
1 System Requirements

Application Report
SPRAAQ9–January 2008

Building GStreamer
Prateek Bansal, Brian Jeff, Isara Indra..

ABSTRACT
GStreamer is a pipeline-based multimedia framework that allows you to create a variety
of media-handling components, including simple audio playback, audio and video
playback, recording, streaming, and editing. The pipeline design allows you to easily
write any type of streaming multimedia application.

This software release helps you leverage the DV-EVM software infrastructure (Codec
Engine, MV Linux LSP, DSP Codecs, etc.) in developing open source GStreamer
multimedia framework to DaVinci class devices. These open-source frameworks
increase productivity as they can capably handle multiple tasks such as AV
synchronization, demuxing/muxing, network streaming, etc.

This application report demonstrates how to build a simple media playback application
using GStreamer and the DV-EVM software foundation. The GStreamer multimedia
framework is first cross-compiled and adapted to run on the ARM926EJ-S core of the
DaVinci DM6446 device. The codec engine includes various audio/video decoder
modules that are then adapted into pluggable decoder components that can be mixed
and matched into arbitrary pipelines. Finally, you will use these components to create
various types of audio/video playback applications.

Contents
1 System Requirements ... 1
2 GStreamer Components... 2
3 Build Instructions ... 4
4 How to Run the Demo on the Target .. 5

List of Figures

1 GStreamer/DaVinci DV-EVM Software Architecture ... 2
2 GStreamer Multimedia Pipeline on DaVinci Platform .. 2

First, you must install the GStreamer components and plug-ins on the existing DV-EVM setup. The
software package associated with this application report includes all the components needed for this
process. You must have the following setup to use this software:
• Host PC running Red Hat Enterprise Linux 4
• Host PC has DV-EVM 1.20.00
This setup also allows you to access to the MontaVista cross compiler tools set. The build procedures
described below have been tested with the DV-EVM v1.20 software tools. The DV-EVM v1.20 software
can be downloaded following registration of your DM6446 DV-EVM at http://www.ti.com/dvevmupdates.
The compiler tools from the DV-EVM installation are necessary to cross-compile the GStreamer libraries
and the plug-ins for the DaVinci platform.

SPRAAQ9–January 2008 Building GStreamer 1
Submit Documentation Feedback

http://www.ti.com/dvevmupdates
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ9

www.ti.com

Video
CODEC

xDM

API

BIOS TSK

Imaging
CODEC

xDM

API

BIOS TSK

Speech
CODEC

xDM

API

BIOS TSK

Audio
CODEC

xDM

API

BIOS TSK

CODEC Engine Resource Server

DSP Link DSP/BIOS

D
M

A
N

,
A

C
P

Y

M
E

M
,

T
S

K
A

P
I

D
S

K
T

S
k

e
le

to
n

CODE
C

Engine

Signal Processing Layer (SPL)

S
tu

b

V
IS

A
A

P
I

DSP

I/O
Buffers

Shared
Memory

G
S

tr
e

a
m

e
r

ARM
CODEC

xDM

API

Local Instance

UI/User
Application

Application Layer (APL)

User Space

DSP/Link

2 Timers

File/ATA

MMC/SD

2 W’dogs

USB 2.0

EMAC

SPI

Audio

UART

I2C

Video

Kernel Space

Driver API

ARM

Link

2 GStreamer Components

Transport Stream
(TS)

Demux
(mpegts_demux)

AVI
Demux

(tiaviplugin)

ASF
Demux

(tiasfplugin)

CODEC Engine
API

Library
(libce.so)

Audio
Decoder

(adecoder)

Video
Decoder

(gdecoder)

Audio Output
Driver

(osssink)

Framebuffer
Driver Sink

(fbvideosink)

GStreamer Components

The DV-EVM software foundation and GStreamer software package are designed to enable the
GStreamer multimedia framework on TI's DaVinci platform (DV-EVM). The GStreamer framework runs
from the application level that utilizes a VISA API/codec engine as a low-level multimedia engine (see
Figure 1).

