The modules of interest when adding traces are the
remoteproc, iommu, and rpmsg modules in the kernel, and the MessageQ, MMRPC, and LAD modules in
the user space.
In the kernel are these modules in the following paths:
» drivers/remoteproc/
e drivers/fiommu/
e drivers/rpmsg/
Most of the user space code can be found in the IPC package, in the linux folder. The MMRPC code is
found in the packages/ti/ipc/mm/ folder.

4 Remote Core Status Information
Useful information about the status of the remote cores can be found in debugfs.

4.1 Linux and Android - Remoteproc
Information about each remote core can be found in the following, where the “X” can be replaced with the
remote core id.

cat /d/remoteproc/remoteprocX/<entry>

Table 3 lists what can be found for each core.

4 Debugging Tools and Techniques With IPC3.x SPRAC12-March 2015

Submit Documentation Feedback
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC12

13 TEXAS
INSTRUMENTS

www.ti.com

Remote Core Status Information

Table 3. Remoteproc Debugfs Entries

Entry Description
Processor name, comprised of the RAM address and the processor type, (for example, 58820000.ipu for
name ;
IPU1). For a complete list of names, see Table 2.
Returns either “enabled” or “disabled”, indicating if recovery is enabled or disabled for the remote
recovery
processor.
Gives the state of the remote processor. State is one of:
« offline (0)
state * suspended (1)
¢ running (2)
« crashed (3)
traceO Returns the contents of the remote processor trace buffer.
trace0 last Created after recovering the remote core. Returns the contents of the remote processor trace buffer
- before recovery was triggered.
version Returns the version. Currently returns nothing.

4.2 Linux and Android - IOMMU Info

Information about the IOMMU can also be found in debugfs. It can be found in the following path, where
EXXXXXXXX" is replaced by the register address for the remote core MMU registers.

cat /d/omap_iommu/XXXXXXXX._.mmu/<entry>

Table 4 gives the corresponding core name for each MMU for DRA7XX, and the register address in the

TRM.

Table 4. IOMMU Entry Names

IOMMU Entry Core Name
58882000.mmu IPU1
55082000.mmu IPU2

40d01000.mmu

DSP1 (MMU1)

40d02000.mmu

DSP1 (MMU2)

41501000.mmu

DSP2 (MMU1)

41502000.mmu

DSP2 (MMUZ2)

Some of this information is inaccessible from a suspended state.

Table 5 lists what can be found for each core.

Table 5. IOMMU Debugfs Entries

Entry

Description

nr_tlb_entries

Gives the number of tlb entries

pagetable Dumps the pagetable entries
regs Gives the values of the MMU registers
tlb Lists the tlb entries.

4.3 QNX - Remote Core State Information
Find out the current state of the remote core by issuing the following command:

cat /dev/ipc-state/<core_name>

SPRAC12-March 2015

Submit Documentation Feedback

Debugging Tools and Techniques With IPC3.x 5

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC12

13 TEXAS
INSTRUMENTS

Using Code Composer Studio www.ti.com

The “core_name” is the name of the remote core. Valid names for DRA7XX are IPU1, IPU2, DSP1, and
DSP2. The current state will show as “running” or “reset”.

5 Using Code Composer Studio
A useful tool for debugging issues is Code Composer Studio. CCS allows easy connection to the remote
core in order to see the state of the remote core.
5.1 Debug Symbols
The remote core image must be built with debug symbols to see information such as the call stack and
variables. Once attached, load the symbols. The symbols are built into the executable itself. When loading
symbols, point to the same executable that is loaded on the target (or the unstripped version locally, if it is
stripped to save space when loading to the target).
5.2 Linux and Android - Disabling Remoteproc Auto-Suspend
You may want to disable auto-suspend of the remote cores (provided that is not what is being debugged).
When the core is suspended, you will not be able to connect to the remote core using CCS. Auto-suspend
can be disabled by setting the power control to “on” for the remote core.
#echo on > /sys/bus/platform/devices/<device>/power/control
The remote core device name for each remote core can be found in Table 2.
5.3 Linux and Android — Disabling Watchdog
You may decide to disable the watchdog timers when debugging and using CCS. Otherwise, while
connected to the target, the watchdog may expire, triggering an abort sequence. Disable the watchdog
timers for a remote core by removing their definitions from the dts file. For example, to disable the
watchdog timers for IPU1, change the dts file as below:
&ipul {
status = "okay"';
memory-region = <&ipul_cma_pool>;
mboxes = <&mailbox5 &mbox_ipul_legacy>;
timers = <&timerll>;
watchdog-timers = <&timer7>, <&timer8>;
+ /*watchdog-timers = <&timer7>, <&timer8>;*/
5.4 SYS/BIOS - Disabling Watchdog
When using QNX, you can disable the watchdog from within the remote core image itself.
If using Linux or Android, this step is not required; simply follow the instructions in Linux and Android -
Disabling Watchdog.
To disable the usage of the watchdog from the remote core without completely disabling the device
exception module (DEH), comment out the calls to Watchdog_init in the SYS/BIOS IPC code. These calls
can be found in packages/ti/deh/Deh.c, packages/tiideh/DehDsp.c, and packagesl/ti/ipc/ipcmgr/lpcMgr.c.
6 Debugging Tools and Techniques With IPC3.x SPRAC12-March 2015

Submit Documentation Feedback
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC12

13 TEXAS
INSTRUMENTS

www.ti.com Using Code Composer Studio

packagesi/ti/deh/Deh.c:

/>
* ——=—=—=—=== Deh_Module_Startup —=—======
*/

Int Deh_Module_startup(Int phase)

{

if (AMMU_Module_startupbone() == TRUE) {
Watchdog_init(ti_sysbios_family_arm_m3_Hwi_excHandlerAsm__1);
+ //Watchdog_init(ti_sysbios_family_arm_m3_Hwi_excHandlerAsm__1);
return Startup_DONE;

}

return Startup_NOTDONE;

packages/ti/deh/DehDsp.c:

Int Deh_Module_startup(Int phase)

{
#if defined(HAS_AMMU)

if (AMMU_Module_startupbone() == TRUE) {
- Watchdog_init((Void (*)(Void))ti_sysbios_family_c64p_Exception_handler);
//Watchdog_init((Void (*)(Void))ti_sysbios_family c64p_ Exception_handler);
return Startup_DONE;

+

}

return Startup_NOTDONE;
#else
- Watchdog_init((Void (*)(Void))ti_sysbios_family_c64p_Exception_handler);
+ //Watchdog_init((Void (*)(Void))ti_sysbios_family_c64p_Exception_handler);

return Startup_DONE;
#endif

packagestti/ipc/ipcmgr/lpcMgr.c:

Void lIpcMgr_rpmsgStartup(Void)

{
Assert_isTrue(MultiProc_self() != MultiProc_getld(*'HOST"), NULL);
RPMessage_init(MultiProc_getld(**HOST'™"));

-#ifdef IpcMgr_USEDEH
+#if O
/*
* When using DEH, initialize the Watchdog timers if not already done
* (i.e. late-attach)
*/
#ifdef IpcMgr_DSP
Watchdog_init((Void (*)(Void))ti_sysbios_family_c64p_Exception_handler);
#elif lIpcMgr_I1PU
Watchdog_init(ti_sysbios_family_arm_m3_Hwi_excHandlerAsm__1);
#endif
#endi f

}
L---1

Void lIpcMgr_ipcStartup(Void)
{

SPRAC12-March 2015 Debugging Tools and Techniques With IPC3.x 7

Submit Documentation Feedback
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC12

13 TEXAS
INSTRUMENTS

Using Code Composer Studio www.ti.com

5.5

5.6

5.7

uilnt procld = MultiProc_getld("'"HOST™);
Int status;

/* TransportRpmsgSetup will busy wait until host kicks ready to recv: */
status = TransportRpmsgSetup_attach(procld, 0);
Assert_isTrue(status >= 0, NULL);

/* Sets up to communicate with host®"s NameServer: */
status = NameServerRemoteRpmsg_attach(procld, 0);
Assert_isTrue(status >= 0, NULL);

-#ifdef IpcMgr_USEDEH
+#if O
/*
* When using DEH, initialize the Watchdog timers if not already done
* (i.e. late-attach)
*/
#ifdef lpcMgr_DSP
Watchdog_init((Void (*)(Void))ti_sysbios_family_c64p_Exception_handler);
#elif lIpcMgr_IPU
Watchdog_init(ti_sysbios_family_arm_m3_Hwi_excHandlerAsm__1);
#endif
#endif
}

Following this, rebuild the IPC and the remote core image to have an image with DEH, but without
watchdog enabled.

Attaching Before the Issue

In certain cases, you may want to attach to the remote core before the issue has occurred. If the issue is
reliably reproducible and always occurs at the same location, then adding a breakpoint close to where the
issue happens could be a good way to get a better picture of what is happening.

One instance where it may be difficult is if the issue is happening during boot-up of the remote core. In
this case, it may be necessary to add a while loop in the main function, to attach before the issue occurs.
Add a loop similar to this:

volatile int foo = 1;
while(foo);

Then, after attaching, load the symbols, add the breakpoints, change “foo” to 0, and continue running.

Attaching After the Issue

You can also attach to the core after the issue, load the symbols, and see the state and view memory.
You can view the Exception module’s exception CallStack ROV view and the task module’s per task
Callstack ROV view. For more information about the runtime object viewer (ROV) in the RTSC
documentation online, see [9].

Viewing the State of the Remote Core

Once attached and with symbols loaded, the state of the processor can be inspected. You can see the
program counter, memory windows, registers, call stack, and the ROV, among other things. For more
information about the runtime object viewer (ROV), check the RTSC documentation online (see [9]).

Debugging Tools and Techniques With IPC3.x SPRAC12-March 2015

Submit Documentation Feedback
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC12