Figure 1. GStreamer/DaVinci DV-EVM Software Architecture

GStreamer is a media-processing library that provides an abstract model of a transformation that is based
on a pipeline. Media flows in a defined direction from input to output. GStreamer has gained wide
popularity in the digital video programming community through its ability to abstract the manipulation of
different media; thus, simplifying the programming process. GStreamer makes it possible to write a
general video or music player that can support many different formats and networks. Most operations are
performed by plug-ins, rather than by the GStreamer core. Figure 2 displays this media pipeline concept:

Figure 2. GStreamer Multimedia Pipeline on DaVinci Platform

2 Building GStreamer SPRAAQ9–January 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ9

www.ti.com

2.1 GStreamer Core Libraries

2.2 GStreamer Plug-In Libraries

GStreamer Components

The following sections list the libraries included in the GStreamer software package.

The source files for these packages can be found on the corresponding open source community site.
• OS: glib-2.12.4 (Source package: http://ftp.gnome.org/pub/GNOME/sources/glib/2.12/)

GLib is a general-purpose utility library, providing many data types, macros, type conversions, string
utilities, file utilities, a main loop abstraction, etc. It works on many UNIX-like platforms, Windows, OS/2
and BeOS. GLib is released under the GNU Library General Public License (GNU LGPL).

• OS: check-0.9.3 (Source package:
http://sourceforge.net/project/showfiles.php?group_id=28255&package_id=20116)
Check is a unit test framework for C. It features a simple interface for defining unit tests. Tests are run
in a separate address space, so Check can catch both assertion failures and code errors that cause
segmentation faults or other signals. The output from unit tests can be used within source code editors
and IDEs.

• OS: liboil-0.3.9 (Source package: http://liboil.freedesktop.org/download/)
Liboil is a library of simple functions that are optimized for various CPUs. These functions are generally
loops implementing simple algorithms, such as converting an array of N integers to floating-point
numbers or multiplying and summing an array of N numbers. Such functions are candidates for
significant optimization using various techniques, especially using the extended instructions provided
by modern CPUs (Altivec, MMX, SSE, etc.).

• OS: libxml2-2.6.16 (Source package: http://ftp.gnome.org/pub/GNOME/sources/libxml2/2.6/
XML parser library from the GNOME project.

• OS: gstreamer-0.10.1 (Source package: http://gstreamer.freedesktop.org/src/)
GStreamer is a library that allows the construction of graphs of media-handling components, ranging
from simple Ogg/Vorbis playback to complex audio (mixing) and video (non-linear editing) processing.
It features basic functionality and libraries, some essential elements, documentation, and testing.

GStreamer plug-in libraries in this package include both Open Source plug-ins and TI-developed plug-ins.
While the Open Source GStreamer plug-ins provide the basic framework for a multimedia system (sound
driver, file parser), the TI-developed GStreamer plug-ins leverage the DSP for video decoding and run on
an ARM device under the Linux operating system. TI also provides Linux peripheral drivers, which
conform to standard open-source mechanisms for the driver interface, as well as a codec engine API that
abstracts many of the complexities of programming DSPs. Open Source packages can also be found at
http://gstreamer.freedesktop.org/src/. The following lists all the plug-ins included in the GStreamer
software package:

• OS: gst-plugins-base-0.10.11
This package is part of the base plug-ins for GStreamer. It provides a set of required plug-ins and
elements.

• OS: mpegts_demux
This plug-in is for Transport Stream demultiplexing into individual audio and video streams. This code
is based on Fluendo MPEG TS demux code.

• OS: OSS (open sound system) audio sink driver
This is an open-source plug-in to send audio or sound to a sound card based on the OSS (Open
Sound System) digital audio architecture for Linux.

• TI: fbvideosink (Framebuffer video sink)
This is a TI-developed plug-in available as source code to display video using the Video Processing
Back End subsystem on DaVinci DM644x devices. This is based on the framebuffer digital video audio
architecture for Linux.