I

www.ti.com

TEXAS
INSTRUMENTS

Debugging MMU Faults and Exceptions

6 Debugging MMU Faults and Exceptions
Errors commonly manifest as MMU faults, exceptions, and watchdog errors (if using a version of IPC with
watchdog available and enabled).
6.1 Linux and Android - Disabling Error Recovery
To debug an error, it may be necessary to turn of error recovery. Error recovery can be disabled by giving
the following command:
echo disabled > /d/remoteproc/remoteprocX/recovery
See Linux and Android - Remoteproc for more information.
6.2 OQNX - Disabling Error Recovery
To disable error recovery on QNX using IPC version 3.22 and above, give the -d option when launching
the ipc binary. For example:
ipc —d IPU2 dra7x-ipu2-fw.xem4
6.3 Crash Dump
If any of these three errors are encountered, you will get a crash dump from the remote core which is
visible in the remote core traces. If error recovery is disabled, the dump can be found in traceO (when
using Linux/Android) or in /dev/ipc-trace/<core_name> (when using QNX); otherwise, the trace is found in
traceO_last (when using Linux/Android) and in the logdfile (when using QNX).
An example of the crash dump will look like this:
[o1L 91.045] Exception occurred at (PC) = 0000c976
[O1L 91.045] CPU context: thread
[O1L 91.045] BIOS Task name: {empty-instance-name} handle: 0x80060090.
[o1L 91.045] BIOS Task stack base: 0x800600e0.
[O1L 91.045] BIOS Task stack size: 0x800.
[O1L 91.045] [t=0x18f6df13] ti.sysbios.family.arm.m3.Hwi: ERROR: line 1078: E_hardFault:
FORCED
[O1L 91.045] ti.sysbios.family.arm.m3.Hwi: line 1078: E_hardFault: FORCED
[O1L 91.045] [t=0x18f9a0cb] ti.sysbios.family.arm.m3.Hwi: ERROR: line 1155: E_busFault:
PRECISERR: Immediate Bus Fault, exact addr known, address: 96000000
[O1L 91.045] ti.sysbios.family.arm.m3.Hwi: line 1155: E_busFault: PRECISERR: Immediate Bus
Fault, exact addr known, address: 96000000
[olr 91.045] RO = 0x96000000 R8 = OXFFFFFFff
[o1r 91.045] R1 = 0x00000000 R9 = OXFFFFFFFf
[o1L 91.045] R2 = 0x00000000 R10 = OXFFFFFFFf
[olr 91.045] R3 = 0x80060814 R11 = OXFFFFFFff
[o1r 91.045] R4 = 0x00013098 R12 = 0x8006074c
[o1r 91.045] R5 = 0x0000000a SP(R13) = 0x80060820
[olr 91.045] R6 = OXFFFFFFFF LR(R14) = 0x0000c973
[O1[91.045] R7 = OXFFFFFFFF PC(R15) = 0x0000c976
[o1r 91.045] PSR = 0x61000000
[olr 91.045] ICSR = 0x00438803
[o1r 91.045] MMFSR = 0x00
[o1r 91.045] BFSR = 0x82
[olr 91.045] UFSR = 0x0000
[o1r 91.045] HFSR = 0x40000000
[o1r 91.045] DFSR = 0x00000000
[olr 91.045] MMAR = 0x96000000
[o1r 91.045] BFAR = 0x96000000
[o1r 91.045] AFSR = 0x00000000
SPRAC12-March 2015 Debugging Tools and Techniques With IPC3.x 9

Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC12

13 TEXAS

INSTRUMENTS

Debugging MMU Faults and Exceptions www.ti.com

[O1L 91.045] Stack trace

[O1L 91.045] 00 [op faaaf00e] 00006abd (ret from call to 00015010)

[o1L 91.045] 01 [op FF49f005] 00006ac3 (ret from call to 0000c954)

[o1LC 91.045] -- [op 98009000] 000154c9

[o1LC 91.045] -- [op 00000000] 000a0001

[o1r 91.045] -- [op 80084a64] 0000fec9

[o1LC 91.045] -- [op 0001a75c] 000068b9

[o1LC 91.045] -- [op 80084a64] 0000fec9

[o1r 91.045] -- [op bd0ef919] 00015b91

[O1L 91.045] Stack dump base 800600e0 size 2048 sp 80060820:

[O1L 91.045] 80060820: 00000001 00006abd 96000000 00000000 FFFFFFFF 00006ac3 0000000a

00006bf4

[o1LC 91.045] 80060840: 00000000 00000000 80041800 80060abO 00000080 56414c53 50495F45

be003155

[o1L 91.045] 80060860: bebebebe bebebebe bebebebe bebebebe bebebebe bebebebe bebebebe

bebebebe

[O1L 91.045] 80060880: bebebebe bebebebe bebebebe bebebebe bebebebe 00000000 00000000

00000001

[o1LC 91.045] 800608a0: 00000001 000154c9 0001309a 0000000a 00000000 80041820 00000001

fFFFFfff

[o1L 91.045] 800608c0: FFFFFFFF 0000fec9 00000000 00000000 000068b9 0000Ffec9 00015hb91

bebebebe

[O1L 91.045] Terminating execution. ..

6.4

6.4.1

Exception Dump Decoding

Some useful information that can be found in the dump is the fault address, PC address, register contents,
and call stack.

When an error occurs, you gets a crash dump from the remote core that looks similar to the one in Crash
Dump.

The particular dump example above is from a MMU read fault. This dump provides important information
in helping to understand what has happened. Some of the useful parts are broken down in the following
section.

Exception Dump Breakdown

6.4.1.1 Timestamp

All traces (not just exception dumps) provide a timestamp for each trace. The time starts from the booting
of the remote core. The timestamp is highlighted in Figure 1.

[0 591 _.045] Exception occurred at (BC) = 0000c3Te
[01L 51 _.045] CPU conmtext: thread
[0 591 .045] BIOS Task name: {empty-instance-name} handle: (xE00&0050.

Figure 1. Trace Timestamps

The timestamp information can be useful even in non-crash situations, indicating the amount of time taken
between two events. You can add traces at each event and then see when the events run.

For example, to check that a certain event is happening every second, put a trace at that event, then
check the timestamps to see that it is happening as expected.

6.4.1.2 PC Address

The PC address where the exception occurred is also provided (see Figure 2). This can be used, in
conjunction with the map file or CCS, to identify the line of code where the exception happened.

10

Debugging Tools and Techniques With IPC3.x SPRAC12-March 2015

Submit Documentation Feedback
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC12

13 TEXAS

INSTRUMENTS
www.ti.com Debugging MMU Faults and Exceptions
[0][51 .045] Exception occurred at (BC) = 0000c5T7&
[011 91.045] CEU context: thread
[0]1 51 .045] BIOS Task name: {empty-instance-name} handle: 0xB800&0050.

Figure 2. Crash Dump PC Address

6.4.1.3 Task Information
The information about the task that was executing when the exception occurred is also provided (see

Figure 3).
[011 91 _045] Exception occurred at (BC) = 0000c57&
[011 31.045] CEU context: thread
[011 51 _.045] BIOS Task name: {empty-instance-name} handle: 0x2800&0090.
[011 51.045] BIOS Task stack base: OxB00&00e0.
[011 51 _.045] BIOS Task stack size: 0xB00.

Figure 3. Crash Dump Task Information

6.4.1.4 Fault Information

The information about the fault is also provided (see Figure 4). This can look different depending on the
type of exception that occurred, but often provides a fault address to identify the source of the fault.

[0]1 51 _045] Exception occurred at (BC) = 0000c57e

[O]1 51.045] CPU context: thread

[0]1 51 _045] BIOS Task name: {empty-instance-name} handle: 0x800&0050.

[011 51_.045] BIOS Task stack base: Ox800&00ed.

[O11 51.045] BIOS Task stack size: 0xBOO0.

[011 91.045] [t+=0x18£6df13] ti.sysbios.family.arm.m3.Hwi: ERROR: line 1078: E hardFault:
FORCED

[011 91.045] ti.sysbios.family.arm.m3.Hwi: line 1078: E hardFault: FORCED

[0]1 51.045] [t=0x18f3a0cb] ti.sysbios.family.arm.m3 Hwi:- ERROR: line 1155: E busFault:
PEECISERE: Immediate Bus Fault, exact addr known, address: S5&000000

[0]1 51.045] ti.sysbios_ family.arm.m3_Hwi: line 1155: E busFault: PRECISEER: Immediate Bus
Fault, exact addr known, address: 3&000000

Figure 4. Crash Dump Fault Information

6.4.1.5 Registers
A dump of the register contents at the time of the exception is also provided (see Figure 5).

SPRAC12-March 2015 Debugging Tools and Techniques With IPC3.x 11

Submit Documentation Feedback
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC12

13 TEXAS
INSTRUMENTS

Debugging MMU Faults and Exceptions www.ti.com

[0l
FORCED
[0l
(011

(011

(o1l
[al
(o]
[al
(o]
[al
(o]
[al
[o]
[al
[o]
[al
[al
[al
[al
[al
[al
[al
[a1
[a1
[a1
[a1
[a1
[a1
[a1
[a1
[a1
[a1
[o11
0000EbEd
[o11
bel03155
[o1r
bebebebe
[o1r
0o00o0001
[o1r
EEEFFFFFE
[o1r
bebebebe
[o1r

PRECISERE: Immediate Bus Fault, exact addr mown, address: 3&000000

Fault, exact addr mown, address: 3000000

51.045] [t=0x1B8f&dfl13] ti.sysbios.family.arm.m3_Hwi: ERROR: line 1078: E hardFanlt:

51.045] ti.sysbios family.arm.m3 Hwi: line 1078: E hardFault: FORCED
51.045] [t=0x18f5a0cbhb] ti.sysbios.family. arm.m3 . Hwi: ERROR- line 1155: E busFawult:

51.045] ti.sysbios family.arm.m3 Hwi: line 1155: E busFault: PRECISEBR: Immediate EBus

91.045] RO = 0OxS€000000 RE = OxRELLEFEFE
51_.045%] R1 = Ox00Q000000 RS = Ouffffffff
91.045] RZ = 0Ox00000000 RI10 = ORELLEFEFE
51_045%] B3 = OxB00&0814 RI11 = Ouffffffff
91.045] R4 = 0x00013058 R1Z = OxE00&0T4c
51_045] RS = 0x0000000a SEB(R13) = 0xBOOE0SZ0
91.045] Ré = OxEfEEFE£ff LRI(R14) = 0x0000cST3
51_045] BT = QxEfffffff PBCIR1S) = 0x0000c3TE

51.045] PSE = (0x€1000000
51_045] ICSE = 0x00438803
51.045] MMFSE = Ox00
91.045] BFER = 0OxB2

51.045] UEFSR 0x0000

51 _045] HFSE = 0x40000000
51_045] DFSE = 0x00000000
51 _045] MMREE = O0x5&000000
51_0453] BFRE = 0x56000000

91 _045] AFSE = O0x00000000

51.045] Stack trace

591 _045] 00 [op faaaflle] 0000&abd (ret from call to O0OO015010)
51.045] 01 [op f££43£005] 0000€ac3 (ret from call to O000CS54)

51.045] —- [op S5B8005000] 000154cS
51.045] —— [op 000O00OQO0] 00020001
51.045] —- [op BOOB4acd] 0000fecH
51.045] —— [op 0001a75c] 0000&8bS
51.045] —- [op BOOB4acd] 0000fecH
51.045] —— [op bd0ef313] 00015b31

51.045] Stack dump base B00&800el size 2048 sp BODE0DEZ0:
51_.043] 80080BZ0: 00000001 ODOODEsbd 56000000 00000000 L£EEFFFFff O0D00Eac3d OQOO000O00a

51_.0453] 800&0840: 00000000 ODOOOOOO B0O041800 800&80ab0 OO0000BD 56414c3S3 S0455f£45
51.04%] 8300208&0: bebebebe bebebehe bebehebe bebebebe bebebebe bebebebe bebebebe
51_.04%5] 8300£08E0: bebebebe bebebebe bebebebe bebebebe bebebebe 00000000 00000000
51_04%] 8200£08a0: 00000001 ODO0154cS 00013032 00000002 OQOOOOQOOD BOO41820 OQOOQOOODOL
51_.045] B800€0Becl: EEEEFFFff QOD00fecS OQOOOQOQOQOD OOOOQOOOD OOD0&EDLS OQDO0O0fecS OOO015b51

51 _045] Terminating executiom. .

Figure 5. Crash Dump Register Contents

6.4.1.6 Stack Trace

The stack trace is also provided (see Figure 6). This can be used in conjunction with the source code and
the map file or CCS to get more information about what was executing at the time of the crash.