• TI: gdecoder (Video Decoder)
This is a TI-developed plug-in available as source code to decode elementary video streams using the
Codec Engine software foundation available on DaVinci devices. This software foundation allows for
remote procedure calls to DSP to decode the video streams. The video decoder plug-in can support

SPRAAQ9–January 2008 Building GStreamer 3
Submit Documentation Feedback

http://ftp.gnome.org/pub/GNOME/sources/glib/2.12/
http://sourceforge.net/project/showfiles.php?group_id=28255&package_id=20116
http://liboil.freedesktop.org/download/
http://ftp.gnome.org/pub/GNOME/sources/libxml2/2.6/
http://gstreamer.freedesktop.org/src/
http://gstreamer.freedesktop.org/src/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ9

www.ti.com

3 Build Instructions

3.1 Build Steps

Build Instructions

elementary video stream of VC1/WMV9, H.264 MP, MPEG4 SP, and MPEG2 MP@ML decoding.
• TI: adecoder (Audio Decoder)

This is a TI-developed plug-in available as source code to decode elementary audio streams using the
Codec Engine software foundation available on DaVinci devices. This software foundation allows for
remote procedure calls to DSP to decode the audio streams. The audio decoder plug-in can support
elementary audio streams of AAC, MP3, and WMA decoding.

• TI: tiavidemux (AVI Demuxer)
This is a TI-developed plug-in available as source code to de-multiplex the AVI container files.

• TI: tiasfdemux (ASF Demuxer)
This is a TI-developed plug-in available as source code to de-multiplex the ASF container files into
individual RCV video and RCA audio streams.

The software package released with this application note has grouped the components described in the
previous sections into an Open source package (gstreamer_opensource.tar.gz) and a TI specific package
(gstreamer_tibuild.tar.gz). Build-scripts have also been created for both packages, using the following
assumptions:
1. You have installed DVEVM/DVSDK v1.20 on the Linux host machine per the EVM startup guide, and

the kernel image from DV-EVM v1.20 is flashed on the hardware EVM board.
2. The username for the machine is assumed to be user, so the default home folder is /home/user. If you

are using a different folder name, you must change the directory names in the Shell Script files
(make_opensource.sh and make_tiplugins.sh). The two main paths that need to be changed are
MVISTA_INSTALL_DIR and FILESYS_DIR in each shell script. The default paths are specified below.
MVISTA_INSTALL_DIR should point to your MontaVista directory installation: export
MVISTA_INSTALL_DIR=/opt/dvevm/mv_pro_4.0/MontaVista.
#FILESYS_DIR should point to the NFS shared target root directory: export
FILESYS_DIR=/home/user/workdir/filesys.
The above paths need to be changed based on your MontaVista installation directory path and the
target root directory that is NFS shared. The above settings assume that the target (DV-EVM) file
system is mounted under /home/user/workdir/filesys directory. For make_tiplugins.sh, you also need to
set the DVEVM_PATH to your DV-EVM installation. An example of a DV-EVM directory path setting is
#Location of DVEVM_PATH to point to DV-EVM directory: export
DVEVM_PATH=/home/user/dvevm_1_20

3. This release has been tested with the MontaVista Pro 4.01 target file system.
4. You have audio and video files to run the demo application in the following container formats: AVI,

Transport Stream, MP3, AAC, and WMA.
5. AVI file support has been tested with the video stream as MPEG4 SP compliant and audio stream as

MP3 compliant.
6. TS (transport stream) file support has been tested with video stream as H.264 MP compliant and audio

stream as MP3 compliant.
7. The ASF file is not currently supported on this release, but support for those files is planned for future

releases.

1. Unzip the Open source package (gstreamer_opensource.tar.gz) and TI specific package
(gstreamer_tibuild.tar.gz) under the /home/<user>/workdir/gstreamer directory. This creates ti_build/
and opensource_build/ directories.

2. Add MontaVista cross compiler tools in the PATH environment variable. For example:
export PATH=$PATH:/opt/MontaVista/pro/devkit/arm/v5t_le/bin/

3. Create the following directories on the target file system:
• /home/user/workdir/filesys/opt/gstreamer
• /home/user/workdir/filesys/opt/system_files_gstreamer

4. Create the following soft links if the directories do not already exist:

4 Building GStreamer SPRAAQ9–January 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ9

www.ti.com

3.2 Building Open Source Plug-Ins

3.2.1 Building TI Plug-Ins

4 How to Run the Demo on the Target

How to Run the Demo on the Target

• ln -s <MONTAVISTA INSTALL PATH> /opt/montavista
Example: If MontaVista installation directory is in /opt/dvevm/mv_pro_4.0/montavista, the soft link
will be ln -s /opt/dvevm/mv_pro_4.0/montavista /opt/montavista

• ln -s /bin/sed /opt/montavista/common/bin/sed

1. Open the opensource_build directory.
2. Run the make_opensource script under the gstreamer/opensource_build directory using the following

command:
./make_opensource.sh

3. The script will ask if you want to build different packages or not. If you are building the first time, say
YES to building all the packages. You can do incremental builds following the first full build.