12 Debugging Tools and Techniques With IPC3.x SPRAC12-March 2015

Submit Documentation Feedback
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC12

13 TEXAS
INSTRUMENTS
www.ti.com Debugging MMU Faults and Exceptions
[o11 91.045] RO = OxS€000000 RE = OnfEEFEEff
[o1l 91_045] R1 = Ox00000000 RS = OuffEEFEEE
[0l 91.045] RZ = Ox00000000 R10 = OxEEEEFEEE
[o1l 91 _045] R3 = OxBO0060814 R11 = OxfEEEEEEE
[0l 91.045] R4 = Ox000130%8 RI1Z = OxBO0E074c
[o1l 91._045] RS = Ox0000000z SE(R13) = OxB0060820
[0l 91_045] RE& = OxfffEEEff LR(R14) = 0x0000cST3
[o1l 91_045] R7 = OxffEEEEEE BCIRIS) = Ox0000cSTE
[0l 21_045] DSR = Ox&l000000
[o1l 31_045] ICSR = Ox00438803
[0l 31.045] MMFSE = Om00
[o1l 31.045] BFSR = 0Ox82
[0l 31.045] UFSR = 0x0000
[o1l 31 _045] HFSR = 0x40000000
[0l 21_045] DFSR = 0x00000000
[o1l 31_045] MMER = Ox3&000000
[0l 51_045] BFER = 0OxS&000000
[o1l 31_045] ALFSR = Ox00000000
[D][51.045] S5tack trace
[0l 31.045] 00 [op fasaflle] 0000&abd (ret from call to 00015010)
[01 91.045] 01 [op ££45£005] 0000€ac3 i(ret from call to 0000c354)
[o1l[31.045] -- [op 520050001 OO00154c3
[011 31.045] -- [op O000QOO00] OO0=0001
[o1l[31.045] -- [op E0084z&4] 0000fecs
[011 91.045] -- [op 0001a75c] OO00&SB3
[o1l[31.045] -- [op E0084z&4] 0000fecs
[011 91.045] -- [op bd0ef913] 00015b31
[0l 31_045] Stack dump base 200800e0 size Z048 sp S00E0B20:
[0l 31.045] S00€0820: 00000001 0000&zbd SE000000 00000000 £EEEE£££f 00006acd 00000002
000060 E4
[0l 31.045] S0060840: 00000000 00000000 80041800 S0060zb0 00000080 56414053 S50435£45
bel03155
[0l 91 _045] E200808&0: bebebebe bebebebe behebebe bebebebe bebebebe bebebebe bebebebe
bebebebe
[0l 91 _045] 20080880: bebebebe bebebebe behebebe bebebebe bebebebs 00000000 00000000
00000001
[0l 31.045] S00&08a0: 00000001 000154cs 0001305z 00000002 00000000 80041820 00000001
EEEEFEEE
[0l 31.045] S00608c0: £fEE££££f 0000fecd 00000000 00000000 OO000E2BS O000fecS 00015bI1
bebebebe
[o11 91 _045] Terminating execution.. .
Figure 6. Crash Dump Stack Trace
6.4.2 MMU Faults

6.4.2

MMU faults occur when an address that is not mapped to the remote core MMU is accessed. This can be
due to a read, write, or an attempt to execute the address. When an MMU fault occurs, a crash dump from
the remote core occurs that looks similar to the example provided in Crash Dump.

Some debugging techniques, as well as common times when an MMU fault occurs, are given as
examples in the following sections.

.1 Using CCS to Halt the Code When the Fault Happens

If the fault always happens at the same address, pre-map the location and then set up CCS with a
breakpoint for that address. In this way, you can view the state of the remote core when the fault happens
and see the call stack. From there, put a breakpoint at the surrounding code and step through to see
where the fault happens.

Pre-mapping the address can be done either through the remote core resource table, or through CCS.
With CCS, you can connect to the debug DAP and then bring up a memory window to inspect the MMU
registers. Directly program the MMU from here to map some unused memory to the fault address location.

SPRAC12-March 2015 Debugging Tools and Techniques With IPC3.x 13
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC12

13 TEXAS
INSTRUMENTS

Debugging MMU Faults and Exceptions www.ti.com

For example:

6.4.2.2

MMU CAM: 0x9600000E (Change the most significant 20 bits here to match the fault address. For
example, it would be 96000 if the fault address is 0x96000010)

MMU RAM: 0xBA300000 (Change the most significant 20 bits here to match an unused 4-KB physical
region in the memory map)

MMU Lock: 0x00000400
MMU LD: 0x00000001

Using the Crash Dump to Find the Location of the Fault

The crash dump call stack can indicate where the crash occurred. Using that information, connect to the
remote core with CCS and put a breakpoint in the code at the most recent function in the call stack before
the crash. From there, step through the code until the crash happens.

6.4.2.3

Example — Accessing a Memory Region That is not Mapped

When using the L2 MMU, every address accessed by the remote core must be mapped. An attempt to
access an un-mapped address results in an MMU fault. The following example explores the crash dump of
an access to an un-mapped area.

Here is an example fault dump:

14

Debugging Tools and Techniques With IPC3.x SPRAC12-March 2015

Submit Documentation Feedback
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC12

13 TEXAS
INSTRUMENTS

www.ti.com

Debugging MMU Faults and Exceptions

[e1r 107 _052]
[o1r1 107 _052]
[e1r 107 _052]
[o1r1 107 _052]
[e1r 107 _052]
[o11 107 .052]
FORCED

[o11 107 .052]
[e1r 107 _052]
[e1r 107 _052]
[e1r 107 _052]
[o11 107 _052]
[e1r 107 _052]
[o11 107 _052]
[01L 107 _052]
[o11 107 _052]
[01L 107 _052]
[o11 107 _052]
[o11 107 _052]
[o11 107 _052]
[o11 107 _052]
[o11 107 _052]
[o11 107 _052]
[o11 107 _052]
[01L 107 _052]
[o11 107 _052]
[o11 107 .052]
[o11 107 _052]
[o11 107 .052]
[o11 107 _052]
[o11 107 .052]
[o11 107 _052]
[o11 107 .052]
[o11 107 _052]
[o11 107 .052]
[o11 107 _052]
[o11 107 .052]
[o11 107 _052]
[o1r1 107 _052]
[e1r 107 _052]
0000ed0a

[e1r 107 052]
bell3155

[e1r 107 _052]
bebebebe

[e1r 107 _052]
00000001

[e1r 107 _052]
EEFFFFFF

[e1r 107 _052]
bebebebe

[0 107 _052]

Exception occurred at (BC) = 0000cfaé

CPU comtext: thread

BIOS Task name: {empty-instance-name} handle: O0x800&0050.

BIOS Task stack base: 0xB00&00al.

BIOS Task stack size: O0xBOO.

[t=0xlé&edZ3ea] ti.sysbios.family arm.m3_ Hwi: ERROR: line 1078: E hardFault:

ti.sysbios_ family.arm.m3 Hwi: line 1078: E hardFault: FORCED
[t=0xl&eBed2B] ti.sysbios.family.arm.m3 Hwi: ERROR: line 1155: E busFault:

PERECISERE: Immediate Bus Fault, exact addr mown, address: 3&000000

ti.sysbicos.family.arm.md Hwi: line 1155: E busFault: PFRECISERR: Imrediate Bus

Fault, exact addr mown, address: 56000000

RO = 0x5e000000 RE = OuEfEFfEEFF

Bl = OxQO000000 RS = OxEEEfEFFE

B2 = 0xQ0000000 RI10 = OuEEEFEEFE

B3 = OxB00807d4 R1l1 = OxEEEFfEFFE

B4 = OxfEEFFFFEf RI1Z = 0nBO0E0TOc

RE = DxfffFffff SP(R13) = O0xB00&07a20
Be = OxfEEFFFFEf LR(R14) = 0x0000cfal
RT = DxffEEffFff PC(R1S) = OxD000cfaé
PSR = Oxel000000

ICSE = 0x00438803

MMESRE = Ox00
BFSR = 0xBZ

UEFSR = 0x0000
HFSR = 0x40000000
DESR = 0x00000000
MMER = OxS&000000
EFRR = 0x39€000000
AFSR = 0x00000000
Stack trace

00 [op £8cef00s] 0000€bod (ret from call to 00014458)
—— [op 0£3€0010] 000Oe£71
01 [op £542£00&] 0000€bd43 (ret from call to 0000co£24)
02 [op 00015fbd] B00&0E2&4
—— [op 00000000] 000aEEEff
—— [op 0OOQ00014] 00010211
—— [op 0000c504] 0000EScS
—— [op 0OOQ00014] 00010211
— [op bd0efall] 00015855
Stack dump base 200&800a0 size 2048 sp B800c0Tel:
2006070 - OO0O00001 O0O00&Ebcd SE€000000 OOODODOOD0D OO000ef7l OOOO0ERd3 OOOODO00a

B00c0B00: QOOOOOOD OQOOO0000 BOO40200 BO0DeO240 OO0DO0O0BD S56414c53 SO455£45
B00£0820: bebebebe bebebebe bebebebe bebebebe bebebebe bebebebe bebebebe
20060840 : bebebebe bebebebe bebebebe bebebebe bebebebe 00000000 00000000
B00c08e0: QOO0OOO0001 000158cS fEEEEEFF 00000002 OOOQOOOOD 20040220 OOOOOOOL
B00c0BEB0: £EEEEFFF 00010211 OQOOOOOOOD OOQODOOOOOD OOODEScS 00010211 OOO1SESS

Terminating execution. . .

From the crash dump, the fault address is 0x96000000. The address will not be found in the resource

Figure 7. Crash Dump Stack Trace

table, which is why the fault occurred.

Avoid hard-coding of virtual addresses for peripherals and memory blocks with a one-time physical to

virtual address lookup using the resource table. There is an API available for this called
Resource_physToVirt() in the resource module. This alerts that the address is not mapped in the resource
table when the translation fails.

SPRAC12-March 2015

Debugging Tools and Techniques With IPC3.x

Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

15

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC12

13 TEXAS
INSTRUMENTS

Debugging MMU Faults and Exceptions www.ti.com

From here, either use the crash dump to see the PC and call stack or follow the instructions in Using CCS
to Halt the Code When the Fault Happens. Error recovery, watchdog timers, and remoteproc autosuspend
may need to be disabled to connect CCS. See Linux and Android - Disabling Error Recovery, Linux and
Android - Disabling Watchdog, and Linux and Android - Disabling Remoteproc Auto-Suspend for more
information on disabling these.

For this example, use the PC address which, as seen in the crash dump, is at Oxcfa6.

[O1L 107.092] Exception occurred at (PC) = 0000cfa6 ‘

Find the corresponding function by looking this address up in the map file for the remote core image. If the
PC address is invalid due to an issue such as stack corruption, then this may not yield useful results. In
this case, something useful is found:

(2 Souce st FalisEmTap NN o v s

_.:I File Edit Search Project Options View Window Help
DERHER & J2@ 90 aaAtMm. 06 e«s05 AQMELR BOEE 0N

00457: 0000ck28 00000174 sysbios.aem¢ : BIOS.obj (.text:ti sysbios family arm duc
0 .const.11
0 ® 4] 0000cc9c Q0000004
0000ccSc 00000004 fault pem4.cemd (.const:ti_ ipc transports TransportRpmeg
LCext.l12 4] 0000ccald 00000453
0000ececal 00000174 sysbios.aemd : BIOS5.ob] (.text:ti sysbics family arm m3_
0000cel4d 00000170 ti.pm smp vayu.aemd : IpcPower.oem4 (.text:IpcPower regi