1. Go to the ti_build directory.
2. Run the make_tiplugins shell script using the following command:

./make_tiplugins.sh
3. The script will ask if you want to build different packages or not. If you are building the first time, say

YES to building all the packages. You can do incremental builds following the first full build.

The previous build steps were done on the host file system. Now you can run the demo on the target
(DV-EVM) file system.
1. Boot the hardware DV-EVM with the Linux kernel image uImage from DV-EVM v1.20. A copy of this

uImage is also located in following host directory:
/home/user/workdir/filesys/opt/system_files_gstreamer. Also, it is assumed that you have the file
system mounted over NFS in uboot settings.

2. Once you are at the login prompt, type root and enter.
3. Go to the /opt/system_files_gstreamer directory. The system_files_gstreamer directory is copied from

the ti_build folder. This directory contains uImage (DV-EVM v1.20 Kernel Image), cmemk.ko (CMEMK
kernel module), dsplinkk.ko (DSPLINK kernel module), DSP Server Executables (*.x64P files), and
Test Scripts to run demos. If you are running a custom kernel, you will need to:
a. Build the cmemk and dsplinkk modules for your custom kernel if you have not already done so.
b. Copy the cmemk and dsplinkk modules to the system_fileS_gstreamer directory.
c. Set u-boot to use the custom uImage, instead of the one shipped by default under the

/opt/system_files_gstreamer directory.
If you have your own DSP Server executables that you will to run, you will need to copy your *.x64P
files in the system_files_gstreamer directory. You might also have to change the TI PLUGINS,
specifically the gdecoder and adecoder. One of the changes would be to use the appropriate Engine
Names, as per your *.x64P files under Engine_open call.

4. Run the ./start_demo.sh file.
5. Copy your media files (TS, AVI, AAC, MP3, WMA) under the /opt/media directory to the DV-EVM file

system.
6. There are 6 different GStreamer pipelines that have been currently tested using this package. These

pipelines are stored under test_***.sh scripts. Other pipelines can be created using the same
procedure.

7. Run the following shell to play an AAC file (audio only)
./test_AAC.sh <AAC file_name>
You will hear a beeping sound after every couple of seconds, as this is evaluation audio codec.

8. Run the following shell to play an MP3 file (audio only)
./test_MP3.sh <MP3 file_name>
You will hear a beeping sound after every couple of seconds, as this is evaluation audio codec.

SPRAAQ9–January 2008 Building GStreamer 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ9

www.ti.com

How to Run the Demo on the Target

9. Run the following shell to play a TS file (both audio and video)
./test_TS.sh <TS file_name>
You will hear a beeping sound after every couple of seconds, as this is evaluation audio codec and
there will be TI logo displayed on right hand corner, as this is evaluation video codec.

10. Run the following shell to play an AVI file (both audio and video)
./test_AVI.sh <TS file_name>
You will hear a beeping sound after every couple of seconds, as this is evaluation audio codec and
there will be TI logo displayed on right hand corner, as this is evaluation video codec.

11. Run the following shell to play a WMA file (audio only)
./test_WMA.sh <WMA file_name>
You will hear a beeping sound after every couple of seconds, as this is evaluation audio codec.

12. To stop the demo, click on Ctrl-C.

6 Building GStreamer SPRAAQ9–January 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ9

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
RF/IF and ZigBee® Solutions www.ti.com/lprf Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright 2008, Texas Instruments Incorporated

	1 System Requirements
	2 GStreamer Components
	2.1 GStreamer Core Libraries
	2.2 GStreamer Plug-In Libraries

	3 Build Instructions
	3.1 Build Steps
	3.2 Building Open Source Plug-Ins
	3.2.1 Building TI Plug-Ins

	4 How to Run the Demo on the Target