0000cf84 0000016F fault.oem4 (.text:fxnFault)

=R === =]

o
MAsS - moamot 17

Alternatively, use CCS to see the location of the fault. If CCS was already connected to the remote core
before the fault happened, the core will have halted in the abort function. From here, directly set the PC
address and see the line that caused the fault:

" CCS Debug - C:\Users\a0866189\ipc_valyipc_3_40_00_06\packages\ti\ipc\tests\fault.c - Code Composer Studio
File Edit View Project Tools Run Scripts Window Help
mig B (@8~ LR g
35 Debug = i J | 2.2 3. 2 | 4~ & & ¥ = 0| ®-variables |4 Expressions |if# Registers £2 | % Breakpoints
2 Spectrum Digital XDS560V2 STM USB Emulator_0/ARM9_ICONT1 (Disconnected : Unknown) “ || Name Value
& Spectrum Digital XDS560V2 STM USB Emulator_0/ARM9_ICONT2 (Disconnected : Unknown) 4 5 Core Registers
4 i Spectrum Digital XDS560V2 STM USB Emulator_0/Cortex_M4_IPU1_CO (Suspended - SW Breakpoint) W PC 0x0000CFAG
= fxnFault(unsigned int)() at fault.c;66 0x0000CFAG W sp 0%800606D8
= (0xB00607A0 (no symbols are defined for 0x800607A0) W LR 0x000135BB
»@ Spectrum Digital XDS560V2 STM USB Emulator_0/Cortex_M4_IPU1_C1 (Running) - W xPSR 0x61000003
o) Spectrum Digital XDS560V2 STM USB Emulator_0/Cortex_M4_IPU2_CO (Disconnected : Unknown) = RO 0x000135B5
ol Spectrum Digital XDS560V2 STM USB Emulator_0/Cortex_M4_IPU2_C1 (Disconnected : Unknown) e R1 0x00005F52
& Spectrum Digital XDS560V2 STM USB Emulator_0/C66xx_DSP1 (Disconnected : Unknown) e R2 0x00000000
& Spectrum Digital XDS560V2 STM USB Emulator_0/CortexA15_0 (Disconnected : Unknown) MR 0x00005F38
& Spectrum Digital XDS560V2 STM USB Emulator_0/CortexA15_1 (Disconnected : Unknown) W8 R4 0x00005F38
- ||« I
O feutils.c O dskt2dact.c O rman.c %] ccsv5_draZxx_evm... O IpcPower.c [c] ti_sysbios_family... O fault.c 52| 3 =~ 0| @ Memory Browser % | Disassembly
61 switch (faultId) { - o
62 case @: /* no fault */
63 return 0;
64 case 1:
65 System printf("Generating read MMU Fault...\n");
> 66 a = *(volatile int *)(@x96000000); =
67 break; -
68 case 2:
69 System_printf("Generating write MMU Fault...\n");
70 *(volatile int *)(0x96000000) = Ox1;
71 break;
72 case 3:

Use this technique at any time after booting the remote core to see what a PC address corresponds to. It
will display the line that caused the error. This may, however, prevent proper execution because the
registers and call stack won't have proper values.

You can now isolate the particular line in the fxnFault() function that was executing. That code is found in
the file <ipc_package>/packagesiti/ipc/tests/fault.c:

16 Debugging Tools and Techniques With IPC3.x SPRAC12-March 2015
Submit Documentation Feedback
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC12

13 TEXAS
INSTRUMENTS

www.ti.com Other Common Issues

case 1:
System printf ("Generating read MMU Fault. .. \n");
a = *(wolatile imt *) (0x39€000000) ;
break;

Figure 8. Fault Generating Code

Figure 8 clearly shows what caused the fault in this code, but when it is not clear, use CCS to see the fault
in action. Once connected and the symbols are loaded, put a breakpoint in this function (if this function
does not happen often). Once the breakpoint is hit, step through the code to find what is causing the fault.

Upon stepping through, observe that the variable, a, is being set to the contents of 0x96000000, which is
equal to the fault address. This is the fault in this example.

Next, decide if this is a valid value that needs mapping, or if this is an invalid value that passed due to
some error in the code. If it is still not known where the value is coming from, use CCS to trace it back
through the call stack to fix the code. If it turns out that the address is an address that must be accessible
to the remote core, then map it through the resource table to the appropriate physical memory.

7 Other Common Issues

7.1 IPC Versions Across Processors

Often, issues arise due to version mismatches between the IPC versions running on different cores.
These issues can manifest in various ways, so ensure that the version of the IPC running on the host is
the same version running on the remote core that the host is communicating with. All versions must
match, especially when updating one image or the other.

7.2 Android and Linux - Late Attach and IPC

When using the late-attach feature of the IPC, the u-boot and kernel must both be configured with late-
attach enabled or both configured without late-attach enabled. Having a mismatch can lead to crashes
and other undesired behavior.

For example, if the kernel is configured to have late attach enabled, but u-boot has not loaded the remote
processor, then the kernel will crash when the kernel tries to access a register it assumes was already
configured by u-boot.

More information on late attach for Android can be found at
http://processors.wiki.ti.com/index.php/Early_Boot_and_Late_ Attach.

More information on late attach for Linux can be found in the GLSDK Software Developer’s Guide:
http://downloads.ti.com/infotainment/esd/jacinto6/glsdk/latest/exports/DRA7xx_GLSDK_Software_Develop
ers_Guide.html#Using_the Late_ attach_functionality.

8 References

Much of the information contained in this application report can be found in the following wiki links and
download pages. These wikis are kept up-to-date and can be referenced for further information.

1. IPC Product Releases — http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ipc/

2. Download CCS — http://processors.wiki.ti.com/index.php/Download_CCS

3. IPC DEBUG - http://processors.wiki.ti.com/index.php/IPC_DEBUG

4. Tracing — http://processors.wiki.ti.com/index.php/IPC_Install_Guide_QNX#Tracing

5. IPC MMU fault debug — http://processors.wiki.ti.com/index.php/IPC_MMU_fault_debug

6. IPC Slave Error Recovery — http://processors.wiki.ti.com/index.php/IPC_Slave_Error_Recovery

7. Exception Dump Decoding Using the CCS Register View —
http://processors.wiki.ti.com/index.php/SYS/BIOS_FAQs#4 _Exception_Dump_Decoding_Using_the C
CS_Register_View

SPRAC12-March 2015 Debugging Tools and Techniques With IPC3.x 17

Submit Documentation Feedback
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC12
http://processors.wiki.ti.com/index.php/Early_Boot_and_Late_Attach
http://downloads.ti.com/infotainment/esd/jacinto6/glsdk/latest/exports/DRA7xx_GLSDK_Software_Developers_Guide.html#Using_the_Late_attach_functionality
http://downloads.ti.com/infotainment/esd/jacinto6/glsdk/latest/exports/DRA7xx_GLSDK_Software_Developers_Guide.html#Using_the_Late_attach_functionality
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ipc/
http://processors.wiki.ti.com/index.php/Download_CCS
http://processors.wiki.ti.com/index.php/IPC_DEBUG
http://processors.wiki.ti.com/index.php/IPC_Install_Guide_QNX#Tracing
http://processors.wiki.ti.com/index.php/IPC_MMU_fault_debug
http://processors.wiki.ti.com/index.php/IPC_Slave_Error_Recovery
http://processors.wiki.ti.com/index.php/SYS/BIOS_FAQs#4_Exception_Dump_Decoding_Using_the_CCS_Register_View
http://processors.wiki.ti.com/index.php/SYS/BIOS_FAQs#4_Exception_Dump_Decoding_Using_the_CCS_Register_View

13 TEXAS
INSTRUMENTS

References www.ti.com

8. Debugging Crashes —
http://processors.wiki.ti.com/index.php/Early_Boot_and_Late Attach#Debugging_Crashes

9. Runtime Object Viewer — http://rtsc.eclipse.org/docs-tip/Runtime_Object_Viewer

Additionally, see a list of all the IPC-related wiki pages by searching the IPC category at
http://processors.wiki.ti.com/index.php/Category:IPC.

18 Debugging Tools and Techniques With IPC3.x SPRAC12-March 2015

Submit Documentation Feedback
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC12
http://processors.wiki.ti.com/index.php/Early_Boot_and_Late_Attach#Debugging_Crashes
http://rtsc.eclipse.org/docs-tip/Runtime_Object_Viewer
http://processors.wiki.ti.com/index.php/Category:IPC

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESDA48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent Tl deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

Tl assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of significant portions of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. Tl is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
Tl is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify Tl and its representatives against any damages arising out of the use
of any Tl components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No Tl components are authorized for use in FDA Class Ill (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those Tl components which Tl has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, Tl will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters
DLP® Products

DSP

Clocks and Timers
Interface

Logic

Power Mgmt
Microcontrollers
RFID

OMAP Applications Processors
Wireless Connectivity

dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/omap

Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial

Medical

Security

Space, Avionics and Defense
Video and Imaging

Tl E2E Community

www.ti.com/wirelessconnectivity

www.ti.com/computers
www.ti.com/consumer-apps
www.ti.com/energy
www.ti.com/industrial
www.ti.com/medical
www.ti.com/security
www.ti.com/space-avionics-defense
www.ti.com/video

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Debugging Tools and Techniques With IPC3.x
	1 Introduction
	2 Debug Tools
	2.1 Tracing
	2.2 Linux and Android - Debugfs
	2.3 Code Composer Studio

	3 Traces
	3.1 Linux and Android - Enabling IPC Traces
	3.2 QNX – Enabling IPC Traces
	3.2.1 Resource Manager Traces
	3.2.2 User Library Traces

	3.3 Linux and Android - Remote Core Traces
	3.4 QNX - Remote Core Traces
	3.5 Adding Traces
	3.5.1 SYS-BIOS
	3.5.2 Linux

	4 Remote Core Status Information
	4.1 Linux and Android - Remoteproc
	4.2 Linux and Android - IOMMU Info
	4.3 QNX – Remote Core State Information

	5 Using Code Composer Studio
	5.1 Debug Symbols
	5.2 Linux and Android - Disabling Remoteproc Auto-Suspend
	5.3 Linux and Android – Disabling Watchdog
	5.4 SYS/BIOS – Disabling Watchdog
	5.5 Attaching Before the Issue
	5.6 Attaching After the Issue
	5.7 Viewing the State of the Remote Core

	6 Debugging MMU Faults and Exceptions
	6.1 Linux and Android - Disabling Error Recovery
	6.2 QNX – Disabling Error Recovery
	6.3 Crash Dump
	6.4 Exception Dump Decoding
	6.4.1 Exception Dump Breakdown
	6.4.1.1 Timestamp
	6.4.1.2 PC Address
	6.4.1.3 Task Information
	6.4.1.4 Fault Information
	6.4.1.5 Registers
	6.4.1.6 Stack Trace

	6.4.2 MMU Faults
	6.4.2.1 Using CCS to Halt the Code When the Fault Happens
	6.4.2.2 Using the Crash Dump to Find the Location of the Fault
	6.4.2.3 Example – Accessing a Memory Region That is not Mapped

	7 Other Common Issues
	7.1 IPC Versions Across Processors
	7.2 Android and Linux - Late Attach and IPC

	8 References

	Important Notice

